JP2010077492A - Steel pipe for line pipe and method of producing the same - Google Patents

Steel pipe for line pipe and method of producing the same Download PDF

Info

Publication number
JP2010077492A
JP2010077492A JP2008246998A JP2008246998A JP2010077492A JP 2010077492 A JP2010077492 A JP 2010077492A JP 2008246998 A JP2008246998 A JP 2008246998A JP 2008246998 A JP2008246998 A JP 2008246998A JP 2010077492 A JP2010077492 A JP 2010077492A
Authority
JP
Japan
Prior art keywords
less
phase
steel pipe
bainite
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008246998A
Other languages
Japanese (ja)
Other versions
JP5353156B2 (en
Inventor
Nobuyuki Ishikawa
信行 石川
Hitoshi Sueyoshi
仁 末吉
Makoto Suzuki
真 鈴木
Tomohiro Matsushima
朋裕 松島
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008246998A priority Critical patent/JP5353156B2/en
Publication of JP2010077492A publication Critical patent/JP2010077492A/en
Application granted granted Critical
Publication of JP5353156B2 publication Critical patent/JP5353156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high strength steel pipe for a line pipe, excellent in DWTT performance and HIC resistance. <P>SOLUTION: The steel pipe for a line pipe comprises 0.02-0.06% C, ≤0.5% Si, 0.8-1.6% Mn, ≤0.008% P, ≤0.0008 S, ≤0.08% Al, 0.005-0.035% Nb, 0.005-0.025% Ti, 0.0005-0.0030% Ca, ≤0.0030% O and one or more kinds of ≤0.5% Cu, ≤1% Ni, ≤0.5% Cr, ≤0.5% Mo, ≤0.1% V and the balance Fe with inevitable impurities, wherein a CP value=4.46C(%)+2.37Mn(%)/6+ä1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+ä1.74Cu(%)+1.7Ni(%)}/15+22.36P(%) is ≤0.95, and an IP value=[Ca(%)-ä0.18+130Ca(%)}*O(%)]/1.25S(%) is 1.5-2.8, and the steel pipe has, as metallurgical structure, two phase structure of ferrite-bainite having ≥50% ferritic phase in an area fraction, wherein the average grain diameter of the ferritic phase is ≤5 μm and the average aspect ratio of the bainitic phase is ≤6.0. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原油や天然ガスなどの輸送用ラインパイプに使用される高強度ラインパイプ用鋼管であって、特に、厳しいDWTT性能と耐HIC性能が要求される管厚20mm以上のラインパイプに好適な鋼管とその製造方法に関するものである。   The present invention is a steel pipe for high-strength line pipes used for transportation line pipes for crude oil, natural gas, etc., and is particularly suitable for line pipes with a pipe thickness of 20 mm or more that require strict DWTT performance and HIC resistance. The present invention relates to a steel pipe and its manufacturing method.

一般に、ラインパイプ用の鋼管は、厚板ミルや熱延ミルにより製造された鋼板を、UOE成形、プレスベンド成形、ロール成形などで鋼管に成形した後、溶接することにより製造される。硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプ(以下、「耐サワーラインパイプ」という場合がある)は、強度、靭性、溶接性の他に、耐水素誘起割れ性(耐HIC性)や耐応力腐食割れ性(耐SCC性)などのいわゆる耐サワー性が必要とされる。鋼材のHIC(水素誘起割れ)は、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入し、鋼中のMnSなどの非金属介在物や硬い第2相組織のまわりに拡散・集積して、その内圧により割れを生ずるものとされている。   Generally, a steel pipe for a line pipe is manufactured by forming a steel sheet manufactured by a thick plate mill or a hot rolling mill into a steel pipe by UOE forming, press bend forming, roll forming or the like and then welding. Line pipes used to transport crude oil and natural gas containing hydrogen sulfide (hereinafter sometimes referred to as “sour line pipes”) are not only strong, tough, and weldable, but also resistant to hydrogen-induced cracking (HIC resistance). ) And stress corrosion cracking resistance (SCC resistance) and so-called sour resistance is required. HIC (hydrogen-induced cracking) of steel materials is that hydrogen ions due to corrosion reactions are adsorbed on the surface of steel materials and penetrate into the steel as atomic hydrogen, resulting in non-metallic inclusions such as MnS in the steel and hard second phase structures. It is said that it diffuses and accumulates around it and causes cracks due to its internal pressure.

従来、このような水素誘起割れを防ぐために、幾つかの方法が提案されている。例えば、特許文献1には、鋼中のS含有量を下げるとともに、CaやREMなどを適量添加することにより、長く伸展したMnSの生成を抑制し、微細に分散した球状のCaS介在物に形態を変える技術が提案されている。これにより、硫化物系介在物による応力集中を小さくし、割れの発生・伝播を抑制することによって、耐HIC性を改善するというものである。   Conventionally, several methods have been proposed to prevent such hydrogen-induced cracking. For example, in Patent Document 1, by reducing the S content in steel and adding an appropriate amount of Ca, REM, or the like, the formation of long extended MnS is suppressed, and a finely dispersed spherical CaS inclusion is formed. A technology to change this has been proposed. As a result, the stress concentration due to the sulfide inclusions is reduced, and the generation and propagation of cracks is suppressed, thereby improving the HIC resistance.

特許文献2、3には、偏析傾向の高い元素(C、Mn、P等)の低減やスラブ加熱段階での均熱処理による偏析の低減、および圧延後の冷却時の変態途中で加速冷却を行う技術が提案されている。これにより、中心偏析部での割れの起点となる島状マルテンサイトの生成、および割れの伝播経路となるマルテンサイトなどの硬化組織の生成を抑制するというものである。
特開昭54−110119号公報 特開昭61−60866号公報 特開昭61−165207号公報
In Patent Documents 2 and 3, accelerated cooling is performed in the middle of transformation during cooling after rolling, reduction of elements having a high segregation tendency (C, Mn, P, etc.), reduction of segregation by soaking in the slab heating stage. Technology has been proposed. This suppresses the generation of island martensite that becomes the starting point of cracks in the center segregation part and the generation of hardened structures such as martensite that becomes the propagation path of cracks.
Japanese Patent Laid-Open No. 54-110119 JP 61-60866 A JP-A-61-165207

しかしながら、近年の耐サワーラインパイプでは、管厚が20mm以上の厚肉材が増えている。ラインパイプには脆性き裂を停止するためDWTT性能が要求されるが、厚肉材ではDWTT性能が低下するだけでなく、減厚試験片を用いた場合に設計温度よりも低い温度でDWTT試験を行う必要があり、薄肉材よりも高い母材靭性が必要となる。母材靭性を高めるためには、熱間圧延での圧延終了温度を低下させることが有効であることは、厚鋼板の材質設計においては公知の技術である。しかし、圧延終了温度が低下すると鋼板の金属組織がフェライト−ベイナイト組織となり、フェライト−ベイナイト界面でき裂が伝播しやすくなるため、HIC試験での割れ率が大きくなる問題がある。また、厚肉材での強度を確保するために合金元素の添加量を増やす必要があるが、このような場合、中心偏析部の硬さが上昇するため、HIC試験で中心偏析部での割れが発生しやすくなる。さらに、高靭性化のために圧延終了温度を低下させると、鋼板の板厚中心部までフェライト−ベイナイト組織となるため、中心偏析部の硬化部の硬さがさらに上昇し、HIC試験での割れを助長することになる。   However, in recent sour-resistant pipes, thick materials having a pipe thickness of 20 mm or more are increasing. DWTT performance is required for line pipes to stop brittle cracks, but DWTT performance is not only reduced for thick-walled materials, but DWTT testing is performed at a temperature lower than the design temperature when using thinned specimens. And a higher base metal toughness than the thin-walled material is required. In order to increase the base metal toughness, it is a known technique in the material design of thick steel plates that it is effective to lower the rolling end temperature in hot rolling. However, when the rolling end temperature is lowered, the metal structure of the steel sheet becomes a ferrite-bainite structure, and cracks are likely to propagate at the ferrite-bainite interface, so that there is a problem that the cracking rate in the HIC test increases. In addition, it is necessary to increase the amount of alloying element added in order to ensure the strength of the thick-walled material. In such a case, the hardness of the center segregation part increases. Is likely to occur. Furthermore, if the rolling end temperature is lowered to increase the toughness, the ferrite-bainite structure is formed up to the center of the plate thickness of the steel sheet. Will be promoted.

したがって本発明の目的は、上記のような従来技術の課題を解決し、高強度(好ましくはAPI規格X60以上の強度)で且つDWTT性能と耐HIC性に優れたラインパイプ用鋼管、特に管厚20mm以上の耐サワーラインパイプに要求される厳しいDWTT性能と耐HIC性に対しても十分対応できる優れた性能を有するラインパイプ用鋼管を提供することにある。
また、本発明の他の目的は、そのようなラインパイプ用鋼管を安定的に且つ低コストで製造することができる製造方法を提供することにある。
Accordingly, the object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a steel pipe for line pipes, particularly a pipe thickness, which has high strength (preferably strength of API standard X60 or higher) and excellent DWTT performance and HIC resistance. An object of the present invention is to provide a steel pipe for a line pipe that has excellent performance that can sufficiently cope with severe DWTT performance and HIC resistance required for a sour-resistant line pipe of 20 mm or more.
Moreover, the other object of this invention is to provide the manufacturing method which can manufacture such a steel pipe for line pipes stably and at low cost.

本発明者は、母材靭性向上のために熱間圧延での圧延終了温度を低下させた鋼板の耐HIC性とDWTT性能について、主として金属組織の観点から詳細に調査した結果、以下の知見を得るに至った。
(a)鋼板製造時の圧延終了温度を低下させることで金属組織がフェライトとベイナイトの2相組織となり、鋼管の母材靭性が大きく改善される。図1にラインパイプ用鋼管におけるフェライト相の面積分率とDWTT試験(試験方法は後述する実施例と同様)での破面遷移温度(85%SATT)との関係を示す。これによれば、フェライト相の面積分率を一定値以上とすることで、破面遷移温度が−10℃以下の高い母材靭性が得られることが判る。
As a result of detailed investigation mainly from the viewpoint of the metal structure, the inventor has obtained the following knowledge about the HIC resistance and DWTT performance of the steel sheet in which the rolling end temperature in the hot rolling is lowered in order to improve the base material toughness. I came to get.
(A) By reducing the rolling end temperature at the time of steel plate production, the metal structure becomes a two-phase structure of ferrite and bainite, and the base metal toughness of the steel pipe is greatly improved. FIG. 1 shows the relationship between the area fraction of the ferrite phase in the steel pipe for line pipes and the fracture surface transition temperature (85% SATT) in the DWTT test (the test method is the same as in Examples described later). According to this, it turns out that the high base material toughness whose fracture surface transition temperature is -10 degrees C or less is obtained by making the area fraction of a ferrite phase into a fixed value or more.

(b)一方において、金属組織がフェライト−ベイナイト2相組織になると、発生したき裂がフェライト/ベイナイト界面を伝播しやすくなるため、耐HIC性能が劣化する。しかし、ベイナイト相の形状を圧延方向に過度に伸長した形状とならないようにすること、すなわちベイナイト相の平均アスペクト比を一定値以下とすることで、圧延方向のフェライト/ベイナイト界面の距離が短くなり、き裂伝播が生じにくくなる。さらに、フェライト相の結晶粒径を一定値以下に微細化することで、例えばフェライト/ベイナイト界面でき裂が伝播してもフェライト相でき裂伝播が止まるため、HIC試験での割れ長さ率または割れ面積率の増大を抑制できる。図2に、フェライト−ベイナイト2相組織のラインパイプ用鋼管のベイナイト相の平均アスペクト比とHIC試験(試験方法は後述する実施例と同様)での割れ面積との関係を示す。これによれば、ベイナイト相の平均アスペクト比を一定値以下とすることで、フェライト−ベイナイト2相組織においても優れた耐HIC性能が得られることが判る。 (B) On the other hand, when the metal structure becomes a ferrite-bainite two-phase structure, the generated cracks easily propagate through the ferrite / bainite interface, so that the HIC resistance is deteriorated. However, the distance of the ferrite / bainite interface in the rolling direction is shortened by making the shape of the bainite phase not excessively elongated in the rolling direction, that is, by keeping the average aspect ratio of the bainite phase below a certain value. Crack propagation is less likely to occur. Furthermore, by reducing the crystal grain size of the ferrite phase to a certain value or less, for example, even if cracks propagate at the ferrite / bainite interface, the crack propagation in the ferrite phase stops, so the crack length ratio or crack in the HIC test An increase in area ratio can be suppressed. FIG. 2 shows the relationship between the average aspect ratio of the bainite phase of a steel pipe for a line pipe with a ferrite-bainite two-phase structure and the crack area in the HIC test (the test method is the same as in the examples described later). According to this, it can be seen that by setting the average aspect ratio of the bainite phase to a certain value or less, excellent anti-HIC performance can be obtained even in a ferrite-bainite two-phase structure.

(c)上述のような金属組織は、鋼板の製造工程でのスラブ加熱温度、圧延終了温度、加速冷却開始温度および加速冷却停止温度を最適化することで得ることができる。
(d)さらに、フェライト−ベイナイト2相組織の鋼管の耐HIC性能を高めるためには、割れの起点となるような非金属介在物の量を低減することが有効であり、そのためには、S含有量を厳しく制限し、Ca処理によりMnS介在物を無害化し、さらに、S量及びO量との関係からCa添加量を厳しく制限することで、Ca系介在物量を低減することが重要である。
(e)中心偏析部の割れを抑制するには、偏析傾向のある合金成分量を厳しく管理し、中心偏析部の硬さ上昇を抑制し、さらに中心偏析部での割れの起点となるNbCの生成を抑制することが有効である。
(C) The metal structure as described above can be obtained by optimizing the slab heating temperature, rolling end temperature, accelerated cooling start temperature, and accelerated cooling stop temperature in the steel sheet manufacturing process.
(D) Furthermore, in order to improve the HIC resistance of a steel pipe having a ferrite-bainite two-phase structure, it is effective to reduce the amount of non-metallic inclusions that can cause cracks. It is important to reduce the amount of Ca-based inclusions by strictly limiting the content, detoxifying MnS inclusions by Ca treatment, and further strictly limiting the amount of Ca addition from the relationship between the S amount and the O amount. .
(E) In order to suppress cracks at the center segregation part, the amount of alloy components having a segregation tendency is strictly controlled, the increase in the hardness of the center segregation part is suppressed, and further, the NbC which becomes the starting point of cracks at the center segregation part It is effective to suppress generation.

本発明は、以上のような知見に基づきなされたもので、以下を要旨とするものである。
[1]質量%にて、C:0.02〜0.06%、Si:0.5%以下、Mn:0.8〜1.6%、P:0.008%以下、S:0.0008%以下、Al:0.08%以下、Nb:0.005〜0.035%、Ti:0.005〜0.025%、Ca:0.0005〜0.0030%、O:0.0030%以下を含有し、さらに、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下の中から選ばれる1種または2種以上を含有し、残部がFeおよび不可避不純物からなり、下記(1)式で表わされるCP値が0.95以下、下記(2)式で表わされるIP値が1.5〜2.8であり、金属組織が、面積分率でフェライト相が50%以上、フェライト相とベイナイト相の合計が95%以上のフェライト−ベイナイト2相組織であって、且つフェライト相の平均粒径が5μm以下、ベイナイト相の平均アスペクト比が6.0以下であることを特徴とするラインパイプ用鋼管。
CP=4.46C(%)+2.37Mn(%)/6+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+{1.74Cu(%)+1.7Ni(%)}/15+22.36P(%) …(1)
IP=[Ca(%)−{0.18+130Ca(%)}*O(%)]/1.25S(%) …(2)
The present invention has been made on the basis of the above-described findings and has the following gist.
[1] In mass%, C: 0.02 to 0.06%, Si: 0.5% or less, Mn: 0.8 to 1.6%, P: 0.008% or less, S: 0.00. 0008% or less, Al: 0.08% or less, Nb: 0.005-0.035%, Ti: 0.005-0.025%, Ca: 0.0005-0.0030%, O: 0.0030 In addition, Cu: 0.5% or less, Ni: 1% or less, Cr: 0.5% or less, Mo: 0.5% or less, V: 0.1% or less 1 type or 2 types or more are contained, the balance consists of Fe and inevitable impurities, the CP value represented by the following formula (1) is 0.95 or less, and the IP value represented by the following formula (2) is 1.5 to Ferrite phase with an area fraction of ferrite phase of 50% or more and a total of ferrite phase and bainite phase of 95% or more. DOO - a bainite dual phase structure, and an average particle size of the ferrite phase is 5μm or less, the steel pipe for a line pipe, wherein the average aspect ratio of bainite phase is 6.0 or less.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.18Cr (%) + 1.95Mo (%) + 1.74V (%)} / 5+ {1.74Cu (%) + 1.7Ni (% )} / 15 + 22.36P (%) (1)
IP = [Ca (%) − {0.18 + 130Ca (%)} * O (%)] / 1.25S (%) (2)

[2]鋼スラブを熱間圧延し、得られた鋼板を成形および溶接して鋼管を製造する方法において、上記[1]に記載の化学成分を有する鋼スラブを1000〜1150℃に加熱し、未再結晶温度域での圧下率を60%以上とし、且つ圧延終了温度を下記(3)式で示されるAr点以上とする熱間圧延を行った後、冷却開始温度を(Ar点−50℃)〜Ar点、冷却停止温度を300〜550℃とする加速冷却を行うことを特徴とするラインパイプ用鋼管の製造方法。
Ar(℃)=910−310C(%)−80Mn(%)−20Cu(%)−15Cr(%)−55Ni(%)−80Mo(%) …(3)
[2] In a method of hot rolling a steel slab and forming and welding the obtained steel plate to produce a steel pipe, the steel slab having the chemical composition described in [1] above is heated to 1000 to 1150 ° C, After performing hot rolling with a rolling reduction in the non-recrystallization temperature range of 60% or more and a rolling end temperature of Ar 3 or higher represented by the following formula (3), the cooling start temperature is set to (Ar 3 points) −50 ° C.) to Ar 3 points, a method for producing a steel pipe for a line pipe, characterized by performing accelerated cooling at a cooling stop temperature of 300 to 550 ° C.
Ar 3 (° C.) = 910-310C (%)-80Mn (%)-20Cu (%)-15Cr (%)-55Ni (%)-80Mo (%) (3)

本発明のラインパイプ用鋼管は、高強度で且つDWTT性能と耐HIC性に優れ、特に管厚20mm以上の耐サワーラインパイプで要求される厳しいDWTT性能と耐HIC性に対しても十分対応できる優れた性能を有する。また、本発明の製造方法によれば、そのようなラインパイプ用鋼管を安定的に且つ低コストで製造することができる。   The steel pipe for line pipe of the present invention has high strength, excellent DWTT performance and HIC resistance, and can sufficiently cope with severe DWTT performance and HIC resistance required especially for sour line pipes with a pipe thickness of 20 mm or more. Excellent performance. Moreover, according to the manufacturing method of this invention, such a steel pipe for line pipes can be manufactured stably and at low cost.

以下、本発明のラインパイプ用鋼管の詳細について説明する。
まず、本発明のラインパイプ用鋼管の化学成分とその限定理由について説明する。なお、成分量の%は全て「質量%」である。
Cは、加速冷却によって製造される鋼板の強度を高めるために最も有効な元素である。しかし、C量が0.02%未満では十分な強度を確保できず、一方、0.06%を超えると靭性および耐HIC性が劣化する。このためC量は0.02〜0.06%とする。
Siは脱酸のために添加するが、Si量が0.5%を超えると靭性や溶接性が劣化する。このためSi量は0.5%以下とする。
Hereinafter, the detail of the steel pipe for line pipes of this invention is demonstrated.
First, the chemical components of the steel pipe for line pipes of the present invention and the reasons for limitation will be described. In addition,% of the component amount is all “mass%”.
C is the most effective element for increasing the strength of the steel sheet produced by accelerated cooling. However, if the amount of C is less than 0.02%, sufficient strength cannot be secured, while if it exceeds 0.06%, toughness and HIC resistance deteriorate. Therefore, the C content is 0.02 to 0.06%.
Si is added for deoxidation, but when the amount of Si exceeds 0.5%, toughness and weldability deteriorate. For this reason, the amount of Si shall be 0.5% or less.

Mnは鋼の強度および靭性の向上のために添加するが、Mn量が0.8%未満ではその効果が十分ではなく、一方、1.6%を超えると溶接性と耐HIC性が劣化する。このためMn量は0.8〜1.6%とする。
Pは不可避不純物元素であり、中心偏析部の硬さを上昇させることで耐HIC性を劣化させ、この傾向はP量が0.008%を超えると顕著となる。このためP量は0.008%以下、好ましくは0.006%以下とする。
Sは、鋼中においては一般にMnS系の介在物となるが、Ca添加によりMnS系からCaS系介在物に形態制御される。しかし、S量が多いとCaS系介在物の量も多くなり、高強度材では割れの起点となり得る。この傾向は、S量が0.0008%を超えると顕著となる。このためS量は0.0008%以下とする。
Alは脱酸剤として添加されるが、Al量が0.08%を超えると清浄度の低下により延性が劣化する。このためAl量は0.08%以下とする。
Mn is added to improve the strength and toughness of the steel, but if the amount of Mn is less than 0.8%, the effect is not sufficient, while if it exceeds 1.6%, the weldability and HIC resistance deteriorate. . For this reason, the amount of Mn shall be 0.8 to 1.6%.
P is an inevitable impurity element, and the HIC resistance is deteriorated by increasing the hardness of the central segregation part, and this tendency becomes remarkable when the amount of P exceeds 0.008%. Therefore, the P content is 0.008% or less, preferably 0.006% or less.
S is generally MnS-based inclusions in steel, but the form is controlled from MnS-based to CaS-based inclusions by the addition of Ca. However, if the amount of S is large, the amount of CaS-based inclusions also increases, and a high-strength material can be a starting point for cracking. This tendency becomes remarkable when the S amount exceeds 0.0008%. For this reason, the amount of S is made 0.0008% or less.
Al is added as a deoxidizer, but if the Al content exceeds 0.08%, ductility deteriorates due to a decrease in cleanliness. For this reason, the amount of Al is made into 0.08% or less.

Nbは、圧延時の粒成長を抑制し、微細粒化により靭性を向上させる。しかし、Nb量が0.005%未満ではその効果が十分でなく、一方、0.035%を超えると溶接熱影響部の靭性が劣化するだけでなく、粗大なNb炭窒化物の生成を招き、耐HIC性能が劣化する。このためNb量は0.005〜0.035%とする。
Tiは、TiNを形成してスラブ加熱時の粒成長を抑制するだけでなく、溶接熱影響部の粒成長を抑制し、母材および溶接熱影響部の微細粒化により靭性を向上させる。しかし、Ti量が0.005%未満ではその効果が十分でなく、一方、0.025%を超えると靭性が劣化する。このためTi量は0.005〜0.025%とする。
Nb suppresses grain growth during rolling, and improves toughness by making fine grains. However, if the Nb content is less than 0.005%, the effect is not sufficient. On the other hand, if the Nb content exceeds 0.035%, not only the toughness of the weld heat affected zone is deteriorated, but also coarse Nb carbonitride is produced. The anti-HIC performance deteriorates. Therefore, the Nb amount is set to 0.005 to 0.035%.
Ti not only suppresses grain growth during slab heating by forming TiN, but also suppresses grain growth in the weld heat affected zone and improves toughness by making the base material and the weld heat affected zone finer. However, if the Ti content is less than 0.005%, the effect is not sufficient, while if it exceeds 0.025%, the toughness deteriorates. Therefore, the Ti amount is set to 0.005 to 0.025%.

Caは硫化物系介在物の形態を制御し、延性の改善に有効な元素であるが、Ca量が0.0005%未満ではその効果が十分でなく、一方、0.0030%を超えて添加しても効果が飽和し、むしろ清浄度の低下により靭性が劣化する。このためCa量は0.0005〜0.0030%とする。
Oは不可避不純物であり、鋼中で酸化物系介在物を形成し、HIC試験での割れの起点となるため、その含有量は少ないほどよい。しかし、0.0030%以下であれば、O量に応じた量のCaを添加することで、酸化物系介在物による割れの発生を抑制できる。このためO量は0.0030%以下とする。
Ca is an element effective in improving the ductility by controlling the form of sulfide inclusions, but if Ca content is less than 0.0005%, the effect is not sufficient, while adding over 0.0030% Even so, the effect is saturated, but rather the toughness deteriorates due to a decrease in cleanliness. Therefore, the Ca content is set to 0.0005 to 0.0030%.
O is an unavoidable impurity and forms oxide inclusions in the steel and becomes the starting point of cracking in the HIC test, so the smaller the content, the better. However, if it is 0.0030% or less, the generation | occurrence | production of the crack by an oxide type inclusion can be suppressed by adding the quantity of Ca according to the amount of O. For this reason, the amount of O is made 0.0030% or less.

本発明の鋼管は、さらに、Cu、Ni、Cr、Mo、Vの中から選ばれる1種または2種以上を以下のような範囲で含有する。
Cuは、靭性の改善と強度の上昇に有効な元素であるが、0.5%を超えて添加すると溶接性が劣化する。このためCuを添加する場合は0.5%以下とする。
Niは、靭性の改善と強度の上昇に有効な元素であるが、1%を超えて添加すると溶接性が劣化する。このためNiを添加する場合は1.0%以下とする。
Crは、焼き入れ性を高めることで強度の上昇に有効な元素であるが、0.5%を超えて添加すると溶接性が劣化する。このためCrを添加する場合は0.5%以下とする。
Moは、靭性の改善と強度の上昇に有効な元素であるが、0.5%を超えて添加すると溶接性が劣化する。このためMoを添加する場合は0.5%以下とする。
Vは、靭性を劣化させずに強度を上昇させる元素であるが、0.1%を超えて添加すると溶接性を著しく損なう。このためVを添加する場合は0.1%以下とする。
本発明の鋼管の残部はFeおよび不可避不純物である。
The steel pipe of the present invention further contains one or more selected from Cu, Ni, Cr, Mo, and V in the following ranges.
Cu is an effective element for improving toughness and increasing strength, but if added over 0.5%, weldability deteriorates. For this reason, when adding Cu, it is 0.5% or less.
Ni is an element effective for improving toughness and increasing strength, but if it exceeds 1%, weldability deteriorates. For this reason, when adding Ni, it is 1.0% or less.
Cr is an element effective for increasing the strength by enhancing the hardenability, but if added over 0.5%, the weldability deteriorates. For this reason, when adding Cr, it is 0.5% or less.
Mo is an element effective for improving toughness and increasing strength, but if added over 0.5%, weldability deteriorates. For this reason, when adding Mo, it is 0.5% or less.
V is an element that increases the strength without deteriorating the toughness, but if added over 0.1%, the weldability is significantly impaired. For this reason, when adding V, it is made into 0.1% or less.
The balance of the steel pipe of the present invention is Fe and inevitable impurities.

本発明では、さらに、下記(1)式で表わされるCP値を0.95以下、下記(2)式で表わされるIP値を1.5〜2.8とそれぞれ規定する。ここで、下記(1)式および(2)式と後述する(3)式において、C(%)、Mn(%)、Cr(%)、Mo(%)、V(%)、Cu(%)、Ni(%)、P(%)、Ca(%)、O(%)、S(%)は、それぞれの元素の含有量である。
CP=4.46C(%)+2.37Mn(%)/6+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+{1.74Cu(%)+1.7Ni(%)}/15+22.36P(%) …(1)
IP=[Ca(%)−{0.18+130Ca(%)}*O(%)]/1.25S(%) …(2)
In the present invention, the CP value represented by the following formula (1) is further defined as 0.95 or less, and the IP value represented by the following formula (2) is defined as 1.5 to 2.8. Here, in the following formulas (1) and (2) and formula (3) described later, C (%), Mn (%), Cr (%), Mo (%), V (%), Cu (% ), Ni (%), P (%), Ca (%), O (%), and S (%) are the contents of the respective elements.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.18Cr (%) + 1.95Mo (%) + 1.74V (%)} / 5+ {1.74Cu (%) + 1.7Ni (% )} / 15 + 22.36P (%) (1)
IP = [Ca (%) − {0.18 + 130Ca (%)} * O (%)] / 1.25S (%) (2)

CP値に関する上記(1)式は、各合金元素の含有量から中心偏析部の材質を推定するために創案された式であり、CP値が高いほど中心偏析部の濃度が高くなり、中心偏析部の硬さが上昇する。このCP値を0.95以下とすることで中心偏析部の硬さを十分小さくする(好ましくはHV250以下とする)ことができ、HIC試験での割れを抑制することが可能となる。CP値が低いほど中心偏析部の硬さが低くなるため、さらに高い耐HIC性能が必要な場合は、その上限を0.92とすることが望ましい。   The above equation (1) relating to the CP value is an equation created to estimate the material of the central segregation part from the content of each alloy element. The higher the CP value, the higher the concentration of the central segregation part, and the central segregation part. The hardness of the part increases. By setting the CP value to 0.95 or less, the hardness of the central segregation portion can be sufficiently reduced (preferably HV250 or less), and cracks in the HIC test can be suppressed. The lower the CP value, the lower the hardness of the center segregation part. Therefore, when higher HIC resistance is required, the upper limit is desirably set to 0.92.

IP値に関する上記(2)式は、Ca添加によりCaSを生成させることでMnSの生成を抑制させるための指標であり、IP値を所定の範囲に制御することによりMnS生成を抑制することができる。特に、フェライト−ベイナイト2相組織の場合は、通常のベイナイト単相組織の鋼管に較べて割れの感受性が高いため、割れの起点となるMnSの生成を厳しく抑制する必要がある。IP値が1.5未満ではMnSの低減化が不十分であり、フェライト−ベイナイト2相組織ではHIC試験で割れが発生する。一方、IP値が2.8を超えると、MnS生成は抑制されるものの、多量のCa系酸化物が生成するため鋼管の清浄性を損なうとともに、耐サワー性能も劣化する。   The above formula (2) relating to the IP value is an index for suppressing the generation of MnS by generating CaS by adding Ca, and the generation of MnS can be suppressed by controlling the IP value within a predetermined range. . In particular, in the case of a ferrite-bainite two-phase structure, since the sensitivity to cracking is higher than that of a steel pipe having a normal bainite single-phase structure, it is necessary to strictly suppress the generation of MnS that is the starting point of cracking. When the IP value is less than 1.5, the reduction of MnS is insufficient, and cracks occur in the HIC test in the ferrite-bainite two-phase structure. On the other hand, when the IP value exceeds 2.8, although MnS generation is suppressed, a large amount of Ca-based oxide is generated, so that the cleanliness of the steel pipe is impaired and sour resistance performance is also deteriorated.

次に、本発明のラインパイプ用鋼管の金属組織とその限定理由について説明する。
本発明のラインパイプ用鋼管は、フェライト−ベイナイト2相組織を有する鋼管であり、金属組織が、面積分率50%以上のフェライト相と残部のベイナイト相(但し、不可避的に他の金属相を少量含むことがある)からなり、且つフェライト相の平均粒径が5μm以下、ベイナイト相の平均アスペクト比が6.0以下である。
フェライト−ベイナイト2相組織とすることでDWTT性能が向上するが、図1に示すように、フェライト相の面積分率が50%未満ではその効果が十分に得られない。一方、フェライト相の面積分率が80%を超えるとベイナイト相が硬くなりすぎ、HIC性が低下する傾向があるため、好ましくはフェライト相の面積分率の上限を80%とする。基本的に残部はベイナイト相であるが、不可避的に他の金属相(マルテンサイト、パーライト、セメンタイトなど)が面積分率の合計で5%未満含まれても所望のDWTT性能は維持できることから、面積分率でフェライト相とベイナイト相の合計が95%以上のフェライト−ベイナイト2相組織であればよい。
Next, the metal structure of the steel pipe for line pipes of the present invention and the reason for limitation will be described.
The steel pipe for a line pipe of the present invention is a steel pipe having a ferrite-bainite two-phase structure, and the metal structure is composed of a ferrite phase having an area fraction of 50% or more and the remaining bainite phase (however, other metal phases are inevitable). The ferrite phase has an average particle size of 5 μm or less and the bainite phase has an average aspect ratio of 6.0 or less.
Although the DWTT performance is improved by adopting a ferrite-bainite two-phase structure, as shown in FIG. 1, if the area fraction of the ferrite phase is less than 50%, the effect cannot be sufficiently obtained. On the other hand, if the area fraction of the ferrite phase exceeds 80%, the bainite phase becomes too hard and the HIC property tends to be lowered, so the upper limit of the area fraction of the ferrite phase is preferably 80%. Basically, the balance is the bainite phase, but unavoidably other metal phases (martensite, pearlite, cementite, etc.) can be maintained at the desired DWTT performance even if the total area fraction is less than 5%. A ferrite-bainite two-phase structure in which the total of the ferrite phase and the bainite phase is 95% or more in terms of area fraction may be used.

フェライト相およびベイナイト相の面積分率は、鋼管のシーム溶接部から管周方向で90°の箇所から採取したサンプルについて、板厚1/4の位置における圧延方向断面の金属組織を200〜400倍の光学顕微鏡で観察・撮影し、その組織写真を画像解析して測定する。
また、フェライト相の結晶粒径が小さいほどDWTT性能が向上し、さらに、HIC試験でのき裂伝播を抑制できる。しかし、フェライト相の平均粒径が5μmを超えると十分な効果が得られない。
フェライト相の平均粒径は、上記フェライト相の面積分率を求めた組織写真から線分法により求める。
The area fraction of the ferrite phase and the bainite phase is 200 to 400 times the metal structure of the cross section in the rolling direction at the position of the sheet thickness ¼ for the sample taken from the 90 ° portion in the pipe circumferential direction from the seam welded portion of the steel pipe. Observed and photographed with an optical microscope, and analyzed and imaged the tissue photograph.
Moreover, DWTT performance improves as the crystal grain size of the ferrite phase is smaller, and furthermore, crack propagation in the HIC test can be suppressed. However, when the average particle size of the ferrite phase exceeds 5 μm, a sufficient effect cannot be obtained.
The average particle diameter of the ferrite phase is determined by the line segment method from the structure photograph obtained by determining the area fraction of the ferrite phase.

フェライト−ベイナイト2相組織を有する鋼管では、フェライト相とベイナイト相の界面がHIC試験での割れの伝播経路となり、ベイナイト相が圧延方向に伸長した組織になると、発生したき裂が容易に伝播するため耐HIC性能が著しく劣化する。しかし、ベイナイト相の平均アスペクト比が6.0以下であれば、き裂が長距離を伝播する前に隣接するフェライト相で停止するため、フェライト−ベイナイト2相組織においても十分な耐HIC性能が得られる。また、ベイナイト相のアスペクト比が小さいほどHIC試験のき裂伝播抑制に有効であるため、より好ましいベイナイト相の平均アスペクト比は5.0以下である。
ベイナイト相のアスペクト比については、上記フェライト相の面積分率を求めた組織写真を画像解析し、平均アスペクト比を求める。
In a steel pipe having a ferrite-bainite two-phase structure, the interface between the ferrite phase and the bainite phase becomes a crack propagation path in the HIC test. Therefore, the HIC resistance performance is significantly deteriorated. However, if the average aspect ratio of the bainite phase is 6.0 or less, the crack stops at the adjacent ferrite phase before propagating over a long distance, so that sufficient HIC resistance performance can be obtained even in a ferrite-bainite two-phase structure. can get. Moreover, since the smaller the aspect ratio of the bainite phase is, the more effective the crack propagation is suppressed in the HIC test, the more preferable average aspect ratio of the bainite phase is 5.0 or less.
As for the aspect ratio of the bainite phase, an image analysis is performed on the structure photograph obtained for the area fraction of the ferrite phase, and the average aspect ratio is obtained.

本発明のラインパイプ用鋼管の管径や管厚は特に限定しないが、さきに述べたように、特に厳しいDWTT性能と耐HIC性が要求される管厚20mm以上の鋼管が特に好適である。
本発明のラインパイプ用鋼管は、通常、厚板ミルや熱延ミルにより製造された鋼板を、UOE成形、プレスベンド成形、ロール成形などで管体に成形した後、シーム溶接することにより製造される。
The diameter and thickness of the steel pipe for line pipe of the present invention are not particularly limited, but as described above, a steel pipe having a thickness of 20 mm or more that requires particularly severe DWTT performance and HIC resistance is particularly suitable.
The steel pipe for a line pipe of the present invention is usually manufactured by forming a steel plate manufactured by a thick plate mill or a hot rolling mill into a tubular body by UOE forming, press bend forming, roll forming, etc., and then seam welding. The

次に、上述した金属組織を得るための鋼板(鋼管の素材鋼板)の好ましい製造条件は、以下のとおりである。
熱間圧延する鋼スラブの加熱温度は1000〜1150℃とする。スラブ加熱温度が1000℃未満ではNb炭化物の固溶が不十分であり、中心偏析部に粗大な未固溶のNb炭化物が形成され、耐HIC性能が劣化するだけでなく、十分な強度が得られない。一方、スラブ加熱温度が1150℃を超えると、結晶粒が粗大化して靭性が劣化する。
Next, the preferable manufacturing conditions of the steel plate (steel pipe raw steel plate) for obtaining the metal structure described above are as follows.
The heating temperature of the steel slab to be hot rolled is 1000-1150 ° C. If the slab heating temperature is less than 1000 ° C., the solid solution of Nb carbide is insufficient, coarse undissolved Nb carbide is formed at the center segregation part, and not only the HIC resistance is deteriorated but also sufficient strength is obtained. I can't. On the other hand, when the slab heating temperature exceeds 1150 ° C., the crystal grains become coarse and the toughness deteriorates.

上記の条件で加熱された鋼スラブの熱間圧延では、圧延終了温度をAr点以上とする。Ar点は冷却過程でフェライト変態が開始する温度であり、鋼材の化学成分から下記(3)式によって求めることができる。
Ar(℃)=910−310C(%)−80Mn(%)−20Cu(%)−15Cr(%)−55Ni(%)−80Mo(%) …(3)
圧延終了温度がAr点より低くなると、ベイナイト相が圧延方向に伸長した組織となり、割れが伝播しやすくなるため耐HIC性能が劣化する。但し、圧延終了温度が高すぎるとフェライト粒径が粗大になるため、圧延終了温度はAr点+50℃以下とすることが好ましい。
In the hot rolling of the steel slab heated under the above conditions, the rolling end temperature is set to Ar 3 points or more. Ar 3 point is a temperature at which ferrite transformation starts in the cooling process, and can be obtained from the chemical composition of the steel material by the following equation (3).
Ar 3 (° C.) = 910-310C (%)-80Mn (%)-20Cu (%)-15Cr (%)-55Ni (%)-80Mo (%) (3)
When the rolling end temperature is lower than the Ar 3 point, the bainite phase becomes a structure elongated in the rolling direction, and cracks are easily propagated, so that the HIC resistance is deteriorated. However, if the rolling end temperature is too high, the ferrite grain size becomes coarse, so the rolling end temperature is preferably Ar 3 points + 50 ° C. or less.

熱間圧延後、所定の強度を得るために加速冷却を施す。本発明が規定するフェライト−ベイナイト2相組織を得るためには、加速冷却開始温度をAr点以下とする必要がある。一方、加速冷却開始温度が(Ar点−50℃)より低くなると、ベイナイト相が伸長した組織となり耐HIC性能が劣化する。このため加速冷却開始温度は(Ar点−50℃)〜Ar点とする。より高い靭性が必要となる場合は、フェライト相の面積分率を高めることが有効であり、加速冷却開始温度を(Ar点−50℃)〜(Ar点−10℃)とすることが好ましい。
加速冷却の平均冷却速度は、十分な強度を得るために10℃/s以上とすることが好ましい。
After hot rolling, accelerated cooling is performed to obtain a predetermined strength. In order to obtain the ferrite-bainite two-phase structure defined by the present invention, it is necessary to set the accelerated cooling start temperature to Ar 3 or less. On the other hand, when the accelerated cooling start temperature is lower than (Ar 3 points-50 ° C.), the bainite phase becomes a stretched structure and the HIC resistance is deteriorated. Thus the accelerated cooling start temperature is set to (Ar 3 point -50 ° C.) to Ar 3 point. When higher toughness is required, it is effective to increase the area fraction of the ferrite phase, and the accelerated cooling start temperature is (Ar 3 points-50 ° C.) to (Ar 3 points-10 ° C.). preferable.
The average cooling rate of accelerated cooling is preferably 10 ° C./s or more in order to obtain sufficient strength.

加速冷却停止温度は300〜550℃とする。本発明は、特に20mm以上の管厚を有するラインパイプ用鋼管の性能改善を主たる狙いとするものであり、このような鋼管においては、高い強度を得るためには加速冷却工程での冷却停止温度が低いほどよいが、加速冷却停止温度が300℃未満ではマルテンサイトや下部ベイナイトなどの硬質な組織が形成され、耐HIC性能が劣化する。一方、加速冷却停止温度が550℃を超えると十分な強度が得られない。
熱間圧延時の圧下率は高強度のラインパイプ用鋼板の製造に一般的に適用されている条件でよいが、十分な靭性を得るために、未再結晶温度域(約950℃以下)での圧下率を60%以上とする。
加速冷却後はそのまま空冷により鋼板を冷却してよいが、鋼板内部の材質の均一化を目的として、ガス燃焼炉や誘導加熱炉等によって再加熱を行ってもよい。
以上のようにして得られた鋼板をUOE成形、プレスベンド成形、ロール成形などで管体に成形した後、溶接することによりラインパイプ用鋼管が製造される。
The accelerated cooling stop temperature is 300 to 550 ° C. The present invention mainly aims to improve the performance of steel pipes for line pipes having a pipe thickness of 20 mm or more, and in such steel pipes, in order to obtain high strength, the cooling stop temperature in the accelerated cooling process. However, if the accelerated cooling stop temperature is less than 300 ° C., a hard structure such as martensite and lower bainite is formed, and the HIC resistance is deteriorated. On the other hand, when the accelerated cooling stop temperature exceeds 550 ° C., sufficient strength cannot be obtained.
The rolling reduction at the time of hot rolling may be a condition generally applied to the production of a steel plate for high-strength line pipe, but in order to obtain sufficient toughness, it is in an unrecrystallized temperature range (about 950 ° C. or less). The rolling reduction ratio is set to 60% or more.
After accelerated cooling, the steel plate may be cooled as it is by air cooling, but may be reheated by a gas combustion furnace, an induction heating furnace or the like for the purpose of uniformizing the material inside the steel plate.
A steel pipe for a line pipe is manufactured by forming the steel plate obtained as described above into a tubular body by UOE forming, press bend forming, roll forming or the like and then welding.

なお、上述した鋼板温度(圧延終了温度、加速冷却開始温度、加速冷却停止温度)は、鋼板の板厚方向で温度分布がある場合には、板厚方向での平均温度であるが、板厚方向での温度分布が比較的小さい場合には、鋼板表面の温度を鋼板温度としてよい。また、加速冷却直後は鋼板表面と内部とで温度差があるが、その温度差はしばらくすると熱伝導によって解消され、板厚方向で均一な温度分布となるため、このような均熱化後の鋼板表面温度に基づいて加速冷却停止時の鋼板温度を求めてもよい。   In addition, the above-described steel plate temperature (rolling end temperature, accelerated cooling start temperature, accelerated cooling stop temperature) is an average temperature in the plate thickness direction when there is a temperature distribution in the plate thickness direction of the steel plate. When the temperature distribution in the direction is relatively small, the temperature of the steel plate surface may be the steel plate temperature. In addition, there is a temperature difference between the steel plate surface and the interior immediately after accelerated cooling, but the temperature difference is eliminated by heat conduction after a while, and a uniform temperature distribution is obtained in the plate thickness direction. You may obtain | require the steel plate temperature at the time of an acceleration cooling stop based on a steel plate surface temperature.

表1に示す化学成分の鋼(鋼種A〜N)を連続鋳造してスラブとした。このスラブを加熱して熱間圧延した後、加速冷却を施して板厚22〜38mmの厚鋼板を製造した。この際のスラブ加熱温度、未再結晶域圧下率、圧延終了温度、加速冷却開始温度、加速冷却停止温度を表2に示す。加速冷却の平均冷却速度は10℃/s以上とした。得られた厚鋼板をUOEプロセスにて冷間成形した後、シーム溶接することで外径914.4mmの鋼管を製造した。シーム溶接は内外面各1層のサブマージアーク溶接により行った。   Steels having the chemical components shown in Table 1 (steel types A to N) were continuously cast into slabs. The slab was heated and hot-rolled, and then accelerated cooling was performed to produce a thick steel plate having a thickness of 22 to 38 mm. Table 2 shows the slab heating temperature, unrecrystallized zone reduction ratio, rolling end temperature, accelerated cooling start temperature, and accelerated cooling stop temperature at this time. The average cooling rate of accelerated cooling was set to 10 ° C./s or more. The obtained thick steel plate was cold formed by the UOE process and then seam welded to produce a steel pipe having an outer diameter of 914.4 mm. Seam welding was performed by submerged arc welding of one inner layer and one outer layer.

得られた鋼管の金属組織を観察し、フェライト相の面積分率、フェライト相の平均粒径、ベイナイト相の平均アスペクト比をそれぞれ求めた。各鋼管のシーム溶接部から管周方向で90°の箇所から採取したサンプルについて、板厚1/4の位置における圧延方向断面(=切断面を研磨した後、ナイタールによりエッチングした断面)の金属組織を400倍の光学顕微鏡で観察・撮影し、その組織写真を画像解析してフェライト相の面積分率とベイナイト相の平均アスペクト比を測定した。また、フェライト相の平均粒径は、同一の組織写真を用いた線分法により測定した。   The metal structure of the obtained steel pipe was observed, and the area fraction of the ferrite phase, the average grain size of the ferrite phase, and the average aspect ratio of the bainite phase were determined. For samples taken from 90 ° in the pipe circumferential direction from the seam welds of each steel pipe, the metallographic structure of the cross section in the rolling direction at the position of the plate thickness (= the cross section etched with nital after cutting the cut surface) Was observed and photographed with a 400 × optical microscope, and the structure photograph was subjected to image analysis to measure the area fraction of the ferrite phase and the average aspect ratio of the bainite phase. Moreover, the average particle diameter of the ferrite phase was measured by a line segment method using the same structural photograph.

鋼管の性能試験は以下のようにして行った。これらの結果を、鋼管の金属組織の測定結果とともに表2に示す。
(1)引張強度
鋼管の管周方向の引張強度をAPI規格の全厚引張試験で求めた。
(2)DWTT性能
DWTT試験により、延性破面率85%となる破面遷移温度(85%SATT)を求めた。本実施例では破面遷移温度が−10℃以下を合格とした。
(3)耐HIC性能
複数の箇所から各6〜9個のHIC試験片を採取し、HIC試験により、pHが約3の硫化水素を飽和させた5%NaCl+0.5%CHCOOH水溶液(通常のNACE溶液)中に試験片を96時間浸漬した後、超音波探傷により試験片全面の割れの有無を調査し、割れ面積率(CAR)で評価した。ここで、各鋼管の6〜9個の試験片のうち割れ面積率が最大のものを、その鋼管を代表する割れ面積率とした。本実施例では割れ面積率が5%以下を合格とした。
The performance test of the steel pipe was performed as follows. These results are shown in Table 2 together with the measurement results of the metal structure of the steel pipe.
(1) Tensile strength The tensile strength in the pipe circumferential direction of the steel pipe was determined by an API standard full thickness tensile test.
(2) DWTT performance The fracture surface transition temperature (85% SATT) at which the ductile fracture surface ratio was 85% was determined by the DWTT test. In this example, a fracture surface transition temperature of −10 ° C. or lower was regarded as acceptable.
(3) HIC resistance performance 6-9 HIC test pieces were collected from a plurality of locations, and a 5% NaCl + 0.5% CH 3 COOH aqueous solution (usually saturated with hydrogen sulfide having a pH of about 3 by the HIC test) The test piece was immersed in the NACE solution for 96 hours, and then the presence or absence of cracks on the entire surface of the test piece was investigated by ultrasonic flaw detection, and the crack area ratio (CAR) was evaluated. Here, among 6 to 9 test pieces of each steel pipe, the one with the largest crack area ratio was taken as the crack area ratio representing the steel pipe. In this example, a crack area ratio of 5% or less was accepted.

表2によれば、本発明例であるNo.1〜10は、いずれもAPIX65相当の強度を有するととに、DWTT試験での破面遷移温度が−16℃以下であり、優れた靭性を有している。さらに、HIC試験による割れ面積率が小さく、耐HIC性が極めて良好である。なお、本発明例は、いずれも、フェライト相以外の組織は実質的にベイナイト相であり、島状マルテンサイトやセメンタイト等のフェライト相とベイナイト相以外の組織の面積分率の合計は3%以下であった。
一方、比較例であるNo.11〜17は、化学成分は本発明範囲を満足するが、鋼板の製造条件が本発明範囲を満足しないため適切な金属組織が得られず、このためDWTT性能または耐HIC性のいずれかが劣っている。また、比較例であるNo.18〜24は、鋼板の製造条件や金属組織は本発明範囲を満足するが、化学成分が本発明範囲を満足しないため、DWTT性能は良好であるが、耐HIC性能が劣っている。また、比較例であるNo.25,26は、化学成分と鋼板製造条件、金属組織ともに本発明範囲を満足しないため、DWTT性能と耐HIC性がともに劣っている。
According to Table 2, no. Each of Nos. 1 to 10 has a strength equivalent to APIX65, and the fracture surface transition temperature in the DWTT test is −16 ° C. or lower, and has excellent toughness. Furthermore, the crack area ratio by the HIC test is small, and the HIC resistance is very good. In all of the examples of the present invention, the structure other than the ferrite phase is substantially a bainite phase, and the total area fraction of the structure other than the ferrite phase such as island martensite and cementite and the bainite phase is 3% or less. Met.
On the other hand, No. which is a comparative example. In Nos. 11 to 17, the chemical composition satisfies the scope of the present invention, but the manufacturing conditions of the steel sheet do not satisfy the scope of the present invention, so an appropriate metal structure cannot be obtained, and therefore either DWTT performance or HIC resistance is inferior. ing. Moreover, No. which is a comparative example. In Nos. 18 to 24, although the manufacturing conditions and the metallographic structure of the steel sheet satisfy the scope of the present invention, the chemical components do not satisfy the scope of the present invention, so the DWTT performance is good, but the HIC resistance is poor. Moreover, No. which is a comparative example. Nos. 25 and 26 are inferior in both DWTT performance and HIC resistance because the chemical composition, steel plate production conditions, and metal structure do not satisfy the scope of the present invention.

Figure 2010077492
Figure 2010077492

Figure 2010077492
Figure 2010077492

ラインパイプ用鋼管のフェライト相の面積分率とDWTT試験での破面遷移温度との関係を示すグラフThe graph which shows the relationship between the area fraction of the ferrite phase of the steel pipe for line pipes, and the fracture surface transition temperature in a DWTT test フェライト−ベイナイト2相組織を有するラインパイプ用鋼管のベイナイト相の平均アスペクト比とHIC試験での割れ面積率との関係を示すグラフThe graph which shows the relationship between the average aspect-ratio of the bainite phase of the steel pipe for line pipes which has a ferrite-bainite two phase structure, and the crack area rate in a HIC test

Claims (2)

質量%にて、C:0.02〜0.06%、Si:0.5%以下、Mn:0.8〜1.6%、P:0.008%以下、S:0.0008%以下、Al:0.08%以下、Nb:0.005〜0.035%、Ti:0.005〜0.025%、Ca:0.0005〜0.0030%、O:0.0030%以下を含有し、さらに、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下の中から選ばれる1種または2種以上を含有し、残部がFeおよび不可避不純物からなり、下記(1)式で表わされるCP値が0.95以下、下記(2)式で表わされるIP値が1.5〜2.8であり、金属組織が、面積分率でフェライト相が50%以上、フェライト相とベイナイト相の合計が95%以上のフェライト−ベイナイト2相組織であって、且つフェライト相の平均粒径が5μm以下、ベイナイト相の平均アスペクト比が6.0以下であることを特徴とするラインパイプ用鋼管。
CP=4.46C(%)+2.37Mn(%)/6+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+{1.74Cu(%)+1.7Ni(%)}/15+22.36P(%) …(1)
IP=[Ca(%)−{0.18+130Ca(%)}*O(%)]/1.25S(%) …(2)
In mass%, C: 0.02 to 0.06%, Si: 0.5% or less, Mn: 0.8 to 1.6%, P: 0.008% or less, S: 0.0008% or less Al: 0.08% or less, Nb: 0.005-0.035%, Ti: 0.005-0.025%, Ca: 0.0005-0.0030%, O: 0.0030% or less Further, Cu: 0.5% or less, Ni: 1% or less, Cr: 0.5% or less, Mo: 0.5% or less, V: 0.1% or less It contains two or more, the balance is Fe and inevitable impurities, the CP value represented by the following formula (1) is 0.95 or less, and the IP value represented by the following formula (2) is 1.5 to 2.8. Ferrite having a metal structure with an area fraction of ferrite phase of 50% or more and a total of ferrite phase and bainite phase of 95% or more A bainite dual phase structure, and an average particle size of the ferrite phase is 5μm or less, the steel pipe for a line pipe, wherein the average aspect ratio of bainite phase is 6.0 or less.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.18Cr (%) + 1.95Mo (%) + 1.74V (%)} / 5+ {1.74Cu (%) + 1.7Ni (% )} / 15 + 22.36P (%) (1)
IP = [Ca (%) − {0.18 + 130Ca (%)} * O (%)] / 1.25S (%) (2)
鋼スラブを熱間圧延し、得られた鋼板を成形および溶接して鋼管を製造する方法において、
請求項1に記載の化学成分を有する鋼スラブを1000〜1150℃に加熱し、未再結晶温度域での圧下率を60%以上とし、且つ圧延終了温度を下記(3)式で示されるAr点以上とする熱間圧延を行った後、冷却開始温度を(Ar点−50℃)〜Ar点、冷却停止温度を300〜550℃とする加速冷却を行うことを特徴とするラインパイプ用鋼管の製造方法。
Ar(℃)=910−310C(%)−80Mn(%)−20Cu(%)−15Cr(%)−55Ni(%)−80Mo(%) …(3)
In a method of hot rolling a steel slab and forming and welding the obtained steel plate to produce a steel pipe,
The steel slab having the chemical composition according to claim 1 is heated to 1000 to 1150 ° C., the rolling reduction in the non-recrystallization temperature range is set to 60% or more, and the rolling end temperature is represented by the following formula (3): A line characterized in that after performing hot rolling at 3 points or more, accelerated cooling is performed at a cooling start temperature of (Ar 3 points-50 ° C.) to Ar 3 points and a cooling stop temperature of 300 to 550 ° C. Manufacturing method of steel pipe for pipes.
Ar 3 (° C.) = 910-310C (%)-80Mn (%)-20Cu (%)-15Cr (%)-55Ni (%)-80Mo (%) (3)
JP2008246998A 2008-09-26 2008-09-26 Steel pipe for line pipe and manufacturing method thereof Active JP5353156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246998A JP5353156B2 (en) 2008-09-26 2008-09-26 Steel pipe for line pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246998A JP5353156B2 (en) 2008-09-26 2008-09-26 Steel pipe for line pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010077492A true JP2010077492A (en) 2010-04-08
JP5353156B2 JP5353156B2 (en) 2013-11-27

Family

ID=42208247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246998A Active JP5353156B2 (en) 2008-09-26 2008-09-26 Steel pipe for line pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5353156B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029945A1 (en) * 2010-09-03 2012-03-08 住友金属工業株式会社 High-strength steel sheet having excellent fracture resistance performance and hic resistance performance
JP2013023713A (en) * 2011-07-19 2013-02-04 Jfe Steel Corp Welded steel pipe of low-yield-ratio and hic resistance, exhibiting excellent weld toughness after sr, and method of producing the same
JP2013023714A (en) * 2011-07-19 2013-02-04 Jfe Steel Corp Welded steel pipe of low-yield-ratio and hic resistance, exhibiting excellent weld toughness after sr, and method of producing the same
WO2013190750A1 (en) 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same
WO2014010150A1 (en) 2012-07-09 2014-01-16 Jfeスチール株式会社 Thick-walled high-strength sour-resistant line pipe and method for producing same
JP2016040401A (en) * 2014-08-12 2016-03-24 新日鐵住金株式会社 Steel material for tank
JP2016524653A (en) * 2013-06-19 2016-08-18 宝山鋼鉄股▲分▼有限公司 HT550 steel sheet with ultra-high toughness and excellent weldability and method for producing the same
CN109082601A (en) * 2018-09-03 2018-12-25 本钢板材股份有限公司 A kind of acid-resisting corrosion X70MS line steel hot rolling roll bending and its manufacturing method
CN109234622A (en) * 2018-09-29 2019-01-18 南京钢铁股份有限公司 The strain resistant pipe line steel in the deep-sea X80M and smelting process
CN109680204A (en) * 2019-01-21 2019-04-26 南京钢铁股份有限公司 A kind of deep-sea acid-resistant pipeline steel and production method
CN109811258A (en) * 2019-01-21 2019-05-28 南京钢铁股份有限公司 A kind of deep-sea acid-resistant pipeline steel and milling method
CN109811257A (en) * 2019-01-21 2019-05-28 南京钢铁股份有限公司 A kind of deep-sea acid-resistant pipeline steel and smelting process
WO2019124926A1 (en) 2017-12-24 2019-06-27 주식회사 포스코 Steel material for low yield ratio, high-strength steel pipe having excellent low-temperature toughness, and manufacturing method therefor
WO2020111732A1 (en) 2018-11-29 2020-06-04 주식회사 포스코 High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio, and method thereof
US20200255920A1 (en) * 2017-11-03 2020-08-13 Posco Steel material for welding steel pipe having excellent low-temperature toughness, steel material that has undergone weld heat treatment, and method for manufacturing same
JP2021042426A (en) * 2019-09-10 2021-03-18 日本製鉄株式会社 Electric-resistance-welded steel pipe for line pipe and hot rolled steel sheet for line pipe
JP2021042424A (en) * 2019-09-10 2021-03-18 日本製鉄株式会社 Electric-resistance-welded steel pipe for line pipe and hot rolled steel sheet for line pipe
KR20230026017A (en) 2021-08-17 2023-02-24 주식회사 포스코 Steel plate for linepipe having excellent low temperature toughness and high strength and method for manufacturing the same
WO2024117083A1 (en) * 2022-11-29 2024-06-06 Jfeスチール株式会社 Steel sheet, method for producing same, and steel pipe
WO2024117082A1 (en) * 2022-11-29 2024-06-06 Jfeスチール株式会社 Steel sheet, method for producing same, and steel pipe
WO2024117084A1 (en) * 2022-11-29 2024-06-06 Jfeスチール株式会社 Steel sheet, method for producing same, and steel pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111286672B (en) * 2020-03-25 2022-03-29 江苏省沙钢钢铁研究院有限公司 Needle-shaped ferrite type X60-grade HIC-resistant pipeline steel and rolling method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364414A (en) * 1989-07-31 1991-03-19 Nkk Corp Production of steel sheet having high tensile strength and high toughness and excellent in hic resistance
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
JPH0841536A (en) * 1994-07-29 1996-02-13 Kawasaki Steel Corp Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property
JPH08199293A (en) * 1995-01-24 1996-08-06 Nippon Steel Corp Sour resistant steel plate excellent in crack arrest characteristic
JP2000144329A (en) * 1998-11-13 2000-05-26 Kawasaki Steel Corp Steel tube excellent in balance of strength-ductility
JP2003013138A (en) * 2001-06-26 2003-01-15 Nkk Corp Method for manufacturing steel sheet for high-strength line pipe
JP2006257499A (en) * 2005-03-17 2006-09-28 Sumitomo Metal Ind Ltd High tensile strength steel sheet, welded steel tube and method for producing them
WO2006106591A1 (en) * 2005-04-04 2006-10-12 Nippon Steel Corporation High-strength steel sheet and high-strength welded steel pipe excelling in ductile fracture performance and process for producing them
JP2006307334A (en) * 2005-03-31 2006-11-09 Jfe Steel Kk High-strength thick steel plate and process for production thereof, and high-strength steel pipe

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364414A (en) * 1989-07-31 1991-03-19 Nkk Corp Production of steel sheet having high tensile strength and high toughness and excellent in hic resistance
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
JPH0841536A (en) * 1994-07-29 1996-02-13 Kawasaki Steel Corp Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property
JPH08199293A (en) * 1995-01-24 1996-08-06 Nippon Steel Corp Sour resistant steel plate excellent in crack arrest characteristic
JP2000144329A (en) * 1998-11-13 2000-05-26 Kawasaki Steel Corp Steel tube excellent in balance of strength-ductility
JP2003013138A (en) * 2001-06-26 2003-01-15 Nkk Corp Method for manufacturing steel sheet for high-strength line pipe
JP2006257499A (en) * 2005-03-17 2006-09-28 Sumitomo Metal Ind Ltd High tensile strength steel sheet, welded steel tube and method for producing them
JP2006307334A (en) * 2005-03-31 2006-11-09 Jfe Steel Kk High-strength thick steel plate and process for production thereof, and high-strength steel pipe
WO2006106591A1 (en) * 2005-04-04 2006-10-12 Nippon Steel Corporation High-strength steel sheet and high-strength welded steel pipe excelling in ductile fracture performance and process for producing them

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528172B2 (en) 2010-09-03 2016-12-27 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having improved resistance to fracture and to HIC
CN103189538A (en) * 2010-09-03 2013-07-03 新日铁住金株式会社 High-strength steel sheet having excellent fracture resistance performance and HIC resistance performance
EP2612946A1 (en) * 2010-09-03 2013-07-10 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having excellent fracture resistance performance and hic resistance performance
JP5299579B2 (en) * 2010-09-03 2013-09-25 新日鐵住金株式会社 High-strength steel sheet with excellent fracture and HIC resistance
EP2612946A4 (en) * 2010-09-03 2014-03-26 Nippon Steel & Sumitomo Metal Corp High-strength steel sheet having excellent fracture resistance performance and hic resistance performance
WO2012029945A1 (en) * 2010-09-03 2012-03-08 住友金属工業株式会社 High-strength steel sheet having excellent fracture resistance performance and hic resistance performance
JP2013023713A (en) * 2011-07-19 2013-02-04 Jfe Steel Corp Welded steel pipe of low-yield-ratio and hic resistance, exhibiting excellent weld toughness after sr, and method of producing the same
JP2013023714A (en) * 2011-07-19 2013-02-04 Jfe Steel Corp Welded steel pipe of low-yield-ratio and hic resistance, exhibiting excellent weld toughness after sr, and method of producing the same
WO2013190750A1 (en) 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same
KR20150003322A (en) 2012-06-18 2015-01-08 제이에프이 스틸 가부시키가이샤 Thick, high-strength, sour-resistant line pipe and method for producing same
WO2014010150A1 (en) 2012-07-09 2014-01-16 Jfeスチール株式会社 Thick-walled high-strength sour-resistant line pipe and method for producing same
US10208362B2 (en) 2013-06-19 2019-02-19 Baoshan Iron & Steel Co., Ltd. HT550 steel plate with ultrahigh toughness and excellent weldability and manufacturing method of the same
JP2016524653A (en) * 2013-06-19 2016-08-18 宝山鋼鉄股▲分▼有限公司 HT550 steel sheet with ultra-high toughness and excellent weldability and method for producing the same
JP2016040401A (en) * 2014-08-12 2016-03-24 新日鐵住金株式会社 Steel material for tank
US20200255920A1 (en) * 2017-11-03 2020-08-13 Posco Steel material for welding steel pipe having excellent low-temperature toughness, steel material that has undergone weld heat treatment, and method for manufacturing same
EP3705596A4 (en) * 2017-11-03 2020-09-09 Posco Steel material for welding steel pipe having excellent low-temperature toughness, steel material that has undergone post weld heat treatment, and method for manufacturing same
US11396689B2 (en) 2017-12-24 2022-07-26 Posco Steel material for low yield ratio, high-strength steel pipe having excellent low-temperature toughness, and manufacturing method therefor
WO2019124926A1 (en) 2017-12-24 2019-06-27 주식회사 포스코 Steel material for low yield ratio, high-strength steel pipe having excellent low-temperature toughness, and manufacturing method therefor
KR20190077180A (en) 2017-12-24 2019-07-03 주식회사 포스코 High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same
CN109082601A (en) * 2018-09-03 2018-12-25 本钢板材股份有限公司 A kind of acid-resisting corrosion X70MS line steel hot rolling roll bending and its manufacturing method
CN109234622A (en) * 2018-09-29 2019-01-18 南京钢铁股份有限公司 The strain resistant pipe line steel in the deep-sea X80M and smelting process
WO2020111732A1 (en) 2018-11-29 2020-06-04 주식회사 포스코 High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio, and method thereof
KR102119975B1 (en) 2018-11-29 2020-06-08 주식회사 포스코 High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio
CN109811257A (en) * 2019-01-21 2019-05-28 南京钢铁股份有限公司 A kind of deep-sea acid-resistant pipeline steel and smelting process
CN109811258A (en) * 2019-01-21 2019-05-28 南京钢铁股份有限公司 A kind of deep-sea acid-resistant pipeline steel and milling method
CN109811258B (en) * 2019-01-21 2021-01-26 南京钢铁股份有限公司 Deep-sea acid-resistant pipeline steel and rolling method
CN109680204A (en) * 2019-01-21 2019-04-26 南京钢铁股份有限公司 A kind of deep-sea acid-resistant pipeline steel and production method
JP2021042426A (en) * 2019-09-10 2021-03-18 日本製鉄株式会社 Electric-resistance-welded steel pipe for line pipe and hot rolled steel sheet for line pipe
JP2021042424A (en) * 2019-09-10 2021-03-18 日本製鉄株式会社 Electric-resistance-welded steel pipe for line pipe and hot rolled steel sheet for line pipe
JP7315834B2 (en) 2019-09-10 2023-07-27 日本製鉄株式会社 Electric resistance welded steel pipes for line pipes and hot-rolled steel plates for line pipes
JP7315835B2 (en) 2019-09-10 2023-07-27 日本製鉄株式会社 Electric resistance welded steel pipes for line pipes and hot-rolled steel plates for line pipes
KR20230026017A (en) 2021-08-17 2023-02-24 주식회사 포스코 Steel plate for linepipe having excellent low temperature toughness and high strength and method for manufacturing the same
WO2024117083A1 (en) * 2022-11-29 2024-06-06 Jfeスチール株式会社 Steel sheet, method for producing same, and steel pipe
WO2024117082A1 (en) * 2022-11-29 2024-06-06 Jfeスチール株式会社 Steel sheet, method for producing same, and steel pipe
WO2024117084A1 (en) * 2022-11-29 2024-06-06 Jfeスチール株式会社 Steel sheet, method for producing same, and steel pipe
WO2024117085A1 (en) * 2022-11-29 2024-06-06 Jfeスチール株式会社 Steel sheet, method for producing same, and steel pipe

Also Published As

Publication number Publication date
JP5353156B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5353156B2 (en) Steel pipe for line pipe and manufacturing method thereof
JP5343519B2 (en) Steel plate and pipe for line pipe
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
RU2637202C2 (en) Sheet steel for a thick-strengthen high-strengthening pipe threading with excellent resistance to acid environment, resistance to smoke and low-temperature viscosity and also a main pipe
EP2505681B1 (en) Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
EP2505682B1 (en) Welded steel pipe for linepipe with superior compressive strength, and process for producing same
US9181609B2 (en) Welded steel pipe for linepipe having high compressive strength and excellent sour gas resistance and manufacturing method thereof
JP5048167B2 (en) Thick welded steel pipe excellent in low temperature toughness, manufacturing method of thick welded steel pipe excellent in low temperature toughness, steel sheet for manufacturing thick welded steel pipe
WO2010090349A1 (en) High-strength steel tube for low-temperature use with superior buckling resistance and toughness in weld heat-affected areas, and manufacturing method for same
JP5782827B2 (en) High compressive strength steel pipe for sour line pipe and manufacturing method thereof
JP5245476B2 (en) Steel plate for line pipe
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
WO2015012317A1 (en) Steel plate for line pipe, and line pipe
JP2010189722A (en) Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness
JP5124854B2 (en) Steel plate for line pipe, method for producing the same, and line pipe
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
JP4719313B2 (en) Steel plate and line pipe steel pipe with excellent sour resistance
JP6241434B2 (en) Steel plate for line pipe, steel pipe for line pipe, and manufacturing method thereof
JPWO2019064459A1 (en) High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
JP7200588B2 (en) ERW steel pipe for oil well and manufacturing method thereof
JP7119888B2 (en) Steel plate for UOE steel pipe and manufacturing method thereof
RU2788419C1 (en) High-strength steel sheet for hydrogen sulfide-resistant main pipe, the method for its manufacture and high-strength steel pipe obtained using high-strength steel sheet for hydrogen sulfide-resistant main pipe
JP2012193446A (en) Steel plate for high-ductile high-strength welded steel pipe, steel pipe, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250