JPH0841536A - Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property - Google Patents

Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property

Info

Publication number
JPH0841536A
JPH0841536A JP6178527A JP17852794A JPH0841536A JP H0841536 A JPH0841536 A JP H0841536A JP 6178527 A JP6178527 A JP 6178527A JP 17852794 A JP17852794 A JP 17852794A JP H0841536 A JPH0841536 A JP H0841536A
Authority
JP
Japan
Prior art keywords
less
cooling
thickness direction
hardness
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6178527A
Other languages
Japanese (ja)
Inventor
Taneo Hatomura
太根生 波戸村
Yoshihiro Kataoka
義弘 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6178527A priority Critical patent/JPH0841536A/en
Publication of JPH0841536A publication Critical patent/JPH0841536A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for producing a high strength steel plate for a thick pipeline in which the nonuniformity of the hardness in the plate thickness direction is small and the DWTT 85% fracture appearance transition temp. is regulated to <=60 deg.. CONSTITUTION:A steel slab contg. 0.01 to 0.18% C, 0.05 to 0.5% Si, 1.0 to 2.5% Mn and 0.01 to 0.1% Nb is heated to 900 to 1050 deg.C, is subjected to rolling reduction of >=65% in the unrecrystallized gamma region and that of 10 to 60% including water cooling passes for 1 to 6 times in the gamma+alpha two phase region and is subjected to accelerated cooling to <400 deg.C at 20 to 50 deg.C/s rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原油や天然ガス等を輸
送するパイプラインに使用される厚肉UOE鋼管用素材
に用いられる低温でのDWTT(Drop weight tear tes
t) 特性に優れ、板厚方向の硬度むらが少ない高張力鋼
板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low temperature DWTT (Drop weight tear tes) used for a material for a thick UOE steel pipe used in a pipeline for transporting crude oil, natural gas and the like.
t) The present invention relates to a method for producing a high-strength steel sheet having excellent properties and having little hardness unevenness in the sheet thickness direction.

【0002】[0002]

【従来の技術】最近、原油や天然ガス等を輸送するパイ
プラインにおいては、輸送の効率を上げるために高圧の
操業が指向され、強度が高くかつ板厚の厚いUOE鋼管
用鋼板が要求されている。これらパイプラインは、脆性
破壊に対する安全性を高めるため、脆性破壊の発生特性
を向上させることは勿論、発生した脆性亀裂を停止させ
る能力を向上させる必要がある。前者はシャルピー衝撃
試験の破面遷移温度やCTOD試験で評価されるのに対
して、後者はDWTTの破面遷移温度で評価される。D
WTT85%破面遷移温度(85% FATT)を低下させるに
は、従来はシャルピー衝撃試験の破面遷移温度とDWT
Tの破面遷移温度とに相関があるとの考えから、結晶粒
微細化を達成することが重要であるとして、そのため例
えば制御圧延等の結晶粒微細化技術が発展してきたこと
は周知の通りである。
2. Description of the Related Art Recently, in pipelines for transporting crude oil, natural gas, etc., high-pressure operation is aimed at in order to improve transportation efficiency, and high strength and thick steel plate for UOE steel pipe is required. There is. In order to enhance the safety against brittle fracture, these pipelines need to improve the occurrence characteristics of brittle fracture as well as the ability to stop the generated brittle crack. The former is evaluated by the fracture surface transition temperature of the Charpy impact test and the CTOD test, while the latter is evaluated by the fracture surface transition temperature of DWTT. D
To decrease the WTT 85% fracture surface transition temperature (85% FATT), the conventional fracture surface transition temperature of the Charpy impact test and DWT
As it is well known that it is important to achieve grain refinement from the idea that there is a correlation with the fracture surface transition temperature of T, and for that reason, for example, the technique of grain refinement such as controlled rolling has been developed. Is.

【0003】しかしながら、板厚が20mmを超えるような
場合には、結晶粒の細粒化を行えばシャルピーの破面遷
移温度は低温側に移行するものの、DWTTの破面遷移
温度は必ずしも低温側に移行せず、したがって要求特性
を満足させ得ない場合が往々にしてでてきた。今までに
UOE鋼管に要求されているDWTT特性は幹線ライン
では-20 ℃、ステーション廻りで-46 ℃が最低温度であ
ったが、近年北極海等のガス田や油田を開発するため、
DWTT85% 破面遷移温度が -60℃以下の極低温用UO
E鋼管が要求されるようになった。
However, when the plate thickness exceeds 20 mm, if the grain size is reduced, the Charpy fracture transition temperature shifts to the low temperature side, but the DWTT fracture transition temperature is not necessarily the low temperature side. It often happened that the required characteristics could not be satisfied. Until now, the minimum DWTT characteristics required for UOE steel pipes were -20 ℃ in the main line and -46 ℃ around the station, but in recent years, to develop gas and oil fields in the Arctic Ocean, etc.,
DWTT 85% UO for cryogenic temperatures with a fracture surface transition temperature of -60 ° C or less
E steel pipe is required.

【0004】また厚肉で高強度化を図るため、例えば特
開昭54-68719号公報に開示されているように、制御圧延
後の冷却速度を15℃/s以上として強度上昇を図ろうとし
ているが、表面と中心の冷却速度の差により、板厚方向
に硬度差が生じ、板内の歪みや材質バラツキの原因とな
っている。
Further, in order to increase the strength with a thick wall, for example, as disclosed in JP-A-54-68719, it is attempted to increase the strength by setting the cooling rate after controlled rolling to 15 ° C./s or more. However, due to the difference in cooling rate between the surface and the center, a difference in hardness occurs in the plate thickness direction, which causes distortion in the plate and material variation.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、板厚
方向の硬度むらが少なく、DWTT特性の優れた厚肉U
OE鋼管材の製造方法を提供することである。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a thick wall U having less hardness unevenness in the plate thickness direction and excellent DWTT characteristics.
An object of the present invention is to provide a method for manufacturing an OE steel pipe material.

【0006】[0006]

【課題を解決するための手段】本発明は、重量比にて、
C :0.01〜0.18%、Si:0.05〜0.5 %、Mn:1.0 〜2.5
%、Al:0.005 〜0.06%、Nb:0.01〜0.1 %を含有し、
残部が鉄および不可避的不純物によりなる鋼スラブを90
0 〜1050℃の範囲に加熱後、(Ar3+70℃) 以上の再結晶
γ域で50%以上の圧下を与え、引き続いて(Ar3+70℃)
〜Ar3 の未再結晶γ域で65%以上の圧下を与え、次いで
Ar3 〜(Ar3 -80℃) の(γ+α)2相域で最終仕上げ前
に1〜6回の水冷パスを含む10〜60%の圧下を与え、そ
の後20〜50℃/sの冷却速度で400 ℃未満まで加速冷却
することを特徴とする板厚方向の硬度むらが少なく低温
靱性の優れた高張力鋼板の製造方法であり、また本発明
は、必要によりさらに重量比にて、Cu:1.0 %以下、N
i:1.0 %以下、Cr:1.5 %以下、Mo:0.5 %以下、V
:0.01〜0.1 %以下、Ti:0.005 〜0.1 %以下、Ca:
0.001 〜0.01%、REM :0.001 〜0.01%の1種または2
種以上を含有し、残部が鉄および不可避的不純物により
なる鋼スラブを900 〜1050℃の範囲に加熱後、(Ar3+70
℃) 以上の再結晶γ域で50%以上の圧下を与え、引き続
いて(Ar3+70℃)〜Ar3 の未再結晶γ域で65%以上の圧
下を与え、次いでAr3 〜(Ar3−80℃) の(γ+α)2相
域で最終仕上げ前に1〜6回の水冷パスを含む10〜60%
の圧下を与え、その後20〜50℃/sの冷却速度で400 ℃
未満まで加速冷却することを特徴とする板厚方向の硬度
むらが少なく低温靱性の優れた高張力鋼板の製造方法で
ある。
The present invention, in terms of weight ratio,
C: 0.01 to 0.18%, Si: 0.05 to 0.5%, Mn: 1.0 to 2.5
%, Al: 0.005-0.06%, Nb: 0.01-0.1%,
90 steel slabs with the balance being iron and inevitable impurities
After heating in the range of 0 ~1050 ℃, (Ar 3 + 70 ℃) above recrystallization γ region giving the reduction of 50% or more, and subsequently (Ar 3 + 70 ℃)
~ 65% reduction in the unrecrystallized γ region of Ar 3
In the (γ + α) two-phase region of Ar 3 to (Ar 3 -80 ° C), 10 to 60% reduction including 1 to 6 water cooling passes is applied before final finishing, and then cooling rate of 20 to 50 ° C / s. Is a method for producing a high-strength steel sheet having less hardness unevenness in the plate thickness direction and excellent low-temperature toughness, which is characterized by accelerating cooling to less than 400 ° C. at a temperature of Cu: 1.0% or less, N
i: 1.0% or less, Cr: 1.5% or less, Mo: 0.5% or less, V
: 0.01 to 0.1% or less, Ti: 0.005 to 0.1% or less, Ca:
0.001 to 0.01%, REM: 0.001 to 0.01% of 1 or 2
After heating a steel slab containing at least one species and the balance consisting of iron and unavoidable impurities in the range of 900 to 1050 ℃, (Ar 3 +70
° C.) in the above recrystallization γ region giving the reduction of 50% or more, given subsequently (Ar 3 + 70 ℃) ~Ar pressure of more than 65% non-recrystallized γ zone 3, then Ar 3 ~ (Ar 3 10-60% including 1-6 water cooling passes before final finishing in the (γ + α) 2 phase region at -80 ° C)
At a cooling rate of 20 to 50 ° C / s at 400 ° C.
It is a method for producing a high-strength steel sheet having less hardness unevenness in the plate thickness direction and excellent low-temperature toughness, which is characterized in that accelerated cooling is performed to a temperature lower than that.

【0007】[0007]

【作 用】本発明者らは、厚肉材のDWTT特性を向上
させるミクロ組織を鋭意検討した結果、単にスラブ加熱
温度を低下させ、フェライト組織を微細化させるだけで
は、DWTT85% 破面遷移温度が -60℃以下とならない
のに対し、微細アシキュラーフェライト組織に島状マル
テンサイトを混入させた組織とすることにより、DWT
T特性が改善され、板厚方向の硬度むらも少なくなるこ
とを新規に見い出した。
[Working] As a result of diligent studies on the microstructure that improves the DWTT characteristics of thick-walled materials, the present inventors found that simply lowering the slab heating temperature and refining the ferrite structure would result in a DWTT 85% fracture surface transition temperature. Temperature does not fall below -60 ° C, while the fine acicular ferrite structure is mixed with island martensite,
It was newly found that the T characteristic is improved and the hardness unevenness in the plate thickness direction is reduced.

【0008】本発明は上記の組織を工業的に実現するた
めの製造方法に係わる。まず本発明の基礎となった実験
について説明する。図1は0.07%C−0.3 %Si−1.9
%Mn−0.04%Nb鋼を用い、スラブを850 ℃から1100
℃に加熱後、(Ar3+70℃) 以上の再結晶γ域で60%の圧
下を与えた後、(Ar3+70℃) からAr3 までの未再結晶γ
域で70%の圧下を与え、さらにAr3から(Ar3−80℃) ま
での(γ+α)2相域で30%の圧下を与えた後、加速冷
却を行ったときの引張強さとDWTT85% 破面遷移温度
の関係を示す。加速冷却は冷却速度を30℃/sと固定し、
冷却停止温度を600 ℃( □印)と300 ℃(△印および○
印) と変えたものである。300 ℃停止材の○印と△印の
相違は加速冷却前の(γ+ α) 2相域圧延において、最
終仕上げ圧延前1パスから6パスの間に水冷パスを3回
入れたもの(○印)と水冷パスを1回も入れないもの
(△印)との比較である。このときの板厚は24mmとし
た。
The present invention relates to a manufacturing method for industrially realizing the above structure. First, the experiment that was the basis of the present invention will be described. Figure 1 shows 0.07% C-0.3% Si-1.9
% Mn-0.04% Nb steel, slabs from 850 ℃ to 1100
After heating ° C., after giving a 60% reduction in (Ar 3 + 70 ° C.) or recrystallization gamma zone, the non-recrystallization to Ar 3 from (Ar 3 + 70 ℃) γ
The tensile strength and DWTT of 85% when accelerated cooling is applied after 70% reduction in the temperature range and 30% reduction in the (γ + α) two-phase range from Ar 3 to (Ar 3 -80 ° C). The relationship between the fracture surface transition temperatures is shown. Accelerated cooling fixes the cooling rate at 30 ° C / s,
Cooling stop temperature is 600 ℃ (□ mark) and 300 ℃ (△ mark and ○ mark)
It is a different one. The difference between the ○ and △ marks of the 300 ℃ stopped material is that in the (γ + α) two phase rolling before accelerated cooling, three water cooling passes were inserted between 1 pass and 6 passes before the final finish rolling (○ This is a comparison between the mark () and the one with no water cooling pass (marked with Δ). The plate thickness at this time was 24 mm.

【0009】冷却停止温度を600 ℃から300 ℃と低くす
ると引張強さは上昇し、DWTT特性は低温側に移行
し、高強度化と高DWTT特性化が同時に図れる。また
300 ℃停止材において水冷パスを導入することにより、
さらにDWTT特性が向上することが分かる。またDW
TT特性は加熱温度に強く依存し、加熱温度を900 ℃か
ら1050℃の範囲にすることにより、DWTT85% 破面遷
移温度が-60 ℃以下となる。
When the cooling stop temperature is lowered from 600 ° C. to 300 ° C., the tensile strength increases, the DWTT characteristics shift to the low temperature side, and high strength and high DWTT characteristics can be achieved at the same time. Also
By introducing a water cooling path in the 300 ° C stop material,
It can be seen that the DWTT characteristic is further improved. Also DW
The TT characteristics strongly depend on the heating temperature, and by setting the heating temperature in the range of 900 ° C to 1050 ° C, the DWTT85% fracture surface transition temperature becomes -60 ° C or less.

【0010】図2は0.07%C−0.3 %Si−1.9 %Mn
−0.04%Nb鋼を用い、スラブを1000℃に加熱後、(Ar3
+70℃) 以上の再結晶γ域で60%の圧下を与えた後、(A
r3+70℃) からAr3 までの未再結晶γ域で70%の圧下を
与え、さらにAr3 から(Ar3−80℃) までの(γ+α)2
相域で30%の圧下を与えた後、30℃/sの冷却速度で300
℃まで加速冷却を行ったときの板厚方向の硬度分布を示
す。
FIG. 2 shows 0.07% C-0.3% Si-1.9% Mn.
Using -0.04% Nb steel, after heating the slab to 1000 ℃, (Ar 3
After applying a 60% reduction in the recrystallization γ region above + 70 ° C, (A
70% reduction is applied in the unrecrystallized γ region from r 3 + 70 ℃ to Ar 3 and (γ + α) 2 from Ar 3 to (Ar 3 -80 ℃).
After applying a reduction of 30% in the phase region, 300 at a cooling rate of 30 ° C / s
The hardness distribution in the plate thickness direction when accelerated cooling is performed up to ℃ is shown.

【0011】同図は加速冷却前の(γ+α)2相域圧延
において、最終仕上げ圧延前1パスから6パスの間に水
冷パスを導入しないもの(△印)と3回の水冷パスを導
入したもの(○印)と硬度分布の相違を比較したもので
ある。水冷パスを導入しないものは硬度差が約30ポイ
ントあるのに対し、水冷パスを導入することにより硬度
差は約10ポイントとなり、板厚方向の硬度差が小さく
なることがわかる。
In the figure, in the (γ + α) two-phase rolling before accelerated cooling, a water cooling pass was not introduced (marked Δ) and three water cooling passes were introduced between 1 pass and 6 passes before final finishing rolling. This is a comparison of the difference in hardness distribution with the one (marked with ○). It can be seen that the hardness difference is about 30 points when the water cooling path is not introduced, whereas the hardness difference becomes about 10 points when the water cooling path is introduced, and the hardness difference in the plate thickness direction becomes small.

【0012】すなわち、(γ+α)2相域圧延中に水冷
パスを導入し、冷却停止温度を400℃未満とすること
により、板厚方向の硬度むらが少なくDWTT特性の優
れた鋼板を製造することができることが分かる。冷却停
止温度を400℃未満とすることにより、DWTT特性
が向上する詳細なメカニズムは明らかになっていない
が、DWTT試験ではシャルピー試験片に比べ、試験片
板厚が厚いため、亀裂先端で大きな内部応力が発生す
る。この内部応力により、硬い島状マルテンサイトが剥
離し、微細セパレーションが発生する。この島状マルテ
ンサイトは微細分散させることにより微細セパレーショ
ンが多数発生し、破面遷移温度が低温側に移行する。
That is, by introducing a water cooling path during the (γ + α) 2 phase rolling and setting the cooling stop temperature to less than 400 ° C., it is possible to produce a steel sheet having less hardness unevenness in the sheet thickness direction and excellent DWTT characteristics. You can see that Although the detailed mechanism of improving the DWTT characteristics by setting the cooling stop temperature to less than 400 ° C has not been clarified, in the DWTT test, since the plate thickness of the test piece is thicker than that of the Charpy test piece, the crack tip has a large internal Stress is generated. Due to this internal stress, the hard island martensite is peeled off and fine separation occurs. By finely dispersing this island-like martensite, a large number of fine separations occur, and the fracture surface transition temperature shifts to the low temperature side.

【0013】微細な島状マルテンサイトを微細分散させ
るためには基地組織をアシキュラーフェライト組織と
し、アシキュラーフェライトの間に島状マルテンサイト
を生成させることが重要となる。そこで冷却速度を20
℃/s以上と速くし、冷却速度を400℃未満とするこ
とにより未変態γがアシキュラーフェライトに変態し、
その界面に島状マルテンサイトが生成する。
In order to finely disperse fine island martensite, it is important to form the matrix structure as an acicular ferrite structure and to form island martensite between acicular ferrites. Therefore, the cooling rate is 20
Untransformed γ is transformed into acicular ferrite by increasing the cooling rate to 400 ° C / s or more and the cooling rate to less than 400 ° C,
Island martensite is generated at the interface.

【0014】しかし、島状マルテンサイトが生成すると
硬度上昇しやすい問題がある。組織をポリゴナルフェラ
イトからアシキュラーフェライトとすることにより、未
変態γは微細分散され、また微細分散された未変態γへ
のCなどの濃化が少なくなり、島状マルテンサイトの硬
度上昇が小さくなる。鋼板を(γ+α)2相域を空冷し
ながら圧延するとフェライトが粗大化し、島状マルテン
サイトが生成し、硬度が上昇する。しかし(γ+α)2
相域圧延中に水冷パスを導入すると、水冷パスにより鋼
板が過冷却状態になり、フェライト核は多数発生する
が、フェライトの粒成長は阻止され、フェライト粒は微
細化される。さらに微細フェライトが多数生成すること
により未変態γへのCなどの濃化が防止されるため、硬
度は低下し、靱性は向上する。
However, when island martensite is formed, there is a problem that hardness tends to increase. By changing the structure from polygonal ferrite to acicular ferrite, the untransformed γ is finely dispersed, and the concentration of C and the like in the finely dispersed untransformed γ is reduced, and the hardness increase of island martensite is small. Become. When the steel sheet is rolled while air-cooling the (γ + α) 2 phase region, ferrite coarsens, island martensite is formed, and hardness increases. But (γ + α) 2
When a water cooling pass is introduced during phase rolling, the steel plate is supercooled by the water cooling pass and many ferrite nuclei are generated, but grain growth of ferrite is blocked and ferrite grains are refined. Further, since a large amount of fine ferrite is generated, the concentration of C and the like in the untransformed γ is prevented, so that the hardness is lowered and the toughness is improved.

【0015】なお従来から(γ+α)2相域圧延後加速
冷却する例が例えば特開昭51-26615号公報や特開昭57-1
34518 号公報に見られるが、いずれも本発明のように第
2相組織をアシキュラーフェライトに変態させ、島状マ
ルテンサイトを微細分散させ、板厚方向の硬度むらが少
なく、DWTT特性を向上させる技術についての開示は
みられない。
Conventionally, examples of accelerated cooling after (γ + α) two-phase rolling are disclosed in, for example, Japanese Patent Laid-Open No. 516152/1985 and Japanese Patent Laid-Open No. 57-1.
As can be seen in Japanese Patent No. 34518, in both cases, the second phase structure is transformed into acicular ferrite to finely disperse the island martensite as in the present invention, and the hardness unevenness in the plate thickness direction is small and the DWTT characteristics are improved. There is no disclosure of technology.

【0016】次にこのような圧延、加速冷却処理により
上述のような組織とするための鋼板の成分組成の限定理
由について説明する。Cは、0.01%未満では鋼板の強度
が低下すること及び溶接熱影響部(以下HAZと略記す
る)の軟化が大きいため、C含有量の下限は0.01%とし
た。またCが0.18%を超えると母材の靱性が劣化すると
ともに溶接部の硬化、耐割れ性の劣化が著しいので上限
を0.18%とした。
Next, the reasons for limiting the component composition of the steel sheet to obtain the above-described structure by such rolling and accelerated cooling treatment will be described. If the content of C is less than 0.01%, the strength of the steel sheet decreases and the weld heat affected zone (hereinafter abbreviated as HAZ) is large in softness, so the lower limit of the C content was made 0.01%. Further, when C exceeds 0.18%, the toughness of the base material deteriorates, and the hardening of the weld zone and the deterioration of crack resistance are remarkable, so the upper limit was made 0.18%.

【0017】Siは、鋼精錬時に脱酸上必然的に含有さ
れる元素であるが、0.05%未満になると母材靱性が劣化
するため下限を0.05%とした。一方Siが多すぎると鋼
の清浄度が劣化し、靱性を低下させるため上限を0.5 %
とした。Mnは、1.0 %未満では鋼板の強度及び靱性が
低下すること、そしてHAZの軟化が大きくなるため下
限を1.0 %とした。一方Mnが多すぎるとHAZの靱性
が劣化するため上限を2.5 %とした。
Si is an element that is inevitably contained in deoxidation during steel refining, but if it is less than 0.05%, the base material toughness deteriorates, so the lower limit was made 0.05%. On the other hand, if the amount of Si is too large, the cleanliness of the steel deteriorates and the toughness decreases, so the upper limit is 0.5%.
And If the Mn content is less than 1.0%, the strength and toughness of the steel sheet will deteriorate, and the HAZ will soften significantly, so the lower limit was made 1.0%. On the other hand, if the Mn content is too high, the HAZ toughness deteriorates, so the upper limit was made 2.5%.

【0018】Alは、脱酸上、最低0.005 %のAlが固
溶するように添加する必要があることから、Alの下限
を0.005 %とした。一方、固溶が0.06%超になるとHA
Zの靱性のみならず溶接金属の靱性も著しく劣化する。
このためAlの上限を0.06%とした。Nbは、本発明に
おいてアシキュラーフェライトを得るために重要な元素
であるが、溶接金属部の靱性劣化を避けるためには0.1
%以下でなければならないので、上限を0.1 %とした。
一方Nb含有量が0.01%未満では遷移温度を向上させる
細粒効果が得られず、このことから全Nb量の下限を0.
01%とした。
Since Al needs to be added so as to form a solid solution of at least 0.005% for deoxidation, the lower limit of Al was made 0.005%. On the other hand, if the solid solution exceeds 0.06%, HA
Not only the toughness of Z but also the toughness of the weld metal deteriorates remarkably.
Therefore, the upper limit of Al is set to 0.06%. Nb is an important element for obtaining acicular ferrite in the present invention, but is 0.1% to avoid deterioration of the toughness of the weld metal portion.
The upper limit was made 0.1% because it must be less than or equal to%.
On the other hand, if the Nb content is less than 0.01%, the effect of fine particles for improving the transition temperature cannot be obtained, and therefore the lower limit of the total Nb content is set to 0.
It was set to 01%.

【0019】以上が本発明において使用される鋼スラブ
の基本成分であり、さらに必要により、強度上昇あるい
は厚肉化のためにCu:1.0%以下、Cr:1.5%以下、N
i:1.0%以下、Mo:0.5%以下、V:0.01 〜0.1 %以下
を1種又は2種以上、靱性むらを少なくし、もしくは靱
性を向上させるためにTi:0.005〜0.1 %、またMnS
の形態制御、靱性向上及び耐HIC特性向上のためにC
a:0.001〜0.01%、REM:0.001〜0.01%のうち1種ま
たは2種以上を含有させることができる。
The above are the basic components of the steel slab used in the present invention, and if necessary, Cu: 1.0% or less, Cr: 1.5% or less, N: N or less for increasing the strength or increasing the thickness.
i: 1.0% or less, Mo: 0.5% or less, V: 0.01 to 0.1% or less, one or more types, Ti: 0.005 to 0.1%, and MnS in order to reduce toughness unevenness or improve toughness.
C to improve morphology control, toughness and HIC resistance
One or two or more of a: 0.001 to 0.01% and REM: 0.001 to 0.01% can be contained.

【0020】Cuは、靱性を向上させるが、1.0 %を超
えると熱間圧延中にクラックが発生しやすくなり、鋼板
の表面性状が劣化するので上限を1.0 %とした。Ni
は、Cuとほぼ同様の効果があるが、1.0 %を超えて添
加含有させるとHAZの硬化性及び製造コストの上昇を
招き、また本発明の目的ならびに効果を達成するために
は必要がないのでNiの上限を1.0 %とした。
Cu improves the toughness, but if it exceeds 1.0%, cracks are likely to occur during hot rolling and the surface properties of the steel sheet deteriorate, so the upper limit was made 1.0%. Ni
Has substantially the same effect as Cu, but if it is added and contained in excess of 1.0%, it causes an increase in the HAZ curability and production cost, and is not necessary for achieving the objects and effects of the present invention. The upper limit of Ni was set to 1.0%.

【0021】Crは、ベイナイトを生成するので、強
度、靱性を向上させるため添加するが、添加量が多きに
失すると母材およびHAZの靱性を著しく劣化させるの
で上限を1.5 %とした。Moは、圧延時のγ粒を整粒に
し、なおかつ微細なベイナイトを生成するので強度と靱
性を向上させるが、この発明の目的を達成するためには
0.5%を超えて添加する必要はなく、それ以上は製造コ
ストの上昇を招くので上限を 0.5%とした。
Since Cr forms bainite, Cr is added to improve the strength and toughness. However, if the addition amount is too large, the toughness of the base material and HAZ is significantly deteriorated, so the upper limit was made 1.5%. Mo improves the strength and toughness because it regulates the γ grains during rolling and produces fine bainite, but in order to achieve the object of the present invention,
It is not necessary to add more than 0.5%, and if it exceeds that amount, the manufacturing cost will rise, so the upper limit was made 0.5%.

【0022】Vは、鋼板の母材強度と靱性向上、継手部
強度確保のため添加するものである。しかし添加量が多
きに失すると母材及びHAZの靱性を著しく劣化させる
ので上限を 0.1%とした。Tiは、γ粒の微細化効果に
よる靱性向上とTi炭窒化物による強度上昇を目的とし
て添加する。しかしTi量が 0.005%未満ではその効果
はなく、また0.1%を超えると靱性が劣化するのでTi
添加量の下限を0.005 %、上限を0.1 %とした。
V is added to improve the base metal strength and toughness of the steel sheet and to secure the joint strength. However, if the addition amount is too large, the toughness of the base material and HAZ is significantly deteriorated, so the upper limit was made 0.1%. Ti is added for the purpose of improving toughness by the effect of refining γ grains and increasing strength by Ti carbonitride. However, if the Ti content is less than 0.005%, the effect is not obtained, and if it exceeds 0.1%, the toughness deteriorates, so Ti
The lower limit of the added amount was 0.005% and the upper limit was 0.1%.

【0023】Caは、 0.001%未満ではMnSの形態制
御に不十分で、T方向の靱性改善効果がないのでCaの
下限を 0.001%とした。一方、Caが0.01%を超えると
鋼の清浄度が悪くなり、内部欠陥の原因となるので、C
aの上限を0.01%とした。REMは、 0.001%未満では
MnSの形態制御に不十分でT方向の靱性向上に有効で
ないのでREMの下限を 0.001%とした。一方REMが
0.01%を超えると鋼の清浄度が悪くなり、またアーク溶
接の際にトラブルを起こすこともあるので、REMの上
限を0.01%とした。
If the content of Ca is less than 0.001%, it is insufficient for controlling the morphology of MnS and there is no effect of improving the toughness in the T direction, so the lower limit of Ca was made 0.001%. On the other hand, if Ca exceeds 0.01%, the cleanliness of the steel deteriorates, causing internal defects.
The upper limit of a was 0.01%. If the REM content is less than 0.001%, it is insufficient for controlling the morphology of MnS and is not effective in improving the toughness in the T direction, so the lower limit of REM content was set to 0.001%. On the other hand, REM
If it exceeds 0.01%, the cleanliness of the steel will deteriorate and problems may occur during arc welding, so the upper limit of REM was set to 0.01%.

【0024】次に本発明の第2の構成要件である加熱、
圧延、冷却条件の限定理由について説明する。はじめに
スラブを加熱するが、加熱温度を900 ℃〜1050℃に限定
した理由は加熱時のγ粒を微細に保ち、圧延組織の細粒
化を図るためである。1050℃は加熱時のγ粒が粗大化し
ない上限温度であって、加熱温度がこれを超えるとγ粒
が粗大化し、これが圧延後も粗大ベイナイトとなって残
存し、鋼の靱性を劣化させる。一方加熱温度が余りにも
低すぎると炭化物などが十分に溶体化されず、鋼の内質
が劣化するとともに、圧延終了段階の温度が下がりす
ぎ、加速冷却による十分な材質向上効果が期待できな
い。このため下限を 900℃とする必要がある。
Next, heating, which is the second component of the present invention,
The reasons for limiting the rolling and cooling conditions will be described. The slab is heated first, but the reason for limiting the heating temperature to 900 ° C to 1050 ° C is to keep the γ grains during heating fine and to make the rolling structure finer. 1050 ° C. is an upper limit temperature at which the γ grains do not coarsen during heating, and if the heating temperature exceeds this temperature, the γ grains coarsen and remain as coarse bainite after rolling, degrading the toughness of the steel. On the other hand, if the heating temperature is too low, carbides and the like will not be sufficiently solutionized, the internal quality of the steel will deteriorate, and the temperature at the end stage of rolling will be too low, so a sufficient material improvement effect by accelerated cooling cannot be expected. Therefore, it is necessary to set the lower limit to 900 ° C.

【0025】しかしながら加熱温度を上記のように低く
制限しても圧延条件が不適当であると良い材質を得るこ
とができない。このため(Ar3+70℃) 以上の再結晶γ域
での圧下率が50%以上という条件を付加する。再結晶γ
域では圧延−再結晶の繰り返しにより結晶粒の細粒化を
図るが、圧下率が50%未満ではγ粒の細粒化が不十分と
なり、続く未再結晶γ域での圧延を行っても靱性が劣化
する。よって再結晶γ域での圧下率は50%以上とする必
要がある。
However, even if the heating temperature is limited to a low value as described above, a good material cannot be obtained if the rolling conditions are inappropriate. For this reason, the condition is that the rolling reduction in the recrystallization γ region above (Ar 3 + 70 ° C) is 50% or more. Recrystallization γ
In the region, rolling-recrystallization is repeated to reduce the grain size, but if the rolling reduction is less than 50%, the grain size of the γ grains becomes insufficient, and even if rolling is performed in the unrecrystallized γ region that follows. The toughness deteriorates. Therefore, the rolling reduction in the recrystallization γ region must be 50% or more.

【0026】次に(Ar3+70℃) 以下Ar3 以上の未再結晶
γ域での圧延は、γ粒の伸長化やγ粒内に変形体を導入
するために行うが、(Ar3+70℃) 超の温度域あるいはAr
3 未満の温度域では前記目的が達成されない。さらにこ
の温度域での圧下率を65%以上とする必要がある。圧下
率が65%未満ではγ粒の伸長化、変形帯の導入が不十分
となり、この後に続く(γ+α)2相域圧延中のαが粗
大化するため、靱性が著しく劣化する。
Next rolling at (Ar 3 + 70 ° C.) below Ar 3 or more non-recrystallized γ region is carried out to introduce the variant in γ grains lengthening and γ the grains, (Ar 3 +70 ℃) over temperature range or Ar
In the temperature range of less than 3 , the above object cannot be achieved. Furthermore, the rolling reduction in this temperature range needs to be 65% or more. If the rolling reduction is less than 65%, the elongation of γ grains and the introduction of the deformation zone become insufficient, and α during the subsequent (γ + α) two-phase rolling is coarsened, so that the toughness is significantly deteriorated.

【0027】続いてAr3 〜(Ar3−80℃) の(γ+α)2
相域での圧延は、変態したα中にサブグレインを導入
し、また未変態γの細粒化と伸長化を図り、さらに衝撃
試験片破面にセパレーションを発生させ、遷移温度の低
下を図るために行う。しかしAr 3 超の温度域あるいは(A
r3−80℃) 未満の温度域では前記目的は達成されない。
さらにこの温度域での圧下率が10%未満では未変態γの
細粒化が不十分となり、この後に続く加速冷却により粗
大ベイナイトが生成する。また圧下率が60%超えでは変
態したα中のサブグレイン導入が多くなるため、いずれ
も靱性が著しく劣化する。よって圧下率を10〜60%とす
る必要がある。
Then Ar3~ (Ar3-80 ℃) (γ + α) 2
Rolling in the phase region introduces subgrains into transformed α
In addition, further refinement of untransformed γ and expansion of
Separation is generated on the fracture surface of the test piece, and the transition temperature is low.
Do it to get down. But Ar 3Super temperature range or (A
r3The above object is not achieved in the temperature range below -80 ° C.
Furthermore, if the rolling reduction in this temperature range is less than 10%, untransformed γ
Insufficient grain refinement and subsequent accelerated cooling
Large bainite is generated. If the rolling reduction exceeds 60%, it will change.
Since the number of subgrains introduced in the activated α increases,
Also significantly deteriorates toughness. Therefore, the reduction rate should be 10 to 60%.
Need to be

【0028】上記(γ+α)2 相域圧延の最終仕上げ前
1 パスから6 パスにおいて、水冷しながら圧延を行う。
これは鋼板表面から3mm 近傍までを過冷状態とし、微細
フェライトを多数生成させ、板厚方向の硬度むらを少な
くするために行うが、水冷パスを行わないと鋼板表面近
傍が過冷状態とならないため、硬度むらが発生する。一
方6 パス超えでは水冷による過冷領域が3mm 超えとな
り、硬度むら防止の効果が小さくなるため、水冷パスは
1 〜6 パスの範囲とした。
Before the final finishing of the above (γ + α) 2 phase zone rolling
Roll from 1 to 6 passes with water cooling.
This is done in order to reduce the hardness unevenness in the plate thickness direction by creating a supercooled state up to 3 mm from the surface of the steel plate and producing a large amount of fine ferrite, but the vicinity of the steel plate surface does not become supercooled unless a water cooling pass is performed. Therefore, hardness unevenness occurs. On the other hand, if it exceeds 6 passes, the supercooled area due to water cooling will exceed 3 mm, and the effect of preventing uneven hardness will be reduced, so
The range was 1 to 6 passes.

【0029】水冷の目的は鋼板表面から約3mm 近傍まで
を過冷状態にすることであり、例えば、圧延機の前後面
に設置されているディスケーリングの水冷装置での水冷
や温度調節用のシャワーなどによる水冷などが考えられ
るが、水冷の手段は特に問わない。上記(γ+α)2相
域圧延及び水冷パスを付与後に加速冷却を行うが、この
冷却では未変態γをアシキュラーフェライトと微細島状
マルテンサイトに変態させ、微細なセパレーションを生
成させ、DWTT特性を向上させることにある。冷却速
度が20℃/sに満たないと、アシキュラーフェライトが生
成しないため、一方50℃/sを超えると粗大ベイナイトが
生成し、DWTT特性が著しく劣化するので冷却速度を
20℃/s〜50℃/sの範囲に限定した。前記加速冷却は400
℃未満まで冷却を続けるが、400 ℃以上で加速冷却を停
止すると、島状マルテンサイトが生成しないため、DW
TT特性が著しく劣化するので冷却停止温度を400 ℃未
満とした。
The purpose of water cooling is to supercool the steel sheet surface up to about 3 mm. For example, a shower for water cooling and temperature control in a descaling water cooling device installed in the front and rear surfaces of the rolling mill. Water cooling by means such as the above is conceivable, but the means of water cooling is not particularly limited. Accelerated cooling is performed after the (γ + α) two-phase rolling and the water-cooling pass are applied. In this cooling, untransformed γ is transformed into acicular ferrite and fine island martensite, and fine separation is generated to improve DWTT characteristics. To improve. If the cooling rate is less than 20 ° C / s, acicular ferrite will not be generated. On the other hand, if it exceeds 50 ° C / s, coarse bainite will be generated and the DWTT characteristics will be significantly deteriorated.
It was limited to the range of 20 ° C / s to 50 ° C / s. The accelerated cooling is 400
Cooling is continued to less than ℃, but if accelerated cooling is stopped at 400 ℃ or more, island martensite will not be formed, so DW
Since the TT characteristics deteriorate significantly, the cooling stop temperature was set to less than 400 ° C.

【0030】[0030]

【実施例】表1に成分組成を示す供試鋼について、表2
に示す加熱−圧延−冷却条件により処理した鋼板の機械
的性質の変化を調査し、その結果を表2にまとめて示
す。
[Examples] Table 2 shows the sample steels whose composition is shown in Table 1.
The changes in mechanical properties of the steel sheet treated under the heating-rolling-cooling conditions shown in Table 1 were investigated, and the results are summarized in Table 2.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表2において試験No.1〜10およびNo. 12〜
16は本発明で限定した範囲内の成分組成を有する表1の
A鋼のスラブに種々の加熱−圧延−冷却条件を施し、い
ずれも板厚24mmの製品としたものである。まず試験No.1
はスラブ加熱温度が850 ℃と低いため、引張強さが低
く、DWTT特性が十分でない。
In Table 2, tests No. 1 to 10 and No. 12 to
No. 16 is a product having a thickness of 24 mm, which is obtained by subjecting a slab of steel A having the composition within the range limited in the present invention to various heating-rolling-cooling conditions. First test No. 1
Since the slab heating temperature is as low as 850 ° C, the tensile strength is low and the DWTT characteristics are not sufficient.

【0034】試験No.2、3 は未再結晶γ域での圧下率が
50%と低いため、あるいは(γ+α)2相域圧延を実施
していないため、DWTT特性が悪い。試験No.4、5 は
冷却速度が15℃/sと遅いため、あるいは冷却停止温度が
500 ℃と高いため、引張強さが低く、DWTT特性が十
分でない。試験No.6、7 、8 はスラブ加熱温度が1100℃
と高いため、あるいは再結晶γ域での圧下率が40%と低
いため、および(γ+α)2相域での圧下率が70% と大
きすぎるため、DWTT特性が悪い。
In Test Nos. 2 and 3, the rolling reduction in the unrecrystallized γ region was
The DWTT characteristic is poor because it is as low as 50% or (γ + α) 2 phase rolling is not performed. Test Nos. 4 and 5 have a slow cooling rate of 15 ° C / s, or the cooling stop temperature is low.
Since it is as high as 500 ° C, the tensile strength is low and the DWTT characteristics are not sufficient. Test Nos. 6, 7, and 8 have slab heating temperature of 1100 ° C
The DWTT characteristics are poor because the rolling reduction is high in the recrystallization γ region and the rolling reduction is low at 40%, and the rolling reduction in the (γ + α) 2 phase region is too large at 70%.

【0035】試験No. 14は( γ+α)2相域での最終仕
上げ前の水冷パスを行なっていないため、表面と中心と
の硬度差(ΔHv) が大きい。試験No. 15は圧延後の冷却
速度が 60 ℃/sと速すぎるため、DWTT特性が悪い。
これらに対して試験No.9、10はこの発明の構成要件に従
い製造したため、高い強度と優れたDWTT特性 (85%
破面遷移温度が -60℃以下) を有していることがわか
る。
Test No. 14 has a large hardness difference (ΔHv) between the surface and the center because the water cooling pass before final finishing in the (γ + α) 2 phase region is not performed. In the test No. 15, the cooling rate after rolling was too fast at 60 ° C./s, so the DWTT characteristics were poor.
On the other hand, since Test Nos. 9 and 10 were manufactured in accordance with the constitutional requirements of the present invention, high strength and excellent DWTT characteristics (85%
It can be seen that the fracture surface transition temperature is -60 ° C or less).

【0036】試験No.11 、は製造条件は本発明の構成条
件を満足しているが、もう1 つの重要な構成条件である
成分組成において、Nbを含有していないため強度とDW
TT特性が悪い。次に試験No.12 、13はこの発明に従う
成分組成よりなるC,D鋼スラブについて、しかもこの
構成要件を全て満足して製造した板厚30mmの鋼板の機械
的性質を示す。いずれも高い強度と優れたDWTT特性
を有する鋼板であることがわかる。
In Test No. 11, the manufacturing conditions satisfied the constitutional conditions of the present invention, but in the composition of the composition which is another important constitutional condition, since Nb was not contained, the strength and DW were
Poor TT characteristics. Next, Test Nos. 12 and 13 show the mechanical properties of the C and D steel slabs having the composition according to the present invention and the steel plate having a thickness of 30 mm manufactured by satisfying all the constituent requirements. It can be seen that all are steel sheets having high strength and excellent DWTT characteristics.

【0037】[0037]

【発明の効果】本発明によれば、板厚方向の冷却むらが
少なく、DWTT85%破面遷移温度が─60℃以下と
DWWTT特性が優れ、しかも高強度の厚肉の極寒冷地
パイプライン用鋼板が容易に得られる。
EFFECTS OF THE INVENTION According to the present invention, the cooling unevenness in the plate thickness direction is small, the DWTT 85% fracture surface transition temperature is -60 ° C or less, and the DWTT characteristics are excellent. A steel plate can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】加熱温度と(γ+α)2相域圧延中の水冷パス
の有無および冷却停止温度を変化させたときの引張強さ
とDWTT85%遷移温度( FATT )の関係を示す特
性図。
FIG. 1 is a characteristic diagram showing the relationship between the heating temperature, the presence or absence of a water cooling pass during (γ + α) two-phase rolling, and the tensile strength and the DWTT 85% transition temperature (FATT) when the cooling stop temperature is changed.

【図2】(γ+α)2相域圧延中の水冷パスの有無によ
る板厚方向の硬度分布の相違を示す図。
FIG. 2 is a diagram showing a difference in hardness distribution in a plate thickness direction depending on the presence or absence of a water cooling pass during (γ + α) 2 phase rolling.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比にて、C :0.01〜0.18%、Si:0.
05〜0.5 %、Mn:1.0 〜2.5 %、Al:0.005 〜0.06%、
Nb:0.01〜0.1 %を含有し、残部が鉄および不可避的不
純物よりなる鋼スラブを900 〜1050℃の範囲に加熱後、
(Ar3+70℃)以上の再結晶γ域で50%以上の圧下を与
え、引き続いて(Ar3+70℃) 〜Ar3 の未再結晶γ域で65
%以上の圧下を与え、次いでAr3 〜(Ar3 -80℃) の(γ
+α)2相域で最終仕上げ前に1〜6回の水冷パスを含
む10〜60%の圧下を与え、その後20〜50℃/sの冷却速
度で400 ℃未満まで加速冷却することを特徴とする板厚
方向の硬度むらが少なくDWTT特性の優れた高張力鋼
板の製造方法。
1. A weight ratio of C: 0.01 to 0.18% and Si: 0.
05-0.5%, Mn: 1.0-2.5%, Al: 0.005-0.06%,
After heating a steel slab containing Nb: 0.01 to 0.1% and the balance of iron and unavoidable impurities in the range of 900 to 1050 ° C,
(Ar 3 + 70 ℃) gave the reduction of 50% or more by recrystallization γ region above, the pre-recrystallization γ zone of subsequent (Ar 3 + 70 ℃) ~Ar 3 65
% Or more, then Ar 3 to (Ar 3 -80 ° C) (γ
+ Α) In the two-phase region, 10 to 60% reduction including 1 to 6 water-cooling passes is applied before final finishing, and thereafter accelerated cooling is performed at a cooling rate of 20 to 50 ° C / s to less than 400 ° C. A method for manufacturing a high-strength steel sheet having less hardness unevenness in the plate thickness direction and excellent DWTT characteristics.
【請求項2】 重量比にて、C :0.01〜0.18%、Si:0.
05〜0.5 %、Mn:1.0 〜2.5 %、Al:0.005 〜0.06%、
Nb:0.01〜0.1 %を含有し、さらにCu:1.0%以下、N
i:1.0 %以下、Cr:1.5 %以下、Mo:0.5 %以下、V
:0.01〜0.1 %以下、Ti:0.005 〜0.1 %以下、Ca:
0.001 〜0.01%、REM :0.001 〜0.01%の1種または2
種以上を含有し、残部が鉄および不可避的不純物よりな
る鋼スラブを900 〜1050℃の範囲に加熱後、(Ar3+70
℃) 以上の再結晶γ域で50%以上の圧下を与え、引き続
いて(Ar3+70℃) 〜Ar3 の未再結晶γ域で65%以上の圧
下を与え、次いでAr3 〜(Ar3−80℃) の(γ+α)2相
域で最終仕上げ前に1〜6回の水冷パスを含む10〜60%
の圧下を与え、その後20〜50℃/sの冷却速度で400 ℃
未満まで加速冷却することを特徴とする板厚方向の硬度
むらが少なくDWTT特性の優れた高張力鋼板の製造方
法。
2. A weight ratio of C: 0.01 to 0.18% and Si: 0.
05-0.5%, Mn: 1.0-2.5%, Al: 0.005-0.06%,
Nb: 0.01 to 0.1%, Cu: 1.0% or less, N
i: 1.0% or less, Cr: 1.5% or less, Mo: 0.5% or less, V
: 0.01 to 0.1% or less, Ti: 0.005 to 0.1% or less, Ca:
0.001 to 0.01%, REM: 0.001 to 0.01% of 1 or 2
After heating a steel slab containing at least one species and the balance consisting of iron and unavoidable impurities in the range of 900 to 1050 ℃, (Ar 3 + 70
° C.) in the above recrystallization γ region giving the reduction of 50% or more, given subsequently (Ar 3 + 70 ℃) ~Ar pressure of more than 65% non-recrystallized γ zone 3, then Ar 3 ~ (Ar 3 10-60% including 1-6 water cooling passes before final finishing in the (γ + α) 2 phase region at -80 ° C)
At a cooling rate of 20 to 50 ° C / s at 400 ° C.
A method for producing a high-strength steel sheet having less hardness unevenness in the plate thickness direction and having excellent DWTT characteristics, characterized by accelerating cooling to less than a certain level.
JP6178527A 1994-07-29 1994-07-29 Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property Pending JPH0841536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6178527A JPH0841536A (en) 1994-07-29 1994-07-29 Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6178527A JPH0841536A (en) 1994-07-29 1994-07-29 Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property

Publications (1)

Publication Number Publication Date
JPH0841536A true JPH0841536A (en) 1996-02-13

Family

ID=16050038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6178527A Pending JPH0841536A (en) 1994-07-29 1994-07-29 Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property

Country Status (1)

Country Link
JP (1) JPH0841536A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096517A (en) * 2001-09-20 2003-04-03 Nippon Steel Corp Nonwater cooling type production method for thin high strength steel sheet having high absorbed energy
JP2010077492A (en) * 2008-09-26 2010-04-08 Jfe Steel Corp Steel pipe for line pipe and method of producing the same
JP2012077325A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High strength steel sheet for line pipe and method for producing the same, and high strength steel pipe using high strength steel sheet for line pipe
WO2015030210A1 (en) 2013-08-30 2015-03-05 新日鐵住金株式会社 Steel sheet for thick-walled high-strength line pipe having exceptional souring resistance, crush resistance properties, and low-temperature ductility, and line pipe
CN109207695A (en) * 2018-08-27 2019-01-15 南京钢铁股份有限公司 A kind of production method reducing X80M grades of pipe line steel hardness
KR20200001182A (en) * 2018-06-27 2020-01-06 현대제철 주식회사 Steel for line pipe and manufacturing method thereof
CN110756951A (en) * 2019-12-04 2020-02-07 珠海东方重工有限公司 H-shaped steel production welding process
CN112359191A (en) * 2020-11-10 2021-02-12 江苏省沙钢钢铁研究院有限公司 TMCP type bridge steel plate with small same-plate strength difference and production method thereof
KR20210153330A (en) * 2020-06-10 2021-12-17 현대제철 주식회사 Hot rolled steel having excellent low-temperature toughness and low yield ratio and method of manufacturing the same
KR102366991B1 (en) * 2020-09-09 2022-02-25 현대제철 주식회사 Hot rolled steel having excellent low-temperature toughness and low yield ratio and method of manufacturing the same
KR102366990B1 (en) * 2020-09-09 2022-02-25 현대제철 주식회사 Hot rolled steel having excellent low-temperature toughness and low yield ratio and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134518A (en) * 1981-02-14 1982-08-19 Kawasaki Steel Corp Production of high-toughness high-tensile steel
JPS57146407A (en) * 1981-03-06 1982-09-09 Kawasaki Steel Corp Rolling method for thick plate
JPS61162222A (en) * 1985-01-11 1986-07-22 Kawasaki Steel Corp Method for water cooling steel plate in control rolling
JPH0313524A (en) * 1989-06-10 1991-01-22 Kobe Steel Ltd Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness
JPH0596320A (en) * 1991-10-07 1993-04-20 Sumitomo Metal Ind Ltd Method for uniformly cooling thick steel plate
JPH05148539A (en) * 1991-11-22 1993-06-15 Kawasaki Steel Corp Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134518A (en) * 1981-02-14 1982-08-19 Kawasaki Steel Corp Production of high-toughness high-tensile steel
JPS57146407A (en) * 1981-03-06 1982-09-09 Kawasaki Steel Corp Rolling method for thick plate
JPS61162222A (en) * 1985-01-11 1986-07-22 Kawasaki Steel Corp Method for water cooling steel plate in control rolling
JPH0313524A (en) * 1989-06-10 1991-01-22 Kobe Steel Ltd Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness
JPH0596320A (en) * 1991-10-07 1993-04-20 Sumitomo Metal Ind Ltd Method for uniformly cooling thick steel plate
JPH05148539A (en) * 1991-11-22 1993-06-15 Kawasaki Steel Corp Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096517A (en) * 2001-09-20 2003-04-03 Nippon Steel Corp Nonwater cooling type production method for thin high strength steel sheet having high absorbed energy
JP2010077492A (en) * 2008-09-26 2010-04-08 Jfe Steel Corp Steel pipe for line pipe and method of producing the same
JP2012077325A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High strength steel sheet for line pipe and method for producing the same, and high strength steel pipe using high strength steel sheet for line pipe
WO2015030210A1 (en) 2013-08-30 2015-03-05 新日鐵住金株式会社 Steel sheet for thick-walled high-strength line pipe having exceptional souring resistance, crush resistance properties, and low-temperature ductility, and line pipe
KR20200001182A (en) * 2018-06-27 2020-01-06 현대제철 주식회사 Steel for line pipe and manufacturing method thereof
CN109207695A (en) * 2018-08-27 2019-01-15 南京钢铁股份有限公司 A kind of production method reducing X80M grades of pipe line steel hardness
CN110756951A (en) * 2019-12-04 2020-02-07 珠海东方重工有限公司 H-shaped steel production welding process
KR20210153330A (en) * 2020-06-10 2021-12-17 현대제철 주식회사 Hot rolled steel having excellent low-temperature toughness and low yield ratio and method of manufacturing the same
KR102366991B1 (en) * 2020-09-09 2022-02-25 현대제철 주식회사 Hot rolled steel having excellent low-temperature toughness and low yield ratio and method of manufacturing the same
KR102366990B1 (en) * 2020-09-09 2022-02-25 현대제철 주식회사 Hot rolled steel having excellent low-temperature toughness and low yield ratio and method of manufacturing the same
CN112359191A (en) * 2020-11-10 2021-02-12 江苏省沙钢钢铁研究院有限公司 TMCP type bridge steel plate with small same-plate strength difference and production method thereof
CN112359191B (en) * 2020-11-10 2022-04-19 江苏省沙钢钢铁研究院有限公司 TMCP type bridge steel plate with small same-plate strength difference and production method thereof

Similar Documents

Publication Publication Date Title
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
KR101603461B1 (en) High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
EP1870484B1 (en) High-strength steel plate and process for production thereof, and high-strength steel pipe
KR100868423B1 (en) High strength api-x80 grade steels for spiral pipes with less strength changes and method for manufacturing the same
EP2272994A1 (en) High-tensile strength steel and manufacturing method thereof
WO2013011791A1 (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
WO2011040624A1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP3387371B2 (en) High tensile steel excellent in arrestability and weldability and manufacturing method
JP7155702B2 (en) Thick steel plate for sour linepipe and its manufacturing method
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP2006307324A (en) High-strength and high-toughness steel plate excellent in resistance to crack by cutting and its manufacturing method
JP7211168B2 (en) ERW steel pipe
JP2004143504A (en) Thick steel member having excellent fatigue crack propagating resistance, and production method therefor
JPH0841536A (en) Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP3817887B2 (en) High toughness high strength steel and method for producing the same
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP4161679B2 (en) High-strength, high-toughness, low-yield ratio steel pipe material and its manufacturing method
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP3274013B2 (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness
JPH02217417A (en) Production of non-heattreated high tensile steel sheet excellent in dwtt characteristic
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907