JP4900127B2 - Induction hardening steel and manufacturing method thereof - Google Patents

Induction hardening steel and manufacturing method thereof Download PDF

Info

Publication number
JP4900127B2
JP4900127B2 JP2007204926A JP2007204926A JP4900127B2 JP 4900127 B2 JP4900127 B2 JP 4900127B2 JP 2007204926 A JP2007204926 A JP 2007204926A JP 2007204926 A JP2007204926 A JP 2007204926A JP 4900127 B2 JP4900127 B2 JP 4900127B2
Authority
JP
Japan
Prior art keywords
less
steel
reduction
induction hardening
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007204926A
Other languages
Japanese (ja)
Other versions
JP2009041046A (en
Inventor
真志 東田
斉 松本
和則 松永
隆之 西
浩一 堺
宏二 渡里
豊 根石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007204926A priority Critical patent/JP4900127B2/en
Publication of JP2009041046A publication Critical patent/JP2009041046A/en
Application granted granted Critical
Publication of JP4900127B2 publication Critical patent/JP4900127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Metal Rolling (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、高周波焼入れ用鋼材及びその製造方法に関し、詳しくは、転動疲労寿命に優れた高周波焼入れ用鋼材とその製造方法に関する。   The present invention relates to a steel material for induction hardening and a method for producing the same, and more particularly to a steel material for induction hardening excellent in rolling fatigue life and a method for producing the same.

自動車用部品の中でも、高い面圧が繰返し作用する「転がり軸受」、「等速ジョイント」や「ハブユニット」といった部品(以下、「転動部材」ともいう。)には、優れた転動疲労特性が必要となる。これらのうちでも、特に「等速ジョイント」や「ハブユニット」の素材には、主としてJIS G 4051(2005)に記載の「機械構造用炭素鋼鋼材」が用いられており、転動疲労特性が必要な部位のみを高周波焼入れ処理によって硬化させることが行われている。   Among automotive parts, parts such as “rolling bearings”, “constant velocity joints” and “hub units” (hereinafter also referred to as “rolling members”) where high surface pressure repeatedly acts have excellent rolling fatigue. Characteristics are required. Among these, “carbon steel for machine structure” described in JIS G 4051 (2005) is mainly used as the material of “constant velocity joint” and “hub unit”, and the rolling fatigue characteristics are Only necessary portions are cured by induction hardening.

なお、高周波焼入れのメリットとしては、必要な部位のみ硬化できることや、インライン処理ができるため他のバッチ式の表面処理に比べて工程の自由度が高いこと等が挙げられる。   Note that the merits of induction hardening include that only necessary portions can be cured, and that in-line treatment is possible, so that the degree of freedom of the process is higher than other batch type surface treatments.

転動部材の転動疲労特性(転動疲労寿命)は鋼中の非金属介在物(以下、単に「介在物」ともいう。)、特に、酸化物により低下することが知られている。そのため、従来は、製鋼プロセスによって鋼中の酸素含有量を少なくする試みがなされており、その結果、酸素含有量の低下に伴って、転動疲労寿命も向上してきた。   It is known that the rolling fatigue characteristics (rolling fatigue life) of rolling members are reduced by non-metallic inclusions in steel (hereinafter also simply referred to as “inclusions”), particularly oxides. Therefore, conventionally, attempts have been made to reduce the oxygen content in steel by a steelmaking process, and as a result, the rolling fatigue life has been improved with a decrease in the oxygen content.

一方、近年では、例えば、エンジンの高出力化や部品の軽量化のニーズによって、上記部品の使用環境がますます高面圧化、高温化して過酷なものとなり、このため、より一層長い転動疲労寿命が求められるようになってきた。   On the other hand, in recent years, for example, due to the need for higher engine output and lighter parts, the use environment of the above parts has become increasingly severe due to higher surface pressure and higher temperatures. Fatigue life has been demanded.

しかしながら、単に酸素の含有量を低減させるだけでは所望の良好な転動疲労寿命を確保することができず、このため、鋼中の酸化物のサイズを小さくして転動疲労寿命を改善することが提案されている。   However, simply reducing the oxygen content does not ensure the desired good rolling fatigue life. For this reason, reducing the size of the oxide in the steel improves the rolling fatigue life. Has been proposed.

特許文献1には、線状または棒状の圧延鋼材からなり、該圧延鋼材の軸心を通る縦断面において、該軸心と平行で且つ該軸心から(1/4)・D(Dは圧延材の直径を表わす)離れた仮想線を中心線として含む被検面積100mm2中に存在する、酸化物系と硫化物系からなる平均粒径10μm以上の複合介在物の個数が20個以下であることを特徴とする「曲げ疲労強度および転動疲労強度に優れた高周波焼入用鋼」の技術が開示されている。 Patent Document 1 includes a rolled steel material that is linear or rod-shaped, and in a longitudinal section that passes through the axis of the rolled steel material, is parallel to the axis and (1/4) · D (D is rolled) The number of composite inclusions having an average particle diameter of 10 μm or more made of an oxide and a sulfide is present in a test area of 100 mm 2 including a distant imaginary line as a center line (representing the diameter of the material). There is disclosed a technique of “steel for induction hardening excellent in bending fatigue strength and rolling fatigue strength”, which is characterized.

具体的には、質量%にて、C:0.3%超0.7%以下、Mn:0.3〜2.5%、Si:2%以下(0%を含む)、P:0.03%以下(0%を含む)、S:0.1%以下(0%を含む)、Al:0.015〜0.05%、O:0.002%以下(0%を含む)を含有し、必要に応じて更に、(a)特定量のCu、Ni、Cr及びMoよりなる群から選択される少なくとも1種、(b)特定量のV、Nb及びTiよりなる群から選択される少なくとも1種、(c)特定量のCa、Pb、Te、Bi及びZrよりなる群から選択される少なくとも1種、(d)特定量のBとN、の4元素群のうちの少なくとも1つの元素群から選ばれる元素を含み、残部がFeおよび不可避不純物からなる「高周波焼入用鋼」が提案されている。   Specifically, in mass%, C: more than 0.3% and 0.7% or less, Mn: 0.3 to 2.5%, Si: 2% or less (including 0%), P: 0.0. Contains 03% or less (including 0%), S: 0.1% or less (including 0%), Al: 0.015 to 0.05%, O: 0.002% or less (including 0%) If necessary, (a) at least one selected from the group consisting of a specific amount of Cu, Ni, Cr and Mo, and (b) selected from the group consisting of a specific amount of V, Nb and Ti. At least one selected from the group consisting of at least one, (c) a specific amount of Ca, Pb, Te, Bi and Zr, and (d) at least one of four elements of a specific amount of B and N "Induction hardening steel" has been proposed that contains an element selected from an element group, with the balance being Fe and inevitable impurities.

そして特許文献1には、前記の「高周波焼入用鋼」が、前述の成分組成の鋼材を使用し、且つ真空炉等を用いて溶製時の酸素の混入を抑え、また鋳造時における凝固温度以下の鋳片冷却速度を早くする等の手段を講じることによって容易に得ることができると説明されている。   Patent Document 1 discloses that the above-mentioned “high-frequency quenching steel” uses the steel material having the above-mentioned composition, suppresses the mixing of oxygen during melting using a vacuum furnace or the like, and solidifies during casting. It is described that it can be easily obtained by taking measures such as increasing the cooling rate of the slab below the temperature.

特許文献2には、重量比でC:0.5〜0.75%、Si:0.5〜1.8%、Mn:0.1〜1.5%、P:0.020%以下、S:0.020%以下、Al:0.019〜0.05%、O:0.0015%以下、N:0.003〜0.015%を含有し、必要に応じて更に、(a)特定量のMo、B、Ti、Niの一種以上、(b)特定量のV、Nbの少なくとも一種、の2元素群のうちの少なくとも1つの元素群から選ばれる元素を含み、残部がFe及び不可避不純物よりなる鋼材からなり、Ac3−100℃以上Ac3+200℃以下の温度域での加熱とその温度域における加工率70%以上の鍛造と0.005℃/s以上の冷却速度による冷却とを経て高周波焼入及び焼もどし処理を施して得ることを特徴とする「高周波焼入部品」が開示されている。更に、前記鋼材中の酸化物系非金属介在物個数が2.5/mm2以下でかつその最大サイズが19μm以下である「高周波焼入部品」が提案されている。 In Patent Document 2, C: 0.5 to 0.75% by weight, Si: 0.5 to 1.8%, Mn: 0.1 to 1.5%, P: 0.020% or less, S: 0.020% or less, Al: 0.019-0.05%, O: 0.0015% or less, N: 0.003-0.015%, if necessary, (a) One or more of a specific amount of Mo, B, Ti, Ni, (b) a specific amount of at least one of V, Nb, and at least one element group selected from two element groups, with the balance being Fe and It consists of a steel material consisting of inevitable impurities, and through heating in a temperature range of Ac3-100 ° C or higher and Ac3 + 200 ° C, forging with a processing rate of 70% or higher and cooling at a cooling rate of 0.005 ° C / s or higher. "Induction-hardened parts obtained by induction hardening and tempering treatment" There has been disclosed. Furthermore, “induction-hardened parts” have been proposed in which the number of oxide-based nonmetallic inclusions in the steel is 2.5 / mm 2 or less and the maximum size is 19 μm or less.

そして特許文献2には、前記高周波焼入部品が、鋳造後の鋼片より断面減少率で95%以上の圧延により製造された鋼材を使用することにより得ることができると説明されている。   Patent Document 2 describes that the induction-hardened component can be obtained by using a steel material manufactured by rolling with a cross-sectional reduction rate of 95% or more from a steel piece after casting.

特開平11−1749号公報Japanese Patent Laid-Open No. 11-1749 特開平11−131176号公報JP-A-11-131176

前記の特許文献1及び特許文献2で提案された技術を適用しても、近年における転動部材の厳しい使用環境下においては、必ずしも十分な転動疲労寿命が得られるというものではなかった。   Even when the techniques proposed in Patent Document 1 and Patent Document 2 are applied, a sufficient rolling fatigue life is not always obtained under severe usage environments of rolling members in recent years.

そこで、本発明の目的は、近年の転動部材の過酷な使用環境下においても、転動疲労による破損に対して良好な耐久性を有し、優れた転動疲労寿命を確保できる高周波焼入れ用鋼材とその製造方法を提供することにある。   Therefore, the object of the present invention is for induction hardening, which has good durability against damage due to rolling fatigue and can ensure an excellent rolling fatigue life even under the severe usage environment of rolling members in recent years. It is to provide a steel material and a manufacturing method thereof.

本発明者らは、酸素の含有量を低減させ、しかも、鋼中の酸化物のサイズを小さくした場合にも、近年における転動部材の厳しい使用環境下において良好な転動疲労寿命が得られない原因について検討した。   The present inventors have obtained a good rolling fatigue life under the severe use environment of rolling members in recent years even when the oxygen content is reduced and the size of oxides in steel is reduced. Considered no cause.

その結果、酸素の含有量を低減させても、酸化物がAl23を主体とする硬質なものである場合は、粗大な介在物として鋼中に残存していることがあるため、良好な転動疲労寿命が得られていない可能性があると考えた。更に、酸素の含有量を低減させても、Sの含有量が多い場合には酸化物よりも硫化物が粗大となる場合があり、これによっても良好な転動疲労寿命が得られていない可能性があると考えた。 As a result, even if the oxygen content is reduced, if the oxide is hard, mainly Al 2 O 3 , it may remain in the steel as coarse inclusions, which is good It was thought that there was a possibility that a long rolling fatigue life was not obtained. Furthermore, even if the oxygen content is reduced, if the S content is high, the sulfide may be coarser than the oxide, and this may not provide a good rolling fatigue life. I thought that there was sex.

そこで、先ず、酸化物に関して検討した結果、鋼のいわゆる「二次精錬」の過程におけるスラグの主要構成成分を主にCaO及びSiO2とし、更に、Al23が極力少量となるように厳密な制御を行うことで、軟質な酸化物が得られること、更には、この軟質酸化物は圧下を加えることによって微細化できることが明らかになった。 Therefore, as a result of first examining oxides, the main constituents of slag in the process of so-called “secondary refining” of steel are mainly CaO and SiO 2, and strict so that Al 2 O 3 is as small as possible. It has been clarified that a soft oxide can be obtained by performing such control, and that the soft oxide can be further refined by applying a reduction.

しかしながら、上記のような手法でいくら酸化物を微細化しても転動疲労寿命を向上させることはできなかった。   However, the rolling fatigue life cannot be improved no matter how much the oxide is miniaturized by the above-described method.

そこで、更に検討を重ねた結果、上記の精錬方法で製造された鋼の場合、硫化物中にMnOと思われる酸化物が含有されやすくなる傾向があり、この硫化物は従来のAl添加により脱酸処理した高周波焼入れ用鋼中の硫化物とは異なり、圧下によって延伸、分断されることが難しく大きなまま存在する、という極めて重要な知見が得られた。   Therefore, as a result of further studies, in the case of steel manufactured by the above refining method, there is a tendency that an oxide that seems to be MnO tends to be contained in the sulfide, and this sulfide is removed by conventional addition of Al. Unlike the sulfides in acid-treated steel for induction hardening, a very important finding was found that they are difficult to stretch and break by rolling and remain large.

そして、上記の圧下によって延伸、分断されることが難しく大きなまま存在する硫化物が転動疲労寿命を低下させることが明らかになった。   And it became clear that the sulfide which is difficult to be stretched and divided by the above-described reduction and remains large reduces the rolling fatigue life.

そこで次に、圧下によって硫化物を延伸、分断させるための検討を行った。   Then, next, the examination for extending | stretching and parting a sulfide by reduction was performed.

その結果、硫化物の量を制限するために、Sの含有量を質量%で、0.010%以下とし、かつ、圧下比や加工温度などの圧下条件を適正に制御すれば、酸化物だけではなく硫化物をも延伸、分断させて微細化することができ、結果として、過酷な使用環境下においても、優れた転動疲労寿命を有する高周波焼入れ用鋼材を得ることができることが判明した。   As a result, in order to limit the amount of sulfide, if the S content is 0.010% or less in mass%, and the reduction conditions such as reduction ratio and processing temperature are properly controlled, only oxides can be obtained. However, it has been found that it is possible to obtain a steel material for induction hardening having an excellent rolling fatigue life even under a severe use environment.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)〜(3)に示す高周波焼入れ用鋼材及び(4)〜(7)に示す高周波焼入れ用鋼材の製造方法にある。   The present invention has been completed based on the above findings, and the gist of the present invention is that of the steel materials for induction hardening shown in the following (1) to (3) and the steel materials for induction hardening shown in (4) to (7). In the manufacturing method.

(1)質量%で、C:0.35〜0.7%、Si:0.1〜0.8%、Mn:0.1〜1.5%、P:0.03%以下、S:0.010%以下、Cr:0.01%以上0.50%未満、Al:0.005%以下、Ca:0.0005%以下、O:0.0020%以下、N:0.02%以下を含有し、残部はFe及び不純物の化学成分からなり、非金属介在物について、酸化物の平均組成が質量%で、CaO:10〜60%、Al23:20%以下、MnO:50%以下及びMgO:15%以下で残部SiO2及び不純物からなるとともに、鋼材の長手方向縦断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下であることを特徴とする高周波焼入れ用鋼材。 (1) By mass%, C: 0.35 to 0.7%, Si: 0.1 to 0.8%, Mn: 0.1 to 1.5%, P: 0.03% or less, S: 0.010% or less, Cr: 0.01% or more and less than 0.50%, Al: 0.005% or less, Ca: 0.0005% or less, O: 0.0020% or less, N: 0.02% or less The balance is composed of Fe and chemical components of impurities, and with respect to non-metallic inclusions, the average composition of oxides is mass%, CaO: 10 to 60%, Al 2 O 3 : 20% or less, MnO: 50 % And MgO: 15% or less, the balance being SiO 2 and impurities, and the arithmetic average value and sulfide of the maximum thickness of oxides existing in 10 areas of 100 mm 2 in the longitudinal longitudinal section of the steel The arithmetic average value of the maximum thickness of each is 8.5 μm or less. Steel for that.

(2)質量%で、C:0.35〜0.7%、Si:0.1〜0.8%、Mn:0.1〜1.5%、P:0.03%以下、S:0.010%以下、Cr:0.01%以上0.50%未満、Al:0.005%以下、Ca:0.0005%以下、O:0.0020%以下、N:0.02%以下に加えて、V:0.3%以下及びNb:0.1%以下のうちの1種以上を含有し、残部はFe及び不純物の化学成分からなり、非金属介在物について、酸化物の平均組成が質量%で、CaO:10〜60%、Al23:20%以下、MnO:50%以下及びMgO:15%以下で残部SiO2及び不純物からなるとともに、鋼材の長手方向縦断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下であることを特徴とする高周波焼入れ用鋼材。 (2) By mass%, C: 0.35 to 0.7%, Si: 0.1 to 0.8%, Mn: 0.1 to 1.5%, P: 0.03% or less, S: 0.010% or less, Cr: 0.01% or more and less than 0.50%, Al: 0.005% or less, Ca: 0.0005% or less, O: 0.0020% or less, N: 0.02% or less In addition, V: not more than 0.3% and Nb: not more than 0.1%, the balance is composed of chemical components of Fe and impurities, and the average of oxides for non-metallic inclusions The composition is by mass%, CaO: 10-60%, Al 2 O 3 : 20% or less, MnO: 50% or less and MgO: 15% or less, and the balance SiO 2 and impurities. The arithmetic average value of the maximum thickness of oxide existing in 10 areas of 100 mm 2 and the arithmetic average of the maximum thickness of sulfide A steel material for induction hardening, wherein the average value is 8.5 μm or less, respectively.

(3)質量%で、C:0.35〜0.7%、Si:0.1〜0.8%、Mn:0.1〜1.5%、P:0.03%以下、S:0.010%以下、Cr:0.01%以上0.50%未満、Al:0.005%以下、Ca:0.0005%以下、O:0.0020%以下、N:0.02%以下に加えて、B:0.005%以下及びTi:0.05%以下を含有し、残部はFe及び不純物の化学成分からなり、非金属介在物について、酸化物の平均組成が質量%で、CaO:10〜60%、Al23:20%以下、MnO:50%以下及びMgO:15%以下で残部SiO2及び不純物からなるとともに、鋼材の長手方向縦断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下であることを特徴とする高周波焼入れ用鋼材。 (3) By mass%, C: 0.35 to 0.7%, Si: 0.1 to 0.8%, Mn: 0.1 to 1.5%, P: 0.03% or less, S: 0.010% or less, Cr: 0.01% or more and less than 0.50%, Al: 0.005% or less, Ca: 0.0005% or less, O: 0.0020% or less, N: 0.02% or less In addition, B: 0.005% or less and Ti: 0.05% or less, the balance consists of chemical components of Fe and impurities, the non-metallic inclusions, the average composition of the oxide is mass%, CaO: 10~60%, Al 2 O 3: 20% or less, MnO: 50% or less and MgO: with of 15% or less in balance SiO 2 and impurities, a longitudinal vertical section 10 positions of 100 mm 2 of steel The arithmetic average value of the maximum thickness of oxide present in the area and the arithmetic average value of the maximum thickness of sulfide are A steel material for induction hardening, each having a thickness of 8.5 μm or less.

(4)上記(1)に記載の化学成分及び酸化物の平均組成を有する鋳片又は鋼塊に、全圧下比が15以上となる圧下を加え、しかも、その圧下のうちで1000℃以下の温度域での圧下比を4以上として圧下することを特徴とする高周波焼入れ用鋼材の製造方法。
但し、全圧下比とは、鋳片又は鋼塊の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指し、また、1000℃以下の温度域での圧下比とは、前記温度域での圧下前の中間鋼材の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指す。
(4) To the slab or steel ingot having the average composition of the chemical components and oxides described in (1) above, a reduction at a total reduction ratio of 15 or more is added, and the reduction is 1000 ° C. or less. A method for producing a steel for induction hardening, wherein the reduction is performed with a reduction ratio in the temperature range of 4 or more.
However, the total reduction ratio refers to the value obtained by dividing the cross-sectional area of the slab or steel ingot by the cross-sectional area of the steel for induction hardening obtained by the final reduction, and the reduction ratio in the temperature range of 1000 ° C or lower. The term refers to a value obtained by dividing the cross-sectional area of the intermediate steel material before the reduction in the temperature range by the cross-sectional area of the steel material for induction hardening obtained by the final reduction.

(5)上記(2)に記載の化学成分及び酸化物の平均組成を有する鋳片又は鋼塊に、全圧下比が15以上となる圧下を加え、しかも、その圧下のうちで1000℃以下の温度域での圧下比を4以上として圧下することを特徴とする高周波焼入れ用鋼材の製造方法。
但し、全圧下比とは、鋳片又は鋼塊の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指し、また、1000℃以下の温度域での圧下比とは、前記温度域での圧下前の中間鋼材の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指す。
(5) To the slab or steel ingot having the average composition of the chemical components and oxides described in (2) above, a reduction at a total reduction ratio of 15 or more is added, and the reduction is 1000 ° C. or less. A method for producing a steel for induction hardening, wherein the reduction is performed with a reduction ratio in the temperature range of 4 or more.
However, the total reduction ratio refers to the value obtained by dividing the cross-sectional area of the slab or steel ingot by the cross-sectional area of the steel for induction hardening obtained by the final reduction, and the reduction ratio in the temperature range of 1000 ° C or lower. The term refers to a value obtained by dividing the cross-sectional area of the intermediate steel material before the reduction in the temperature range by the cross-sectional area of the steel material for induction hardening obtained by the final reduction.

(6)上記(3)に記載の化学成分及び酸化物の平均組成を有する鋳片又は鋼塊に、全圧下比が15以上となる圧下を加え、しかも、その圧下のうちで1000℃以下の温度域での圧下比を4以上として圧下することを特徴とする高周波焼入れ用鋼材の製造方法。
但し、全圧下比とは、鋳片又は鋼塊の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指し、また、1000℃以下の温度域での圧下比とは、前記温度域での圧下前の中間鋼材の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指す。
(6) To the slab or steel ingot having the average composition of the chemical components and oxides described in (3) above, a reduction at a total reduction ratio of 15 or more is added, and the reduction is 1000 ° C. or less. A method for producing a steel for induction hardening, wherein the reduction is performed with a reduction ratio in the temperature range of 4 or more.
However, the total reduction ratio refers to the value obtained by dividing the cross-sectional area of the slab or steel ingot by the cross-sectional area of the steel for induction hardening obtained by the final reduction, and the reduction ratio in the temperature range of 1000 ° C or lower. The term refers to a value obtained by dividing the cross-sectional area of the intermediate steel material before the reduction in the temperature range by the cross-sectional area of the steel material for induction hardening obtained by the final reduction.

(7)鋳片又は鋼塊が、酸化精錬後に、Al脱酸処理を行わずに、実質的にAlを含有しないフラックスを用いて二次精錬を行い、二次精錬終了後の最終的なスラグの塩基度CaO/SiO2の値が0.8〜2.0で、かつスラグ組成が質量%で、MgO:15%以下、F:10%以下、Al23:15%以下になるように制御し、続いて鋳造されたものであることを特徴とする上記(4)から(6)までのいずれかに記載の高周波焼入れ用鋼材の製造方法。 (7) The slab or steel ingot is subjected to secondary refining using a flux that does not substantially contain Al after oxidative refining without performing Al deoxidation treatment, and final slag after completion of secondary refining The basicity CaO / SiO 2 has a value of 0.8 to 2.0, and the slag composition is mass%, so that MgO: 15% or less, F: 10% or less, and Al 2 O 3 : 15% or less. The method for producing a steel material for induction hardening according to any one of (4) to (6) above, wherein the steel material is controlled to be subsequently cast.

なお、酸化物の平均組成における「不純物」とは、Cr23、Na2O、ZrO2などを指す。 Note that the “impurity” in the average composition of the oxide refers to Cr 2 O 3 , Na 2 O, ZrO 2 and the like.

また、「長手方向縦断面」(以下、「L断面」という。)とは、鋼材の長手方向に平行に切断した面をいう。   Further, the “longitudinal longitudinal section” (hereinafter referred to as “L section”) refers to a surface cut in parallel to the longitudinal direction of the steel material.

以下、上記(1)〜(3)の高周波焼入れ用鋼材に係る発明及び(4)〜(7)の高周波焼入れ用鋼材の製造方法に係る発明を、それぞれ、「本発明(1)」〜「本発明(7)」という。また、総称して「本発明」ということがある。   Hereinafter, the inventions relating to the steel materials for induction hardening (1) to (3) and the inventions relating to the method for producing the steel materials for induction hardening (4) to (7) are respectively referred to as “present invention (1)” to “ The present invention (7) ". Also, it may be collectively referred to as “the present invention”.

本発明の高周波焼入れ用鋼材は、近年の転動部材の過酷な使用環境下においても、転動疲労による破損に対して良好な耐久性を有し、転動疲労寿命が長いことから、自動車部品として使用される「等速ジョイント」や「ハブユニット」といった高周波焼入れを行う転動部材の素材として利用することができる。この高周波焼入れ用鋼材は本発明の方法によって製造することができる。   The steel material for induction hardening according to the present invention has good durability against damage due to rolling fatigue and has a long rolling fatigue life even under severe use environment of rolling members in recent years. It can be used as a material for rolling members that perform induction hardening, such as “constant velocity joints” and “hub units”. This steel for induction hardening can be manufactured by the method of the present invention.

以下、本発明の各要件について詳しく説明する。なお、各元素と酸化物の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element and oxide means "mass%".

(A)鋼の化学成分:
C:0.35〜0.7%
Cは、高周波焼入れ後に転動部に必要な硬さを確保させる元素であり、0.35%以上の含有量とする必要がある。しかしながら、Cの含有量が0.7%を超えると、母材が硬くなって、鍛造性が著しく悪化するとともに切削時の工具寿命の低下をきたし、更には高周波焼入れした際の焼割れの原因となる。したがって、Cの含有量を0.35〜0.7%とした。望ましいC含有量の範囲は、0.40〜0.6%である。
(A) Chemical composition of steel:
C: 0.35-0.7%
C is an element that ensures the hardness required for the rolling part after induction hardening, and the content needs to be 0.35% or more. However, if the C content exceeds 0.7%, the base material becomes hard, the forgeability is significantly deteriorated and the tool life at the time of cutting is reduced, and further, the cause of the cracking when induction hardening is performed. It becomes. Therefore, the content of C is set to 0.35 to 0.7%. A desirable C content range is 0.40 to 0.6%.

Si:0.1〜0.8%
Siは、高周波焼入れ後に転動部に必要な硬化層深さを確保するのに必要な元素であり、0.1%以上含有させなければならない。しかしながら、0.8%を超えてSiを含有させても焼入れ性向上効果は飽和し、更に母材が硬くなって、鍛造性が著しく悪化し、また、切削時の工具寿命の低下をきたしてしまう。したがって、Siの含有量を0.1〜0.8%とした。好ましいSi含有量の範囲は、0.15〜0.7%である。
Si: 0.1 to 0.8%
Si is an element necessary for ensuring the depth of the hardened layer necessary for the rolling part after induction hardening, and must be contained by 0.1% or more. However, even if Si exceeds 0.8%, the effect of improving the hardenability is saturated, the base material becomes harder, the forgeability is remarkably deteriorated, and the tool life at the time of cutting is reduced. End up. Therefore, the Si content is set to 0.1 to 0.8%. The range of preferable Si content is 0.15 to 0.7%.

Mn:0.1〜1.5%
Mnは、高周波焼入れ後に転動部に必要な硬化層深さを確保するのに必要な元素であり、0.1%以上含有させなければならない。しかしながら、1.5%を超えてMnを含有させても焼入れ性向上効果は飽和し、更に母材が硬くなって、鍛造性が著しく悪化し、また、切削時の工具寿命の低下をきたしてしまう。したがって、Mnの含有量を0.1〜1.5%とした。好ましいMn含有量の範囲は、0.2〜1.15%である。
Mn: 0.1 to 1.5%
Mn is an element necessary for ensuring the depth of the hardened layer necessary for the rolling part after induction hardening, and must be contained by 0.1% or more. However, even if Mn is contained exceeding 1.5%, the effect of improving the hardenability is saturated, the base material becomes harder, the forgeability is remarkably deteriorated, and the tool life at the time of cutting is reduced. End up. Therefore, the Mn content is set to 0.1 to 1.5%. The range of preferable Mn content is 0.2 to 1.15%.

P:0.03%以下
Pは、結晶粒界に偏析して転動疲労寿命を短くしてしまう。特に、その含有量が0.03%を超えると、転動疲労寿命の低下が著しくなる。したがって、Pの含有量を0.03%以下とした。好ましいP含有量の範囲は0.02%以下である。
P: 0.03% or less P segregates at the grain boundary and shortens the rolling fatigue life. In particular, when the content exceeds 0.03%, the rolling fatigue life is significantly reduced. Therefore, the content of P is set to 0.03% or less. The range of preferable P content is 0.02% or less.

S:0.010%以下
Sは、硫化物を形成する元素であり、その含有量が0.010%を超えると、粗大な硫化物が残存するため転動疲労寿命を短くしてしまう。したがって、Sの含有量を0.010%以下とした。なお、転動疲労寿命の向上という観点からの好ましいSの含有量は0.008%以下である。
S: 0.010% or less S is an element that forms sulfides. If the content exceeds 0.010%, coarse sulfides remain and the rolling fatigue life is shortened. Therefore, the content of S is set to 0.010% or less. A preferable S content from the viewpoint of improving the rolling fatigue life is 0.008% or less.

Cr:0.01%以上0.50%未満
Crは、高周波焼入れ後に転動部に必要な硬化層深さを確保するのに必要な元素であり、0.01%以上含有させなければならない。しかしながら、0.50%以上Crを含有させると、切削時の工具寿命の低下をきたしてしまう。したがって、Crの含有量を0.01%以上0.50%未満とした。好ましいCr含有量の範囲は、0.05〜0.40%である。
Cr: 0.01% or more and less than 0.50% Cr is an element necessary for ensuring the depth of the hardened layer necessary for the rolling part after induction hardening, and must be contained by 0.01% or more. However, if Cr is contained in an amount of 0.50% or more, the tool life during cutting is reduced. Therefore, the Cr content is set to 0.01% or more and less than 0.50%. The range of preferable Cr content is 0.05 to 0.40%.

Al:0.005%以下
Alは、好ましくない元素であり、本発明においては、Alは極力少なくする必要がある。したがって、後述するように酸化精錬後のAl添加による脱酸処理は行わないし、フラックスを投入して新たに生成されたスラグと溶鋼を強攪拌する際に用いるフラックスもAl23の含有量の少ない、実質的にAlを含有しないものを用いる。しかしながら、Alの含有量が多くなり、特に、0.005%を超えてしまうと、Al23を主体とする硬質な酸化物の生成量が多くなり、しかも、圧下した後も粗大な酸化物として残存するので、転動疲労寿命が短くなってしまう。したがって、Alの含有量を0.005%以下とした。なお、Alは、0.003%以下の含有量とすることが好ましく、低ければ低いほどよい。
Al: 0.005% or less Al is an undesirable element, and in the present invention, it is necessary to reduce Al as much as possible. Therefore, as will be described later, deoxidation treatment by addition of Al after oxidative refining is not performed, and the flux used when stirring the newly produced slag and molten steel by adding flux also has an Al 2 O 3 content. A small amount of Al-free material is used. However, when the Al content increases, especially when it exceeds 0.005%, the amount of hard oxides mainly composed of Al 2 O 3 increases, and even after the reduction, coarse oxidation occurs. Since it remains as an object, the rolling fatigue life is shortened. Therefore, the Al content is set to 0.005% or less. The Al content is preferably 0.003% or less, and the lower the better.

Ca:0.0005%以下
本発明においては、後述するように酸化精錬で生成したスラグの除滓後に、主成分がCaOであるフラックスを投入して、新たに生成されたスラグと溶鋼を強攪拌する。この際に、Caはフラックスより軟質な酸化物として、鋼中に極微量混入する。ただし、Caの含有量が多くなり、0.0005%を超えると、酸化物組成におけるCaOの割合が高くなりすぎて、粗大な酸化物となってしまう。したがって、Caの含有量を0.0005%以下とした。好ましいCa含有量は、0.0003%以下であり、更に望ましくは0.0002%以下である。なお、含有されるCaの量の下限値は、特に規定するものではなく、鋼材中の酸化物の平均組成におけるCaOが10%以上であればよい。
Ca: 0.0005% or less In the present invention, as described later, after removing slag produced by oxidative refining, a flux whose main component is CaO is introduced, and the newly produced slag and molten steel are strongly stirred. To do. At this time, a very small amount of Ca is mixed into the steel as an oxide softer than the flux. However, if the Ca content increases and exceeds 0.0005%, the ratio of CaO in the oxide composition becomes too high, resulting in a coarse oxide. Therefore, the Ca content is set to 0.0005% or less. The preferable Ca content is 0.0003% or less, and more desirably 0.0002% or less. In addition, the lower limit of the amount of Ca contained is not particularly specified, and it is sufficient that CaO in the average composition of oxides in the steel material is 10% or more.

O:0.0020%以下
Oは、好ましくない不純物元素である。Oの含有量が多くなって、特に、0.0020%を超えると、圧下した後に粗大な酸化物として残存し、転動疲労寿命の低下を招く。したがって、Oの含有量を0.0020%以下とした。なお、好ましいO含有量の範囲は0.0015%以下である。
O: 0.0020% or less O is an undesirable impurity element. When the content of O increases, and particularly exceeds 0.0020%, it remains as a coarse oxide after rolling, leading to a decrease in rolling fatigue life. Therefore, the content of O is set to 0.0020% or less. In addition, the range of preferable O content is 0.0015% or less.

N:0.02%以下
Nは、窒化物を形成する作用効果を有する。しかしながら、過剰に含有すると粗大な窒化物を生成し、疲労強度の低下を招くおそれがある。したがって、Nの含有量を0.02%以下とした。
N: 0.02% or less N has an effect of forming a nitride. However, if it is contained excessively, coarse nitrides are produced, and there is a possibility that fatigue strength is reduced. Therefore, the N content is set to 0.02% or less.

しかしながら、高周波誘導加熱(以下、単に「高周波加熱」という。)時の結晶粒粗大化の抑制効果を得るため、後述するようにV及びNbのうちの1種以上を含有する場合には、これらの元素の窒化物を生成させる必要がある。そのため、V及びNbのうちの1種以上を含有する場合には、N含有量は0.02%以下の範囲に抑えつつも、高めに制御することが望ましい。この場合、Nの望ましい範囲は0.010〜0.02%で、より望ましい範囲は、0.012〜0.02%である。   However, in order to obtain the effect of suppressing grain coarsening during high-frequency induction heating (hereinafter simply referred to as “high-frequency heating”), when one or more of V and Nb are contained as described later, It is necessary to form nitrides of these elements. Therefore, when it contains 1 or more types of V and Nb, it is desirable to control N content high, suppressing to the range of 0.02% or less. In this case, a desirable range of N is 0.010 to 0.02%, and a more desirable range is 0.012 to 0.02%.

また、高周波焼入れ時の焼入れ性向上効果を得るため、後述するように、B及びTiを含有する場合には、BとNの結合を極力抑制する必要がある。そのため、B及びTiを含有する場合には、N含有量は0.02%以下よりも更に低くすることが望ましい。この場合、Nの望ましい範囲は0.010%未満で、より望ましい範囲は、0.008%以下である。   Moreover, in order to acquire the hardenability improvement effect at the time of induction hardening, as mentioned later, when containing B and Ti, it is necessary to suppress the coupling | bonding of B and N as much as possible. Therefore, when B and Ti are contained, it is desirable that the N content be further lower than 0.02% or less. In this case, the desirable range of N is less than 0.010%, and the more desirable range is 0.008% or less.

上記の理由から、本発明(1)に係る高周波焼入れ用鋼材は、C、Si、Mn、P、S、Cr、Al、Ca、O、Nを上述した範囲で含有し、残部はFe及び不純物の化学成分からなることと規定した。   For the above reason, the steel for induction hardening according to the present invention (1) contains C, Si, Mn, P, S, Cr, Al, Ca, O, and N in the above-described ranges, and the balance is Fe and impurities. It was defined as consisting of

また、本発明(4)においても、C、Si、Mn、P、S、Cr、Al、Ca、O、Nを上述した範囲で含有し、残部はFe及び不純物の化学成分からなる鋳片又は鋼塊を用いることとした。   Also in the present invention (4), C, Si, Mn, P, S, Cr, Al, Ca, O, and N are contained in the above-mentioned range, and the balance is a slab made of Fe and impurities chemical components. A steel ingot was used.

高周波加熱は、短時間といえども高温まで加熱されるため、本発明に係る高周波焼入れ用鋼材は、結晶粒の粗大化を防止する観点から、C、Si、Mn、P、S、Cr、Al、Ca、O、Nを前記本発明(1)に係る高周波焼入れ用鋼材と同じ範囲で含有した上で、V、Nbについて、V:0.3%以下及びNb:0.1%以下のうちの1種以上を更に含有することができる(本発明(2)の高周波焼入れ用鋼材)。   Since the induction heating is heated to a high temperature even for a short time, the induction hardening steel according to the present invention is C, Si, Mn, P, S, Cr, Al from the viewpoint of preventing coarsening of crystal grains. , Ca, O, N in the same range as the steel for induction hardening according to the present invention (1), V, Nb, V: 0.3% or less and Nb: 0.1% or less (Steel material for induction hardening of the present invention (2)).

以下、上記のV及びNbに関して説明する。   Hereinafter, the above V and Nb will be described.

V:0.3%以下
Vは、Nと結合して窒化物を形成するため、高周波加熱時の結晶粒粗大化を抑制する作用がある。更に、Cと結合することで母材の強度を上昇させる作用もある。但し、0.3%を超えてVを含有させても高周波加熱時の結晶粒粗大化を防止する効果が飽和し、更に母材の強度が高くなりすぎて切削性が低下してしまう可能性がある。したがって、Vの含有量を0.3%以下とした。なお、高周波加熱時の結晶粒粗大化を抑制する作用と母材の強度を上昇させる作用をより有効に発揮させ、しかも十分な切削性を確保するには、V含有量は、0.01〜0.2%とすることが望ましい。
V: 0.3% or less Since V combines with N to form a nitride, it has an effect of suppressing crystal grain coarsening during high-frequency heating. Furthermore, it has the effect | action which raises the intensity | strength of a base material by couple | bonding with C. However, even if it contains V exceeding 0.3%, the effect of preventing crystal grain coarsening during high-frequency heating is saturated, and the strength of the base material becomes too high, and the machinability may be reduced. There is. Therefore, the content of V is set to 0.3% or less. In order to more effectively exhibit the effect of suppressing the coarsening of crystal grains during high-frequency heating and the effect of increasing the strength of the base material, and to ensure sufficient machinability, the V content is 0.01 to It is desirable to be 0.2%.

Nb:0.1%以下
Nbは、Nと結合して窒化物を形成するため、高周波加熱時の結晶粒粗大化を抑制する作用がある。さらに、Cと結合することで母材の強度を上昇させる作用もある。但し、0.1%を超えてNbを含有させても高周波加熱時の結晶粒粗大化を防止する効果が飽和し、更に母材の強度が高くなりすぎて切削性が低下してしまう可能性がある。したがって、Nbの含有量を0.1%以下とした。なお、高周波加熱時の結晶粒粗大化を抑制する作用と母材の強度を上昇させる作用をより有効に発揮させ、しかも十分な切削性を確保するには、Nb含有量は、0.01〜0.1%とすることが望ましい。
Nb: 0.1% or less Since Nb combines with N to form a nitride, it has the effect of suppressing crystal grain coarsening during high-frequency heating. Furthermore, it has the effect | action which raises the intensity | strength of a base material by couple | bonding with C. However, even if Nb is contained in excess of 0.1%, the effect of preventing crystal grain coarsening during high-frequency heating is saturated, and the strength of the base material becomes too high, and the machinability may be reduced. There is. Therefore, the Nb content is set to 0.1% or less. In order to more effectively exhibit the effect of suppressing the coarsening of crystal grains during high-frequency heating and the effect of increasing the strength of the base material, and to ensure sufficient machinability, the Nb content is 0.01 to It is desirable to set it as 0.1%.

上記のV及びNbは、いずれか1種のみ、あるいは2種の複合で含有することができる。   Said V and Nb can be contained only in any 1 type or 2 types of composite.

上記の理由から、本発明(2)に係る高周波焼入れ用鋼材は、前記本発明(1)に係る高周波焼入れ用鋼材と同じ範囲のC、Si、Mn、P、S、Cr、Al、Ca、O、Nに加えて、V:0.3%以下及びNb:0.1%以下のうちの1種以上を含有し、残部はFe及び不純物の化学成分からなることと規定した。   For the above reasons, the steel for induction hardening according to the present invention (2) has the same range of C, Si, Mn, P, S, Cr, Al, Ca, as the steel for induction hardening according to the present invention (1). In addition to O and N, it contains at least one of V: 0.3% or less and Nb: 0.1% or less, and the balance is defined as consisting of chemical components of Fe and impurities.

また、本発明(5)においても、C、Si、Mn、P、S、Cr、Al、Ca、O、N、V、Nbを上述した範囲で含有し、残部はFe及び不純物の化学成分からなる鋳片又は鋼塊を用いることとした。   Also in the present invention (5), C, Si, Mn, P, S, Cr, Al, Ca, O, N, V, and Nb are contained in the above-described range, and the balance is derived from the chemical components of Fe and impurities. The slab or steel ingot to be used was used.

本発明に係る高周波焼入れ用鋼材は、より良好な高周波焼入れ性を確保するという観点から、C、Si、Mn、P、S、Cr、Al、Ca、O、Nを前記本発明(1)に係る高周波焼入れ用鋼材と同じ範囲で含有した上で、B、Tiについて、B:0.005%以下及びTi:0.05%以下を更に含有することができる(本発明(3)の高周波焼入れ用鋼材)。   The steel material for induction hardening according to the present invention includes C, Si, Mn, P, S, Cr, Al, Ca, O, and N in the present invention (1) from the viewpoint of ensuring better induction hardenability. After containing in the same range as the steel for induction hardening, B and Ti can further contain B: 0.005% or less and Ti: 0.05% or less (the induction hardening of the present invention (3)) Steel).

以下、上記のB及びTiに関して説明する。   Hereinafter, the above B and Ti will be described.

B:0.005%以下
Bは、微量を添加するだけで鋼の焼入れ性を大きく向上させることが可能であるため、高周波焼入れ後に転動部に必要な硬化層深さを一層大きくすることができる元素である。しかしながら、Bの含有量が0.005%を超えてもその効果は飽和してしまう。したがって、Bの含有量を0.005%以下とした。焼入れ性向上作用を確実に発揮させてより良好な高周波焼入れ性を確保するための好ましいB含有量の範囲は、0.0003〜0.005%である。
B: 0.005% or less B can greatly improve the hardenability of steel by adding a trace amount, so that it is possible to further increase the depth of the hardened layer necessary for the rolling part after induction hardening. It can be an element. However, even if the B content exceeds 0.005%, the effect is saturated. Therefore, the B content is set to 0.005% or less. A preferable range of the B content for ensuring the effect of improving the hardenability and ensuring better induction hardenability is 0.0003 to 0.005%.

Ti:0.05%以下
Bを含有することによって焼入れ性が向上するのは、Bが化合物ではなく、単独で存在する場合である。そのため、BがNと結合して窒化物を形成した場合には、Bによる焼入れ性向上効果は期待できない。上記理由より、Bを含有させる際には、BよりもNとの親和力が大きく窒化物形成能が強いTiを含有させる必要がある。しかしながら、0.05%を超える量のTiを含有させても、Nを固定する効果が飽和するばかりか、粗大なTiNが多量に生成してしまうため、転動疲労特性が低下する可能性がある。したがって、Tiの含有量を0.05%以下とした。Bの焼入れ性向上作用を確実に発揮させるために前述した量のBとともに含有させる場合のTiの好ましい範囲は、0.01〜0.05%である。
Ti: 0.05% or less By containing B, the hardenability is improved when B is not a compound but exists alone. Therefore, when B is combined with N to form a nitride, the effect of improving hardenability by B cannot be expected. For the above reasons, when B is contained, it is necessary to contain Ti that has a higher affinity with N than B and a stronger nitride forming ability. However, even if Ti is contained in an amount exceeding 0.05%, not only the effect of fixing N is saturated, but also a large amount of coarse TiN is generated, so that rolling fatigue characteristics may be reduced. is there. Therefore, the Ti content is set to 0.05% or less. A preferable range of Ti when contained together with the above-mentioned amount of B in order to reliably exhibit the hardenability improving effect of B is 0.01 to 0.05%.

上記の理由から、本発明(3)に係る高周波焼入れ用鋼材は、前記本発明(1)に係る高周波焼入れ用鋼材と同じ範囲のC、Si、Mn、P、S、Cr、Al、Ca、O、Nに加えて、B:0.005%以下及びTi:0.05%以下を含有し、残部はFe及び不純物の化学成分からなることと規定した。   For the above reasons, the steel for induction hardening according to the present invention (3) has the same range of C, Si, Mn, P, S, Cr, Al, Ca, as the steel for induction hardening according to the present invention (1). In addition to O and N, B: 0.005% or less and Ti: 0.05% or less were contained, and the balance was defined as consisting of chemical components of Fe and impurities.

また、本発明(6)においても、C、Si、Mn、P、S、Cr、Al、Ca、O、N、B、Tiを上述した範囲で含有し、残部はFe及び不純物の化学成分からなる鋳片又は鋼塊を用いることとした。   Also in the present invention (6), C, Si, Mn, P, S, Cr, Al, Ca, O, N, B, and Ti are contained in the above-mentioned range, and the balance is derived from the chemical components of Fe and impurities. The slab or steel ingot to be used was used.

(B)非金属介在物:
(B−1)酸化物の平均組成:
本発明においては、非金属介在物について、先ず、酸化物の平均組成が、質量%で、CaO:10〜60%、Al23:20%以下、MnO:50%以下及びMgO:15%以下で残部SiO2及び不純物からなるものでなければならない。以下、質量%での酸化物の平均組成における含有量を「濃度」ともいう。
(B) Non-metallic inclusions:
(B-1) Average composition of oxide:
In the present invention, for non-metallic inclusions, first, the average composition of oxides is mass%, CaO: 10 to 60%, Al 2 O 3 : 20% or less, MnO: 50% or less, and MgO: 15%. In the following, it must consist of the remainder SiO 2 and impurities. Hereinafter, the content in the average composition of oxide in mass% is also referred to as “concentration”.

本発明でいう「酸化物」は、主としてCaO、SiO2、Al23、MnO及びMgOの5元系を基本として構成されるものであり、酸化物の平均組成が上記の範囲にある場合には酸化物は全体的に軟質であり、圧延等の加工によって容易に延伸、分断されて微細になるため、転動疲労寿命を低下させることがなく、したがって、過酷な使用環境下においても優れた転動疲労寿命を確保できるからである。 The “oxide” in the present invention is mainly composed of a ternary system of CaO, SiO 2, Al 2 O 3 , MnO and MgO, and the average composition of the oxide is in the above range. In general, oxides are soft as a whole, and are easily stretched, broken, and finely processed by rolling and other processes, so that they do not reduce the rolling fatigue life and are therefore excellent even in harsh usage environments. This is because the rolling fatigue life can be secured.

以下に、各酸化物組成の限定理由を示す。   The reasons for limiting each oxide composition are shown below.

CaO:10〜60%
酸性酸化物であるSiO2を基本組成とする酸化物は、塩基性であるCaOを含むことにより酸化物の液相線温度が下がり、圧延温度域で延性を示すようになる。その効果は、酸化物の平均組成におけるCaO濃度が10%以上で得られるが、60%を超えると相対的にSiO2濃度が低下して却って延性を示さなくなる。したがって、酸化物の平均組成におけるCaO濃度を10〜60%とした。なお、圧延温度域で安定した延性が得られるようにするための上記CaO濃度の望ましい上限は50%である。
CaO: 10 to 60%
The oxide having a basic composition of SiO 2 that is an acidic oxide contains CaO that is basic, so that the liquidus temperature of the oxide is lowered and the ductility is exhibited in the rolling temperature range. The effect is obtained when the CaO concentration in the average composition of the oxide is 10% or more. However, when it exceeds 60%, the SiO 2 concentration is relatively lowered and the ductility is not exhibited. Therefore, the CaO concentration in the average composition of the oxide is set to 10 to 60%. In addition, the desirable upper limit of the said CaO density | concentration for being able to obtain the stable ductility in a rolling temperature range is 50%.

Al23:20%以下
両性酸化物であるAl23の酸化物の平均組成における濃度が20%を超えると、圧延温度域でAl23(コランダム)相が晶出したり、後述するMgOとともにMgO・Al23(スピネル)相が晶出する。これらの固相は硬質で圧延でも延伸することなく、晶出した厚みを保つ。したがって、酸化物の平均組成におけるAl23濃度は20%以下とする必要がある。なお、前記硬質相の生成を安定かつ確実に抑制するための上記Al23濃度の望ましい上限は15%である。
Al 2 O 3 : 20% or less When the concentration in the average composition of the amphoteric oxide Al 2 O 3 exceeds 20%, an Al 2 O 3 (corundum) phase is crystallized in the rolling temperature range, which will be described later. MgO.Al 2 O 3 (spinel) phase crystallizes with MgO. These solid phases are hard and maintain the crystallized thickness without stretching even during rolling. Therefore, the Al 2 O 3 concentration in the average composition of the oxide needs to be 20% or less. The desirable upper limit of the Al 2 O 3 concentration for stably and reliably suppressing the formation of the hard phase is 15%.

MnO:50%以下
MnOは、酸化物としては塩基性を有し、SiO2系の軟質化を助長するので、比較的高い濃度まで許容できる。しかしながら、MnOは鋼が弱脱酸状態の時に安定な、いわゆる低級酸化物であり、MnO濃度が高いと鋼中のO(酸素)の含有量も高くなる。すなわち、酸化物の平均組成におけるMnO濃度が50%を超えるとO含有量を0.0020%以下とすることができない。したがって、酸化物の平均組成におけるMnO濃度を50%以下とした。なお、前述したOの含有量を0.0015%以下にするために、酸化物の平均組成におけるMnO濃度は40%以下とすることが好ましい。
MnO: 50% or less MnO has basicity as an oxide and promotes softening of SiO 2 system, so that it can be allowed to a relatively high concentration. However, MnO is a so-called lower oxide that is stable when the steel is in a weakly deoxidized state. If the MnO concentration is high, the content of O (oxygen) in the steel also increases. That is, if the MnO concentration in the average oxide composition exceeds 50%, the O content cannot be made 0.0020% or less. Therefore, the MnO concentration in the average composition of the oxide is set to 50% or less. In addition, in order to make content of O mentioned above 0.0015% or less, it is preferable that MnO density | concentration in the average composition of an oxide shall be 40% or less.

MgO:15%以下
MgOは塩基性酸化物であり、少量ではSiO2系酸化物の軟質化ができるが、一方でその溶解度が低く、硬質のMgO(ペリクレース)相およびAl23とともにMgO・Al23(スピネル)相が晶出する。圧延温度域では酸化物の平均組成におけるMgOが15%を超えると、上述した硬質相を晶出する蓋然性が高くなる。したがって、酸化物の平均組成におけるMgO濃度を15%以下とした。なお、前記した硬質相の晶出をより確実に抑制するために、酸化物の平均組成におけるMgO濃度は10%以下とすることが好ましい。
MgO: 15% or less MgO is a basic oxide, and a small amount can soften a SiO 2 -based oxide, but its solubility is low, while it has a low MgO (periclase) phase and Al 2 O 3 together with MgO. The Al 2 O 3 (spinel) phase crystallizes out. If MgO in the average composition of the oxide exceeds 15% in the rolling temperature range, the probability of crystallizing the hard phase described above increases. Therefore, the MgO concentration in the average composition of the oxide is set to 15% or less. In order to more reliably suppress the crystallization of the hard phase described above, the MgO concentration in the average composition of the oxide is preferably 10% or less.

本発明でいう「酸化物」は、主としてCaO、SiO2、Al23、MnO及びMgOの5元系を基本として構成されるものであるが、Cr23、Na2O、ZrO2などの酸化物における不純物の総和は3%以下であることが望ましい。 The “oxide” as used in the present invention is mainly composed of a ternary system of CaO, SiO 2 , Al 2 O 3 , MnO and MgO, but is composed of Cr 2 O 3 , Na 2 O and ZrO 2. It is desirable that the total sum of impurities in the oxides is 3% or less.

なお、酸化物の平均組成は、CaO:10〜50%、Al23:15%以下、MnO:40%以下及びMgO:10%以下で残部がSiO2及び3%以下の不純物であることが好ましい。 Incidentally, the average composition of oxides, CaO: 10~50%, Al 2 O 3: 15% or less, MnO: 40% or less and MgO: that the balance 10% or less is SiO 2, and 3% of impurities Is preferred.

また、酸化物の平均組成において、Al23、MnO及びMgOの下限は、特に規定する必要はない。 Further, in the average composition of the oxide, the lower limit of Al 2 O 3 , MnO and MgO does not need to be specified.

上述の理由から、本発明(1)〜(3)に係る高周波焼入れ用鋼材の酸化物の平均組成を、質量%で、CaO:10〜60%、Al23:20%以下、MnO:50%以下及びMgO:15%以下で残部SiO2および不純物からなることと規定した。 For the reasons described above, the average composition of oxides of the steel for induction hardening according to the present invention (1) to (3) is, in mass%, CaO: 10 to 60%, Al 2 O 3 : 20% or less, MnO: 50% or less and MgO: 15% or less, and the balance was defined as consisting of the remaining SiO 2 and impurities.

また、本発明(4)〜(6)においても、上記酸化物の平均組成である鋳片又は鋼塊を用いることとした。   Also in the present inventions (4) to (6), slabs or steel ingots having the average composition of the oxides are used.

なお、酸化物の平均組成は、例えば、鋼材を長手方向に平行に切出したL断面を鏡面研磨した後、エネルギー分散型X線分光法によって、厚さ3μm以上の任意の酸化物を複数個、例えば20個について、測定した組成を算術平均して求めればよい。   In addition, the average composition of the oxide is, for example, a plurality of arbitrary oxides having a thickness of 3 μm or more by energy dispersive X-ray spectroscopy after mirror-polishing the L cross-section obtained by cutting the steel material parallel to the longitudinal direction, For example, 20 compositions may be obtained by arithmetically averaging the measured compositions.

なお、上記した酸化物の平均組成は、例えば、次の〈1〉及び〈2〉に述べる製鋼方法を採用し、それに続いて、常法の連続鋳造法や鋳型法によって鋳片や鋼塊に鋳造することによって得ることができる。   In addition, the average composition of the oxide described above employs, for example, the steelmaking method described in the following <1> and <2>, and subsequently, into a slab or a steel ingot by a conventional continuous casting method or a mold method. It can be obtained by casting.

〈1〉高周波焼入れ用鋼の製鋼過程で、いわゆる「一次精錬炉」である転炉や電気炉など(以下、単に「転炉」ともいう。)での酸化精錬後に不純物として含まれる酸素を除くために通常実施されるAl添加での脱酸処理を行わない。   <1> Excludes oxygen contained as an impurity after oxidation refining in a so-called “primary refining furnace” such as a converter or electric furnace (hereinafter also simply referred to as “converter”) during the steelmaking process of induction hardening steel Therefore, the deoxidation treatment with Al addition that is usually performed is not performed.

〈2〉二次精錬終了後の最終的なスラグについて、塩基度(CaO/SiO2)が0.8〜2.0で、かつ組成が質量%で、MgO:15%以下、F:10%以下、Al23:15%以下になるように制御する。なお、上記のF(フッ素)は造滓剤としてのほたる石の主成分であるCaF2に由来する。 <2> About the final slag after the completion of secondary refining, the basicity (CaO / SiO 2 ) is 0.8 to 2.0, the composition is mass%, MgO: 15% or less, F: 10% Hereinafter, control is performed so that Al 2 O 3 : 15% or less. The above F (fluorine) is derived from CaF 2 as the main component of the fluorite as Zokasu agent.

なお、二次精錬終了後の最終的なスラグについて、上記〈2〉の組成とするためには、転炉から取り鍋へ出鋼した後、「二次精錬」におけるスラグ組成制御を容易にするために、先ず、転炉から流出した酸化精錬で生成したスラグの除滓を実施し、除滓後に、主成分がCaOであり、実質的にAlを含まない、Al23やMgOの含有量の少ないフラックスを投入して、新たに生成したスラグと溶鋼を強攪拌すればよい。 In addition, about the final slag after completion of secondary refining, in order to make the composition of the above <2>, slag composition control in “secondary refining” is facilitated after steel is discharged from the converter to the ladle. For this purpose, first, slag generated by oxidative refining flowing out from the converter is removed, and after removal, the main component is CaO, substantially free of Al, Al 2 O 3 or MgO content A small amount of flux may be introduced and the newly generated slag and molten steel may be vigorously stirred.

なお、強攪拌を得るための手段としては、例えば、減圧下での攪拌、インジェクションによる攪拌や取り鍋底部からの底吹き攪拌などを適用すればよい。インジェクションによる攪拌を行う場合には、上述のフラックスを同時に吹き込むのが望ましい。また、減圧処理を実施する場合には、あくまでも攪拌のための減圧処理に留める必要がある。これは、長時間の減圧処理を実施すれば、却って耐火物からの硬質介在物の混入やスラグの巻き込みを招くことになって、清浄性を低下させることに繋がるからである。   In addition, as means for obtaining strong stirring, for example, stirring under reduced pressure, stirring by injection, bottom blowing stirring from the bottom of the ladle, or the like may be applied. When stirring by injection, it is desirable to blow in the above-mentioned flux at the same time. Moreover, when implementing a pressure reduction process, it is necessary to stop at the pressure reduction process for stirring to the last. This is because, if the decompression process for a long time is performed, the inclusion of hard inclusions from the refractory and the entrainment of slag are caused, leading to a decrease in cleanliness.

また、鋼のCa含有量が0.0005%を超えない範囲であれば、二次精錬の過程で更に溶鋼中にCaを添加しても構わない。   In addition, as long as the Ca content of the steel does not exceed 0.0005%, Ca may be further added to the molten steel during the secondary refining process.

(B−2)酸化物の最大厚さと硫化物の最大厚さ:
酸化物、硫化物の双方ともに、その厚さが大きい場合には、転動疲労寿命の低下を招く。転動疲労寿命に最も影響を及ぼすものは、転動部下に存在する最も粗大な介在物である。特に、鋼材のL断面の100mm2の面積中において8.5μmを超えるような最大厚さの酸化物や硫化物が、鋼材中の数多くの部位で存在すると、転動部に存在する確率が高くなり、転動疲労寿命の著しい低下をきたす。
(B-2) Maximum thickness of oxide and maximum thickness of sulfide:
When both the oxide and sulfide are thick, the rolling fatigue life is reduced. What has the greatest influence on the rolling fatigue life is the coarsest inclusions present under the rolling part. In particular, when oxides and sulfides having a maximum thickness exceeding 8.5 μm in an area of 100 mm 2 of the L cross-section of the steel material are present at many sites in the steel material, the probability of being present in the rolling part is high. As a result, the rolling fatigue life is significantly reduced.

上述の理由から、本発明(1)〜(3)に係る高周波焼入れ用鋼材は、鋼材のL断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下であることと規定した。 For the above-described reasons, the steel materials for induction hardening according to the present inventions (1) to (3) have the arithmetic average value of the maximum thickness of oxides present in the area of 100 mm 2 at 10 locations on the L cross section of the steel material. It was defined that the arithmetic average value of the maximum thickness of sulfides was 8.5 μm or less, respectively.

なお、上記の酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値はいずれも、7μm以下であることが好ましい。   The arithmetic average value of the maximum thickness of the oxide and the arithmetic average value of the maximum thickness of the sulfide are both preferably 7 μm or less.

なお、「L断面」とは、鋼材の長手方向に平行に切断した面を指すことは既に述べたとおりである。   As already described, the “L cross section” refers to a surface cut in parallel to the longitudinal direction of the steel material.

(C)高周波焼入れ用鋼材の製造方法:
本発明(1)〜(3)の高周波焼入れ用鋼材はそれぞれ、例えば、本発明(4)〜(6)の方法、具体的には、前記(A)項で述べた化学成分からなり、非金属介在物について前記(B−1)項で述べた酸化物の平均組成を有する鋳片又は鋼塊に、全圧下比が15以上となる圧下を加え、しかも、その圧下のうちで1000℃以下の温度域での圧下比を4以上として圧下することによって、製造することができる。
(C) Method of manufacturing steel for induction hardening:
The steel materials for induction hardening according to the present invention (1) to (3) are each composed of, for example, the methods of the present invention (4) to (6), specifically the chemical components described in the above section (A), For the metal inclusions, a reduction to a total reduction ratio of 15 or more is added to the slab or steel ingot having the average composition of the oxide described in the section (B-1), and 1000 ° C. or less of the reduction. It can be manufactured by reducing the reduction ratio in the temperature range of 4 or more.

また、本発明(4)〜(6)に係る化学成分と酸化物の平均組成を有する鋳片または鋼塊、つまり前記(A)項で述べた化学成分からなり、非金属介在物について前記(B−1)項で述べた酸化物の平均組成を有する鋳片又は鋼塊は、例えば、前記(B−1)項の〈1〉及び〈2〉で述べた方法を採用した後、続いて常法の連続鋳造法や鋳型法で鋳造することによって得ることができる。   Further, the slab or steel ingot having an average composition of the chemical component and oxide according to the present invention (4) to (6), that is, the chemical component described in the item (A), The slab or the steel ingot having the average composition of the oxide described in the section B-1) is, for example, after adopting the method described in the <1> and <2> in the section (B-1). It can be obtained by casting by a conventional continuous casting method or a casting method.

そして、高周波焼入れ用鋼材は、鋳片又は鋼塊を1000℃を超える温度域で分塊圧延して得た鋼片を用いて、これに例えば、棒鋼圧延や線材圧延を行うことによって製造される。   And the steel material for induction hardening is manufactured by performing steel bar rolling or wire rod rolling, for example, using the steel piece obtained by carrying out the partial rolling of the slab or the steel ingot in the temperature range over 1000 degreeC. .

上記工程において、鋳片又は鋼塊を最終の棒鋼や線材などの鋼材に加工する場合の全圧下比が15を下回る場合には、たとえ前述の(A)項で述べた化学成分からなり、(B−1)項で述べた酸化物の平均組成を有する鋳片又は鋼塊を用いても、高周波焼入れ用鋼材に前記(B−2)項で述べた酸化物の最大厚さと硫化物の最大厚さの条件を満足させることができず、このため、過酷な使用環境下において、所望の優れた転動疲労寿命を確保させることができない。   In the above process, when the total reduction ratio in processing the slab or the steel ingot into a steel material such as a final bar or wire is less than 15, it is composed of the chemical components described in the above item (A), ( Even when a slab or steel ingot having the average composition of the oxide described in the section B-1) is used, the maximum thickness of the oxide and the maximum of the sulfide described in the section (B-2) are applied to the steel for induction hardening. The thickness condition cannot be satisfied, and therefore a desired excellent rolling fatigue life cannot be ensured in a severe use environment.

なお、上記の全圧下比が大きいほど、前記(B−2)項で述べた酸化物の最大厚さと硫化物の最大厚さが小さくなって、転動疲労特性(転動疲労寿命)は向上する。このため、上記全圧下比の上限は特に規定する必要はなく、鋳片や鋼塊の寸法とそれらを加工して得られる最終の棒鋼や線材など鋼材の寸法や設備面から決定される最大の値であってもよい。   In addition, the larger the total rolling reduction ratio, the smaller the maximum oxide thickness and sulfide maximum thickness described in the above section (B-2), and the rolling fatigue characteristics (rolling fatigue life) are improved. To do. For this reason, the upper limit of the total reduction ratio does not need to be specified in particular, and is the maximum determined by the dimensions of the slab and the steel ingot and the dimensions of the steel material such as the final bar and wire obtained by processing them and the equipment surface. It may be a value.

なお、望ましい全圧下比の範囲は30以上である。   In addition, the range of desirable total reduction ratio is 30 or more.

しかしながら、高周波焼入れ用鋼材に前記(B−2)項で述べた酸化物の最大厚さと硫化物の最大厚さの条件を満足させるためには、全圧下比が15以上を満たすようにするだけでは不十分である。   However, in order to satisfy the conditions for the maximum thickness of the oxide and the maximum thickness of the sulfide described in the above section (B-2) for the induction hardening steel, it is only necessary to satisfy the total reduction ratio of 15 or more. Is not enough.

これは、酸化物の平均組成が前記(B−1)項で述べたものである時、同時に存在する硫化物にはMnOと思われる酸化物が含有されており、Al添加で脱酸処理した場合に比べて硫化物は硬質化しているので、加工によって延伸、分断され難く、したがって、高周波焼入れ用鋼材に前記(B−2)項で述べた硫化物の最大厚さの条件を満足させることができないからである。   This is because when the average composition of the oxide is as described in the above section (B-1), the sulfide present at the same time contains an oxide that seems to be MnO, and it was deoxidized by adding Al. Compared to the case, since the sulfide is hardened, it is difficult to be stretched and divided by processing. Therefore, the steel material for induction hardening should satisfy the condition of the maximum thickness of the sulfide described in the section (B-2). It is because it is not possible.

全圧下比が15以上を満たすようにし、しかも、その圧下のうちで1000℃以下の温度域での圧下比を4以上として圧下することによって、初めて、高周波焼入れ用鋼材に前記(B−2)項で述べた硫化物の最大厚さの条件を満足させることができる。   Only when the total reduction ratio is 15 or more, and the reduction ratio in the temperature range of 1000 ° C. or lower is 4 or more in the reduction, the induction hardening steel is the first (B-2). The condition of the maximum thickness of the sulfide described in the section can be satisfied.

すなわち、マトリックス(素地)の変形抵抗は硫化物に比較して小さいため、高い温度で加えられる圧下、特に、1000℃を超える温度域で加えられる圧下は、マトリックスを優先的に変形させてしまう。そのため、上記温度域における圧下では、硫化物は延伸、分断され難く、前記(B−2)項で述べた硫化物の最大厚さの条件を満足することができない。そして、この場合には、過酷な使用環境下において、所望の優れた転動疲労寿命を確保させることができない。   That is, since the deformation resistance of the matrix (base) is smaller than that of sulfides, a reduction applied at a high temperature, particularly a reduction applied at a temperature exceeding 1000 ° C., preferentially deforms the matrix. Therefore, under the pressure in the above temperature range, the sulfide is not easily stretched and divided, and the conditions for the maximum thickness of the sulfide described in the above section (B-2) cannot be satisfied. In this case, the desired excellent rolling fatigue life cannot be ensured in a severe use environment.

これに対して、圧下を加える温度域を1000℃以下に低下させれば、マトリックスと硫化物の変形抵抗の差は小さくなるので、硫化物は延伸、分断されやすくなって前記(B−2)項で述べた硫化物の最大厚さの条件を満足するようになる。   On the other hand, if the temperature range to which the reduction is applied is lowered to 1000 ° C. or less, the difference in deformation resistance between the matrix and the sulfide is reduced, and the sulfide is easily stretched and divided (B-2). The condition of the maximum thickness of sulfide described in the section is satisfied.

なお、圧下を加える温度域は950℃以下が望ましく、850℃以下であれば更に望ましい。   Note that the temperature range to which the reduction is applied is desirably 950 ° C. or less, and more desirably 850 ° C. or less.

上記の圧下を加える温度域が低ければ低いほど、硫化物の延伸、分断効果が促進されるので前記(B−2)項で述べた硫化物の最大厚さは小さくなる。このため、上記圧下を加える温度の下限は特に規定する必要はなく、最終の棒鋼や線材などの鋼材に加工するための負荷やその際の加工性など設備面や材料特性の観点から決定される最小の値であってもよい。   The lower the temperature range to which the above reduction is applied, the more the sulfide stretching and breaking effects are promoted, so the maximum thickness of the sulfide described in the section (B-2) becomes smaller. For this reason, the lower limit of the temperature at which the reduction is applied does not need to be specified in particular, and is determined from the viewpoint of equipment and material properties such as the load for processing into the steel material such as the final bar or wire, and the workability at that time. It may be the minimum value.

なお、圧下を加える温度域が1000℃以下であっても、その温度域における圧下比が低く、特に、4を下回る場合には、硫化物が十分に延伸、分断され難いので、前記(B−2)項で述べた硫化物の最大厚さの条件を満足することができない。   Even when the temperature range to which the reduction is applied is 1000 ° C. or less, the reduction ratio in the temperature range is low. In particular, when it is less than 4, the sulfide is not easily stretched and divided, so that the (B− The condition of the maximum thickness of the sulfide described in the item 2) cannot be satisfied.

上記1000℃以下の温度域における圧下比は、6以上が望ましく、8以上であれば更に望ましい。   The reduction ratio in the temperature range of 1000 ° C. or lower is preferably 6 or more, and more preferably 8 or more.

なお、上記の1000℃以下の温度域における圧下比の上限は、特に規定するものではなく、最終の棒鋼や線材などの鋼材に加工するための負荷やその際の加工性など設備面や材料特性の観点から決定される最大の値であってもよい。   The upper limit of the reduction ratio in the temperature range of 1000 ° C. or lower is not particularly specified, and the equipment and material characteristics such as the load for processing into the steel material such as the final bar and wire, and the workability at that time It may be the maximum value determined from the viewpoint.

なお、既に述べたように、上記の全圧下比とは、鋳片又は鋼塊の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指し、また、1000℃以下の温度域での圧下比とは、前記温度域での圧下前の中間鋼材の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指す。   As already mentioned, the above total reduction ratio refers to the value obtained by dividing the cross-sectional area of the slab or steel ingot by the cross-sectional area of the steel for induction hardening obtained by the final reduction, and 1000 ° C. The reduction ratio in the following temperature range refers to a value obtained by dividing the cross-sectional area of the intermediate steel material before reduction in the temperature range by the cross-sectional area of the steel for induction hardening obtained by the final reduction.

上述の理由から、本発明(4)〜(6)においてはそれぞれ、本発明(1)〜(3)に記載の化学成分及び酸化物の平均組成を有する鋳片又は鋼塊、換言すれば、前記(A)項で述べた化学成分からなり、非金属介在物について前記(B−1)項で述べた酸化物の平均組成を有する鋳片又は鋼塊に、全圧下比が15以上となる圧下を加え、しかも、その圧下のうちで1000℃以下の温度域での圧下比を4以上として圧下することと規定した。   For the reasons described above, in the present inventions (4) to (6), slabs or steel ingots having an average composition of chemical components and oxides described in the present inventions (1) to (3), in other words, The total reduction ratio is 15 or more in a slab or steel ingot comprising the chemical composition described in the section (A) and having the average composition of the oxide described in the section (B-1) for the nonmetallic inclusion. It was defined that a reduction was applied, and that the reduction was performed at a reduction ratio of 4 or more in a temperature range of 1000 ° C. or less.

また、本発明(7)では、本発明(4)〜(6)において、酸化精錬後に、Al脱酸処理を行わずに、実質的にAlを含有しないフラックスを用いて二次精錬を行い、二次精錬終了後の最終的なスラグの塩基度CaO/SiO2の値が0.8〜2.0で、かつスラグ組成が質量%で、MgO:15%以下、F:10%以下、Al23:15%以下になるように制御し、続いて鋳造された鋳片や鋼塊を用いることと規定した。 Further, in the present invention (7), in the present invention (4) to (6), after oxidative refining, secondary refining is performed using a flux that does not substantially contain Al, without performing Al deoxidation treatment, The final slag basicity CaO / SiO 2 value after the completion of secondary refining is 0.8 to 2.0, and the slag composition is mass%, MgO: 15% or less, F: 10% or less, Al 2 O 3 : It was regulated to use 15% or less, and to use a subsequently cast slab or steel ingot.

以下、実施例により本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
表1に示す種々の化学組成を有する高周波焼入れ用鋼の鋳片1〜26を製造した。
Example 1
Ingot-hardened steel slabs 1 to 26 having various chemical compositions shown in Table 1 were produced.

なお、表1中の鋼1〜16、鋼19、鋼22及び鋼24は、化学組成が本発明で規定する範囲内にある鋼であり、鋼17、鋼18、鋼20、鋼21、鋼23、鋼25及び鋼26は、化学組成が本発明で規定する条件から外れた比較例の鋼である。比較例の鋼のうち鋼25及び鋼26は従来のAlキルド鋼に相当する鋼である。   In Table 1, Steels 1 to 16, Steel 19, Steel 22, and Steel 24 are steels whose chemical compositions are within the range defined by the present invention, and are Steel 17, Steel 18, Steel 20, Steel 21, and Steel. 23, Steel 25, and Steel 26 are comparative steels whose chemical compositions deviate from the conditions defined in the present invention. Of the comparative steels, Steel 25 and Steel 26 are steels equivalent to conventional Al killed steel.

Figure 0004900127
Figure 0004900127

上記の各鋼のうち、鋼1〜24については、転炉で酸化精錬を行った後、除滓し、フラックスを投入した。そして、フラックスインジェクション法によるフラックスの吹き込みを行った後、溶鋼中にフラックスを混入させた状態で、アーク式加熱装置付き真空溶鋼攪拌設備(以下、「VAD」という。)により、Ar雰囲気下で、Ar流量40〜60L/分の溶鋼攪拌を40分間行った。その後、連続鋳造して300mm×400mmの鋳片にした。なお、鋼17及び鋼21については、転炉からの出鋼時にAlを僅かに添加し、軽く脱酸処理を行ったが、鋼1〜16、鋼18〜20及び鋼22〜24については、Al添加の脱酸処理を行わなかった。   Among the steels described above, Steels 1 to 24 were subjected to oxidative refining in a converter, then removed and charged with flux. And after blowing the flux by the flux injection method, in a state in which the flux is mixed in the molten steel, in an Ar atmosphere by a vacuum molten steel stirring equipment with an arc heating device (hereinafter referred to as “VAD”), Molten steel stirring was performed for 40 minutes at an Ar flow rate of 40 to 60 L / min. Thereafter, continuous casting was performed to obtain a slab of 300 mm × 400 mm. In addition, about the steel 17 and the steel 21, Al was added slightly at the time of the steel extraction from a converter, and although the deoxidation process was lightly performed, about the steel 1-16, the steel 18-20, and the steel 22-24, No deoxidation treatment with addition of Al was performed.

鋼25及び鋼26については、転炉で酸化精錬を行った後、転炉からの出鋼時にAl添加による脱酸処理を行ってから、除滓し、フラックスを投入した。そして、VADにより、Ar雰囲気下で、Ar流量40〜60L/分の溶鋼攪拌を40分間行い、更にRH真空脱ガス装置による処理を30分間行って、Al23を主体とする硬質な酸化物を除去した。その後、連続鋳造して300mm×400mmの鋳片にした。 Steels 25 and 26 were subjected to oxidative refining in a converter, then deoxidized by addition of Al at the time of steel removal from the converter, and then removed and charged with flux. Then, by VAD, molten steel is stirred for 40 minutes under an Ar atmosphere at an Ar flow rate of 40 to 60 L / min, and further processed by an RH vacuum degasser for 30 minutes, and hard oxidation mainly composed of Al 2 O 3 is performed. The thing was removed. Thereafter, continuous casting was performed to obtain a slab of 300 mm × 400 mm.

表2に、鋼1〜26の除滓後に投入したフラックスの組成、及び鋼1〜24のフラックスインジェクション法で使用したフラックスの組成を示す。   Table 2 shows the composition of the flux introduced after removing the steels 1 to 26 and the composition of the flux used in the flux injection method for the steels 1 to 24.

また、表3に、鋼1〜26のVAD処理後の質量%でのスラグの組成と塩基度(CaO/SiO2)を示す。 Also, it is shown in Table 3, the slag composition and basicity by mass percent after VAD processing of steel 1-26 of (CaO / SiO 2).

Figure 0004900127
Figure 0004900127

Figure 0004900127
Figure 0004900127

このようにして得た鋼1〜26の鋳片のT/4部(但し、「T」は鋳片の厚みを表す。)から、すなわち、鋳片の外面と中心の中間部位から、酸化物組成測定用のブロックを切出し、そのブロックを樹脂に埋め込んでL断面を鏡面研磨した後、エネルギー分散型X線分光法によって、厚さ3μm以上の任意の酸化物を20個選び、それぞれの組成を測定した。   From the T / 4 part of the slabs of steel 1 to 26 obtained in this manner (where “T” represents the thickness of the slab), that is, from the intermediate part between the outer surface and the center of the slab, the oxide After cutting out a block for composition measurement, embedding the block in a resin, and mirror-polishing the L cross section, select 20 arbitrary oxides with a thickness of 3 μm or more by energy dispersive X-ray spectroscopy. It was measured.

そして、20個の酸化物について測定した組成を算術平均して、各鋳片における酸化物の「平均組成」を求めた。   And the composition measured about 20 oxides was arithmetic-averaged, and the "average composition" of the oxide in each slab was calculated | required.

表4に、鋼1〜26の各鋳片について上記のようにして測定した酸化物の平均組成を示す。なお、酸化物の平均組成における残部は「不純物」、すなわち、Cr23、Na2O、ZrO2などを指す。 In Table 4, the average composition of the oxide measured as mentioned above about each slab of steel 1-26 is shown. The balance in the average composition of the oxide refers to “impurities”, that is, Cr 2 O 3 , Na 2 O, ZrO 2 and the like.

Figure 0004900127
Figure 0004900127

上記鋼1〜24の鋳片については、これらを1250℃で均熱した後、1100〜1050℃の温度域で分塊圧延して160mm×160mmの鋼片とし、更に、その鋼片を1050℃に加熱した後、930〜800℃の温度域で棒鋼圧延して、直径70mm(以下、「φ70mm」という。)の棒鋼を製造した。   About the slabs of the above steels 1 to 24, these were soaked at 1250 ° C., and then subjected to split rolling at a temperature range of 1100 to 1050 ° C. to form a steel slab of 160 mm × 160 mm, and the steel slab was further 1050 ° C. Then, the steel bar was rolled in a temperature range of 930 to 800 ° C. to produce a steel bar having a diameter of 70 mm (hereinafter referred to as “φ70 mm”).

一方、鋼25及び鋼26の鋳片については、これらを1250℃で均熱した後、1100〜1050℃の温度域で分塊圧延して160mm×160mmの鋼片とし、更にその鋼片を1200℃に加熱した後、1100〜1020℃の温度域で棒鋼圧延して、φ70mmの棒鋼を製造した。   On the other hand, for the slabs of Steel 25 and Steel 26, these were soaked at 1250 ° C., and then rolled at a temperature range of 1100 to 1050 ° C. to obtain a steel slab of 160 mm × 160 mm. After heating to ° C., steel bars were rolled in a temperature range of 1100 to 1020 ° C. to produce φ70 mm steel bars.

上記のようにして得た鋼1〜26のφ70mmの棒鋼のR/2部(但し、「R」は棒鋼の半径を表す。)から、酸化物組成測定用のブロックを切出し、そのブロックを樹脂に埋め込んでL断面を鏡面研磨した後、エネルギー分散型X線分光法によって、厚さ3μm以上の任意の酸化物を20個選び、それぞれの組成を測定した。   A block for measuring the oxide composition was cut out from the R / 2 part (φ represents the radius of the steel bar) of φ70 mm steel bar of steels 1 to 26 obtained as described above, and the block was made of resin. After embedding in L and mirror-polishing the L cross section, 20 arbitrary oxides having a thickness of 3 μm or more were selected by energy dispersive X-ray spectroscopy, and the respective compositions were measured.

そして、20個の酸化物について測定した組成を算術平均して、各φ70mmの棒鋼における酸化物の「平均組成」を求めた。   And the composition measured about 20 oxides was arithmetically averaged, and the "average composition" of the oxide in each steel bar of (phi) 70mm was calculated | required.

また、鋼1〜26のφ70mmの棒鋼のR/2部から、縦断方向に100mm2のブロックを10個切出してL断面が被検面になるように樹脂に埋め込んで鏡面研磨し、次いで、100mm2の各L断面中に存在する酸化物の最大厚さ及び硫化物の最大厚さを光学顕微鏡を用いて測定し、それぞれ、算術平均した。 Further, 10 blocks of 100 mm 2 are cut out from the R / 2 part of φ70 mm steel bars of steel 1 to 26 in the longitudinal direction, embedded in resin so that the L cross section becomes the test surface, and then mirror-polished, and then 100 mm The maximum thickness of the oxide and the maximum thickness of the sulfide existing in each L cross section of 2 were measured using an optical microscope, and each was arithmetically averaged.

具体的には、光学顕微鏡観察の倍率を400倍として、先ず、100mm2のL断面中で最も厚さの大きい酸化物と硫化物をそれぞれ検出し、次いで、倍率を1000倍としてそれぞれの厚さを測定し、この測定を10個のブロックについて行い、それぞれ10個の算術平均値を求めた。 Specifically, assuming that the magnification of observation with an optical microscope is 400 times, first, oxides and sulfides having the largest thickness are detected in the L cross section of 100 mm 2 , and then each magnification is 1000 times. Was measured for 10 blocks, and 10 arithmetic average values were obtained for each of the 10 blocks.

なお、酸化物と硫化物が分離せずに複合している場合は、酸化物と硫化物の厚さをそれぞれ測定し、それらの厚さが測定したL断面中で最も大きかった場合に、それぞれを、対象とする100mm2のL断面中で最も厚さの大きい酸化物や硫化物として、算術平均した。 In addition, when the oxide and the sulfide are combined without separation, the thicknesses of the oxide and the sulfide are respectively measured, and when the thicknesses are the largest in the measured L cross section, Was arithmetically averaged as the oxide or sulfide having the largest thickness in the 100 mm 2 L cross section.

表5に、鋼1〜26の各φ70mmの棒鋼について上記のようにして測定した酸化物の平均組成並びに10個の100mm2のL断面中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値を示す。なお、酸化物の平均組成における残部は「不純物」、すなわち、Cr23、Na2O、ZrO2などを指す。また、表5においては、上記の酸化物の最大厚さの算術平均の値及び硫化物の最大厚さの算術平均の値をそれぞれ、「酸化物の最大厚さ」及び「硫化物の最大厚さ」と表記した。以下の説明においても、酸化物の最大厚さの算術平均の値及び硫化物の最大厚さの算術平均の値をそれぞれ、「酸化物の最大厚さ」及び「硫化物の最大厚さ」ということがある。 Table 5 shows the average composition of the oxides measured as described above for each of the steels 1 to 26 with a diameter of 70 mm, and the arithmetic average value of the maximum thickness of the oxides present in the 10 L sections of 100 mm 2. And the arithmetic mean value of the maximum thickness of sulfide. The balance in the average composition of the oxide refers to “impurities”, that is, Cr 2 O 3 , Na 2 O, ZrO 2 and the like. In Table 5, the arithmetic average value of the maximum thickness of the oxide and the arithmetic average value of the maximum thickness of the sulfide are respectively expressed as “maximum oxide thickness” and “maximum sulfide thickness”. "". Also in the following description, the arithmetic average value of the maximum oxide thickness and the arithmetic average value of the maximum sulfide thickness are referred to as “maximum oxide thickness” and “maximum sulfide thickness”, respectively. Sometimes.

Figure 0004900127
Figure 0004900127

上記のようにして得た鋼1〜26のφ70mmの棒鋼より長手方向が素形材の厚みとなるように、直径が60mmで厚みが10mmの素形材をスライスして採取した。   A shaped material having a diameter of 60 mm and a thickness of 10 mm was sliced and collected from the steels 1 to 26 obtained as described above so as to have a thickness of the shaped material in the longitudinal direction.

上記の直径が60mmで厚みが10mmの素形材の片側を、周波数20kHz、出力150kW、加熱時間5sの条件で高周波焼入れを行った後、150℃で1時間加熱して大気中で放冷する焼戻しを行った。   One side of a shaped material having a diameter of 60 mm and a thickness of 10 mm is subjected to induction quenching under the conditions of a frequency of 20 kHz, an output of 150 kW, and a heating time of 5 s, and then heated at 150 ° C. for 1 hour and allowed to cool in the air. Tempering was performed.

なお、上記のようにして高周波焼入れ−焼戻しした素形材について、JIS G 0559(1996)の規定に則って、有効硬化層深さを測定した。その結果、各素形材の有効硬化層深さは2〜3mmであった。   In addition, the effective hardened layer depth was measured according to the prescription | regulation of JISG0559 (1996) about the shaped material induction-tempered and tempered as mentioned above. As a result, the effective hardened layer depth of each shaped material was 2 to 3 mm.

また、上記の高周波焼入れ−焼戻しした素形材について、高周波焼入れを行った面の裏面を研削し、その後、高周波焼入れを行った面の表面をラッピング加工することにより、厚さ5.0mmの転動疲労試験片を作製して、転動疲労試験に供した。   In addition, for the above-described induction-quenched and tempered shaped material, the back surface of the surface that has been induction-hardened is ground, and then the surface of the surface that has been induction-quenched is lapped to provide a thickness of 5.0 mm. A dynamic fatigue test piece was prepared and subjected to a rolling fatigue test.

転動疲労試験は、スラスト型の転動疲労試験機を用いて、最大接触面圧5490MPa、繰返し速度1800cpm(cycle per minute)の条件で行った。   The rolling fatigue test was performed using a thrust type rolling fatigue tester under conditions of a maximum contact surface pressure of 5490 MPa and a repetition rate of 1800 cpm (cycle per minute).

表6に、転動疲労試験の詳細条件を示す。   Table 6 shows the detailed conditions of the rolling fatigue test.

Figure 0004900127
Figure 0004900127

転動疲労試験結果は、ワイブル分布確率紙上にプロットし、10%破損確率を示すL10寿命を「転動疲労寿命」として評価した。 The rolling fatigue test results were plotted on a Weibull distribution probability paper, and the L 10 life showing 10% failure probability was evaluated as “rolling fatigue life”.

前記の表5に、上記のようにして求めた転動疲労寿命を併せて示した。   Table 5 also shows the rolling fatigue life determined as described above.

表5から、鋼の化学成分及び非金属介在物(つまり、酸化物の平均組成及び鋼材のL断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値)が本発明(1)〜(3)の規定を満たす試験番号1〜15の場合には、8.96×106以上の長い転動疲労寿命が得られている。 From Table 5, the chemical composition of steel and non-metallic inclusions (that is, the average composition of the oxide and the arithmetic average value of the maximum thickness of the oxide present in 10 areas of 100 mm 2 of the L section of the steel) When the test numbers 1 to 15 satisfying the requirements of the present invention (1) to (3) are the arithmetic average value of the maximum thickness of sulfide, a long rolling fatigue life of 8.96 × 10 6 or more is obtained. Has been obtained.

これに対して、鋼の化学成分が本発明の規定を満たしても、本発明(7)の規定から外れる方法で製造し、非金属介在物が本発明(1)〜(3)で規定する条件から外れる試験番号16、試験番号19、試験番号22及び試験番号24の場合には、転動疲労寿命は短い。   On the other hand, even if the chemical composition of the steel satisfies the provisions of the present invention, the steel is manufactured by a method deviating from the provisions of the present invention (7), and the nonmetallic inclusions are defined by the present inventions (1) to (3). In the case of test number 16, test number 19, test number 22, and test number 24 that deviate from the conditions, the rolling fatigue life is short.

すなわち、上記の各試験番号の場合、非金属介在物について、硫化物の最大厚さは本発明(1)〜(3)で規定する条件を満たすものの、酸化物の平均組成が本発明(1)〜(3)で規定する条件から外れるため、酸化物が硬質なものとなり、その結果、酸化物の最大厚さが大きくなって本発明(1)〜(3)で規定する条件から外れるので、転動疲労寿命はそれぞれ、4.12×106、3.34×106、4.32×106及び4.11×106と短いものである。 That is, in the case of each of the above test numbers, although the maximum thickness of the sulfide for the nonmetallic inclusions satisfies the conditions specified in the present invention (1) to (3), the average composition of the oxide is the present invention (1 ) To (3) deviate from the conditions specified in (3), the oxide becomes hard, and as a result, the maximum thickness of the oxide increases and deviates from the conditions specified in the present invention (1) to (3). The rolling fatigue life is as short as 4.12 × 10 6 , 3.34 × 10 6 , 4.32 × 10 6 and 4.11 × 10 6 , respectively.

また、鋼の化学成分が本発明の規定から外れる場合も、転動疲労寿命は短い。   Also, the rolling fatigue life is short when the chemical composition of steel deviates from the provisions of the present invention.

すなわち、試験番号17及び試験番号21は、非金属介在物について、硫化物の最大厚さは本発明(1)〜(3)で規定する条件を満たすものの、用いた鋼17及び鋼21のAl含有量がそれぞれ、0.009%及び0.008%と高く、本発明で規定する値を超えるため、酸化物の平均組成が本発明(1)〜(3)で規定する条件から外れて、硬質な酸化物となり、その結果、酸化物の最大厚さが大きくなって本発明(1)〜(3)で規定する条件から外れるので、転動疲労寿命はそれぞれ、3.49×106及び4.42×106と短いものである。 That is, test number 17 and test number 21 are the non-metallic inclusions, although the maximum thickness of the sulfide satisfies the conditions specified in the present invention (1) to (3), but the steel 17 and steel 21 used Al Since the contents are as high as 0.009% and 0.008%, respectively, exceeding the values defined in the present invention, the average composition of the oxides deviates from the conditions defined in the present invention (1) to (3), As a result, the maximum thickness of the oxide is increased and deviates from the conditions defined in the present invention (1) to (3), so that the rolling fatigue life is 3.49 × 10 6 and It is as short as 4.42 × 10 6 .

試験番号18及び試験番号20は、非金属介在物について、酸化物の平均組成は本発明(1)〜(3)で規定する条件を満たすものの、用いた鋼18及び鋼20のS含有量がそれぞれ、0.015%及び0.022%と高く、本発明で規定する値を超えるため、硫化物の最大厚さが大きくなって本発明(1)〜(3)で規定する条件から外れるので、転動疲労寿命はそれぞれ、3.97×106及び2.81×106と短いものである。 Test number 18 and test number 20 are the non-metallic inclusions, although the average composition of the oxides satisfies the conditions defined in the present invention (1) to (3), the S content of steel 18 and steel 20 used is Since the values are as high as 0.015% and 0.022%, respectively, exceeding the values specified in the present invention, the maximum thickness of the sulfide increases and deviates from the conditions specified in the present invention (1) to (3). The rolling fatigue life is as short as 3.97 × 10 6 and 2.81 × 10 6 , respectively.

試験番号23は、非金属介在物について、酸化物の平均組成及び硫化物の最大厚さは本発明(1)〜(3)で規定する条件を満たすものの、用いた鋼23のO含有量が0.0027%と高く、本発明で規定する値を超えるため、酸化物の最大厚さが大きくなって本発明(1)〜(3)で規定する条件から外れるので、転動疲労寿命は2.63×106と短い。 In test number 23, the average composition of oxides and the maximum thickness of sulfide satisfy the conditions specified in the present invention (1) to (3), but the O content of the steel 23 used is the nonmetallic inclusion. Since it is as high as 0.0027% and exceeds the value specified in the present invention, the maximum thickness of the oxide becomes large and deviates from the conditions specified in the present invention (1) to (3). .63 × 10 6 and short.

同様に、試験番号25及び試験番号26は、従来のAlキルド鋼に相当する鋼25及び鋼26を用いたので、Al含有量がそれぞれ、0.021%及び0.018%と高く、本発明で規定する値を超えるため、非金属介在物について、硫化物の最大厚さは本発明(1)〜(3)で規定する条件を満たすものの、酸化物の平均組成が本発明(1)〜(3)で規定する条件から外れて、硬質な酸化物となり、その結果、酸化物の最大厚さが大きくなって本発明(1)〜(3)で規定する条件から外れるので、転動疲労寿命はそれぞれ、3.21×106及び3.98×106と短い。 Similarly, since the test numbers 25 and 26 used the steel 25 and the steel 26 corresponding to the conventional Al killed steel, the Al contents were as high as 0.021% and 0.018%, respectively. Therefore, for non-metallic inclusions, the maximum thickness of the sulfide satisfies the conditions specified in the present invention (1) to (3), but the average composition of the oxide is the present invention (1) to Since the condition defined in (3) is deviated, it becomes a hard oxide, and as a result, the maximum thickness of the oxide becomes large and deviates from the condition defined in the present invention (1) to (3). The lifetimes are as short as 3.21 × 10 6 and 3.98 × 10 6 , respectively.

(実施例2)
実施例1で作製した鋼3、鋼12、鋼15、鋼18、鋼22及び鋼26の300mm×400mmの鋳片を1250℃で均熱した後、1100〜1050℃の温度域で分塊圧延して160×160mmの鋼片にした。
(Example 2)
After the 300 mm × 400 mm slabs of Steel 3, Steel 12, Steel 15, Steel 18, Steel 22, and Steel 26 produced in Example 1 were soaked at 1250 ° C., they were rolled in the temperature range of 1100 to 1050 ° C. A steel piece of 160 × 160 mm was obtained.

次いで、上記の鋼片を用いて、次の〔1〕〜〔5〕に示す条件で棒鋼圧延し、φ70mm又はφ110mmの棒鋼を製造した。   Next, using the above steel slab, a steel bar was rolled under the conditions shown in the following [1] to [5] to produce a steel bar having a diameter of 70 mm or 110 mm.

〔1〕鋼片を1200℃に加熱した後、1100〜1020℃の温度域で棒鋼圧延して、φ70mmの棒鋼を製造、
〔2〕鋼片を1050℃に加熱した後、930〜800℃の温度域で棒鋼圧延して、φ70mmの棒鋼を製造、
〔3〕鋼片を950℃に加熱した後、850〜780℃の温度域で棒鋼圧延して、φ70mmの棒鋼を製造、
〔4〕鋼片を1200℃に加熱した後、1100〜1020℃の温度域で棒鋼圧延して、φ110mmの棒鋼を製造、
〔5〕鋼片を1050℃に加熱した後、930〜800℃の温度域で棒鋼圧延して、φ110mmの棒鋼を製造。
[1] After heating the steel slab to 1200 ° C., the steel bar is rolled in a temperature range of 1100 to 1020 ° C. to produce a φ70 mm steel bar,
[2] After heating the steel slab to 1050 ° C., the steel bar is rolled in a temperature range of 930 to 800 ° C. to produce a φ70 mm steel bar,
[3] After heating the steel slab to 950 ° C, the steel bar is rolled in a temperature range of 850 to 780 ° C to produce a φ70mm steel bar,
[4] After heating the steel slab to 1200 ° C., the steel bar is rolled in a temperature range of 1100 to 1020 ° C. to produce a φ110 mm steel bar,
[5] After the steel slab was heated to 1050 ° C., the steel bar was rolled in a temperature range of 930 to 800 ° C. to produce a φ110 mm bar.

また、上記の実施例1で作製した鋼3、鋼12、鋼15、鋼18、鋼22及び鋼26の300mm×400mmの鋳片を1250℃で均熱した後、1100〜1050℃の温度域で分塊圧延して140×140mmの鋼片とし、更に、その鋼片を用いて、次の〔6〕に示す条件で棒鋼圧延し、φ100mmの棒鋼を製造した。   Further, after 300 mm × 400 mm slabs of Steel 3, Steel 12, Steel 15, Steel 18, Steel 22, and Steel 26 produced in Example 1 were soaked at 1250 ° C., a temperature range of 1100 to 1050 ° C. The steel piece was rolled into a 140 × 140 mm steel piece and further rolled using the steel piece under the conditions shown in [6] below to produce a φ100 mm steel bar.

〔6〕鋼片を1050℃に加熱した後、930〜800℃の温度域で棒鋼圧延して、φ100mmの棒鋼を製造。   [6] After the steel slab was heated to 1050 ° C., the steel bar was rolled at a temperature range of 930 to 800 ° C. to produce a φ100 mm bar.

表7及び表8に、上記した各棒鋼の製造条件の詳細を示す。   Tables 7 and 8 show the details of the manufacturing conditions for the above steel bars.

Figure 0004900127
Figure 0004900127

Figure 0004900127
Figure 0004900127

上記のようにして製造した鋼3、鋼12、鋼15、鋼18、鋼22及び鋼26のφ70mm、φ100mm及びφ110mmの棒鋼のR/2部から、酸化物組成測定用のブロックを切出し、そのブロックを樹脂に埋め込んでL断面を鏡面研磨した後、エネルギー分散型X線分光法によって、厚さ3μm以上の任意の酸化物を20個選び、それぞれの組成を測定した。   A block for measuring the oxide composition was cut out from the R / 2 part of φ70 mm, φ100 mm, and φ110 mm steel bars of Steel 3, Steel 12, Steel 15, Steel 18, Steel 22, and Steel 26 produced as described above. After embedding the block in a resin and mirror-polishing the L cross section, 20 arbitrary oxides having a thickness of 3 μm or more were selected by energy dispersive X-ray spectroscopy, and the respective compositions were measured.

そして、20個の酸化物について測定した組成を算術平均して、φ70mm、φ100mm及びφ110mmの棒鋼における酸化物の「平均組成」を求めた。   And the composition measured about 20 oxides was arithmetic-averaged, and the "average composition" of the oxide in the bar steel of (phi) 70mm, (phi) 100mm, and (phi) 110mm was calculated | required.

また、前記鋼3、鋼12、鋼15、鋼18、鋼22及び鋼26のφ70mm、φ100mm及びφ110mmの棒鋼のR/2部から、縦断方向に100mm2のブロックを10個切出してL断面が被検面になるように樹脂に埋め込んで鏡面研磨し、次いで、100mm2の各L断面中に存在する酸化物の最大厚さ及び硫化物の最大厚さを光学顕微鏡を用いて測定し、それぞれ、算術平均した。 Further, 10 blocks of 100 mm 2 are cut out in the longitudinal direction from the R / 2 part of the steel bars of steel 3, steel 12, steel 15, steel 18, steel 22, and steel 26 of φ70 mm, φ100 mm, and φ110 mm, and the L cross section is cut. It is embedded in a resin so as to be a test surface and mirror-polished, and then the maximum thickness of oxide and the maximum thickness of sulfide existing in each L cross section of 100 mm 2 are measured using an optical microscope, , Arithmetic average.

具体的には、光学顕微鏡観察の倍率を400倍として、先ず、100mm2のL断面中で最も厚さの大きい酸化物と硫化物をそれぞれ検出し、次いで、倍率を1000倍としてそれぞれの厚さを測定し、この測定を10個のブロックについて行い、それぞれ10個の算術平均値を求めた。 Specifically, assuming that the magnification of observation with an optical microscope is 400 times, first, oxides and sulfides having the largest thickness are detected in the L cross section of 100 mm 2 , and then each magnification is 1000 times. Was measured for 10 blocks, and 10 arithmetic average values were obtained for each of the 10 blocks.

なお、酸化物と硫化物が分離せずに複合している場合は、酸化物と硫化物の厚さをそれぞれ測定し、それらの厚さが測定したL断面中で最も大きかった場合に、それぞれを、対象とする100mm2のL断面中で最も厚さの大きい酸化物や硫化物として、算術平均した。 In addition, when the oxide and the sulfide are combined without separation, the thicknesses of the oxide and the sulfide are respectively measured, and when the thicknesses are the largest in the measured L cross section, Was arithmetically averaged as the oxide or sulfide having the largest thickness in the 100 mm 2 L cross section.

表9及び表10に、前記の各棒鋼について上記のようにして測定した酸化物の平均組成並びに10個の100mm2のL断面中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値を示す。なお、先にも述べたように、酸化物の平均組成における残部は「不純物」、すなわち、Cr23、Na2O、ZrO2などを指す。また、「酸化物の最大厚さ」及び「硫化物の最大厚さ」は、それぞれ、酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値を指す。 Tables 9 and 10 show the average composition of oxides measured as described above for each of the above steel bars and the arithmetic average value and sulfurization of the maximum thickness of oxides present in 10 100 mm 2 L cross sections. Indicates the arithmetic average value of the maximum thickness of the object. As described above, the balance in the average composition of the oxide refers to “impurities”, that is, Cr 2 O 3 , Na 2 O, ZrO 2 and the like. Further, “maximum oxide thickness” and “maximum sulfide thickness” refer to the arithmetic average value of the maximum oxide thickness and the arithmetic average value of the maximum sulfide thickness, respectively.

Figure 0004900127
Figure 0004900127

Figure 0004900127
Figure 0004900127

また、上記のようにして得た鋼3、鋼12、鋼15、鋼18、鋼22及び鋼26のφ70mm、φ100mm及びφ110mmの棒鋼をいずれも、長手方向が素形材の厚みとなるように、直径が60mmで厚みが10mmの素形材をスライスして採取した。   Also, the steel 3, steel 12, steel 15, steel 18, steel 22, and steel 26 obtained as described above are made of steel bars of φ70 mm, φ100 mm, and φ110 mm so that the longitudinal direction is the thickness of the shaped material. The raw material having a diameter of 60 mm and a thickness of 10 mm was sliced and collected.

上記の直径が60mmで厚みが10mmの素形材の片側を、周波数20kHz、出力150kW、加熱時間5sの条件で高周波焼入れを行った後、150℃で1時間加熱して大気中で放冷する焼戻しを行った。   One side of a shaped material having a diameter of 60 mm and a thickness of 10 mm is subjected to induction quenching under the conditions of a frequency of 20 kHz, an output of 150 kW, and a heating time of 5 s, and then heated at 150 ° C. for 1 hour and allowed to cool in the air. Tempering was performed.

なお、上記のようにして高周波焼入れ−焼戻しした素形材について、JIS G 0559(1996)の規定に則って、有効硬化層深さを測定した。その結果、各素形材の有効硬化層深さは2〜3mmであった。   In addition, the effective hardened layer depth was measured according to the prescription | regulation of JISG0559 (1996) about the shaped material induction-tempered and tempered as mentioned above. As a result, the effective hardened layer depth of each shaped material was 2 to 3 mm.

また、上記の高周波焼入れ−焼戻しした素形材について、高周波焼入れを行った面の裏面を研削し、その後、高周波焼入れを行った面の表面をラッピング加工することにより、厚さ5.0mmの転動疲労試験片を作製して、転動疲労試験に供した。   In addition, for the above-described induction-quenched and tempered shaped material, the back surface of the surface that has been induction-hardened is ground, and then the surface of the surface that has been induction-quenched is lapped to provide a thickness of 5.0 mm. A dynamic fatigue test piece was prepared and subjected to a rolling fatigue test.

転動疲労試験は、スラスト型の転動疲労試験機を用いて、最大接触面圧5490MPa、繰返し速度1800cpmの条件で行った。   The rolling fatigue test was performed using a thrust type rolling fatigue tester under conditions of a maximum contact surface pressure of 5490 MPa and a repetition rate of 1800 cpm.

なお、転動疲労試験の詳細条件は前記表6に示したとおりである。   The detailed conditions of the rolling fatigue test are as shown in Table 6 above.

転動疲労試験結果は、ワイブル分布確率紙上にプロットし、10%破損確率を示すL10寿命を「転動疲労寿命」として評価した。 The rolling fatigue test results were plotted on a Weibull distribution probability paper, and the L 10 life showing 10% failure probability was evaluated as “rolling fatigue life”.

前記の表9及び表10に、上記のようにして求めた転動疲労寿命を併せて示した。   Tables 9 and 10 show the rolling fatigue life determined as described above.

表9及び表10から、本発明(7)の方法で製造し、鋼の化学成分及び非金属介在物(つまり、酸化物の平均組成)が本発明(4)〜(6)の規定を満たす鋳片を、本発明(4)〜(6)の方法で圧下した試験番号28、試験番号29、試験番号34、試験番号35、試験番号40及び試験番号41の場合には、9.73×106以上という長い転動疲労寿命が得られていることがわかる。 From Table 9 and Table 10, it manufactures by the method of this invention (7), and the chemical composition and nonmetallic inclusion (namely, average composition of an oxide) of steel satisfy | fill the prescription | regulation of this invention (4)-(6). In the case of Test No. 28, Test No. 29, Test No. 34, Test No. 35, Test No. 40 and Test No. 41 in which the slab was squeezed by the method of the present invention (4) to (6), 9.73 × It can be seen that a long rolling fatigue life of 10 6 or more is obtained.

これに対して、本発明(7)の方法で製造し、鋼の化学成分及び非金属介在物(つまり、酸化物の平均組成)が本発明(4)〜(6)の規定を満たす鋳片に全圧下比が15以上となる圧下を加えた場合であっても、その圧下のうちで1000℃以下の温度域での圧下比が本発明(4)〜(6)の条件から外れた方法で圧下した試験番号27、試験番号32、試験番号33、試験番号38、試験番号39及び試験番号44の場合には、硫化物の最大厚さが大きくなって本発明(1)〜(3)で規定する条件から外れる。このため、転動疲労寿命は、4.27×106、3.98×106、3.93×106、4.08×106、4.12×106及び3.68×106と短い。 On the other hand, a slab manufactured by the method of the present invention (7), in which the chemical components and non-metallic inclusions (that is, the average composition of the oxide) of the steel satisfy the provisions of the present invention (4) to (6) Even when a reduction in which the total reduction ratio is 15 or more is added to the above, the reduction ratio in the temperature range of 1000 ° C. or less is out of the conditions of the present invention (4) to (6). In the case of Test No. 27, Test No. 32, Test No. 33, Test No. 38, Test No. 39, and Test No. 44 squeezed with the maximum thickness of the sulfide, the present invention (1) to (3) Deviates from the conditions specified in. Therefore, the rolling fatigue life is 4.27 × 10 6 , 3.98 × 10 6 , 3.93 × 10 6 , 4.08 × 10 6 , 4.12 × 10 6 and 3.68 × 10 6. And short.

また、本発明(7)の方法で製造し、鋼の化学成分及び非金属介在物(つまり、酸化物の平均組成)が本発明(4)〜(6)の規定を満たす鋳片を用いた場合であっても、全圧下比が本発明(4)〜(6)の条件から外れた方法で圧下した試験番号30、試験番号31、試験番号36試験番号37、試験番号42及び試験番号43の場合には酸化物の最大厚さ及び硫化物の最大厚さが大きくなって本発明(1)〜(3)で規定する条件から外れるので、転動疲労寿命はそれぞれ、2.32×106、3.45×106、3.24×106、3.73×106、3.86×106及び2.69×106と短いものである。 In addition, a slab manufactured by the method of the present invention (7) was used, in which the chemical components and non-metallic inclusions (that is, the average composition of the oxide) of the steel satisfy the requirements of the present invention (4) to (6). Even in this case, the test number 30, the test number 31, the test number 36, the test number 37, the test number 42, and the test number 43 were reduced by the method in which the total reduction ratio was outside the conditions of the present invention (4) to (6). In this case, since the maximum thickness of the oxide and the maximum thickness of the sulfide are increased and deviate from the conditions defined in the present invention (1) to (3), the rolling fatigue life is 2.32 × 10 2 respectively. 6 and 3.45 × 10 6 , 3.24 × 10 6 , 3.73 × 10 6 , 3.86 × 10 6 and 2.69 × 10 6 .

更に、非金属介在物(つまり、酸化物の平均組成)が本発明(4)〜(6)の規定を満たしても鋼の化学成分としてのS含有量が本発明(4)〜(6)の規定から外れる鋳片を用いた試験番号45〜50の場合には、圧下条件に拘わらず硫化物の最大厚さが大きくなって本発明(1)〜(3)で規定する条件から外れ、しかも、圧下条件によっては試験番号48及び試験番号49のように酸化物の最大厚さも大きくなって本発明(1)〜(3)で規定する条件から外れるので、転動疲労寿命はそれぞれ、3.54×106、3.97×106、4.27×106、2.78×106、2.89×106及び3.32×106と短いものである。 Furthermore, even if the nonmetallic inclusions (that is, the average composition of the oxide) satisfy the requirements of the present inventions (4) to (6), the S content as a chemical component of the steel is the present invention (4) to (6). In the case of test numbers 45 to 50 using slabs that deviate from the provisions of the above, the maximum thickness of the sulfide is increased regardless of the rolling conditions and deviates from the conditions prescribed in the present invention (1) to (3), In addition, depending on the rolling conditions, the maximum thickness of the oxide is increased as shown in Test No. 48 and Test No. 49 and is not within the conditions defined in the present invention (1) to (3). .54 × 10 6 , 3.97 × 10 6 , 4.27 × 10 6 , 2.78 × 10 6 , 2.89 × 10 6 and 3.32 × 10 6 .

鋼の化学成分が本発明(4)〜(6)の規定を満たしても非金属介在物(つまり、酸化物の平均組成)が本発明(4)〜(6)の規定から外れる鋳片を用いた試験番号51〜56の場合には、圧下条件に拘わらず酸化物の最大厚さが大きくなって本発明(1)〜(3)で規定する条件から外れるので、転動疲労寿命はそれぞれ、3.21×106、4.32×106、4.06×106、2.98×106、2.52×106及び3.11×106と短いものである。 A slab in which the non-metallic inclusions (that is, the average composition of oxides) deviate from the provisions of the present inventions (4) to (6) even if the chemical composition of the steel satisfies the provisions of the present inventions (4) to (6). In the case of the test numbers 51 to 56 used, the maximum thickness of the oxide is increased regardless of the rolling conditions and deviates from the conditions defined in the present invention (1) to (3). It is as short as 3.21 × 10 6 , 4.32 × 10 6 , 4.06 × 10 6 , 2.98 × 10 6 , 2.52 × 10 6 and 3.11 × 10 6 .

従来のAlキルド鋼に相当する鋼の化学成分及び非金属介在物(つまり、酸化物の平均組成)が本発明(4)〜(6)の規定から外れる鋳片を用いた試験番号57〜62の場合には、圧下条件に拘わらず酸化物の最大厚さが大きくなって本発明(1)〜(3)で規定する条件から外れるので、転動疲労寿命はそれぞれ、3.98×106、3.35×106、4.21×106、2.67×106、2.97×106及び3.15×106と短いものである。 Test numbers 57 to 62 using slabs in which the chemical components and non-metallic inclusions (that is, the average composition of oxides) corresponding to conventional Al killed steel deviate from the provisions of the present invention (4) to (6) In this case, the maximum thickness of the oxide becomes large regardless of the rolling condition and deviates from the conditions specified in the present invention (1) to (3). Therefore, the rolling fatigue life is 3.98 × 10 6 , respectively. It is as short as 3.35 × 10 6 , 4.21 × 10 6 , 2.67 × 10 6 , 2.97 × 10 6 and 3.15 × 10 6 .

本発明の高周波焼入れ用鋼材は、近年の転動部材の過酷な使用環境下においても、転動疲労による破損に対して良好な耐久性を有し、転動疲労寿命が長いことから、自動車部品として使用される「等速ジョイント」や「ハブユニット」といった高周波焼入れを行う転動部材の素材として利用することができる。この高周波焼入れ用鋼材は本発明の方法によって製造することができる。   The steel material for induction hardening according to the present invention has good durability against damage due to rolling fatigue and has a long rolling fatigue life even under severe use environment of rolling members in recent years. It can be used as a material for rolling members that perform induction hardening, such as “constant velocity joints” and “hub units”. This steel for induction hardening can be manufactured by the method of the present invention.

Claims (7)

質量%で、C:0.35〜0.7%、Si:0.1〜0.8%、Mn:0.1〜1.5%、P:0.03%以下、S:0.010%以下、Cr:0.01%以上0.50%未満、Al:0.005%以下、Ca:0.0005%以下、O:0.0020%以下、N:0.02%以下を含有し、残部はFe及び不純物の化学成分からなり、非金属介在物について、酸化物の平均組成が質量%で、CaO:10〜60%、Al23:20%以下、MnO:50%以下及びMgO:15%以下で残部SiO2及び不純物からなるとともに、鋼材の長手方向縦断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下であることを特徴とする高周波焼入れ用鋼材。 In mass%, C: 0.35 to 0.7%, Si: 0.1 to 0.8%, Mn: 0.1 to 1.5%, P: 0.03% or less, S: 0.010 %: Cr: 0.01% or more and less than 0.50%, Al: 0.005% or less, Ca: 0.0005% or less, O: 0.0020% or less, N: 0.02% or less The balance consists of chemical components of Fe and impurities. For non-metallic inclusions, the average composition of the oxide is mass%, CaO: 10 to 60%, Al 2 O 3 : 20% or less, MnO: 50% or less, and MgO: 15% or less of the remaining SiO 2 and impurities, and the arithmetic average value of the maximum oxide thickness and the maximum thickness of sulfide existing in 10 areas of 100 mm 2 in the longitudinal longitudinal section of the steel material Inductive quenching characterized in that the arithmetic average value of each is 8.5 μm or less Wood. 質量%で、C:0.35〜0.7%、Si:0.1〜0.8%、Mn:0.1〜1.5%、P:0.03%以下、S:0.010%以下、Cr:0.01%以上0.50%未満、Al:0.005%以下、Ca:0.0005%以下、O:0.0020%以下、N:0.02%以下に加えて、V:0.3%以下及びNb:0.1%以下のうちの1種以上を含有し、残部はFe及び不純物の化学成分からなり、非金属介在物について、酸化物の平均組成が質量%で、CaO:10〜60%、Al23:20%以下、MnO:50%以下及びMgO:15%以下で残部SiO2及び不純物からなるとともに、鋼材の長手方向縦断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下であることを特徴とする高周波焼入れ用鋼材。 In mass%, C: 0.35 to 0.7%, Si: 0.1 to 0.8%, Mn: 0.1 to 1.5%, P: 0.03% or less, S: 0.010 % Or less, Cr: 0.01% or more and less than 0.50%, Al: 0.005% or less, Ca: 0.0005% or less, O: 0.0020% or less, N: 0.02% or less V: 0.3% or less and Nb: 0.1% or less, and the balance consists of chemical components of Fe and impurities, and the non-metallic inclusions have an average oxide composition of mass. % in, CaO: 10~60%, Al 2 O 3: 20% or less, MnO: 50% or less and MgO: with the balance consisting of SiO 2 and impurities 15% or less, of the 10 positions in the longitudinal direction longitudinal section of the steel material Arithmetic mean value of maximum thickness of oxide existing in 100 mm 2 area and arithmetic mean value of maximum thickness of sulfide Are steel materials for induction hardening, each being 8.5 μm or less. 質量%で、C:0.35〜0.7%、Si:0.1〜0.8%、Mn:0.1〜1.5%、P:0.03%以下、S:0.010%以下、Cr:0.01%以上0.50%未満、Al:0.005%以下、Ca:0.0005%以下、O:0.0020%以下、N:0.02%以下に加えて、B:0.005%以下及びTi:0.05%以下を含有し、残部はFe及び不純物の化学成分からなり、非金属介在物について、酸化物の平均組成が質量%で、CaO:10〜60%、Al23:20%以下、MnO:50%以下及びMgO:15%以下で残部SiO2及び不純物からなるとともに、鋼材の長手方向縦断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下であることを特徴とする高周波焼入れ用鋼材。 In mass%, C: 0.35 to 0.7%, Si: 0.1 to 0.8%, Mn: 0.1 to 1.5%, P: 0.03% or less, S: 0.010 % Or less, Cr: 0.01% or more and less than 0.50%, Al: 0.005% or less, Ca: 0.0005% or less, O: 0.0020% or less, N: 0.02% or less B: 0.005% or less and Ti: 0.05% or less, with the balance being composed of chemical components of Fe and impurities, with respect to non-metallic inclusions, the average composition of oxides is mass%, and CaO: 10 ~60%, Al 2 O 3: 20% or less, MnO: 50% or less and MgO: with the balance consisting of SiO 2 and impurities 15% or less, in the area of 100 mm 2 of 10 positions in the longitudinal vertical section of the steel material The arithmetic average value of the maximum thickness of oxide present and the arithmetic average value of the maximum thickness of sulfide are A steel material for induction hardening, which is 8.5 μm or less. 請求項1に記載の化学成分及び酸化物の平均組成を有する鋳片又は鋼塊に、全圧下比が15以上となる圧下を加え、しかも、その圧下のうちで1000℃以下の温度域での圧下比を4以上として圧下することを特徴とする高周波焼入れ用鋼材の製造方法。
但し、全圧下比とは、鋳片又は鋼塊の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指し、また、1000℃以下の温度域での圧下比とは、前記温度域での圧下前の中間鋼材の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指す。
To the slab or steel ingot having the average composition of the chemical components and oxides according to claim 1, a reduction in which the total reduction ratio is 15 or more is applied, and in that reduction, in a temperature range of 1000 ° C. or less. A method for producing a steel material for induction hardening, wherein the reduction is performed with a reduction ratio of 4 or more.
However, the total reduction ratio refers to the value obtained by dividing the cross-sectional area of the slab or steel ingot by the cross-sectional area of the steel for induction hardening obtained by the final reduction, and the reduction ratio in the temperature range of 1000 ° C or lower. The term refers to a value obtained by dividing the cross-sectional area of the intermediate steel material before the reduction in the temperature range by the cross-sectional area of the steel material for induction hardening obtained by the final reduction.
請求項2に記載の化学成分及び酸化物の平均組成を有する鋳片又は鋼塊に、全圧下比が15以上となる圧下を加え、しかも、その圧下のうちで1000℃以下の温度域での圧下比を4以上として圧下することを特徴とする高周波焼入れ用鋼材の製造方法。
但し、全圧下比とは、鋳片又は鋼塊の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指し、また、1000℃以下の温度域での圧下比とは、前記温度域での圧下前の中間鋼材の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指す。
To the slab or steel ingot having the average composition of the chemical component and oxide according to claim 2, a reduction in which the total reduction ratio is 15 or more is added, and in that reduction, in a temperature range of 1000 ° C. or less. A method for producing a steel material for induction hardening, wherein the reduction is performed with a reduction ratio of 4 or more.
However, the total reduction ratio refers to the value obtained by dividing the cross-sectional area of the slab or steel ingot by the cross-sectional area of the steel for induction hardening obtained by the final reduction, and the reduction ratio in the temperature range of 1000 ° C or lower. The term refers to a value obtained by dividing the cross-sectional area of the intermediate steel material before the reduction in the temperature range by the cross-sectional area of the steel material for induction hardening obtained by the final reduction.
請求項3に記載の化学成分及び酸化物の平均組成を有する鋳片又は鋼塊に、全圧下比が15以上となる圧下を加え、しかも、その圧下のうちで1000℃以下の温度域での圧下比を4以上として圧下することを特徴とする高周波焼入れ用鋼材の製造方法。
但し、全圧下比とは、鋳片又は鋼塊の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指し、また、1000℃以下の温度域での圧下比とは、前記温度域での圧下前の中間鋼材の断面積を最終の圧下によって得られた高周波焼入れ用鋼材の断面積で除した値を指す。
To the slab or steel ingot having the average composition of the chemical components and oxides according to claim 3, a reduction in which the total reduction ratio is 15 or more is added, and in that reduction, in a temperature range of 1000 ° C. or less. A method for producing a steel material for induction hardening, wherein the reduction is performed with a reduction ratio of 4 or more.
However, the total reduction ratio refers to the value obtained by dividing the cross-sectional area of the slab or steel ingot by the cross-sectional area of the steel for induction hardening obtained by the final reduction, and the reduction ratio in the temperature range of 1000 ° C or lower. The term refers to a value obtained by dividing the cross-sectional area of the intermediate steel material before the reduction in the temperature range by the cross-sectional area of the steel material for induction hardening obtained by the final reduction.
鋳片又は鋼塊が、酸化精錬後に、Al脱酸処理を行わずに、実質的にAlを含有しないフラックスを用いて二次精錬を行い、二次精錬終了後の最終的なスラグの塩基度CaO/SiO2の値が0.8〜2.0で、かつスラグ組成が質量%で、MgO:15%以下、F:10%以下、Al23:15%以下になるように制御し、続いて鋳造されたものであることを特徴とする請求項4から6までのいずれかに記載の高周波焼入れ用鋼材の製造方法。 The slab or steel ingot is subjected to secondary refining using a flux that does not substantially contain Al after oxidative refining without performing Al deoxidation treatment, and the basicity of the final slag after completion of secondary refining The value of CaO / SiO 2 is 0.8 to 2.0, and the slag composition is mass%, MgO: 15% or less, F: 10% or less, Al 2 O 3 : 15% or less. The method for producing a steel material for induction hardening according to any one of claims 4 to 6, wherein the steel material is subsequently cast.
JP2007204926A 2007-08-07 2007-08-07 Induction hardening steel and manufacturing method thereof Active JP4900127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204926A JP4900127B2 (en) 2007-08-07 2007-08-07 Induction hardening steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204926A JP4900127B2 (en) 2007-08-07 2007-08-07 Induction hardening steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009041046A JP2009041046A (en) 2009-02-26
JP4900127B2 true JP4900127B2 (en) 2012-03-21

Family

ID=40442103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204926A Active JP4900127B2 (en) 2007-08-07 2007-08-07 Induction hardening steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4900127B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035137B2 (en) * 2008-06-24 2012-09-26 住友金属工業株式会社 Bearing steel and manufacturing method thereof
JP5137082B2 (en) * 2008-12-19 2013-02-06 新日鐵住金株式会社 Steel for machine structure and manufacturing method thereof
JP5857888B2 (en) * 2012-06-26 2016-02-10 新日鐵住金株式会社 Method of melting steel for induction hardening
JP6127643B2 (en) * 2013-03-28 2017-05-17 愛知製鋼株式会社 Steel sheet excellent in fatigue strength and method for producing the same
KR20190028492A (en) * 2016-07-19 2019-03-18 신닛테츠스미킨 카부시키카이샤 High frequency quenching steel
KR20190028781A (en) * 2016-07-19 2019-03-19 신닛테츠스미킨 카부시키카이샤 High frequency quenching steel
JP6384626B2 (en) * 2016-07-19 2018-09-05 新日鐵住金株式会社 Induction hardening steel
EP3489379A4 (en) * 2016-07-19 2020-01-08 Nippon Steel Corporation Steel for induction hardening

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274837A (en) * 1989-04-14 1990-11-09 Kawasaki Steel Corp Bearing material for precision instrument
JPH04349A (en) * 1990-04-16 1992-01-06 Kobe Steel Ltd Bearing steel excellent in workability and rolling fatigue characteristic
JP2003253395A (en) * 2002-03-05 2003-09-10 Daido Steel Co Ltd Induction hardened parts
JP4581966B2 (en) * 2005-11-08 2010-11-17 住友金属工業株式会社 Induction hardening steel

Also Published As

Publication number Publication date
JP2009041046A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP5266686B2 (en) Bearing steel and its manufacturing method
JP4900127B2 (en) Induction hardening steel and manufacturing method thereof
KR101830023B1 (en) Spring steel and method for producing same
US9809875B2 (en) Case hardening steel with excellent fatigue properties
JP6038026B2 (en) High carbon chromium bearing steel and manufacturing method thereof
JP2008163410A (en) Steel for high-speed cold working and method for production thereof, and method for producing part formed by high-speed cold working
JP2018193615A (en) Spring steel wire excellent in fatigue characteristic and spring
WO2006129531A1 (en) Low carbon sulfur free-machining steel
JP5035137B2 (en) Bearing steel and manufacturing method thereof
JP2009091649A (en) Forging steel, forging and crankshaft
JP6515327B2 (en) Bearing steel and method of manufacturing the same
JP2014005520A (en) Method of manufacturing carburizing bearing steel material
JP2006144105A (en) High cleanliness spring steel
JP2012214832A (en) Steel for machine structure and method for producing the same
JP2008255398A (en) Steel for high-speed cold working and method for production thereof, and part formed by high-speed cold working and production method thereof
JP5137082B2 (en) Steel for machine structure and manufacturing method thereof
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
JP5245544B2 (en) Common rail with excellent fatigue characteristics
JP2003073776A (en) Steel wire with high fatigue strength for spring, and manufacturing method therefor
JP2008240019A (en) Steel excellent in rolling contact fatigue life
JP6455244B2 (en) Induction hardening steel and manufacturing method thereof
JP2001234279A (en) Steel for cold forging excellent in treatment of chip
JP2003055743A (en) Steel for cold die having excellent machinability
JP6249100B2 (en) Rolled steel bar for machine structure and manufacturing method thereof
JP7141944B2 (en) Non-tempered forged parts and steel for non-tempered forgings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4900127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350