JP2008163410A - Steel for high-speed cold working and method for production thereof, and method for producing part formed by high-speed cold working - Google Patents

Steel for high-speed cold working and method for production thereof, and method for producing part formed by high-speed cold working Download PDF

Info

Publication number
JP2008163410A
JP2008163410A JP2006355497A JP2006355497A JP2008163410A JP 2008163410 A JP2008163410 A JP 2008163410A JP 2006355497 A JP2006355497 A JP 2006355497A JP 2006355497 A JP2006355497 A JP 2006355497A JP 2008163410 A JP2008163410 A JP 2008163410A
Authority
JP
Japan
Prior art keywords
steel
less
excluding
speed cold
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006355497A
Other languages
Japanese (ja)
Other versions
JP4295314B2 (en
Inventor
Tomokazu Masuda
智一 増田
琢哉 ▲高▼知
Takuya Kochi
Shogo Murakami
昌吾 村上
Hiroshi Yaguchi
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006355497A priority Critical patent/JP4295314B2/en
Priority to CNA200710187044XA priority patent/CN101210298A/en
Priority to US11/950,715 priority patent/US20080156403A1/en
Priority to EP07023882A priority patent/EP1939309A1/en
Priority to KR1020070138127A priority patent/KR20080063137A/en
Publication of JP2008163410A publication Critical patent/JP2008163410A/en
Application granted granted Critical
Publication of JP4295314B2 publication Critical patent/JP4295314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for cold working which exhibits good cold workability during working and also exhibits high hardness after working. <P>SOLUTION: The steel for high-speed cold working contains C: 0.03 to 0.15% (by mass), Si: 0.005 to 0.6%, Mn: 0.05 to 2%, P: ≤0.05% (excluding 0%), S: ≤0.05% (excluding 0%), and N: ≤0.04% (excluding 0%), with the remainder being iron and inevitable impurities and the amount of dissolved nitrogen in the steel being ≥0.006%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ボルト・ナットなどの機械部品、特に自動車用の部品を製造するために有用な冷間加工用鋼、特に冷間加工用線材または棒鋼に関するものである。本発明は、前記冷間加工用鋼から得られる冷間加工部品も提供する。   The present invention relates to cold work steel, particularly cold work wire or bar steel, useful for producing machine parts such as bolts and nuts, particularly automobile parts. The present invention also provides a cold work part obtained from the cold work steel.

冷間加工(例えば200℃以下の雰囲気における鋼の加工)は、熱間加工や温間加工と比較して、生産性が高く、寸法精度が良く、しかも鋼材の歩留が良好であるといった利点を有するため、各種部品の製造に幅広く用いられている。また、生産性を更に向上すべく、高速加工化の動向にある。   Cold processing (for example, processing of steel in an atmosphere of 200 ° C. or lower) has advantages such as higher productivity, better dimensional accuracy, and better steel yield than hot processing and warm processing. Therefore, it is widely used for manufacturing various parts. In addition, in order to further improve productivity, there is a trend toward high-speed machining.

このような背景下、冷間加工に使用される鋼は、冷間加工時の変形抵抗が低く、加工中に変形能が低下しないことが必要とされる。鋼の変形抵抗が高いと冷間加工に使用する工具の寿命低下を招き、一方、変形能が低いと冷間加工時に割れが発生しやすくなるからである。   Against such a background, steel used for cold working needs to have low deformation resistance during cold working, and the deformability is not lowered during working. This is because if the deformation resistance of steel is high, the life of a tool used for cold working is reduced, while if the deformability is low, cracks are likely to occur during cold working.

鋼の変形抵抗を低下させ、変形能を向上させるためには、C(炭素)、Si、Mnなどの添加元素を低下させればよいことが知られている。しかしながら、単純に添加元素を低減し、変形抵抗を低下させると、工具の寿命は改善できるものの、加工後に必要な部品強度が得られないという問題が生じる。そのため、従来、鋼を所定形状に冷間加工した後は、所定の硬度を確保するために焼入れ焼戻し処理などの熱処理が施されていた。   In order to reduce the deformation resistance of steel and improve the deformability, it is known that additive elements such as C (carbon), Si, and Mn may be reduced. However, if the additive element is simply reduced and the deformation resistance is lowered, the tool life can be improved, but there is a problem that the required component strength cannot be obtained after machining. Therefore, conventionally, after cold working the steel into a predetermined shape, heat treatment such as quenching and tempering has been performed to ensure a predetermined hardness.

しかしながら、部品加工後に熱処理を施すと、部品寸法が変化してしまうため、更に部品加工を行わなければならない。生産性向上や省エネルギーのためには、所定の硬度を確保すると同時に、熱処理やその後の加工を省略できるような解決策が望まれている。   However, if the heat treatment is performed after the parts are processed, the dimensions of the parts will change, so that the parts must be further processed. In order to improve productivity and save energy, there is a demand for a solution that can prevent heat treatment and subsequent processing while ensuring a predetermined hardness.

以上のような背景の下、特許文献1は、加工中の変形抵抗の増大を抑制するために、フェライト粒内に微細な窒化物を析出させ、これを核としてセメンタイトなどの炭化物を析出させることについて開示している。これより、固溶窒素および固溶炭素を窒化物および炭化物として固定化し、加工中の動的歪み時効を抑制することによって、変形抵抗の増大を抑制することを開示している。   Under the background as described above, in order to suppress an increase in deformation resistance during processing, Patent Document 1 precipitates fine nitrides in ferrite grains and precipitates carbides such as cementite using this as a nucleus. Is disclosed. From this, it is disclosed that solid solution nitrogen and solid solution carbon are fixed as nitrides and carbides to suppress an increase in deformation resistance by suppressing dynamic strain aging during processing.

特許文献2は、Nおよびsol.Al量を制御してNをAlNとして固定し、さらに時効処理により炭素を炭化物として析出させることによって、炭素および窒素による時効硬化を抑制することを開示している。   Patent Document 2 discloses N and sol. It discloses that age hardening by carbon and nitrogen is suppressed by controlling the amount of Al to fix N as AlN and further precipitating carbon as carbides by aging treatment.

上記の特許文献1及び2の方法では、動的歪み時効を抑制し、変形抵抗の増加を抑制するために、フェライト粒内に固溶窒素および固溶炭素を窒化物および炭化物として固定化している。固溶窒素および固溶炭素を固定化するためには、Alを添加する必要がある。実施例のようにAlが0.039〜0.045%あれば、窒素量が0.015%であっても、固溶窒素は殆ど存在しないものと考えられる。   In the methods of Patent Documents 1 and 2 above, in order to suppress dynamic strain aging and suppress an increase in deformation resistance, solid solution nitrogen and solid solution carbon are fixed as nitrides and carbides in ferrite grains. . In order to fix solute nitrogen and solute carbon, it is necessary to add Al. If Al is 0.039 to 0.045% as in the examples, even if the nitrogen amount is 0.015%, it is considered that there is almost no solid solution nitrogen.

特許文献3は、Cr添加による固溶軟化による鋼材の硬さの低下とAl添加による固溶窒素の固定化で、冷間加工時の変形抵抗を低減する方法が開示されている。しかしながら、当該方法ではAlを添加することで固溶窒素が固定化されているために、上記の特許文献1及び2と同様に固溶窒素は殆ど存在しないと考えられる。   Patent Document 3 discloses a method for reducing deformation resistance during cold working by lowering the hardness of a steel material due to softening by solid solution by adding Cr and fixing solute nitrogen by adding Al. However, in this method, since solid solution nitrogen is fixed by adding Al, it is considered that there is almost no solid solution nitrogen as in Patent Documents 1 and 2 above.

冷間加工後の冷間加工部品では、所定の硬度を確保するために硬化熱処理、例えば焼入れ焼戻しが行われることがあるが、上述したように、生産性向上および省エネルギーの観点から、焼入れ焼戻しを省略することが求められている。例えば、特許文献4では、冷間鍛造後の発熱温度から常温まで50〜70℃/hrの冷却速度で冷却することにより、冷間鍛造後の時効処理(焼入れ焼戻し)を省略できることを開示している。
特許第3515923号公報 特開昭60−82618号公報 特公昭57−60416号公報 特開2003−266144号公報
In cold-worked parts after cold working, hardening heat treatment, for example, quenching and tempering, may be performed to ensure a predetermined hardness, but as described above, quenching and tempering are performed from the viewpoint of productivity improvement and energy saving. There is a need to omit it. For example, Patent Document 4 discloses that aging treatment (quenching and tempering) after cold forging can be omitted by cooling from a heat generation temperature after cold forging to room temperature at a cooling rate of 50 to 70 ° C./hr. Yes.
Japanese Patent No. 3515923 JP 60-82618 Japanese Patent Publication No.57-60416 JP 2003-266144 A

冷間加工性(変形抵抗および変形能)と冷間加工後の硬さは相反する性質であり、従来、これらの双方ともが良好な冷間加工用鋼は得られていない。そこで本発明の目的は、加工中は冷間加工性に優れ、加工後は良好な硬さを示す冷間加工用鋼、特に冷間加工用線材または棒鋼を提供することである。   Cold workability (deformation resistance and deformability) and hardness after cold work are contradictory properties, and conventionally, a steel for cold work that is good in both of these has not been obtained. Accordingly, an object of the present invention is to provide a cold work steel, particularly a cold work wire or a bar steel, which is excellent in cold workability during working and exhibits good hardness after working.

上記目的を達成し得た本発明の高速冷間加工用鋼は、
C:0.03〜0.15%(質量%の意味、以下同じ)、
Si:0.005〜0.6%、
Mn:0.05〜2%、
P:0.05%以下(0%を含まない)、
S:0.05%以下(0%を含まない)、および
N:0.04%以下(0%を含まない)
を含有し、残部は鉄および不可避的不純物からなり、
鋼中の固溶窒素量が0.006%以上であることを特徴とするものである。
The steel for high-speed cold working of the present invention that has achieved the above object is:
C: 0.03 to 0.15% (meaning mass%, the same shall apply hereinafter)
Si: 0.005 to 0.6%,
Mn: 0.05-2%
P: 0.05% or less (excluding 0%),
S: 0.05% or less (not including 0%), and N: 0.04% or less (not including 0%)
The balance consists of iron and inevitable impurities,
The amount of dissolved nitrogen in the steel is 0.006% or more.

固溶窒素量を0.006%以上確保するために、N:0.007%以上とすることが望ましい。   In order to secure the amount of dissolved nitrogen at 0.006% or more, it is desirable that N: 0.007% or more.

本発明の高速冷間加工用鋼には、上記成分の他、必要に応じてさらに、Al:0.1%以下(0%を含まない)を含有させることも有効である。   In addition to the above components, it is also effective to further contain Al: 0.1% or less (not including 0%) in the steel for high-speed cold working according to the present invention.

本発明の高速冷間加工用鋼には、上記成分の他、必要に応じてさらに、Zr:0.2%以下(0%を含まない)、Ti:0.1%以下(0%を含まない)、Nb:0.1%以下(0%を含まない)、V:0.5%以下(0%を含まない)、Ta:0.1%以下(0%を含まない)、およびHf:0.1%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有させることも有効である。   In the steel for high-speed cold working of the present invention, in addition to the above components, if necessary, Zr: 0.2% or less (excluding 0%), Ti: 0.1% or less (including 0%) Nb: 0.1% or less (not including 0%), V: 0.5% or less (not including 0%), Ta: 0.1% or less (not including 0%), and Hf : It is also effective to contain at least one selected from the group consisting of 0.1% or less (not including 0%).

本発明の高速冷間加工用鋼には、上記成分の他、必要に応じてさらに、B:0.0015%以下(0%を含まない)および/またはCr:2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有させることも有効である。   In addition to the above components, the steel for high-speed cold working according to the present invention may further include B: 0.0015% or less (not including 0%) and / or Cr: 2% or less (including 0%) as necessary. It is also effective to contain at least one selected from the group consisting of:

このとき、上記各成分が、下記(1)式を満足することが推奨される。
[N]−(27[Al]/14+47.9[Ti]/14+92.9[Nb]/14+50.9[V]/14+91.2[Zr]/14+10.8[B]/14+180.9[Ta]/14+178.5[Hf]/14)≧0.006・・・・(1)式
[式(1)中、[ ]は各元素の鋼中の全含有量(質量%)を表す。]
At this time, it is recommended that the above components satisfy the following formula (1).
[N]-(27 [Al] /14+47.9 [Ti] /14+92.9 [Nb] /14+50.9 [V] /14+91.2 [Zr] /14+10.8 [B] /14+180.9 [Ta ] /14+178.5 [Hf] / 14) ≧ 0.006 (1) Formula [In Formula (1), [] represents the total content (mass%) of each element in steel. ]

本発明の高速冷間加工用鋼には、上記成分の他、必要に応じてさらに、Cu:5%以下(0%を含まない)を含有させることも有効である。   In addition to the above components, it is also effective to further contain Cu: 5% or less (not including 0%) in the steel for high-speed cold working according to the present invention.

本発明の高速冷間加工用鋼には、上記成分の他、必要に応じてさらに、Ni:5%以下(0%を含まない)および/またはCo:5%以下(0%を含まない)を含有させることも有効である。   In the steel for high speed cold work of the present invention, in addition to the above components, Ni: 5% or less (not including 0%) and / or Co: 5% or less (not including 0%) as necessary. It is also effective to contain.

本発明の高速冷間加工用鋼には、上記成分の他、必要に応じてさらに、Mo:2%以下(0%を含まない)および/またはW:2%以下(0%を含まない)を含有させることも有効である。   In the steel for high-speed cold working of the present invention, in addition to the above components, Mo: 2% or less (not including 0%) and / or W: 2% or less (not including 0%) as necessary. It is also effective to contain.

本発明の高速冷間加工用鋼には、上記成分の他、必要に応じてさらに、Ca:0.05%以下(0%を含まない)、希土類元素(以下、「REM」と省略する):0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)、Pb:0.1%以下(0%を含まない)、およびBi:0.1%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有させることも有効でありる。   In the steel for high-speed cold working of the present invention, in addition to the above components, if necessary, Ca: 0.05% or less (not including 0%), rare earth elements (hereinafter abbreviated as “REM”) : 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li: 0.02% or less (not including 0%), Pb: 0.1% It is also effective to contain at least one selected from the group consisting of the following (not including 0%) and Bi: not more than 0.1% (not including 0%).

本発明の高速冷間加工用鋼は、加工温度が200℃以下である条件で高速冷間加工に用いることが推奨される。また、歪み速度が100/秒以上である条件で高速冷間加工に用いることが推奨される。   The steel for high-speed cold working of the present invention is recommended to be used for high-speed cold working under the condition that the working temperature is 200 ° C. or less. Moreover, it is recommended to use it for high-speed cold working under the condition that the strain rate is 100 / sec or more.

なお、歪み速度は、真歪みを単位時間で割ることにより求められるものである。   Note that the strain rate is obtained by dividing the true strain by the unit time.

本発明の高速冷間加工用鋼の製造方法として、上記の成分組成を有する鋼材を、Ac点+30℃以上の温度に加熱し、その後Ac点+30℃以上の温度領域で熱間加工し、その後0.5℃/s以上の冷却速度で500℃以下まで冷却する方法が、好ましい一態様として推奨される。 As a method for producing high-speed cold working steel of the present invention, a steel having the above component composition, heated to Ac 3 point + 30 ° C. or higher, and hot working in the subsequent Ac 3 point + 30 ° C. or higher temperature range Then, a method of cooling to 500 ° C. or lower at a cooling rate of 0.5 ° C./s or higher is recommended as a preferred embodiment.

本発明の高速冷間加工用鋼の製造方法として、上記の成分組成を有する鋼材を、Ac点+30℃以上の温度に加熱し、その後0.5℃/s以上の冷却速度で500℃以下まで冷却する方法が、好ましい一態様として推奨される。 As a method for producing high-speed cold working steel of the present invention, a steel having the above component composition, heated to Ac 3 point + 30 ° C. or higher temperatures, 500 ° C. or less in the subsequent 0.5 ° C. / s or more cooling rate A method of cooling to a low temperature is recommended as a preferred embodiment.

本発明の高速冷間加工用鋼は、(a)固溶窒素を所定量以上で含有しているので、冷間加工後の焼入れ焼戻しを省略しても、冷間加工後の鋼部品の硬さを向上させることができる。また、本発明の高速冷間加工用鋼は、(b)その用途を、高速冷間加工(好ましくは歪み速度が100/秒以上である冷間加工)用に限定され、且つ(c)化学成分量が適正化されているので、良好な冷間加工性を示す。   Since the steel for high-speed cold working of the present invention contains (a) solute nitrogen in a predetermined amount or more, even if quenching and tempering after cold working is omitted, the hardness of the steel part after cold working is reduced. Can be improved. The steel for high-speed cold working of the present invention is limited to (b) high-speed cold working (preferably cold working with a strain rate of 100 / second or more), and (c) chemical Since the component amount is optimized, it shows good cold workability.

本発明の高速冷間加工用鋼は、固溶窒素を所定量以上で含有することに大きな特徴を有する。この特徴により、冷間加工後に焼入れ焼戻しを省略しても、加工後の鋼部品の硬さを上昇させることができる。しかし比較的多量の固溶窒素を含有することは、鋼材の変形抵抗を増大し得るという弊害を招き得る。そこで本発明は、高速で冷間加工を行なうことにより、冷間加工性を維持することを特徴とする。即ち本発明の鋼は、高速冷間加工という用途で用いられることを特徴の1つとする。このような技術的思想、即ち(a)固溶窒素を所定量以上含有させることで冷間加工後の硬さを上昇させ、且つ(b)高速冷間加工により固溶窒素の弊害を抑制して良好な冷間加工性を維持するという思想は、従来には無いものである。また高速で冷間加工を行うことは、部品の生産性向上に寄与する。   The steel for high speed cold work of the present invention has a great feature in that it contains solute nitrogen in a predetermined amount or more. With this feature, even if quenching and tempering is omitted after cold working, the hardness of the steel part after working can be increased. However, the inclusion of a relatively large amount of solute nitrogen can lead to an adverse effect that the deformation resistance of the steel material can be increased. Therefore, the present invention is characterized in that cold workability is maintained by performing cold work at high speed. That is, the steel of the present invention is one of the features that it is used for the purpose of high-speed cold working. Such technical idea, ie, (a) increasing the hardness after cold working by containing a predetermined amount or more of solid solution nitrogen, and (b) suppressing the harmful effects of solid solution nitrogen by high-speed cold working. Thus, the idea of maintaining good cold workability has never existed. Further, performing cold working at high speed contributes to improving the productivity of parts.

本発明の鋼は、良好な冷間加工性を達成するために、(c)化学成分量が適正化されていることも特徴とする。以下では、まず鋼の成分組成および固溶窒素量について説明する。   The steel of the present invention is also characterized in that the amount of chemical component (c) is optimized in order to achieve good cold workability. Below, the component composition of steel and the amount of dissolved nitrogen are demonstrated first.

(C:0.03〜0.15%)
C(炭素)は、鋼の強度を確保するために必要な元素である。そこで炭素量の下限を0.03%と定めた。より好ましい下限は0.04%である。一方、炭素量が過剰であると被削性および冷間加工性が劣化する。そこで炭素量の上限を0.15%と定めた。より好ましい上限は0.12%である。
(C: 0.03-0.15%)
C (carbon) is an element necessary for ensuring the strength of steel. Therefore, the lower limit of the carbon content is set to 0.03%. A more preferred lower limit is 0.04%. On the other hand, if the amount of carbon is excessive, machinability and cold workability deteriorate. Therefore, the upper limit of carbon content was set to 0.15%. A more preferred upper limit is 0.12%.

(Si:0.005〜0.6%)
Siは、製鋼過程において脱酸剤として使用される元素である。Si量が少なすぎると、凝固過程でガスが発生し、これらが欠陥として作用しやすくなるため、冷間加工中に割れが発生し得る。そこでSi量の下限を0.005%と定めた。より好ましい下限は0.008%である。一方、Si量が過剰でも、効果が飽和し、且つ冷間加工性が低下する。そこでSi量の上限を0.6%と定めた。より好ましい上限は0.5%である。
(Si: 0.005-0.6%)
Si is an element used as a deoxidizer in the steelmaking process. If the amount of Si is too small, gas is generated during the solidification process, which tends to act as defects, and thus cracks may occur during cold working. Therefore, the lower limit of Si content is set to 0.005%. A more preferred lower limit is 0.008%. On the other hand, even if the amount of Si is excessive, the effect is saturated and the cold workability is lowered. Therefore, the upper limit of Si content is set to 0.6%. A more preferred upper limit is 0.5%.

(Mn:0.05〜2%)
Mnは、製鋼過程においてSiと同様に脱酸剤として作用する。また、Mnは脱硫剤としても有効な元素であり、Mn量が少なすぎると結晶粒界にFeSが膜状に析出し、粒界強度を著しく低下させるため、冷間加工中に割れが発生し得る。そこでMn量の下限を0.05%と定めた。より好ましい下限は0.1%である。一方、Mn量が過剰であると冷間加工性が低下する。そこでMn量の上限を2%と定めた。より好ましい上限は1%である。
(Mn: 0.05-2%)
Mn acts as a deoxidizer in the steel making process, just like Si. Mn is also an effective element as a desulfurizing agent. If the amount of Mn is too small, FeS precipitates in the form of a film at the crystal grain boundary, and the grain boundary strength is significantly reduced. obtain. Therefore, the lower limit of the amount of Mn is set to 0.05%. A more preferred lower limit is 0.1%. On the other hand, if the amount of Mn is excessive, cold workability is lowered. Therefore, the upper limit of the amount of Mn is set to 2%. A more preferred upper limit is 1%.

(P:0.05%以下(0%を含まない))
Pは、フェライトを固溶強化させることにより冷間加工性を劣化させる元素であり、極力低減することが好ましい。そこでP量を、0.05%以下、より好ましくは0.03%以下に低減することが推奨される。但しP量を0にすることは、工業上困難である。
(P: 0.05% or less (excluding 0%))
P is an element that degrades the cold workability by strengthening the solid solution of ferrite, and is preferably reduced as much as possible. Therefore, it is recommended to reduce the amount of P to 0.05% or less, more preferably 0.03% or less. However, it is industrially difficult to reduce the P content to zero.

(S:0.05%以下(0%を含まない))
Sは、Mnと共に、冷間加工時の割れの起点として作用するMnS介在物を形成する元素である。そこで変形能の観点からS量を、0.05%以下、より好ましくは0.03%以下に低減することが推奨される。但しS量を0にすることは、工業上困難である。なおSは、被削性を向上させるという効果を有し、被削性向上の観点からは、好ましくは0.002%以上、より好ましくは0.006%以上含有させることが推奨される。
(S: 0.05% or less (excluding 0%))
S, together with Mn, is an element that forms MnS inclusions that act as starting points for cracks during cold working. Therefore, it is recommended to reduce the amount of S to 0.05% or less, more preferably 0.03% or less from the viewpoint of deformability. However, it is industrially difficult to reduce the amount of S to 0. Note that S has an effect of improving machinability. From the viewpoint of improving machinability, S is preferably contained in an amount of 0.002% or more, more preferably 0.006% or more.

(N:0.04%以下(0%を含まない))
窒素(N)は、鋼中に固溶して冷間加工後の鋼部品の硬さを上昇させるという作用を有し、本発明における必須元素である。しかし鋼中の全窒素量が過剰であると、固溶窒素量も過剰となって冷間加工時に割れが生ずることがあり、さらに鋼の内部欠陥や連続鋳造時のスラブ割れも発生しやすくなる。そこで鋼の変形能、並びに材質の安定性および鋳造時の歩留向上の観点から、鋼中の全窒素量の上限を0.04%と定めた。より好ましい上限は0.03%である。一方、全窒素量の下限は、後述する固溶窒素量の下限を満たすことができるものであれば特に限定は無い。但し固溶窒素を安定して確保するために、全窒素量の下限は、好ましくは0.007%、より好ましくは0.008%である。
(N: 0.04% or less (excluding 0%))
Nitrogen (N) has the effect of increasing the hardness of steel parts after cold working by solid solution in steel, and is an essential element in the present invention. However, if the total amount of nitrogen in the steel is excessive, the amount of dissolved nitrogen may also be excessive and cracks may occur during cold working, and further, internal defects in steel and slab cracking during continuous casting are likely to occur. . Therefore, the upper limit of the total nitrogen amount in the steel is set to 0.04% from the viewpoint of the deformability of the steel, the stability of the material, and the yield improvement during casting. A more preferred upper limit is 0.03%. On the other hand, the lower limit of the total nitrogen amount is not particularly limited as long as the lower limit of the solid solution nitrogen amount described later can be satisfied. However, in order to stably secure solid solution nitrogen, the lower limit of the total nitrogen amount is preferably 0.007%, more preferably 0.008%.

(固溶窒素:0.006%以上)
冷間加工後の硬化上昇を充分に確保するために、本発明では鋼中の固溶窒素量の下限を0.006%と定めた。好ましい下限は0.007%である。一方、固溶窒素量が過剰になると、冷間加工時に割れが生ずる。よって固溶窒素量は、好ましくは0.03%以下である。なお固溶窒素量の上限は、当然、鋼中の全窒素量の上限である0.04%を超えることは無い。ここで本発明における「固溶窒素量」の値は、JIS G 1228に準拠し、鋼中の全窒素量から全窒化化合物量を差し引くことで鋼中の固溶窒素量を算出する。
(Soluted nitrogen: 0.006% or more)
In order to sufficiently secure the increase in hardening after cold working, in the present invention, the lower limit of the amount of dissolved nitrogen in the steel is set to 0.006%. A preferred lower limit is 0.007%. On the other hand, if the amount of dissolved nitrogen is excessive, cracks occur during cold working. Therefore, the amount of solid solution nitrogen is preferably 0.03% or less. Of course, the upper limit of the solid solution nitrogen amount does not exceed 0.04%, which is the upper limit of the total nitrogen amount in the steel. Here, the value of “the amount of solid solution nitrogen” in the present invention is based on JIS G 1228, and the amount of solid solution nitrogen in the steel is calculated by subtracting the amount of all nitride compounds from the total amount of nitrogen in the steel.

(i)鋼中の全窒素量は、不活性ガス融解法−熱伝導度法を用いる。供試鋼素材からサンプルを切り出し、サンプルをるつぼに入れ、不活性ガス気流中で融解して窒素を抽出し、熱伝導度セルに搬送して熱伝導度の変化を測定する。   (I) The total nitrogen amount in the steel uses an inert gas melting method-thermal conductivity method. A sample is cut from the test steel material, placed in a crucible, melted in an inert gas stream, extracted with nitrogen, transported to a thermal conductivity cell, and the change in thermal conductivity is measured.

(ii)鋼中の全窒化化合物量の測定には、アンモニア蒸留分離インドフェノール青吸光光度法を用いる。供試鋼素材からサンプルを切り出し、10%AA系電解液(鋼表面に不動態被膜を生成させない非水溶媒系の電解液であり、具体的には、10%アセチルアセトン、10%塩化テトラメチルアンモニウム、残部:メタノール)中で、定電流電解を行う。約0.5gサンプルを溶解させ、不溶解残渣(窒化化合物)を穴サイズが0.1μmのポリカーボネート製のフィルタでろ過する。不溶解残渣を硫酸、硫酸カリウム及び純Cuチップ中で加熱して分解し、ろ液に混合する。この溶液を水酸化ナトリウムでアルカリ性にした後、水蒸気蒸留を行い、留出したアンモニアを希硫酸に吸収させる。フェノール、次亜塩素酸ナトリウム及びペンタシアノニトロシル鉄(III)酸ナトリウムを加えて青色錯体を生成させ、光度計を用いて、その吸光度を測定する。   (Ii) Ammonia distillation separated indophenol blue absorptiometry is used to measure the total amount of nitrided compounds in steel. A sample is cut out from the test steel material, 10% AA electrolyte (non-aqueous solvent electrolyte that does not produce a passive film on the steel surface, specifically 10% acetylacetone, 10% tetramethylammonium chloride. , The remainder: methanol). About 0.5 g of the sample is dissolved, and the insoluble residue (nitride compound) is filtered through a polycarbonate filter having a hole size of 0.1 μm. The insoluble residue is decomposed by heating in sulfuric acid, potassium sulfate and pure Cu chips and mixed into the filtrate. After making this solution alkaline with sodium hydroxide, steam distillation is performed, and the distilled ammonia is absorbed by dilute sulfuric acid. Phenol, sodium hypochlorite and sodium pentacyanonitrosyl iron (III) are added to form a blue complex, and its absorbance is measured using a photometer.

上記の方法によって求めた鋼中の全窒素量から全窒化化合物量を差し引くことで鋼中の固溶窒素量を算出する。   The amount of solute nitrogen in the steel is calculated by subtracting the total amount of nitrided compound from the total amount of nitrogen in the steel determined by the above method.

本発明の鋼の基本成分組成は上記の通りであり、残部は実質的に鉄である。但し原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼中に含まれることは、当然に許容される。さらに本発明の鋼は、必要に応じて、以下の任意元素を含有していても良い。   The basic component composition of the steel of the present invention is as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel. Furthermore, the steel of this invention may contain the following arbitrary elements as needed.

(Al:0.1%以下)
Alは、製鋼過程における脱酸元素として有効な元素であり、また鋼の耐割れ性にも有効である。そこでAlを、必要に応じて、好ましくは0.001%以上、より好ましくは0.005%以上で含有させることが推奨される。しかしAlは窒素(N)との親和力が強く、Al窒化物を形成して固溶窒素量を低減させるため、含有させる場合の上限を0.1%と定めた。Al量は、好ましくは0.05%以下、より好ましくは0.03%以下である。
(Al: 0.1% or less)
Al is an effective element as a deoxidizing element in the steel making process, and is also effective for crack resistance of steel. Therefore, it is recommended that Al is contained in an amount of preferably 0.001% or more, more preferably 0.005% or more, if necessary. However, Al has a strong affinity for nitrogen (N), and since Al nitride is formed to reduce the amount of dissolved nitrogen, the upper limit for the inclusion is set to 0.1%. The amount of Al is preferably 0.05% or less, more preferably 0.03% or less.

(Zr:0.2%以下、Ti:0.1%以下、Nb:0.1%以下、V:0.5%以下、Ta:0.1%以下、およびHf:0.1%以下よりなる群から選ばれる少なくとも1種)
Zr、Ti、Nb、V、TaおよびHfは、窒素と共に窒化物を形成して結晶粒を微細化し、冷間加工後に得られる部品の靱性を高めるために有効な元素である。そこで必要に応じて、Zrを好ましくは0.002%以上、より好ましくは0.004%以上、Tiを好ましくは0.001%以上、より好ましくは0.002%以上、Nbを好ましくは0.001%以上、より好ましくは0.002%以上、Vを好ましくは0.001%以上、より好ましくは0.002%以上、Taを好ましくは0.003%以上、より好ましくは0.006%以上、およびHfを好ましくは0.002%以上、より好ましくは0.004%以上の量で含有させることが推奨される。
(From Zr: 0.2% or less, Ti: 0.1% or less, Nb: 0.1% or less, V: 0.5% or less, Ta: 0.1% or less, and Hf: 0.1% or less At least one selected from the group consisting of
Zr, Ti, Nb, V, Ta, and Hf are effective elements for forming nitrides together with nitrogen to refine crystal grains and increasing the toughness of parts obtained after cold working. Therefore, if necessary, Zr is preferably 0.002% or more, more preferably 0.004% or more, Ti is preferably 0.001% or more, more preferably 0.002% or more, and Nb is preferably 0.00. 001% or more, more preferably 0.002% or more, V is preferably 0.001% or more, more preferably 0.002% or more, Ta is preferably 0.003% or more, more preferably 0.006% or more , And Hf are preferably included in an amount of 0.002% or more, more preferably 0.004% or more.

一方、これらの元素は、窒素との親和力が強く、窒化物を形成して固溶窒素量を低減させるために、上限量を次のように定めた。Zr量は、好ましくは0.05%以下、より好ましくは0.03%以下、Ti量は、好ましくは0.05%以下、より好ましくは0.03%以下、Nb量は、好ましくは0.06%以下、より好ましくは0.04%以下、V量は、好ましくは0.1%以下、より好ましくは0.05%以下、Ta量は、好ましくは0.05%以下、より好ましくは0.03%以下、およびHf量は、好ましくは0.05%以下、より好ましくは0.03%以下である。   On the other hand, these elements have a strong affinity for nitrogen, and in order to form nitrides and reduce the amount of dissolved nitrogen, the upper limit amounts were determined as follows. The amount of Zr is preferably 0.05% or less, more preferably 0.03% or less, the amount of Ti is preferably 0.05% or less, more preferably 0.03% or less, and the amount of Nb is preferably 0.00. 06% or less, more preferably 0.04% or less, the V amount is preferably 0.1% or less, more preferably 0.05% or less, and the Ta amount is preferably 0.05% or less, more preferably 0. 0.03% or less, and the amount of Hf is preferably 0.05% or less, more preferably 0.03% or less.

(B:0.0015%以下および/またはCr:2%以下)
Bは結晶粒界の強度を高めることにより鋼の変形能を向上させる元素である。Crも同様に、鋼の変形能を向上させることができる。そこで必要に応じて、Bを好ましくは0.0001%以上、より好ましくは0.0002%以上、Crを好ましくは0.1%以上、より好ましくは0.2%以上の量で含有させることが推奨される。しかしBは、窒素との親和力が強く、B窒化物を形成して固溶窒素量を低減させる。またB窒化物が過剰になると、冷間加工性が低下する。Crも過剰になると変形抵抗を増大させる。したがってこれらの元素を含有させる場合、B量は、好ましくは0.001%以下、より好ましくは0.0008%以下、Cr量は、好ましくは1.5%以下、より好ましくは1%以下である。
(B: 0.0015% or less and / or Cr: 2% or less)
B is an element that improves the deformability of steel by increasing the strength of grain boundaries. Similarly, Cr can improve the deformability of steel. Therefore, if necessary, B is preferably contained in an amount of 0.0001% or more, more preferably 0.0002% or more, and Cr is preferably contained in an amount of 0.1% or more, more preferably 0.2% or more. Recommended. However, B has a strong affinity for nitrogen, and forms B nitride to reduce the amount of dissolved nitrogen. Moreover, when B nitride becomes excessive, cold workability will fall. When Cr is excessive, deformation resistance is increased. Therefore, when these elements are contained, the B content is preferably 0.001% or less, more preferably 0.0008% or less, and the Cr content is preferably 1.5% or less, more preferably 1% or less. .

(Cu:5%以下)
Cuは、鋼部品の強度を向上させる作用を有する。そのため、Cuを好ましくは0.1%以上、好ましくは0.5%以上の量で含有させることが推奨される。しかしCuを過剰に含有させても、その効果は飽和し、また冷間加工性および部品の表面性状を劣化させる。そこで含有させる場合のCu量の上限を5%と定めた。Cu量は、好ましくは4%以下、より好ましくは2%以下である。
(Cu: 5% or less)
Cu has the effect | action which improves the intensity | strength of a steel component. Therefore, it is recommended to contain Cu in an amount of preferably 0.1% or more, preferably 0.5% or more. However, even if Cu is contained excessively, the effect is saturated, and the cold workability and the surface properties of the parts are deteriorated. Therefore, the upper limit of the amount of Cu in the case of inclusion is set to 5%. The amount of Cu is preferably 4% or less, more preferably 2% or less.

(Ni:5%以下および/またはCo:5%以下)
NiおよびCoは、鋼を強靭化させるために有効な元素である。またNiは、Cuが含有される場合に、鋼の表面欠陥を防止する作用も有する。そこでNiを好ましくは0.1%以上、好ましくは0.5%以上、Coを好ましくは0.1%以上、好ましくは0.5%以上の量で含有させることが推奨される。しかしNi量が過剰になっても、その効果は飽和し、また冷間加工性が劣化する。またCo量が過剰になると、鋳造や圧延等の鋼の製造工程で結晶粒界を劣化し、割れが生じ易くなる。そこで含有させる場合の上限を、それぞれ5%と定めた。Ni量は、好ましくは4%以下、より好ましくは2%以下、Co量は、好ましくは4%以下、より好ましくは2%以下である。
(Ni: 5% or less and / or Co: 5% or less)
Ni and Co are effective elements for strengthening steel. Ni also has an action of preventing surface defects of steel when Cu is contained. Therefore, it is recommended that Ni is contained in an amount of preferably 0.1% or more, preferably 0.5% or more, and Co is preferably contained in an amount of 0.1% or more, preferably 0.5% or more. However, even if the amount of Ni becomes excessive, the effect is saturated and the cold workability deteriorates. Further, when the amount of Co is excessive, the grain boundaries are deteriorated in the steel manufacturing process such as casting and rolling, and cracking is likely to occur. Therefore, the upper limit in the case of inclusion is set to 5%. The amount of Ni is preferably 4% or less, more preferably 2% or less, and the amount of Co is preferably 4% or less, more preferably 2% or less.

(Mo:2%以下および/またはW:2%以下)
MoおよびWは、冷間加工後の部品の硬さおよび靱性を向上させる作用を有する。そこでMoを好ましくは0.04%以上、より好ましくは0.1%以上、Wを好ましくは0.04%以上、より好ましくは0.1%以上の量で含有させることが推奨される。しかしこれらの量が過剰になると冷間加工性が劣化する。そこで含有させる場合の上限を、それぞれ2%と定めた。Mo量は、好ましくは1.5%以下、より好ましくは1%以下、W量は、好ましくは1%以下、より好ましくは0.5%以下である。
(Mo: 2% or less and / or W: 2% or less)
Mo and W have the effect of improving the hardness and toughness of the parts after cold working. Therefore, it is recommended that Mo is contained in an amount of preferably 0.04% or more, more preferably 0.1% or more, and W is preferably 0.04% or more, more preferably 0.1% or more. However, when these amounts are excessive, cold workability deteriorates. Therefore, the upper limit in the case of inclusion is set to 2%. The Mo amount is preferably 1.5% or less, more preferably 1% or less, and the W amount is preferably 1% or less, more preferably 0.5% or less.

(Ca:0.05%以下、REM:0.05%以下、Mg:0.02%以下、Li:0.02%以下、Pb:0.1%以下、およびBi:0.1%以下よりなる群から選ばれる少なくとも1種)
Ca、REM、Mg、Li、PbおよびBiは、鋼の被削性向上に寄与する元素である。またCa、REM、MgおよびLiは、MnS等の硫化物系介在物を球状化させ、鋼の靱性を高める作用も有する。Caを好ましくは0.005%以上、より好ましくは0.01%以上、REMを好ましくは0.005%以上、より好ましくは0.01%以上、Mgを好ましくは0.005%以上、より好ましくは0.008%以上、Liを好ましくは0.001%以上、より好ましくは0.005%以上、Pbを好ましくは0.005%以上、より好ましくは0.01%以上、およびBiを好ましくは0.005%以上、より好ましくは0.01%以上の量で含有させることが推奨される。
(Ca: 0.05% or less, REM: 0.05% or less, Mg: 0.02% or less, Li: 0.02% or less, Pb: 0.1% or less, and Bi: 0.1% or less At least one selected from the group consisting of
Ca, REM, Mg, Li, Pb and Bi are elements that contribute to improving the machinability of steel. Ca, REM, Mg, and Li also have the effect of increasing the toughness of steel by spheroidizing sulfide inclusions such as MnS. Ca is preferably 0.005% or more, more preferably 0.01% or more, REM is preferably 0.005% or more, more preferably 0.01% or more, and Mg is preferably 0.005% or more, more preferably Is 0.008% or more, Li is preferably 0.001% or more, more preferably 0.005% or more, Pb is preferably 0.005% or more, more preferably 0.01% or more, and Bi is preferably It is recommended that the content be 0.005% or more, more preferably 0.01% or more.

しかしこれらの元素量が過剰でも、その効果が飽和する。そこで含有させる場合の上限量を、それぞれ次のように定めた。Ca量は、好ましくは0.04%以下、より好ましくは0.02%以下、REM量は、好ましくは0.02%以下、より好ましくは0.01%以下、Mg量は、好ましくは0.015%以下、より好ましくは0.01%以下、Li量は、好ましくは0.015%以下、より好ましくは0.01%以下、Pb量は、好ましくは0.08%以下、より好ましくは0.06%以下、およびBi量は、好ましくは0.09%以下、より好ましくは0.08%以下である。   However, even if the amount of these elements is excessive, the effect is saturated. Then, the upper limit amount in the case of making it contain was defined as follows, respectively. The Ca amount is preferably 0.04% or less, more preferably 0.02% or less, the REM amount is preferably 0.02% or less, more preferably 0.01% or less, and the Mg amount is preferably 0.00. 015% or less, more preferably 0.01% or less, the Li amount is preferably 0.015% or less, more preferably 0.01% or less, and the Pb amount is preferably 0.08% or less, more preferably 0. 0.06% or less, and the Bi content is preferably 0.09% or less, and more preferably 0.08% or less.

次に本発明の高速冷間加工用鋼の製造方法について説明する。本発明の鋼は、固溶窒素を0.06%以上の量で含有することを特徴とする。この固溶窒素量を確保するためには、(i)鋼中の全窒素量を増大すること、および(ii)鋼を所定温度以上に加熱にすることにより、固溶窒素量を高めることなどが有効である。   Next, the manufacturing method of the steel for high speed cold work of this invention is demonstrated. The steel of the present invention is characterized by containing solute nitrogen in an amount of 0.06% or more. In order to ensure this amount of dissolved nitrogen, (i) increasing the total amount of nitrogen in the steel, and (ii) increasing the amount of dissolved nitrogen by heating the steel to a predetermined temperature or higher. Is effective.

まず鋼中の全窒素量を増大させることから説明する。鋼がAl等の窒素との親和力が強い元素を含有している場合、窒素はAl等と窒化物を形成する結果、固溶窒素量が低減する。しかし鋼中の全窒素量が多ければ、Al等が全て窒素と窒化物を形成したとしても、充分な固溶窒素量を確保できる。より具体的には、下記式(1)を満たすような全窒素量を確保することにより、0.006%以上の固溶窒素量を確保できる:
[N]−(27[Al]/14+47.9[Ti]/14+92.9[Nb]/14+50.9[V]/14+91.2[Zr]/14+10.8[B]/14+180.9[Ta]/14+178.5[Hf]/14)≧0.006%・・・・(1)式
[上記式(1)中、[ ]は各元素の鋼中の全含有量(質量%)を表す。]
なお上記式(1)中の係数は、窒素(N)との親和力が強い元素(例えばAl)の原子量を窒素(N)の原子量で割ったものである。
First, it will be explained from increasing the total amount of nitrogen in the steel. When the steel contains an element having a strong affinity for nitrogen such as Al, nitrogen forms a nitride with Al or the like, resulting in a decrease in the amount of dissolved nitrogen. However, if the total amount of nitrogen in the steel is large, a sufficient amount of solute nitrogen can be secured even if Al and the like all form nitrogen and nitride. More specifically, by securing a total nitrogen amount that satisfies the following formula (1), a solid solution nitrogen amount of 0.006% or more can be secured:
[N]-(27 [Al] /14+47.9 [Ti] /14+92.9 [Nb] /14+50.9 [V] /14+91.2 [Zr] /14+10.8 [B] /14+180.9 [Ta ] /14+178.5 [Hf] / 14) ≧ 0.006% (1) Formula [In the above formula (1), [] represents the total content (mass%) of each element in steel. . ]
The coefficient in the above formula (1) is obtained by dividing the atomic weight of an element (for example, Al) having a strong affinity with nitrogen (N) by the atomic weight of nitrogen (N).

また鋼中の化学成分量が上記式(1)を満たさず、Al等の窒化物が多量に形成されると、充分な固溶窒素量を確保できなくなる場合は、熱間圧延等で形成した窒化物が固溶体に溶解する温度に、鋼を加熱保持した後、急冷して、その析出を抑制する固溶化熱処理により、固溶窒素量を増大させることができる。具体的には鋼をAc点+30℃以上の温度に加熱した後、0.5℃/s以上の冷却速度で500℃以下まで冷却することにより、鋼中の固溶窒素量を増大させることができる。 In addition, when the amount of chemical components in the steel does not satisfy the above formula (1) and a large amount of nitride such as Al is formed, a sufficient amount of dissolved nitrogen cannot be ensured. After the steel is heated and held at a temperature at which the nitride dissolves in the solid solution, the solid solution heat treatment that suppresses the precipitation by quenching the steel can increase the amount of solid solution nitrogen. Specifically, after heating the steel to a temperature of Ac 3 points + 30 ° C. or higher and then cooling to 500 ° C. or lower at a cooling rate of 0.5 ° C./s or higher, the amount of solid solution nitrogen in the steel is increased. Can do.

固溶窒素量を増大させるために、加熱温度は、好ましくはAc点+30℃以上、より好ましくはAc点+50℃以上である。加熱保持時間は、好ましくは10分以上、より好ましくは30分以上である。但し製造コストの観点から、加熱温度は、好ましくはAc点+400℃以下、より好ましくはAc点+300℃以下である。また、加熱保持時間は、好ましくは2時間30分以下、より好ましくは1時間30分以下である。 In order to increase the amount of dissolved nitrogen, the heating temperature is preferably Ac 3 points + 30 ° C. or higher, more preferably Ac 3 points + 50 ° C. or higher. The heating and holding time is preferably 10 minutes or longer, more preferably 30 minutes or longer. However, from the viewpoint of production cost, the heating temperature is preferably Ac 3 points + 400 ° C. or lower, more preferably Ac 3 points + 300 ° C. or lower. The heating and holding time is preferably 2 hours 30 minutes or less, more preferably 1 hour 30 minutes or less.

この加熱保持中に、適宜、伸線、圧延またはプレスなどの熱間加工を行っても良い。加熱保持後に、好ましくは0.5℃/s以上、より好ましくは1℃/s以上、さらに好ましくは5℃/s以上の冷却速度で、固溶窒素が安定して存在できる500℃以下まで、好ましくは450℃以下まで冷却することにより、窒化物の析出を抑制して、充分な固溶窒素量を確保できる。   During this heating and holding, hot working such as wire drawing, rolling, or pressing may be performed as appropriate. After heating and holding, preferably at a cooling rate of 0.5 ° C./s or more, more preferably 1 ° C./s or more, more preferably 5 ° C./s or more, up to 500 ° C. or less where solid solution nitrogen can stably exist Preferably, by cooling to 450 ° C. or lower, precipitation of nitrides can be suppressed and a sufficient amount of dissolved nitrogen can be secured.

本発明は、上記化学成分組成および固溶窒素を含有する鋼を、高速冷間加工に供することを特徴の1つとする。本発明の鋼は固溶窒素を比較的多量に含有するが、それにもかかわらず、良好な冷間加工性を維持するためには、本発明の鋼を、好ましくは100/秒以上、より好ましくは120/秒以上、さらに好ましくは140/秒以上の歪み速度で冷間加工することが推奨される。一方、歪み速度が速すぎると断熱的な温度上昇が生じ、割れが発生しやすくなるため、歪み速度の上限値は、好ましくは300/秒、より好ましくは280/秒、さらに好ましくは260/秒である。   One feature of the present invention is that the steel containing the chemical composition and solute nitrogen is subjected to high-speed cold working. The steel of the present invention contains a relatively large amount of solute nitrogen. Nevertheless, in order to maintain good cold workability, the steel of the present invention is preferably 100 / second or more, more preferably Is recommended to be cold worked at a strain rate of 120 / sec or more, more preferably 140 / sec or more. On the other hand, if the strain rate is too high, an adiabatic temperature rise occurs and cracking tends to occur. Therefore, the upper limit value of the strain rate is preferably 300 / second, more preferably 280 / second, and even more preferably 260 / second. It is.

また加工の際の温度も冷間加工性に影響するため、加工温度の上限値は、好ましくは200℃、より好ましくは180℃、さらに好ましくは160℃に設定することが推奨される。加工温度が高すぎると変形中に動的歪み時効が発生し、変形抵抗が上昇してしまうからである。一方、冷間加工は通常、室温で実施されるが、0℃を下回ると温度依存性により変形抵抗が逆に高くなってしまうため、加工温度の好ましい下限は0℃とする。なお加工温度は、加工の際の雰囲気温度を指す。   Further, since the temperature at the time of processing also affects the cold workability, it is recommended that the upper limit value of the processing temperature is preferably set to 200 ° C, more preferably 180 ° C, and even more preferably 160 ° C. This is because if the processing temperature is too high, dynamic strain aging occurs during deformation and the deformation resistance increases. On the other hand, cold working is usually performed at room temperature. However, if the temperature is lower than 0 ° C., the deformation resistance becomes higher due to temperature dependence, and therefore the preferred lower limit of the working temperature is 0 ° C. The processing temperature refers to the atmospheric temperature during processing.

以上のようにして製造される鋼材(例えば線材や棒鋼)は、その後高速で冷間加工され、ボルトやナット等の部品、その他の機械部品となる。ここでの冷間加工方法には、冷間鍛造、冷間圧造、冷間転造、冷間打抜き等の冷間加工が含まれる。また、部品の加工に必要であれば、伸線、圧延等の加工を行ってもよい。   The steel material (for example, wire rod or bar) manufactured as described above is then cold worked at high speed to become parts such as bolts and nuts and other machine parts. The cold working method here includes cold working such as cold forging, cold forging, cold rolling, cold punching and the like. Further, if necessary for the processing of the parts, processing such as wire drawing and rolling may be performed.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. Of course, any of these is also included in the technical scope of the present invention.

まず、表1〜表3に記載の化学成分組成を有する鋼を、転炉により溶製し、連続鋳造で鋼片とした後、φ12mmの線材に圧延した。   First, steels having the chemical composition shown in Tables 1 to 3 were melted by a converter, made into steel pieces by continuous casting, and then rolled into a φ12 mm wire.

得られた線材に対して、表4に示される条件の熱処理を行った。表4に示される条件の加熱処理の後、10分以上、好ましくは30分以上の保持時間を設けることが望ましい。次いで、上記の熱処理を施した線材の中心部から、φ4mm×長さ6mmの試験片を切り出した。なお、表1〜表3には、各試験片が上記(1)式を満たすか否かを示しており、(1)式を満たす場合には「○」、(1)式を満たさない場合には「×」を付している。また、表中、「固溶N」は、固溶窒素量を示し、「N」は、全窒素量を示す。   The obtained wire was subjected to heat treatment under the conditions shown in Table 4. After the heat treatment under the conditions shown in Table 4, it is desirable to provide a holding time of 10 minutes or longer, preferably 30 minutes or longer. Next, a test piece having a diameter of 4 mm and a length of 6 mm was cut out from the center of the wire subjected to the heat treatment. Tables 1 to 3 show whether or not each test piece satisfies the above formula (1). When the formula (1) is satisfied, “◯”, when the formula (1) is not satisfied Is marked with “x”. Further, in the table, “solid solution N” indicates the amount of solid solution nitrogen, and “N” indicates the total amount of nitrogen.

Figure 2008163410
Figure 2008163410

Figure 2008163410
Figure 2008163410

Figure 2008163410
Figure 2008163410

Figure 2008163410
Figure 2008163410

次に、表1〜表3に記載の試験片を、歪み速度:0.001〜240/秒、加工温度:20〜400℃、圧縮率:20〜80%の加工条件で、容量200kNの加工フォーマスター試験装置を用いて鍛造し、部品に加工した。歪み速度は、加工中(塑性変形中)の歪み速度の平均値を用いた。得られた部品について、観察倍率20倍での実態顕微鏡で表面を観察して、割れの有無を確認した。各部品の加工条件、割れの有無および変形抵抗を表5〜表7に示す。   Next, the test pieces described in Tables 1 to 3 were processed at a capacity of 200 kN under processing conditions of strain rate: 0.001 to 240 / second, processing temperature: 20 to 400 ° C., and compression rate: 20 to 80%. Forged using a Formaster tester and processed into parts. As the strain rate, an average value of strain rates during processing (plastic deformation) was used. About the obtained component, the surface was observed with the actual condition microscope with an observation magnification of 20 times, and the presence or absence of the crack was confirmed. Tables 5 to 7 show the processing conditions, presence / absence of cracks, and deformation resistance of each part.

また、荷重:1000g、測定位置:試験片断面のD/4中央部(D:部品直径)、および測定回数:5回の条件で、ビッカース硬さ試験機を用いて、部品のビッカース硬さ(Hv)を測定した。各部品の硬さ(Hv)を表5〜表7に示す。   Also, using a Vickers hardness tester under the conditions of load: 1000 g, measurement position: D / 4 center of test piece cross section (D: component diameter), and number of measurements: 5 times (Vickers hardness ( Hv) was measured. Tables 5 to 7 show the hardness (Hv) of each part.

Figure 2008163410
Figure 2008163410

Figure 2008163410
Figure 2008163410

Figure 2008163410
Figure 2008163410

本実施例では、部品に割れが無く、部品硬さに対して鋼の変形抵抗が低い鋼(具体的には下記(2)式を満たすもの)を、冷間加工性に優れると判定した。   In this example, it was determined that steel having no cracks in the part and having low deformation resistance of steel with respect to the part hardness (specifically, satisfying the following formula (2)) is excellent in cold workability.

また部品のビッカース硬さ(Hv)が240以上である部品を、強度に優れると判定した。なお、表5〜表7には、各試験片が下記(2)式を満たすか否かを示しており、(2)式を満たす場合には「○」、(1)式を満たさない場合には「×」を付している。
H=(DR+1000)/6・・・(2)式
但し、H:硬さ(Hv)、DR:変形抵抗(MPa)
In addition, it was determined that a component having a Vickers hardness (Hv) of 240 or more is excellent in strength. Tables 5 to 7 show whether or not each test piece satisfies the following formula (2). When the formula (2) is satisfied, “◯”, when the formula (1) is not satisfied Is marked with “x”.
H = (DR + 1000) / 6 (2) where H: hardness (Hv), DR: deformation resistance (MPa)

表5〜7から、好ましい加工条件(歪み速度および加工温度)において、本発明で規定する化学成分量および固溶窒素量の要件を満たす鋼は、冷間加工性に優れており、これから得られた部品は、強度に優れていることが分かる。これに対して本発明で規定する要件を満たさないものは、以下に記載するように、冷間加工性または部品強度が劣っている。   From Tables 5 to 7, under preferable processing conditions (strain rate and processing temperature), the steel satisfying the requirements of the amount of chemical components and the amount of dissolved nitrogen specified in the present invention is excellent in cold workability and obtained from this. It can be seen that the parts are excellent in strength. On the other hand, those that do not satisfy the requirements defined in the present invention are inferior in cold workability or component strength, as described below.

部品No.1(鋼No.1A)は、炭素量が少ないため、硬さ(Hv)が160未満であり、強度が不充分であった。
部品No.6(鋼No.1F)は、炭素量が多いため、部品に割れが発生した。
部品No.7(鋼No.1G)は、Si量が少ないため、部品に割れが発生した。
Part No. Since 1 (steel No. 1A) has a small amount of carbon, the hardness (Hv) is less than 160 and the strength is insufficient.
Part No. No. 6 (steel No. 1F) had a large amount of carbon, and therefore cracked in the parts.
Part No. Since No. 7 (steel No. 1G) had a small amount of Si, cracks occurred in the parts.

部品No.14(鋼No.1N)は、Si量が多いため、部品に割れが発生した。
部品No.15(鋼No.1O)は、Mn量が少ないため、部品に割れが発生した。
部品No.24(鋼No.1X)は、Mn量が多いため、部品に割れが発生した。
Part No. Since No. 14 (steel No. 1N) had a large amount of Si, cracks occurred in the parts.
Part No. Since No. 15 (steel No. 1O) had a small amount of Mn, cracks occurred in the parts.
Part No. Since No. 24 (steel No. 1X) had a large amount of Mn, cracks occurred in the parts.

部品No.25および26(鋼No.1Yおよび1Z)は、P量が多いため、部品に割れが発生した。
部品No.27および28(鋼No.2Aおよび2B)は、S量が多いため、部品に割れが発生した。
部品No.29(鋼No.2C)は、固溶窒素量が少ないため、変形抵抗(MPa)/硬さ(Hv)が2.4を超えており、部品硬さに対して変形抵抗が大きかった。
Part No. Since 25 and 26 (steel No. 1Y and 1Z) had a large amount of P, cracks occurred in the parts.
Part No. Since Nos. 27 and 28 (steel Nos. 2A and 2B) had a large amount of S, cracks occurred in the parts.
Part No. Since 29 (steel No. 2C) has a small amount of dissolved nitrogen, the deformation resistance (MPa) / hardness (Hv) exceeded 2.4, and the deformation resistance was large relative to the component hardness.

部品No.31〜34(材料No.31、鋼No.2E)は、歪み速度が遅いため、部品に割れが発生した。
部品No.37〜38(鋼No.2F〜G)は、加工温度が高いため、部品に割れが発生した。
Part No. Since 31-34 (material No. 31, steel No. 2E) had a slow strain rate, the crack generate | occur | produced in components.
Part No. Since 37-38 (steel No. 2F-G) had high processing temperature, the crack generate | occur | produced in components.

部品No.42(鋼No.2K)は、全窒素量が多いため、部品に割れが発生した。
部品No.77(鋼No.3T−1)、部品No.81および82(鋼No.3U−1および2)、部品No.85(鋼No.3V−1)、部品No.89および90(鋼No.3W−1および2)、部品No.93および94(鋼No.3X−1および2)、部品No.97(鋼No.3Y−1)、部品No.101および102(鋼No.3Z−1および2)、並びに部品No.105(鋼No.4A−1)は、固溶窒素量が少ないため、上記(2)式を満たさず、部品硬さに対して変形抵抗が大きかった。
Part No. Since 42 (steel No. 2K) has a large amount of total nitrogen, cracks occurred in the parts.
Part No. 77 (steel No. 3T-1), part no. 81 and 82 (steel No. 3U-1 and 2), part no. 85 (steel No. 3V-1), part no. 89 and 90 (steel No. 3W-1 and 2), part no. 93 and 94 (steel No. 3X-1 and 2), part no. 97 (steel No. 3Y-1), part no. 101 and 102 (steel No. 3Z-1 and 2) and part no. Since 105 (steel No. 4A-1) had a small amount of dissolved nitrogen, the above formula (2) was not satisfied, and the deformation resistance was large with respect to the component hardness.

Claims (14)

C:0.03〜0.15%(質量%の意味、以下同じ)、
Si:0.005〜0.6%、
Mn:0.05〜2%、
P:0.05%以下(0%を含まない)、
S:0.05%以下(0%を含まない)、および、
N:0.04%以下(0%を含まない)、
を含有し、残部は鉄および不可避的不純物からなり、
鋼中の固溶窒素量が0.006%以上であることを特徴とする高速冷間加工用鋼。
C: 0.03 to 0.15% (meaning mass%, the same shall apply hereinafter)
Si: 0.005 to 0.6%,
Mn: 0.05-2%
P: 0.05% or less (excluding 0%),
S: 0.05% or less (excluding 0%), and
N: 0.04% or less (excluding 0%),
The balance consists of iron and inevitable impurities,
A steel for high-speed cold working characterized in that the amount of dissolved nitrogen in the steel is 0.006% or more.
N:0.007%以上を含有する請求項1に記載の高速冷間加工用鋼。   N: The steel for high-speed cold work of Claim 1 containing 0.007% or more. さらに、Al:0.1%以下(0%を含まない)を含有する請求項1に記載の高速冷間加工用鋼。   Furthermore, steel for high-speed cold work of Claim 1 containing Al: 0.1% or less (excluding 0%). さらに、
Zr:0.2%以下(0%を含まない)、
Ti:0.1%以下(0%を含まない)、
Nb:0.1%以下(0%を含まない)、
V:0.5%以下(0%を含まない)、
Ta:0.1%以下(0%を含まない)、および、
Hf:0.1%以下(0%を含まない)
よりなる群から選ばれる少なくとも1種を含有する請求項1ないし請求項3のいずれかに記載の高速冷間加工用鋼。
further,
Zr: 0.2% or less (excluding 0%),
Ti: 0.1% or less (excluding 0%),
Nb: 0.1% or less (excluding 0%),
V: 0.5% or less (excluding 0%),
Ta: 0.1% or less (excluding 0%), and
Hf: 0.1% or less (excluding 0%)
The steel for high-speed cold work according to any one of claims 1 to 3, comprising at least one selected from the group consisting of:
さらにB:0.0015%以下(0%を含まない)および/またはCr:2%以下(0%を含まない)を含有する請求項1ないし請求項4のいずれかに記載の高速冷間加工用鋼。   The high-speed cold working according to any one of claims 1 to 4, further comprising B: 0.0015% or less (excluding 0%) and / or Cr: 2% or less (not including 0%). Steel. 下記(1)式を満足する請求項1ないし請求項5のいずれかに記載の高速冷間加工用鋼。
[N]−(27[Al]/14+47.9[Ti]/14+92.9[Nb]/14+50.9[V]/14+91.2[Zr]/14+10.8[B]/14+180.9[Ta]/14+178.5[Hf]/14)≧0.006・・・・(1)式
[式(1)中、[ ]は各元素の鋼中の全含有量(質量%)を表す。]
The steel for high speed cold work according to any one of claims 1 to 5, which satisfies the following formula (1).
[N]-(27 [Al] /14+47.9 [Ti] /14+92.9 [Nb] /14+50.9 [V] /14+91.2 [Zr] /14+10.8 [B] /14+180.9 [Ta ] /14+178.5 [Hf] / 14) ≧ 0.006 (1) Formula [In Formula (1), [] represents the total content (mass%) of each element in steel. ]
さらに、Cu:5%以下(0%を含まない)を含有する請求項1ないし請求項6のいずれかに記載の高速冷間加工用鋼。   The steel for high-speed cold working according to any one of claims 1 to 6, further comprising Cu: 5% or less (not including 0%). さらに、Ni:5%以下(0%を含まない)および/またはCo:5%以下(0%を含まない)を含有する請求項1ないし請求項7のいずれかに記載の高速冷間加工用鋼。   Furthermore, Ni: 5% or less (not including 0%) and / or Co: 5% or less (not including 0%) for high-speed cold working according to any one of claims 1 to 7 steel. さらに、Mo:2%以下(0%を含まない)および/またはW:2%以下(0%を含まない)を含有する請求項1ないし請求項8のいずれかに記載の高速冷間加工用鋼。   Further, Mo: 2% or less (not including 0%) and / or W: 2% or less (not including 0%), for high-speed cold working according to any one of claims 1 to 8 steel. さらに、
Ca:0.05%以下(0%を含まない)、
希土類元素:0.05%以下(0%を含まない)、
Mg:0.02%以下(0%を含まない)、
Li:0.02%以下(0%を含まない)、
Pb:0.1%以下(0%を含まない)、および、
Bi:0.1%以下(0%を含まない)
よりなる群から選ばれる少なくとも1種を含有する請求項1ないし請求項9のいずれかに記載の高速冷間加工用鋼。
further,
Ca: 0.05% or less (excluding 0%),
Rare earth element: 0.05% or less (excluding 0%),
Mg: 0.02% or less (excluding 0%),
Li: 0.02% or less (excluding 0%),
Pb: 0.1% or less (excluding 0%), and
Bi: 0.1% or less (excluding 0%)
The steel for high-speed cold work according to any one of claims 1 to 9, comprising at least one selected from the group consisting of:
請求項1ないし請求項10のいずれかに記載の高速冷間加工用鋼を加工温度200℃以下で高速冷間加工することを特徴とする高速冷間加工部品の製造方法。   A method for producing a high-speed cold-worked part, comprising high-speed cold-working the high-speed cold-working steel according to any one of claims 1 to 10 at a working temperature of 200 ° C or lower. 請求項1ないし請求項10のいずれかに記載の高速冷間加工用鋼を歪み速度が100/秒以上で高速冷間加工することを特徴とする高速冷間加工部品の製造方法。   A method for producing a high-speed cold-worked part, comprising high-speed cold-working the steel for high-speed cold work according to any one of claims 1 to 10 at a strain rate of 100 / sec or more. 請求項1ないし請求項10のいずれかに記載の成分組成を有する鋼材を、Ac点+30℃以上の温度に加熱し、Ac点+30℃以上の温度領域で熱間加工した後、0.5℃/s以上の冷却速度で500℃以下まで冷却することを特徴とする高速冷間加工用鋼の製造方法。 After the steel having the component composition according to any one of claims 1 to 10, and heated to Ac 3 point + 30 ° C. or higher temperatures, and hot working at Ac 3 point + 30 ° C. or higher temperature range, 0. A method for producing steel for high-speed cold working, characterized by cooling to 500 ° C. or lower at a cooling rate of 5 ° C./s or higher. 請求項1ないし請求項10のいずれかに記載の成分組成を有する鋼材を、Ac点+30℃以上の温度に加熱した後、0.5℃/s以上の冷却速度で500℃以下まで冷却することを特徴とする高速冷間加工用鋼の製造方法。 The steel material having the component composition according to any one of claims 1 to 10 is heated to a temperature of Ac 3 point + 30 ° C or higher and then cooled to 500 ° C or lower at a cooling rate of 0.5 ° C / s or higher. A method for producing steel for high-speed cold working.
JP2006355497A 2006-12-28 2006-12-28 Steel for high-speed cold work, method for producing the same, and method for producing high-speed cold-worked parts Active JP4295314B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006355497A JP4295314B2 (en) 2006-12-28 2006-12-28 Steel for high-speed cold work, method for producing the same, and method for producing high-speed cold-worked parts
CNA200710187044XA CN101210298A (en) 2006-12-28 2007-11-19 Steel for high-speed cold working and method for production thereof, and high-speed cold working part and method for production thereof
US11/950,715 US20080156403A1 (en) 2006-12-28 2007-12-05 Steel for high-speed cold working and method for production thereof, and part formed by high-speed cold working and method for production thereof
EP07023882A EP1939309A1 (en) 2006-12-28 2007-12-10 Steel for high-speed cold working and method for production thereof, and part formed by high-speed cold working and method for production thereof
KR1020070138127A KR20080063137A (en) 2006-12-28 2007-12-27 Steel for high-speed cold working and method for production thereof, and part formed by high-speed cold working and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355497A JP4295314B2 (en) 2006-12-28 2006-12-28 Steel for high-speed cold work, method for producing the same, and method for producing high-speed cold-worked parts

Publications (2)

Publication Number Publication Date
JP2008163410A true JP2008163410A (en) 2008-07-17
JP4295314B2 JP4295314B2 (en) 2009-07-15

Family

ID=39610550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355497A Active JP4295314B2 (en) 2006-12-28 2006-12-28 Steel for high-speed cold work, method for producing the same, and method for producing high-speed cold-worked parts

Country Status (2)

Country Link
JP (1) JP4295314B2 (en)
CN (1) CN101210298A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260983A (en) * 2007-04-10 2008-10-30 Kobe Steel Ltd Steel for high speed cold working, high speed cold-worked component, and method for producing the same
JP2010185102A (en) * 2009-02-12 2010-08-26 Kobe Steel Ltd Steel for machine structure, method for producing the same and component for machine structure
JP2010185103A (en) * 2009-02-12 2010-08-26 Kobe Steel Ltd Steel for machine structure for cold working, method for producing the same, and component for machine structure
JP2010188369A (en) * 2009-02-17 2010-09-02 Kobe Steel Ltd Method of manufacturing machine part using cold forging and method of cold forging the same
JP2010202904A (en) * 2009-03-02 2010-09-16 Kobe Steel Ltd Steel for machine structure, method for manufacturing the same, and component for machine structure
JP2010280963A (en) * 2009-06-05 2010-12-16 Kobe Steel Ltd Steel for cold working, method for producing steel for cold working, method for producing component for machine structure, and component for machine structure
JP2011115815A (en) * 2009-12-02 2011-06-16 Kobe Steel Ltd Method for manufacturing machine part
WO2011016676A3 (en) * 2009-08-04 2011-06-30 Posco Non-heat treated rolled steel and drawn wire rod with excellent toughness, and method for manufacturing the same
JP2014503684A (en) * 2010-11-19 2014-02-13 ポスコ Cold drawn high toughness non-heat treated wire and method for producing the same
KR20220080578A (en) * 2020-12-07 2022-06-14 주식회사 포스코 Wire rod, steel wire with improved impact toughness and formability, and their manufacturing method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101591208B1 (en) 2011-09-22 2016-02-02 신닛테츠스미킨 카부시키카이샤 Medium carbon steel sheet for cold working, and method for producing same
JP2016020537A (en) * 2014-06-16 2016-02-04 株式会社神戸製鋼所 Steel for machine structural use for cold working and manufacturing method therefor
CN104195445A (en) * 2014-09-02 2014-12-10 青岛永通电梯工程有限公司 Alloy steel
CN105296862A (en) * 2015-02-10 2016-02-03 苏州科胜仓储物流设备有限公司 High-strength antiseptic steel plate for shuttle car shelf and machining process thereof
CN104651728A (en) * 2015-02-10 2015-05-27 苏州科胜仓储物流设备有限公司 Anticorrosion steel sheet for storing equipment and preparation method of steel sheet
CN104789902A (en) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 High-strength steel plate for steel platform and forging technology thereof
CN104674138A (en) * 2015-03-20 2015-06-03 苏州科胜仓储物流设备有限公司 Friction-resistant steel plate for narrow path type goods shelf and thermal treatment technology of friction-resistant steel plate
CN104789890A (en) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 High-strength steel sheet with zinc-nickel alloy coating and heat treatment process of high-strength steel sheet
CN104789888A (en) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 High strength steel sheet for middle-sized storage rack and forging technology of high strength steel sheet
CN104789903A (en) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 High strength steel sheet for heavy cross beam storage rack and heat treatment technology of high strength steel sheet
CN104789904A (en) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 High strength steel sheet for light mold shelf and heat treatment technology of high strength steel sheet
CN104789886A (en) * 2015-03-20 2015-07-22 苏州科胜仓储物流设备有限公司 Corrosion-resistant steel for storage facility and preparation method thereof
KR102010684B1 (en) * 2015-03-31 2019-08-13 닛폰세이테츠 가부시키가이샤 Hot Rolled Bar Seals, Parts and Manufacturing Method of Hot Rolled Bar Seals
CN104789879A (en) * 2015-05-06 2015-07-22 大连永宝特钢工具有限公司 Wear-resisting high strength high-speed tool steel and preparation method thereof
CN105950994A (en) * 2016-07-11 2016-09-21 吴用镜 Copper-nickel alloy steel for drill rod
CN106435372A (en) * 2016-12-15 2017-02-22 苏州科胜仓储物流设备有限公司 High-strength steel plate for shelving crosspieces and thermal treatment method thereof
CN106756516B (en) * 2017-02-07 2018-06-08 和县隆盛精密机械有限公司 A kind of alloy-steel casting and its casting technique suitable for mechanical arm clamping screw
CN107587069B (en) * 2017-08-25 2019-03-08 武汉钢铁有限公司 A kind of high-intensity and high-tenacity bolt steel and production method
CN108677084B (en) * 2018-04-08 2020-11-03 敬业钢铁有限公司 Production method of low-inclusion clean steel
CN111286682B (en) * 2020-03-18 2021-02-02 温岭市云福热处理厂 Low-alloy ultrahigh-strength steel and heat treatment process thereof
CN112359288A (en) * 2020-11-16 2021-02-12 广东理标信息科技有限公司 Production process of strong magnetic bolt
CN115747674B (en) * 2022-11-28 2023-09-29 南京工程学院 Low-cost hydrogen embrittlement-resistant non-quenched and tempered steel for direct cutting of oversized section, and preparation method and application thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260983A (en) * 2007-04-10 2008-10-30 Kobe Steel Ltd Steel for high speed cold working, high speed cold-worked component, and method for producing the same
JP2010185102A (en) * 2009-02-12 2010-08-26 Kobe Steel Ltd Steel for machine structure, method for producing the same and component for machine structure
JP2010185103A (en) * 2009-02-12 2010-08-26 Kobe Steel Ltd Steel for machine structure for cold working, method for producing the same, and component for machine structure
JP2010188369A (en) * 2009-02-17 2010-09-02 Kobe Steel Ltd Method of manufacturing machine part using cold forging and method of cold forging the same
JP2010202904A (en) * 2009-03-02 2010-09-16 Kobe Steel Ltd Steel for machine structure, method for manufacturing the same, and component for machine structure
JP2010280963A (en) * 2009-06-05 2010-12-16 Kobe Steel Ltd Steel for cold working, method for producing steel for cold working, method for producing component for machine structure, and component for machine structure
US8715429B2 (en) 2009-08-04 2014-05-06 Posco Non-heat treated rolled steel and drawn wire rod with excellent toughness, and method for manufacturing the same
WO2011016676A3 (en) * 2009-08-04 2011-06-30 Posco Non-heat treated rolled steel and drawn wire rod with excellent toughness, and method for manufacturing the same
JP2013501147A (en) * 2009-08-04 2013-01-10 ポスコ High toughness non-tempered rolled steel and method for producing the same
JP2011115815A (en) * 2009-12-02 2011-06-16 Kobe Steel Ltd Method for manufacturing machine part
JP2014503684A (en) * 2010-11-19 2014-02-13 ポスコ Cold drawn high toughness non-heat treated wire and method for producing the same
US9394580B2 (en) 2010-11-19 2016-07-19 Posco High-toughness cold-drawn non-heat-treated wire rod, and method for manufacturing same
KR20220080578A (en) * 2020-12-07 2022-06-14 주식회사 포스코 Wire rod, steel wire with improved impact toughness and formability, and their manufacturing method
KR102448751B1 (en) 2020-12-07 2022-09-30 주식회사 포스코 Wire rod, steel wire with improved impact toughness and formability, and their manufacturing method

Also Published As

Publication number Publication date
JP4295314B2 (en) 2009-07-15
CN101210298A (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP4295314B2 (en) Steel for high-speed cold work, method for producing the same, and method for producing high-speed cold-worked parts
JP4193998B1 (en) Machine structural steel excellent in machinability and manufacturing method thereof
JP6058439B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after processing
JP5121282B2 (en) Steel for high-speed cold working and its manufacturing method, and high-speed cold-worked component and its manufacturing method
WO2012046779A1 (en) Case hardened steel and method for producing the same
JP5655366B2 (en) Bainite steel
JP4986203B2 (en) BN free-cutting steel with excellent tool life
JP2009068057A (en) Steel sheet for nitrocarburizing treatment and manufacturing method therefor
JP6284813B2 (en) Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing
JP5297145B2 (en) Steel for machine structure and cold forged parts with excellent cold forgeability
JPWO2021124511A1 (en) Martensitic stainless steel for high hardness and high corrosion resistance with excellent cold workability and its manufacturing method
JP6058508B2 (en) Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing
KR101657792B1 (en) Steel material for graphitization and graphite steel with excellent machinability
JP4909247B2 (en) Steel and cold-worked parts with excellent cold workability
JP4113453B2 (en) Bolt Steel Formed from Bonded Film with Excellent Delayed Fracture Resistance and Bolt Manufacturing Method
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP5314509B2 (en) Steel for machine structure
JP5363882B2 (en) Cold-working steel, cold-working steel manufacturing method, machine structural component manufacturing method, and machine structural component
JP2012197513A (en) Bn free cutting steel excellent in service life as tool
JP4934481B2 (en) Steel for high-speed cold working, high-speed cold-worked parts, and manufacturing method thereof
JP5385574B2 (en) Machine structural steels and cold forged steel parts with excellent cold forgeability
JP5379511B2 (en) Machine structural steel and cold work steel parts with excellent cold workability
JP2017197816A (en) Hot rolled steel sheet excellent in cold workability and hardness after being cold-worked
JP4900251B2 (en) Manufacturing method of nitrided parts
JP5286217B2 (en) Machine structural steel with excellent hot workability, cold workability, and hardness after cold work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Effective date: 20090210

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090407

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130417

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130417

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20140417