JP4113453B2 - Bolt Steel Formed from Bonded Film with Excellent Delayed Fracture Resistance and Bolt Manufacturing Method - Google Patents

Bolt Steel Formed from Bonded Film with Excellent Delayed Fracture Resistance and Bolt Manufacturing Method Download PDF

Info

Publication number
JP4113453B2
JP4113453B2 JP2003103068A JP2003103068A JP4113453B2 JP 4113453 B2 JP4113453 B2 JP 4113453B2 JP 2003103068 A JP2003103068 A JP 2003103068A JP 2003103068 A JP2003103068 A JP 2003103068A JP 4113453 B2 JP4113453 B2 JP 4113453B2
Authority
JP
Japan
Prior art keywords
bolt
delayed fracture
wire
fracture resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003103068A
Other languages
Japanese (ja)
Other versions
JP2004307932A (en
Inventor
利光 木村
和良 木村
耕一 秋山
浩二 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nissan Motor Co Ltd
Original Assignee
Daido Steel Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nissan Motor Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003103068A priority Critical patent/JP4113453B2/en
Publication of JP2004307932A publication Critical patent/JP2004307932A/en
Application granted granted Critical
Publication of JP4113453B2 publication Critical patent/JP4113453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は耐遅れ破壊性に優れたボンデ皮膜付線材から成形するボルト用鋼及びボルトの製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、引張強さ1000MPa以上のボルトはJIS SCM435やSCM440等のクロム・モリブデン鋼を用いて製造されていた。
詳しくは、JIS SCM435やSCM440等のクロム・モリブデン鋼の圧延線材に焼鈍しを施し、更に潤滑のためのボンデ皮膜の被覆処理をした後、伸線とボルト成形を行い、その後調質処理を施すことにより製造されていた。
【0003】
しかしながらこれらクロム・モリブデン鋼は高価な元素であるCr,Moを添加しており、材料自体のコストが高い問題があった。
近年、ボルトの製造コストをより低減することが強く求められており、そのような中で高価な元素の添加を抑えて焼入性も確保でき、且つ焼鈍しが省略可能な低炭素−ボロン鋼の実用化が検討されている。
【0004】
ところが高価なCrやMo等の添加を抑えたこの種廉価な合金の場合、今までのSCM435やSCM440等では特に大きな問題となっていなかったボルトの遅れ破壊が重大な問題となって来る。
【0005】
この低炭素−ボロン鋼は炭素含有量が0.2〜0.3%程度であり、引張強さ1000MPa以上を得るためにはクロム・モリブデン鋼製ボルトに比べて焼戻し温度を低めとすることが必要である。
ところが焼戻し温度を低下すると、これに伴い旧オーステナイト粒界の割れが起点となる遅れ破壊感受性が高まるのである。
ここでボルトにおける遅れ破壊は、周知のようにボルトを所定の力で締め付けた後において使用環境中から水素が鋼中に浸入して脆化し、ある時間経過すると突然破壊する現象である。
このためこの低炭素−ボロン鋼では、旧オーステナイト粒界の割れを防止する対策、具体的には焼入中にオーステナイト粒界に偏析する不純物量を低減する対策が講じられている。
【0006】
ところで、ボルト製造に際して上記のようにボンデ皮膜を圧延線材に被覆処理すると、その後におけるボルト成形の成形性が良好となり、線材と金型との焼付けを良好に防止することができるが、一方でこのようにボンデ皮膜を被覆処理した線材をボルト成形後に焼入れすると、ボンデ皮膜中のP成分がボルト表層のオーステナイト粒界に沿って侵入して来る、いわゆる侵リン現象を起こし、Pが粒界に偏析して粒界の結合力を低下させる問題を生ずる。
そこへ更に使用環境中から水素が侵入すると粒界が更に強度劣化し、遅れ破壊をより起こし易くなる。
【0007】
即ち表層に濃化したPが水素脆化、即ち遅れ破壊を助長してしまうのである。
従ってこのため、ボルト表層にPの濃化層が形成されてしまった場合、前述した鋼中の粒界偏析不純物量を低減させるだけでは完全に遅れ破壊を防止できない。
そのためこのような鋼についてはボンデ皮膜を付けないでボルト成形し、焼入れすることが行われている。この場合当然ボルト成形の際の成形性は悪化する。
【0008】
上記問題の解決策として、下記特許文献1にはPを含まない潤滑皮膜を用いることで、焼入中のPの浸入を回避する方法が開示されている。
ところが非P含有皮膜の潤滑性能はボンデ皮膜よりも劣るため、ボルト成形時に金型と線材が焼付き、生産効率を低下させてしまう。
【0009】
尤もボンデ皮膜付線材から成形したボルトの、表面の残存ボンデ皮膜をアルカリ洗浄で除去する方法も知られている。
しかしながらその場合洗浄液の品質管理や廃液処理に多大なコストがかかってしまい、ボルトの製造コスト低減に寄与しなくなる。
【0010】
他方、下記特許文献2にはボルトを水焼入れして遅れ破壊を防止する方法も開示されている。
一般的に高強度ボルトの焼入れとしては油焼入れが採用されており、従って水焼入れをする場合には従来用いられている油冷槽を水冷槽に置き換える必要があるが、この場合その置換えに要する費用が発生する他、水焼入れの場合、複雑な頭部形状を有するボルトでは焼割れする恐れがある。
【0011】
本発明は以上のような事情を背景とし、ボルト用鋼として低炭素−ボロン鋼線材を用い、そして冷間加工性を維持するためにボンデ皮膜を被覆処理して伸線及びボルト成形を行い得、しかも油焼入れ・焼戻しにより強度確保できるとともに耐遅れ破壊性の改善されたボルトを得ることのできるボルト用鋼及びボルトの製造方法が強く望まれている中で創出されたものである。
【0012】
【特許文献1】
特開平9−104945号公報
【特許文献2】
特開2001−62639号公報
【0013】
【課題を解決するための手段】
上記課題を解決するための本発明のボンデ皮膜付線材から成形するボルト用鋼は、重量%で、C:0.22〜0.32%,Si:≦0.20%,Mn:0.60〜1.20%,P:≦0.015%,S:≦0.005%,Cu:0.07〜0.25%,Ni:0.03〜0.20%,Cu+Ni:0.10〜0.40%,Cr:0.05〜0.45%,Ti:0.01〜0.10%,Nb:0.01〜0.06%,N:0.002〜0.010%,B:0.0005〜0.0030%残部不可避的不純物及びFeからなることを特徴とする(請求項1)。
【0014】
また請求項2のものは、請求項1において、重量%で、Mo:0.03〜0.10%,V:0.05〜0.20%の1種又は2種を更に含有することを特徴とする。
【0015】
請求項3はボルトの製造方法に関するもので、請求項1,2の何れかに記載のボルト用鋼を素材として線材の熱間圧延を終止温度700〜900℃で行い、その後ボンデ皮膜の被覆処理を施した後、伸線及びボルト成形し、しかる後油焼入れを施した上、400℃以上の温度で焼戻しすることを特徴とする。
【0016】
【作用及び発明の効果】
請求項1に規定する本発明のボルト用鋼は、CrやMoといった価格の高い高級な合金成分を可及的に排して低コスト化を図る一方で、それらの減少による焼入性の低下をBの添加で補い、また固溶Bによる焼入性を確保すべく、その阻害要因となるNをTi添加によって固着し、またNb添加によるNb炭窒化物のピン止め効果で結晶粒を微細化することの外、Cu,Niを所定量含有させ且つそれらの総量規制を行うことを骨子とする。
【0017】
本発明では、特にCu,Niの添加及びそれらの総量規制によって、線材の熱間圧延時の表面疵の生成を抑制しつつ、ボルトの耐遅れ破壊性を効果的に向上させ得ることが確認されているが、その具体的な理由については明確には確認できていない。
【0018】
但し推測として、Cu添加によりオーステナイト化加熱中にCuが粒界に偏析し、ボンデ皮膜からのPの粒界への拡散を防止する。
併せて焼戻し中にCuが金属間化合物の如き析出物を生成してこれが使用環境中からの水素の粒界への侵入を防止し、また水素をトラップする働きをなすことによるものと考えられる。
但しCuを一定量を超えて多く含有させると、線材の熱間圧延時に表面疵の生成頻度が増えてしまう。Niの複合添加はその表面疵の生成を抑える働きをする。
【0019】
かかる本発明によれば、コストの安い材料を用いながらボンデ皮膜を被覆処理をした上で伸線及びボルト成形を行うことが可能であり、しかもそのようにした場合であっても遅れ破壊が助長されることのない、耐遅れ破壊性に優れた高強度のボルトを得ることができる。
即ち本発明によればボルトを安価に製造することが可能となり、しかも優れた耐遅れ破壊性を有するボルトを得ることが可能となる。
【0020】
尚、本発明においてはMo:0.03〜0.10%及びV:0.05〜0.20%の1種又は2種を必要に応じて添加することができる(請求項2)。
【0021】
請求項3はボルトの製造方法に関するもので、この製造方法は、特に熱間圧延をその終止温度が700〜900℃の範囲となるように行い、そしてボンデ皮膜の被覆処理を施した後、伸線及びボルト成形し、その後焼入れに際して従来一般的に行われている油焼入れを施し、その後の焼戻しを400℃以上の温度で行うことを特徴とするものである。
【0022】
この場合において熱間圧延を終止温度700〜900℃の低温度とするのは次の理由による。
即ち線材を熱間圧延すると表面に圧延スケールが生成するが、Cuは熱間圧延中に酸化して外部即ち圧延スケール中に排出されてしまい、その結果線材の表層即ちボルト表層のCu濃度が希薄となり、前述したCuによる侵入水素のトラップ効果、即ち耐遅れ破壊性の改善効果が低下してしまう。
そこで本発明では圧延中のCuの酸化を抑制すべく、終止温度が900℃以下となるように熱間圧延を行う。
【0023】
一方焼戻しを400℃以上の温度で行うのは、そのような温度での焼戻しによって時効によるCuの析出が効果的に行われ、Cuによる耐遅れ破壊性の改善効果が十分に引き出されることによる。
【0024】
次に本発明における各化学成分等の限定理由を以下に詳述する。
C:0.22〜0.32%
Cは熱処理によって所要の強度を得るために有効な元素であり、0.22%以上含有させることが必要である。
しかし0.32%を超えて含有させると冷間加工性が劣化するので0.32%以下とする必要がある。
【0025】
Si:≦0.20%
Siはオーステナイト化時の高温加熱による粒界酸化を助長する元素であり、酸化物と粒界が剥離することで遅れ破壊の起点となる。
また圧延後の線材の硬さを高め、冷間加工性を劣化させる。
このためSi量は低い方が望ましく、上限を0.20%とした。
Siは製鋼,精錬コストが上がるので、0.01%以上にすることが望ましい。
【0026】
Mn:0.60〜1.20%
Mnは溶製時の脱酸材として有効であるとともに焼入性の向上に寄与する元素であるため、0.60%以上必要である。
しかしMnはSiとともに焼入時の粒界酸化を助長し、耐遅れ破壊性を劣化させることがある。
また圧延後の線材の硬さを高め、冷間加工性を劣化させることがあるのでその上限を1.20%とした。
【0027】
P:≦0.015%
Pはオーステナイト化加熱時にオーステナイト粒界に偏析して耐遅れ破壊性を劣化させるので0.015%以下とした。
【0028】
S:≦0.005%
SはPと同様にオーステナイト化加熱時にオーステナイト粒界に偏析し、またMnSを形成して遅れ破壊の起点となるため0.005%以下とした。
【0029】
Cu:0.07〜0.25%
Ni:0.03〜0.20%
Cu+Ni:0.10〜0.40%
ボンデ皮膜から焼入中にPがオーステナイト粒界に沿って侵入して遅れ破壊感受性が高まるが、Cuを適量添加すると遅れ破壊し難くなることを見出した。
これはCuがオーステナイト化加熱中に粒界に偏析して、皮膜からのPの粒界拡散を防止するためと考えられる。
Cu添加量とともにこの効果は増加するが、線材の熱間圧延時に表面傷の生成頻度が増えて歩留りが減少することがあった。
表面傷生成防止元素を鋭意調査した結果、Niの複合添加が有効であった。
但し多量に両元素を添加していくと線材の硬さが高くなり、冷間加工性が劣化するためCuとNiの量を規制した。
【0030】
Cr:0.05〜0.45%
Crは焼入性の向上に寄与する元素であるので、ボルトの寸法等に応じてその添加量を調整するのが良く、これによってボルトの焼入性を確保するため0.05%以上とした。
しかしCrを添加し過ぎるとSi及びMnと同様に粒界酸化を助長して耐遅れ破壊性を劣化させる。
また圧延後の線材の硬さを高め、冷間加工性を劣化させる。このため上限を0.45%とした。
【0031】
Ti:0.01〜0.10%
ボロン鋼では固溶Bを利用して焼入性を確保している。
鋼中の固溶Nが高いと、これが固溶Bと反応してBN析出物を形成し、焼入性に寄与する固溶Bを消費してしまうことがある。
そこで微量のTiを添加して、固溶NをTiNとして固着しておく必要がある。
このためにはTi量は0.01%以上必要であるが、過度にTiを添加すると粗大なTiNを形成し、ボルト成形性が劣化する。そこでTi量は0.10%以下と規制した。
【0032】
Nb:0.01〜0.06%
ボロン鋼ではNがTiNとなり固着される。このTiNはサブミクロン(μm)〜数μmのサイズであり、焼入中の結晶粒界のピン止め効果を期待できない。
そこでNbを添加して、Nb炭窒化物による結晶粒の粗大化防止を図る必要がある。このために0.01%以上必要であるが、過度に添加すると粗大Nb炭窒化物が生成して粒界ピン止め効果がなくなる。このためNb量は0.06%以下と規制した。
【0033】
N:0.002〜0.010%
結晶粒微細化に寄与するNb炭窒化物を形成するのに必要である。
過度に添加すると粗大なNb炭窒化物が生成して粒界ピン止め効果が失われ、耐遅れ破壊性とボルト成形性が劣化するため0.002〜0.010%に規制する。
【0034】
B:0.0005〜0.0030%
線材の冷間加工性を向上させるためにMn,Cr,Si等の焼入性に寄与する合金元素量を低減すると、素材の焼入性が不足してボルトの焼入時に不完全焼入組織を生じる。
Bはこの焼入性低下を補うとともに、焼入時にオーステナイト粒界に優先的に偏析してPやSの偏析を軽減する効果もある。
これらの効果を得るには0.0005%以上含有させる必要があるが、多量に含有させても効果が飽和し、逆に粗大なボロン炭化物が粒界析出し、焼入性,耐遅れ破壊性とも劣化するので上限を0.0030%とする。
【0035】
Mo:0.03〜0.10%
V :0.05〜0.20%
溶湯が凝固する際に一次炭化物が晶出するが、熱間圧延中に徐々に再固溶して消失していく。
この際MoやVは再固溶速度を小さくし、圧延後も一次炭化物の残存に寄与する。
焼入れ・焼戻しされたボルト中に残存した一次炭化物は水素のトラップサイトとして機能し、耐遅れ破壊性を向上させると考えられる。
但し多量に添加すると巨大な一次炭化物が晶出してしまい、冷間加工性を劣化させるため上限を設けた。
またMoについては上限を超えると圧延後の線材にベイナイトが生成し、冷間加工性の劣化を招く。
【0036】
線材の熱間圧延終止温度:700〜900℃
Cu添加によって効率的に耐遅れ破壊性を上昇させるには焼入れ・焼戻し前のボルト表層においてCu量が低下していないことが重要である。
しかしCuは熱間圧延中に酸化して外部に排出されるため線材表層、ひいては成形ボルト表層のCu濃度が希薄になる。
熱間圧延中の酸化を抑制してCuの表層からの外部拡散を防止するためには、熱間圧延の終止温度を900℃以下に制御する必要がある。
しかし低温圧延は圧延効率を落としてコスト高を招くため、終止温度を700℃以上とする。
【0037】
焼戻し温度:400℃以上
CuとNi未添加材は焼戻し温度の上昇とともに硬さが低下して単調に耐遅れ破壊性が向上していく。
CuとNi複合添加材も同様な傾向は見られるが、400℃以上の焼戻しでその向上効果が更に大きくなっていた。
この理由は明らかではないが、表層近傍に濃化した両元素が400℃以上で金属間化合物を形成して、これが水素トラップサイトになったことが一因と考えられる。
【0038】
【実施例】
次に本発明の実施例を以下に詳述する。
<実施例1>
表1に示す化学成分の本発明の実施例A〜Fと比較例G〜X及びSCM440をそれぞれ溶製した後、造塊し、各鋼を直径10.6mmの線材に圧延した。その際圧延終止温度は830±50℃とした。
尚従来例のJIS SCM440は、圧延後に760℃で10時間保持した後徐冷して球状化焼鈍しを行った。
冷間伸線はボルト軸部の寸法公差を確保するために行った。ここでは直径10.6mmの線材を、ボンデ皮膜処理後、直径10.0mmまで途中で焼鈍しや球状化焼鈍しを施さずに伸線した。
【0039】
次いでフランジ付六角ボルトに成形し、その際にボルト頭部に割れを生じたものも×印として表2に示した。
続いて引張強度が1000〜1200MPaとなるように調質(焼戻し)した。焼入れは加熱温度850℃,保持時間1時間とし、冷却は油冷とした。
得られたボルトの引張試験結果を表2に示した。
【0040】
遅れ破壊試験は、上記ボルトを治具に取り付けて各ボルトが弾性限界に達する降伏点にて締め付け、15質量%の塩酸水溶液に2分間浸漬した後、洗浄,乾燥し、24時間大気中に放置させるサイクルを1サイクルとし、これを14サイクルまで繰り返した時の各鋼種10本中の破損ボルトの割合で表2に示した。
【0041】
本発明の実施例では冷間伸線のために焼鈍しや球状化焼鈍しを施していないが、ボルトの形状が複雑で、素材により優れた冷間成形能が求められる場合は、成形前に各種の軟化熱処理を施しても構わない。
【0042】
【表1】

Figure 0004113453
【0043】
【表2】
Figure 0004113453
【0044】
表2の結果に表れているように、本実施例のものは何れもボルト破壊率は0%となっており、耐遅れ破壊性が良好となっているのに対し、比較例のものはボルト成形ができなかったり或いはボルト成形できたものについてもボルト破壊率が高く、耐遅れ破壊性において本実施例のものに比べ劣っている。
【0045】
尚表1及び表2の最下段の比較例SCM440は、従来ボルト用鋼として用いられているものであり、ボルト破壊率即ち耐遅れ破壊性は良好となっているが、このものはコストの高い材料である。
【0046】
<実施例2>
表1に示す化学成分の実施例A,B,D,Fの鋼種を造塊し、各鋼を直径10.6mmの線材に、圧延仕上温度を変化させて熱間圧延した。
尚仕上温度を700℃よりも低くしたところ、圧延速度を小さくすることが必要になり、生産効率が著しく低下して線材製造コストの増加を招いた。
【0047】
冷間伸線はボルト軸部の寸法公差を確保するために行った。
ここでは直径10.6mmの線材をボンデ皮膜処理後、直径10.0mmまで途中で焼鈍しや球状化焼鈍しを施さずに伸線した。
次いでフランジ付六角ボルトに成形し、続いて引張強度が1000〜1200MPaとなるように調質(焼戻し)した。
焼入れは加熱温度850℃,保持時間1時間とし、油冷した。
得られたボルトの引張試験結果を表3に示した。
【0048】
遅れ破壊試験は、上記ボルトを治具に取り付けて各ボルトが弾性限界に達する降伏点にて締め付け、15質量%の塩酸水溶液に2分間浸漬した後、洗浄,乾燥し、24時間大気中に放置させるサイクルを1サイクルとし、これを14サイクルまで繰り返した時の各鋼種10本中の破損ボルトの割合で表3に示した。
【0049】
【表3】
Figure 0004113453
【0050】
表3の結果から分るように、終止温度700〜900℃で熱間圧延を施し、更に焼戻し温度を400℃以上で行った本実施例のものは何れもボルト破壊率が0%、即ち耐遅れ破壊性が良好となっているのに対し、終止温度900℃以上で熱間圧延を施した比較例のものは何れもボルト破壊率が悪い値となっている。
【0051】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた対応で実施可能である。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a bolt steel formed from a wire with a bondage film having excellent delayed fracture resistance, and a method for manufacturing the bolt.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, bolts with a tensile strength of 1000 MPa or more have been manufactured using chromium-molybdenum steel such as JIS SCM435 and SCM440.
Specifically, JIS SCM435, SCM440, and other chromium / molybdenum steel rolled wires are annealed, and after coating with a bonder film for lubrication, wire drawing and bolt forming are performed, followed by tempering treatment. It was manufactured by.
[0003]
However, these chromium-molybdenum steels have the problem that the cost of the material itself is high because of the addition of expensive elements such as Cr and Mo.
In recent years, there has been a strong demand to further reduce the manufacturing cost of bolts. In such a case, low carbon-boron steel that can secure hardenability by suppressing the addition of expensive elements and that can omit annealing. The practical application of is being studied.
[0004]
However, in the case of this kind of low-priced alloy in which the addition of expensive Cr, Mo, etc. is suppressed, the delayed fracture of the bolt, which has not been a big problem in the past SCM435, SCM440, etc., becomes a serious problem.
[0005]
This low carbon-boron steel has a carbon content of about 0.2 to 0.3%, and in order to obtain a tensile strength of 1000 MPa or more, it is necessary to lower the tempering temperature as compared with a chromium-molybdenum steel bolt.
However, when the tempering temperature is lowered, the susceptibility to delayed fracture starting from cracks in the prior austenite grain boundaries increases accordingly.
Here, delayed fracture in a bolt is a phenomenon in which, after being tightened with a predetermined force, hydrogen penetrates into the steel from the usage environment and becomes brittle, and suddenly breaks after a certain period of time.
For this reason, in this low carbon-boron steel, measures are taken to prevent cracking of the prior austenite grain boundaries, specifically, measures are taken to reduce the amount of impurities segregating at the austenite grain boundaries during quenching.
[0006]
By the way, when the bonded film is coated on the rolled wire as described above when manufacturing the bolt, the moldability of the subsequent bolt forming becomes good and the wire and the die can be prevented from being seized well. When the wire material coated with the bonde film is quenched after bolt forming, the P component in the bonde film penetrates along the austenite grain boundary of the bolt surface layer, causing the so-called phosphorus phenomenon, and P segregates at the grain boundary. As a result, the problem of lowering the bonding strength of the grain boundaries arises.
If hydrogen further enters the environment from the usage environment, the grain boundaries are further deteriorated in strength, and delayed fracture is more likely to occur.
[0007]
That is, P concentrated on the surface layer promotes hydrogen embrittlement, that is, delayed fracture.
Therefore, if a P-concentrated layer is formed on the bolt surface layer, delayed fracture cannot be completely prevented by merely reducing the amount of grain boundary segregation impurities in the steel.
For this reason, such steels are bolted and hardened without a bondage film . In this case, naturally, the formability during the bolt forming deteriorates.
[0008]
As a solution to the above problem, Patent Document 1 below discloses a method of avoiding the intrusion of P during quenching by using a lubricant film that does not contain P.
However, since the lubrication performance of the non-P-containing film is inferior to that of the bonder film, the mold and the wire are seized at the time of bolt forming, and the production efficiency is lowered.
[0009]
However, a method is also known in which the remaining bond film on the surface of the bolt formed from the wire with the bond film is removed by alkali cleaning.
In this case, however, the quality control of the cleaning liquid and the waste liquid processing are very expensive, which does not contribute to the reduction of the bolt manufacturing cost.
[0010]
On the other hand, Patent Document 2 below also discloses a method for preventing delayed fracture by water quenching a bolt.
Generally, oil quenching is adopted as quenching of high-strength bolts. Therefore, when water quenching is performed, it is necessary to replace a conventional oil cooling bath with a water cooling bath. In this case, replacement is required. In addition to the cost, in the case of water quenching, bolts having a complicated head shape may be cracked.
[0011]
The present invention is based on the above circumstances, and a low carbon-boron steel wire is used as a bolt steel, and in order to maintain cold workability, the bonder film is coated and wire drawing and bolt forming can be performed. In addition, a steel for bolts and a method for producing the bolts that can obtain bolts that can secure strength by oil quenching and tempering and have improved delayed fracture resistance have been created.
[0012]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-104945 [Patent Document 2]
Japanese Patent Laid-Open No. 2001-62639
[Means for Solving the Problems]
The steel for bolts formed from the wire with a bond film of the present invention for solving the above-mentioned problems is, by weight, C: 0.22 to 0.32%, Si: ≦ 0.20%, Mn: 0.60 to 1.20%, P: ≦ 0.015. %, S: ≦ 0.005%, Cu: 0.07 to 0.25%, Ni: 0.03 to 0.20%, Cu + Ni: 0.10 to 0.40%, Cr: 0.05 to 0.45%, Ti: 0.01 to 0.10%, Nb: 0.01 to 0.06%, N: 0.002 to 0.010%, B: 0.0005 to 0.0030% The balance consists of inevitable impurities and Fe (Claim 1).
[0014]
Further, the second aspect of the present invention is characterized in that, in the first aspect, one or two of Mo: 0.03 to 0.10% and V: 0.05 to 0.20% are further contained.
[0015]
Claim 3 relates to a method for producing a bolt. Hot rolling of a wire is performed at the end temperature of 700 to 900 ° C. using the steel for bolt according to any one of claims 1 and 2 as a raw material, and thereafter a coating treatment of a bonder film is performed. Then, after drawing, the wire is drawn and bolted, and after that, after oil quenching, it is tempered at a temperature of 400 ° C. or higher.
[0016]
[Operation and effect of the invention]
The steel for bolts of the present invention as defined in claim 1 eliminates as much as possible high-priced alloy components such as Cr and Mo as much as possible to reduce the cost, while lowering the hardenability by reducing them In order to ensure the hardenability by solute B, N, which is an inhibitory factor, is fixed by adding Ti, and the Nb carbonitride pinning effect by adding Nb makes the grains finer. The main point is to contain a predetermined amount of Cu and Ni and to regulate the total amount of them, in addition to making them into a proper shape.
[0017]
In the present invention, it is confirmed that the delayed fracture resistance of the bolt can be effectively improved while suppressing the formation of surface defects during hot rolling of the wire, particularly by adding Cu and Ni and regulating their total amount. However, the specific reason has not been clearly confirmed.
[0018]
However, it is speculated that Cu is segregated at the grain boundary during the austenitizing heating by adding Cu, and prevents diffusion of P from the bonder film to the grain boundary.
In addition, it is considered that Cu forms precipitates such as intermetallic compounds during tempering, and this prevents hydrogen from entering the grain boundary from the environment of use and also acts to trap hydrogen.
However, when Cu is contained in a large amount exceeding a certain amount, the generation frequency of surface defects increases during hot rolling of the wire. The combined addition of Ni serves to suppress the formation of surface defects.
[0019]
According to the present invention, it is possible to perform wire drawing and bolt forming after coating a bonder film using a low-cost material, and even in such a case, delayed fracture is promoted. Thus, a high-strength bolt excellent in delayed fracture resistance can be obtained.
That is, according to the present invention, a bolt can be manufactured at a low cost, and a bolt having excellent delayed fracture resistance can be obtained.
[0020]
In the present invention, one or two of Mo: 0.03 to 0.10% and V: 0.05 to 0.20% can be added as required (Claim 2).
[0021]
Claim 3 relates to a method of manufacturing a bolt, and this manufacturing method particularly performs hot rolling so that its end temperature is in the range of 700 to 900 ° C., and after the coating treatment of the bonder film, A wire and bolt are formed, followed by oil quenching which is conventionally performed at the time of quenching, and subsequent tempering is performed at a temperature of 400 ° C. or higher.
[0022]
In this case, hot rolling is performed at a low temperature of 700 to 900 ° C. for the following reason.
In other words, when the wire is hot rolled, a rolling scale is formed on the surface, but Cu is oxidized during hot rolling and discharged to the outside, that is, into the rolling scale, and as a result, the Cu concentration of the surface of the wire, that is, the bolt surface is dilute. Thus, the trapping effect of intrusion hydrogen by Cu described above, that is, the effect of improving delayed fracture resistance is lowered.
Therefore, in the present invention, hot rolling is performed so that the end temperature is 900 ° C. or less in order to suppress Cu oxidation during rolling.
[0023]
On the other hand, the reason why tempering is performed at a temperature of 400 ° C. or higher is that Cu is effectively precipitated by aging by such tempering, and the effect of improving delayed fracture resistance by Cu is sufficiently brought out.
[0024]
Next, the reasons for limiting each chemical component and the like in the present invention will be described in detail below.
C: 0.22 to 0.32%
C is an effective element for obtaining a required strength by heat treatment, and it is necessary to contain 0.22% or more.
However, if the content exceeds 0.32%, the cold workability deteriorates, so 0.32% or less is necessary.
[0025]
Si: ≤0.20%
Si is an element that promotes grain boundary oxidation by high-temperature heating during austenitization, and is the starting point of delayed fracture due to separation of the oxide and grain boundaries.
Moreover, the hardness of the wire after rolling is raised and cold workability is deteriorated.
For this reason, it is desirable that the Si content is low, and the upper limit is made 0.20%.
Since Si increases the steelmaking and refining costs, it is desirable to make it 0.01% or more.
[0026]
Mn: 0.60 to 1.20%
Since Mn is an element that is effective as a deoxidizer during melting and contributes to improvement in hardenability, it needs to be 0.60% or more.
However, Mn, together with Si, promotes grain boundary oxidation during quenching and may degrade delayed fracture resistance.
Moreover, since the hardness of the wire after rolling may be increased and the cold workability may be deteriorated, the upper limit is made 1.20%.
[0027]
P: ≤ 0.015%
P segregates at the austenite grain boundaries during austenitizing heating and degrades delayed fracture resistance, so it was made 0.015% or less.
[0028]
S: ≤ 0.005%
S, like P, segregates at the austenite grain boundaries during austenitizing heating, and forms MnS and becomes the starting point of delayed fracture, so it was made 0.005% or less.
[0029]
Cu: 0.07 to 0.25%
Ni: 0.03-0.20%
Cu + Ni: 0.10 to 0.40%
It was found that P penetrates along the austenite grain boundary during quenching from the bond film and the delayed fracture susceptibility increases, but delayed fracture becomes difficult when an appropriate amount of Cu is added.
This is presumably because Cu segregates at the grain boundaries during the austenitizing heating and prevents the diffusion of P from the coating.
This effect increases with the amount of Cu added, but the yield of surface damage may increase and the yield may decrease during hot rolling of the wire.
As a result of earnest investigation of the element for preventing the formation of surface flaws, the combined addition of Ni was effective.
However, when both elements were added in large quantities, the hardness of the wire became higher and the cold workability deteriorated, so the amounts of Cu and Ni were regulated.
[0030]
Cr: 0.05-0.45%
Since Cr is an element that contributes to the improvement of hardenability, the amount of addition should be adjusted according to the dimensions of the bolts and the like.
However, adding too much Cr promotes grain boundary oxidation like Si and Mn and degrades delayed fracture resistance.
Moreover, the hardness of the wire after rolling is raised and cold workability is deteriorated. For this reason, the upper limit was made 0.45%.
[0031]
Ti: 0.01-0.10%
Boron steel uses solid solution B to ensure hardenability.
If the solid solution N in the steel is high, this may react with the solid solution B to form BN precipitates, which may consume the solid solution B that contributes to hardenability.
Therefore, it is necessary to add a small amount of Ti and fix solid solution N as TiN.
For this purpose, the Ti amount needs to be 0.01% or more. However, if Ti is added excessively, coarse TiN is formed, and the bolt formability deteriorates. Therefore, the amount of Ti was regulated to 0.10% or less.
[0032]
Nb: 0.01-0.06%
In boron steel, N becomes TiN and is fixed. This TiN has a size of submicron (μm) to several μm and cannot be expected to have a pinning effect at the grain boundaries during quenching.
Therefore, it is necessary to add Nb to prevent crystal grain coarsening due to Nb carbonitride. For this reason, 0.01% or more is necessary. However, if excessively added, coarse Nb carbonitrides are produced and the grain boundary pinning effect is lost. For this reason, the Nb content was regulated to 0.06% or less.
[0033]
N: 0.002 to 0.010%
It is necessary to form Nb carbonitrides that contribute to grain refinement.
If added excessively, coarse Nb carbonitrides are formed and the grain boundary pinning effect is lost, and delayed fracture resistance and bolt formability deteriorate, so the content is restricted to 0.002 to 0.010%.
[0034]
B: 0.0005-0.0030%
If the amount of alloying elements that contribute to the hardenability of Mn, Cr, Si, etc. is reduced in order to improve the cold workability of the wire, the hardenability of the material will be insufficient and the incompletely hardened structure during bolt quenching Produce.
B compensates for this decrease in hardenability and also has the effect of reducing segregation of P and S by preferentially segregating at the austenite grain boundaries during quenching.
In order to obtain these effects, it is necessary to contain 0.0005% or more, but even if it is contained in a large amount, the effect is saturated, and conversely, coarse boron carbide precipitates at the grain boundaries, and both hardenability and delayed fracture resistance deteriorate. Therefore, the upper limit is made 0.0030%.
[0035]
Mo: 0.03-0.10%
V: 0.05-0.20%
Primary carbides crystallize when the molten metal solidifies, but gradually dissolve again and disappear during hot rolling.
At this time, Mo and V reduce the re-solution rate and contribute to the remaining primary carbide after rolling.
It is considered that the primary carbide remaining in the quenched and tempered bolt functions as a hydrogen trap site and improves delayed fracture resistance.
However, when a large amount is added, a huge primary carbide crystallizes out, and an upper limit is set in order to deteriorate the cold workability.
If the upper limit of Mo is exceeded, bainite is generated in the wire after rolling, resulting in deterioration of cold workability.
[0036]
Hot rolling end temperature of wire: 700-900 ° C
In order to efficiently increase delayed fracture resistance by adding Cu, it is important that the Cu content does not decrease in the bolt surface layer before quenching and tempering.
However, Cu is oxidized during hot rolling and discharged to the outside, so that the Cu concentration in the surface of the wire, and in turn, the surface of the formed bolt becomes dilute.
In order to suppress oxidation during hot rolling and prevent external diffusion from the surface layer of Cu, it is necessary to control the end temperature of hot rolling to 900 ° C. or lower.
However, low temperature rolling lowers rolling efficiency and increases costs, so the end temperature is set to 700 ° C. or higher.
[0037]
Tempering temperature: 400 ℃ or more
Cu and Ni-free materials decrease in hardness with increasing tempering temperature and monotonously improve delayed fracture resistance.
A similar tendency was seen with Cu and Ni composite additives, but the improvement effect was even greater when tempering at 400 ° C or higher.
The reason for this is not clear, but it is thought that both elements concentrated in the vicinity of the surface layer formed intermetallic compounds at 400 ° C. or higher, which became hydrogen trap sites.
[0038]
【Example】
Next, examples of the present invention will be described in detail below.
<Example 1>
Examples A to F and Comparative Examples G to X of the present invention having chemical components shown in Table 1 and Comparative Examples G to X and SCM440 were melted and then ingot, and each steel was rolled into a wire having a diameter of 10.6 mm. At that time, the rolling end temperature was 830 ± 50 ° C.
The conventional JIS SCM440 was held at 760 ° C. for 10 hours after rolling and then annealed to perform spheroidizing annealing.
Cold drawing was performed in order to ensure the dimensional tolerance of the bolt shaft. Here, a wire having a diameter of 10.6 mm was drawn without being annealed or spheroidized to a diameter of 10.0 mm after the bond film treatment.
[0039]
Next, the hexagon bolts with flanges were molded, and cracks in the bolt heads at that time were also shown in Table 2 as x marks.
Subsequently, it was tempered (tempered) so that the tensile strength was 1000 to 1200 MPa. Quenching was performed at a heating temperature of 850 ° C. and a holding time of 1 hour, and cooling was oil cooling.
Table 2 shows the tensile test results of the obtained bolts.
[0040]
In the delayed fracture test, the bolts are attached to a jig, tightened at the yield point where each bolt reaches the elastic limit, immersed in a 15% by mass hydrochloric acid solution for 2 minutes, washed, dried, and left in the atmosphere for 24 hours. Table 2 shows the ratio of broken bolts in 10 steel types when this cycle was repeated up to 14 cycles.
[0041]
In the embodiment of the present invention, annealing or spheroidizing annealing is not performed for cold drawing, but the bolt shape is complicated, and if the material requires excellent cold forming ability, before forming, Various softening heat treatments may be performed.
[0042]
[Table 1]
Figure 0004113453
[0043]
[Table 2]
Figure 0004113453
[0044]
As shown in the results of Table 2, all of the examples have a bolt failure rate of 0%, and the delayed fracture resistance is good, whereas the comparative example has a bolt failure rate. Even those that could not be molded or that could be bolted had a high bolt fracture rate and were inferior to those of the present example in delayed fracture resistance.
[0045]
The comparative example SCM440 at the bottom of Table 1 and Table 2 is conventionally used as a steel for bolts, and has a good bolt fracture rate, that is, delayed fracture resistance, but this is expensive. Material.
[0046]
<Example 2>
The steel types of Examples A, B, D, and F having chemical components shown in Table 1 were ingoted, and each steel was hot-rolled into a wire having a diameter of 10.6 mm while changing the rolling finishing temperature.
When the finishing temperature was lower than 700 ° C., it was necessary to reduce the rolling speed, resulting in a significant reduction in production efficiency and an increase in wire manufacturing cost.
[0047]
Cold drawing was performed in order to ensure the dimensional tolerance of the bolt shaft.
Here, a wire with a diameter of 10.6 mm was subjected to a bond film treatment, and then drawn to a diameter of 10.0 mm without being annealed or spheroidized.
Next, it was molded into a hexagon bolt with a flange, and subsequently tempered (tempered) so that the tensile strength was 1000 to 1200 MPa.
Quenching was performed at a heating temperature of 850 ° C. and a holding time of 1 hour, and then oil-cooled.
Table 3 shows the tensile test results of the obtained bolts.
[0048]
In the delayed fracture test, the bolts are attached to a jig, tightened at the yield point where each bolt reaches the elastic limit, immersed in a 15% by mass hydrochloric acid solution for 2 minutes, washed, dried, and left in the atmosphere for 24 hours. Table 3 shows the ratio of broken bolts in 10 steel types when this cycle was repeated up to 14 cycles.
[0049]
[Table 3]
Figure 0004113453
[0050]
As can be seen from the results in Table 3, all of the examples in which hot rolling was performed at an end temperature of 700 to 900 ° C. and tempering temperature was 400 ° C. or higher had a bolt fracture rate of 0%, While the delayed fracture property is good, all the comparative examples subjected to hot rolling at an end temperature of 900 ° C. or higher have a bad bolt fracture rate.
[0051]
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented with various modifications without departing from the spirit of the present invention.

Claims (3)

重量%で、
C :0.22〜0.32%
Si:≦0.20%
Mn:0.60〜1.20%
P :≦0.015%
S :≦0.005%
Cu:0.07〜0.25%
Ni:0.03〜0.20%
Cu+Ni:0.10〜0.40%
Cr:0.05〜0.45%
Ti:0.01〜0.10%
Nb:0.01〜0.06%
N :0.002〜0.010%
B :0.0005〜0.0030%
残部不可避的不純物及びFeからなることを特徴とする引張強さ1000MPa以上の耐遅れ破壊性に優れたボンデ皮膜付線材から成形するボルト用鋼。
% By weight
C: 0.22 to 0.32%
Si: ≤0.20%
Mn: 0.60 to 1.20%
P: ≤ 0.015%
S: ≦ 0.005%
Cu: 0.07 to 0.25%
Ni: 0.03-0.20%
Cu + Ni: 0.10 to 0.40%
Cr: 0.05-0.45%
Ti: 0.01-0.10%
Nb: 0.01-0.06%
N: 0.002 to 0.010%
B: 0.0005-0.0030%
A steel for bolts formed from a wire with a bondage coating with a tensile strength of 1000 MPa or more and excellent in delayed fracture resistance, characterized by consisting of the balance inevitable impurities and Fe.
重量%で、
Mo:0.03〜0.10%
V :0.05〜0.20%
の1種又は2種を更に含有することを特徴とする請求項1に記載の耐遅れ破壊性に優れたボンデ皮膜付線材から成形するボルト用鋼。
% By weight
Mo: 0.03-0.10%
V: 0.05-0.20%
The steel for bolts formed from the wire with a bondage film excellent in delayed fracture resistance according to claim 1, further comprising one or two of the following.
請求項1,2の何れかに記載のボルト用鋼を素材として線材の熱間圧延を終止温度700〜900℃で行い、その後ボンデ皮膜の被覆処理を施した後、伸線及びボルト成形し、しかる後油焼入れを施した上、400℃以上の温度で焼戻しすることを特徴とする引張強さ1000MPa以上の耐遅れ破壊性に優れたボルトの製造方法。  The steel for bolts according to any one of claims 1 and 2 is subjected to hot rolling of the wire at a final temperature of 700 to 900 ° C, and then subjected to a coating treatment of the bonder film, followed by wire drawing and bolt forming, After that, after quenching with oil and tempering at a temperature of 400 ° C or higher, a method for producing a bolt having a tensile strength of 1000 MPa or more and excellent delayed fracture resistance.
JP2003103068A 2003-04-07 2003-04-07 Bolt Steel Formed from Bonded Film with Excellent Delayed Fracture Resistance and Bolt Manufacturing Method Expired - Fee Related JP4113453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103068A JP4113453B2 (en) 2003-04-07 2003-04-07 Bolt Steel Formed from Bonded Film with Excellent Delayed Fracture Resistance and Bolt Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103068A JP4113453B2 (en) 2003-04-07 2003-04-07 Bolt Steel Formed from Bonded Film with Excellent Delayed Fracture Resistance and Bolt Manufacturing Method

Publications (2)

Publication Number Publication Date
JP2004307932A JP2004307932A (en) 2004-11-04
JP4113453B2 true JP4113453B2 (en) 2008-07-09

Family

ID=33466330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103068A Expired - Fee Related JP4113453B2 (en) 2003-04-07 2003-04-07 Bolt Steel Formed from Bonded Film with Excellent Delayed Fracture Resistance and Bolt Manufacturing Method

Country Status (1)

Country Link
JP (1) JP4113453B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576976B2 (en) * 2004-10-21 2010-11-10 住友金属工業株式会社 Steel for high strength bolts
JP5642327B2 (en) * 2006-11-15 2014-12-17 株式会社三ツ知春日井 Hardening method for steel
JP5608145B2 (en) * 2011-01-18 2014-10-15 株式会社神戸製鋼所 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP6059676B2 (en) * 2014-03-28 2017-01-11 Jfe条鋼株式会社 Non-tempered weld bolt steel material and manufacturing method thereof
CN108531815A (en) * 2018-05-24 2018-09-14 本钢板材股份有限公司 High temperature bolt steel BG25Cr2MoVA and preparation method thereof
JP6988858B2 (en) * 2019-04-24 2022-01-05 Jfeスチール株式会社 Steel for bolts
US11827964B2 (en) * 2019-11-22 2023-11-28 Nippon Steel Corporation Coated steel member, coated steel sheet, and methods for producing same
CN113500356A (en) * 2021-07-13 2021-10-15 安徽长江紧固件有限责任公司 Pretreatment process of acid-free high-strength anti-delayed fracture weather-resistant fastener

Also Published As

Publication number Publication date
JP2004307932A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4842407B2 (en) Steel wire for low-temperature annealing and manufacturing method thereof
JP4956998B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP5257082B2 (en) Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability
JP5245997B2 (en) High strength hot forged non-tempered steel with excellent toughness and method for producing the same
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
WO2013145868A1 (en) Boron-added high strength bolt steel having excellent delayed fracture resistance and high strength bolt
JP2008202124A (en) Steel wire for high-strength spring, high-strength spring and method for manufacturing them
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP5563926B2 (en) Mechanical structural steel suitable for friction welding and friction welding parts with excellent impact and bending fatigue properties
JP5655366B2 (en) Bainite steel
JP2019500489A (en) Wire material excellent in cold forgeability and manufacturing method thereof
KR20080034958A (en) Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4594150B2 (en) Method for producing high-strength screws with excellent toughness and cold workability
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP2009120962A (en) High-strength low-specific gravity steel sheet excellent in ductility, and its production method
JP4113453B2 (en) Bolt Steel Formed from Bonded Film with Excellent Delayed Fracture Resistance and Bolt Manufacturing Method
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP4085809B2 (en) Hot-dip galvanized cold-rolled steel sheet having an ultrafine grain structure and excellent stretch flangeability and method for producing the same
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees