JP5642327B2 - Hardening method for steel - Google Patents

Hardening method for steel Download PDF

Info

Publication number
JP5642327B2
JP5642327B2 JP2006308991A JP2006308991A JP5642327B2 JP 5642327 B2 JP5642327 B2 JP 5642327B2 JP 2006308991 A JP2006308991 A JP 2006308991A JP 2006308991 A JP2006308991 A JP 2006308991A JP 5642327 B2 JP5642327 B2 JP 5642327B2
Authority
JP
Japan
Prior art keywords
quenching
oil
steel
time
vapor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006308991A
Other languages
Japanese (ja)
Other versions
JP2008121094A (en
Inventor
剛介 四十物
剛介 四十物
正洋 奥宮
正洋 奥宮
隆之 永井
隆之 永井
繁 朝田
繁 朝田
美浩 冨田
美浩 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Grease Co Ltd
Original Assignee
Nippon Grease Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Grease Co Ltd filed Critical Nippon Grease Co Ltd
Priority to JP2006308991A priority Critical patent/JP5642327B2/en
Priority to CN2007800425207A priority patent/CN101583726B/en
Priority to PCT/JP2007/071770 priority patent/WO2008059759A1/en
Publication of JP2008121094A publication Critical patent/JP2008121094A/en
Application granted granted Critical
Publication of JP5642327B2 publication Critical patent/JP5642327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/54Determining when the hardening temperature has been reached by measurement of magnetic or electrical properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0093Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Lubricants (AREA)

Description

本発明は、鋼材の焼入れ方法に関し、特に、自動車用ボルト等に用いられる高強度ボロン鋼を焼入れする方法に関する。   The present invention relates to a steel material quenching method, and more particularly to a method for quenching high-strength boron steel used for automobile bolts and the like.

近年、高強度を必要とする自動車用部材(例えば、各種締め付けボルト、コンロッドボルト、シリンダーヘッドボルト)を形成するための鋼材として、構造用鋼にボロンを添加した鋼(いわゆるボロン鋼)が多く用いられている。ボロン鋼においては、ボロンの添加により鋼の焼入れ性を著しく向上できるとともに、構造用合金鋼のニッケル、モリブデン、クロムなどの高価な合金元素を節減できるので、鋼材の高強度化とともに低廉化を達成することができる。   In recent years, steel (so-called boron steel) in which boron is added to structural steel is often used as a steel material for forming automotive parts that require high strength (for example, various tightening bolts, connecting rod bolts, cylinder head bolts). It has been. In boron steel, the addition of boron can significantly improve the hardenability of the steel, and can save expensive alloy elements such as nickel, molybdenum, and chromium in structural alloy steels. can do.

従来、このような高強度ボロン鋼の焼入れは、クロムモリブデン鋼等の他の鋼材と同様の方法で実行されていた。しかしながら、クロムモリブデン鋼、ニッケルクロムモリブデン鋼を代表とする高級鋼の場合、焼入れ性向上元素を多く含むため、焼入れ後の鋼材表層が均一な焼入れ組織となるのに対して、高強度ボロン鋼の表層には、焼入れ後に不完全焼入れ組織が多く含まれてしまうという問題点がある。   Conventionally, quenching of such high-strength boron steel has been performed in the same manner as other steel materials such as chromium molybdenum steel. However, high-grade steels such as chromium molybdenum steel and nickel chromium molybdenum steel contain many hardenability-improving elements, so the surface layer of the steel material after quenching has a uniform quenching structure, whereas high-strength boron steel There is a problem that the surface layer contains a lot of incompletely quenched structure after quenching.

詳しく説明すると、ボロン鋼においては、焼入れ加熱中に表層のボロンが拡散放出されて濃度低下する現象(いわゆる脱ボロン現象)が生じる。ボロンは、極微小濃度の添加でも素材の焼入れ性を向上するものである一方、完全に脱ボロンすると素材の焼入れ性は逆に大きく低下してしまう。このため、焼入れ工程において、部材表層において脱ボロン現象が起こると、部材表層部分に不完全焼入れ組織が発生してしまう。
社団法人日本鉄鋼協会発行「鉄と鋼」1983年第11号、p.1494−1501(井上毅、落田義隆、辻邦夫著「ボロン鋼における脱ボロン現象とその計算モデル」)
More specifically, in boron steel, a phenomenon occurs in which boron in the surface layer is diffused and released during quenching and the concentration decreases (so-called deboron phenomenon). Boron improves the hardenability of the material even when added in a very small concentration. On the other hand, if it is completely deboronated, the hardenability of the material is greatly reduced. For this reason, if a deboron phenomenon occurs in the member surface layer in the quenching process, an incompletely quenched structure is generated in the member surface layer portion.
“Iron and Steel” published by the Japan Iron and Steel Institute, No. 11, 1983, p. 1494-1501 (by Inoue, Yoshitaka Ochida, Kunio Tsuji, “Deboronation in Boron Steel and its Calculation Model”)

このようなボロン鋼材表層の不完全焼入れ組織を改善する方法としては、焼入れ炉内の雰囲気調整による表層脱炭防止法や、浸炭法が知られている。しかしながら、これらの方法は、表層の合金成分が変動しないクロムモリブデン鋼等に対しては効果があるが、ボロン鋼における脱ボロン現象対策としては、十分に効果を発揮するとは言えない。すなわち、ボロン鋼の場合、焼入れ炉内の雰囲気調整を行っても、不完全焼入れ組織は完全には消滅しない。また、素材の炭素量を超えるまで微浸炭しても不完全焼入れ組織は残るうえ、浸炭は、鋼の遅れ破壊の原因となるため、特に高強度ボルトの焼入れにおいては採用できない。このため、高強度ボロン鋼においても表層に不完全焼入れ組織が発生しないような焼入れ方法が望まれていた。   As a method for improving such an incomplete quenching structure of the boron steel material surface layer, a surface layer decarburization prevention method by adjusting the atmosphere in the quenching furnace and a carburizing method are known. However, these methods are effective for chromium-molybdenum steel and the like whose surface layer alloy components do not vary, but cannot be said to be sufficiently effective as a countermeasure against the deboron phenomenon in boron steel. That is, in the case of boron steel, the incompletely quenched structure is not completely eliminated even if the atmosphere in the quenching furnace is adjusted. In addition, even if microcarburization is performed until the carbon content of the material is exceeded, an incompletely quenched structure remains, and carburization causes delayed fracture of the steel, so it cannot be employed particularly in the quenching of high-strength bolts. For this reason, there has been a demand for a quenching method that does not cause an incompletely quenched structure in the surface layer of high-strength boron steel.

本発明は、このような問題点に鑑みてなされたもので、高強度ボロン鋼等の鋼材の焼入れ方法において、焼入れ後の鋼材表層の不完全焼入れ組織を防止し、均一な組織を得ることにより、鋼材の機械的性質を改善しうる焼入れ方法を提供することを目的とする。   The present invention has been made in view of such problems, and in the quenching method for steel materials such as high-strength boron steel, by preventing incomplete quenching structure of the steel surface layer after quenching and obtaining a uniform structure An object of the present invention is to provide a quenching method capable of improving the mechanical properties of steel materials.

本発明では、焼入れ油を用いて鋼材を焼入れする焼入れ方法において、焼入れ油の冷却曲線における冷却開始の時点から前記鋼材の温度が急落する時点までの経過時間である蒸気膜崩壊時間を焼入れ油の特性決定のための管理項目とし、前記蒸気膜崩壊時間が所定時間以下となるように調整された焼入れ油を用いる。   In the present invention, in the quenching method of quenching steel using quenching oil, the vapor film collapse time, which is the elapsed time from the start of cooling in the quenching oil cooling curve to the time when the temperature of the steel suddenly drops, A quenching oil adjusted so that the vapor film collapse time is a predetermined time or less is used as a management item for determining characteristics.

前記焼入れ油は、JIS K 2242に規定された冷却性能試験方法において、蒸気膜崩壊時間が2.1秒以下となるように調整されるようにしてもよい。
前記焼入れ油の調整は、鉱物油を基油とし、添加剤としてポリマー又は石油系高分子重合油を焼き入れ油に添加することにより行われるようにしてもよい。
The quenching oil may be adjusted such that the vapor film collapse time is 2.1 seconds or less in the cooling performance test method defined in JIS K 2242.
The quenching oil may be adjusted by using a mineral oil as a base oil and adding a polymer or a petroleum polymer oil as an additive to the quenching oil.

前記鋼材は、ボロン鋼であってもよい。   The steel material may be boron steel.

本発明によれば、蒸気膜崩壊時間(焼入れ油の冷却曲線における冷却開始の時点から鋼材の温度が急落する時点までの経過時間)が所定時間以下(例えば、JIS K 2242に規定された冷却性能試験方法の条件で2.1秒以下)となるように調整された焼入れ油を用いて鋼材の焼入れを行うので、例えばボロン鋼の焼入れを行った場合でも、表層部分に不完全焼入れ組織が発生しないようにできる。すなわち、本発明では、焼入れ油の蒸気膜崩壊時間、つまり焼入れ初期段階において焼入れ油の蒸気膜が鋼材を覆うために鋼材が急冷しない期間が、十分短く調整されているので、蒸気膜崩壊時間中に進行しやすい不完全焼入れ組織の発生が抑制される。例えば、ボロン鋼の焼入れの場合、鋼材の表層部分は脱ボロン現象によって焼入れ性が低下しているため、蒸気膜崩壊時間における温度600〜700°C近傍においてフェライト変態してしまいやすいが、本発明の方法では、焼入れ工程において焼入れ油が蒸気膜崩壊時間内で温度600〜700°C近傍にある期間が十分短く調整されているので、フェライト変態が抑制される。したがって、鋼材表層の組織を均一化することができるので、鋼材の機械的性質が改善され、良質な鋼材を得ることができる。   According to the present invention, the vapor film disintegration time (elapsed time from the time when cooling starts in the quenching oil cooling curve to the time when the temperature of the steel material suddenly drops) is not longer than a predetermined time (for example, cooling performance defined in JIS K 2242). Since quenching of steel is performed using quenching oil adjusted to be 2.1 seconds or less under the conditions of the test method), even when, for example, boron steel is quenched, an incompletely quenched structure occurs in the surface layer portion. You can avoid it. That is, in the present invention, the vapor film collapse time of the quenching oil, that is, the period during which the steel material does not rapidly cool because the vapor film of the quenching oil covers the steel material in the initial stage of quenching is adjusted to be sufficiently short. Generation of an incompletely quenched structure that tends to progress easily. For example, in the case of quenching boron steel, since the hardenability of the surface layer portion of the steel material is reduced by the deboron phenomenon, ferrite transformation is likely to occur near a temperature of 600 to 700 ° C. during the vapor film collapse time. In this method, since the period in which the quenching oil is in the vicinity of the temperature of 600 to 700 ° C. within the vapor film collapse time is adjusted to be sufficiently short in the quenching step, ferrite transformation is suppressed. Therefore, since the structure of the steel material surface layer can be made uniform, the mechanical properties of the steel material are improved, and a high-quality steel material can be obtained.

以下、添付図面に基づいて本発明の実施形態について説明する。
本実施形態では、ボロン鋼の焼入れ方法において、使用される焼入れ油として、特に、蒸気膜崩壊時間が所定時間以下となるように特性が調整されたものを用いる。ここで、蒸気膜崩壊時間とは、加熱した処理物(鋼材)を冷却して焼入れる場合に、冷却開始時点から蒸気膜が崩壊して処理物(鋼材)の温度が急落する時点までの時間(すなわち、冷却曲線の初期における屈曲点に至るまでの時間)である。すなわち、焼入れ油による冷却初期段階の数秒間においては、蒸気膜の存在により処理物(鋼材)の温度は急速に冷却されることはないが、蒸気膜が崩壊すると、その時点から処理物(鋼材)は急冷され、冷却曲線には屈曲点が生じる。この屈曲点までの時間が蒸気膜崩壊時間である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In the present embodiment, in the quenching method for boron steel, as the quenching oil used, one whose characteristics are adjusted so that the vapor film collapse time is not more than a predetermined time is used. Here, the vapor film collapse time is the time from the start of cooling until the time when the vapor film collapses and the temperature of the processed material (steel material) suddenly drops when the heated processed material (steel material) is cooled and quenched. (That is, the time to reach the inflection point in the initial stage of the cooling curve). That is, the temperature of the treated material (steel material) is not rapidly cooled due to the presence of the vapor film in the initial cooling stage with quenching oil, but when the vapor film collapses, the treated material (steel material) is ) Is rapidly cooled, and a bending point occurs in the cooling curve. The time to the inflection point is the vapor film collapse time.

本実施形態では、蒸気膜崩壊時間が短い焼入れ油を用いて焼入れを行うことにより、ボロン鋼表層におけるフェライト変態を抑制でき、不完全焼入れ組織の発生を有効に防止できる。従来の焼入れ方法では、焼入れ油の特性を決定するために、蒸気膜崩壊時間は特に考慮されていなかった。これに対し、本発明の焼入れ方法は、蒸気膜崩壊時間を新たに管理項目として追加し、蒸気膜崩壊時間の十分短い焼入れ油を用いることにより、鋼材の特性を大幅に改善するものである。   In this embodiment, by performing quenching using a quenching oil having a short vapor film collapse time, ferrite transformation in the boron steel surface layer can be suppressed, and generation of an incompletely quenched structure can be effectively prevented. In the conventional quenching method, the vapor film disintegration time was not particularly considered in order to determine the characteristics of the quenching oil. On the other hand, the quenching method of the present invention adds the vapor film collapse time as a new management item and uses the quenching oil having a sufficiently short vapor film collapse time to greatly improve the properties of the steel material.

蒸気膜崩壊時間の具体的な数値としては、JIS K 2242(2006年度版)に規定された冷却性能試験方法における測定において、2.1秒以下となるように調整する。このような設定により、鋼材表層における不完全焼入れ組織の発生を抑制できるが、この根拠となる実験結果については、図2とともに後述する。   As a specific numerical value of the vapor film disintegration time, it is adjusted to be 2.1 seconds or less in the measurement in the cooling performance test method defined in JIS K 2242 (2006 version). Such a setting can suppress the occurrence of an incompletely quenched structure in the steel surface layer. The experimental results that serve as the basis thereof will be described later with reference to FIG.

蒸気膜崩壊時間の調整は、精製方法(基油の種類)の選択及び添加剤の添付等により行われる。基油としては、例えば、パラフィン系鉱物油(一例として、API分類(アメリカ石油協会分類)のグループIIIに属する基油(硫黄分0.03以下、飽和分90%以上、粘度指数120%以上、主成分i−パラフィン))を用いる。また、蒸気膜崩壊時間短縮のための添加剤としては、例えば、分子量の高い各種ポリマーや石油系高分子重合油を用いる。   The vapor film disintegration time is adjusted by selecting a refining method (type of base oil) and attaching an additive. Examples of the base oil include paraffinic mineral oils (for example, base oils belonging to group III of API classification (American Petroleum Institute classification) (sulfur content 0.03 or less, saturation content 90% or more, viscosity index 120% or more, The main component i-paraffin)) is used. Moreover, as an additive for shortening the vapor film collapse time, for example, various polymers having a high molecular weight or petroleum polymer oils are used.

焼入れ油の種類及び蒸気膜崩壊時間以外の基本特性は、特に限定されず、焼入れ油の蒸気膜崩壊時間以外の基本特性は、例えばJIS K 2242に規定された熱処理油1種又は2種に基づいて設定する。   The basic characteristics other than the kind of quenching oil and the vapor film disintegration time are not particularly limited, and the basic characteristics other than the vapor film disintegration time of the quenching oil are based on, for example, one or two heat-treated oils defined in JIS K 2242 To set.

具体的な焼入れ工程および設備は、特に限定されず、従来と同様のものを用いればよい。例えば、必要に応じて成形加工した部材を、変態点温度以上まで加熱した後、焼入れ油中に浸漬し、急冷することにより、焼入れ変態させる。この場合、焼入れ油の特性については、適宜抜き取り試験を行い、必要に応じて添加剤の添加等により調整する。   The specific quenching process and equipment are not particularly limited, and the same conventional ones may be used. For example, a member that has been molded as necessary is heated to a transformation point temperature or higher, and then immersed in quenching oil and quenched to quench. In this case, the characteristics of the quenching oil are appropriately adjusted by performing a sampling test and adding additives as necessary.

次に、図1を用いて、本実施形態の作用について説明する。図1のグラフは、本実施形態及び従来法における焼入れ油の冷却曲線(冷却時間−温度曲線)を表すもので、本実施形態で用いられる焼入れ油の冷却曲線(本発明法の焼入れ冷却曲線)を実線で、従来法で用いられる焼入れ油の冷却曲線(従来法の焼入れ冷却曲線)を破線で、それぞれ示している。   Next, the effect | action of this embodiment is demonstrated using FIG. The graph of FIG. 1 represents the quenching oil cooling curve (cooling time-temperature curve) in this embodiment and the conventional method, and the quenching oil cooling curve used in this embodiment (quenching cooling curve of the method of the present invention). Is indicated by a solid line, and a cooling curve of the quenching oil used in the conventional method (quenching cooling curve of the conventional method) is indicated by a broken line.

図示されるように、本発明法の焼入れ冷却曲線において、処理物(鋼材)の温度は、冷却開始時点Aから屈曲点Bに至るまでは、急速に冷却されることはなく、なだらかに低下して行くが、屈曲点Bに至ると、蒸気膜の崩壊に伴って急速に低下し、焼入れ変態線に至る。このこの冷却開始時点Aから屈曲点Bに至るまでの時間が、本発明法による蒸気膜崩壊時間となる。同様に、従来法の焼入れ冷却曲線において、処理物(鋼材)の温度は、冷却開始時点Aから屈曲点Cに至るまでは、急速に冷却されることはなく、なだらかに低下して行くが、屈曲点Cに至ると、蒸気膜の崩壊に伴って急速に低下し、焼入れ変態線に至る。この冷却開始時点Aから屈曲点Cに至るまでの時間が、従来法による蒸気膜崩壊時間となる。   As shown in the figure, in the quenching cooling curve of the method of the present invention, the temperature of the processed material (steel material) is not rapidly cooled from the cooling start point A to the bending point B, and gradually decreases. However, when it reaches the bending point B, it rapidly decreases with the collapse of the vapor film and reaches the quenching transformation line. The time from the cooling start time A to the bending point B is the vapor film collapse time according to the method of the present invention. Similarly, in the quenching cooling curve of the conventional method, the temperature of the processed material (steel material) is not rapidly cooled from the cooling start time A to the bending point C, and gradually decreases. When the inflection point C is reached, it rapidly decreases with the collapse of the vapor film and reaches the quenching transformation line. The time from the cooling start time A to the bending point C is the vapor film collapse time according to the conventional method.

本グラフには、これらの冷却曲線に加えて、ボロン鋼素材のフェライト変態線が二点鎖線で、脱ボロンした鋼材表層のフェライト変態線が一点鎖線で、それぞれ示されている。図から分かるように、従来法の焼入れ冷却曲線は、脱ボロンしていないボロン鋼素材のフェライト変態線とは交わることはないが、脱ボロンした鋼材表層のフェライト変態線に対しては交差してしまう。このため、この交差点でフェライト変態が発生してしまい、鋼材表層部分は不完全焼入れ組織を含むものとなってしまう。すなわち、鋼材表層は脱ボロンにより焼入れ性が低下しているため、蒸気膜崩壊時間中の温度600〜700°C近傍においてフェライト変態しやすく、この温度領域は、従来法よりも早く冷却する必要がある。   In this graph, in addition to these cooling curves, the ferrite transformation line of the boron steel material is indicated by a two-dot chain line, and the ferrite transformation line of the deboronized steel surface layer is indicated by a one-dot chain line. As can be seen from the figure, the quenching cooling curve of the conventional method does not intersect with the ferrite transformation line of the boron steel material that has not been deboronated, but intersects with the ferrite transformation line of the surface layer of the deboroned steel material. End up. For this reason, ferrite transformation occurs at this intersection, and the steel surface layer portion includes an incompletely quenched structure. In other words, since the hardenability of the steel surface layer is reduced by deboronation, ferrite transformation is likely to occur near a temperature of 600 to 700 ° C. during the vapor film collapse time, and this temperature region needs to be cooled faster than the conventional method. is there.

これに対して、本発明法の焼入れ冷却曲線は、従来法の焼入れ冷却曲線と比較して、蒸気膜崩壊時間が十分短く調整されているので、脱ボロンした鋼材表層のフェライト変態線と交差する前に屈曲点Bに至り、フェライト変態線と交差しないまま素早く冷却され、焼入れ変態線に至る。したがって、ボロン鋼表層には不完全焼入れ組織が生じることはなく、良質なボロン鋼を生成できる。   On the other hand, the quenching cooling curve of the method of the present invention intersects with the ferrite transformation line of the deboronized steel surface because the vapor film collapse time is adjusted to be sufficiently short compared to the quenching cooling curve of the conventional method. Before reaching the bending point B, it is quickly cooled without intersecting the ferrite transformation line, and reaches the quenching transformation line. Therefore, an incompletely quenched structure does not occur in the boron steel surface layer, and high-quality boron steel can be generated.

図2には、本発明法と従来法のそれぞれにおいて、鋼材表層でのフェライト発生状況を確認した実験結果を一覧表で示す。なお、本実験結果は、JIS K 2242に規定された冷却性能試験方法の条件でなされたものである。また、本実験に用いた試験材料の化学組成は、一覧表の下方に示したとおりのものである。   FIG. 2 shows a list of experimental results for confirming the ferrite generation state on the steel surface layer in each of the method of the present invention and the conventional method. In addition, this experiment result was made on the conditions of the cooling performance test method prescribed | regulated to JISK2242. The chemical composition of the test material used in this experiment is as shown below the list.

一覧表に示されるように、蒸気膜崩壊時間が2.4秒から2.8秒である従来法のサンプル1〜12では、鋼材表層にフェライトの発生が認められる。一方、蒸気膜崩壊時間を2.1秒以下に調整した本発明法によるサンプル1、2では、フェライトの発生を皆無に抑制できている。このように、蒸気膜崩壊時間を2.1秒以下とすれば、高強度ボロン鋼部材の表層は、完全焼入れ可能であり、表層組織は均一化する。   As shown in the list, in samples 1 to 12 of the conventional method in which the vapor film collapse time is 2.4 seconds to 2.8 seconds, generation of ferrite is observed on the steel material surface layer. On the other hand, in Samples 1 and 2 according to the method of the present invention in which the vapor film collapse time was adjusted to 2.1 seconds or less, the generation of ferrite could be completely suppressed. Thus, if the vapor film collapse time is 2.1 seconds or less, the surface layer of the high-strength boron steel member can be completely quenched, and the surface layer structure becomes uniform.

図3は、本発明法と従来法のそれぞれにおける鋼材の硬さの表内差(表面硬さと内部硬さの差)を示すグラフである。図示されるように、本発明法によれば、鋼材の表層組織における硬さは、従来法に比較して、硬度が高く又ばらつきの小さいものとなり、表層組織の強度及び均質性が高まっていることが分かる。   FIG. 3 is a graph showing the in-table difference (difference between surface hardness and internal hardness) of the hardness of steel in each of the method of the present invention and the conventional method. As shown in the drawing, according to the method of the present invention, the hardness in the surface layer structure of the steel material is higher in hardness and less in comparison with the conventional method, and the strength and homogeneity of the surface layer structure is increased. I understand that.

以上のように、本実施形態の焼入れ方法によれば、焼入れに用いる焼入れ油の品質を、蒸気膜崩壊時間が所定時間以下となるように設定した(JIS K 2242に規定された冷却性能試験方法に基づく測定において2.1秒以下となるように設定した)ので、脱ボロン現象が生じているボロン鋼表層部分において不完全焼入れ組織発生の原因となるフェライト変態が生じるより早くに、焼入れ冷却曲線の屈曲点に達し、急冷されることにより、焼入れが行われる。したがって、高強度ボロン鋼材の表層における不完全焼入れ組織の発生は防止され、表層組織は均一化され、また表層の硬さ低下は抑止される。よって、ボルト製品を初めとする高強度ボロン鋼材の静的強度や疲労強度が向上する。また、低廉なボロン鋼であっても高品質な表層組織を有する鋼材を製造できるので、高価なクロムモリブデン鋼やニッケルクロムモリブデン鋼に代えてボロン鋼の使用が可能となり、部品の低廉化によるコスト削減や、金属資源節約を達成できる。   As described above, according to the quenching method of the present embodiment, the quality of the quenching oil used for quenching is set so that the vapor film collapse time is a predetermined time or less (the cooling performance test method defined in JIS K 2242). In the measurement based on the above, it was set to 2.1 seconds or less), so that the quenching cooling curve was earlier than the ferrite transformation that caused the incomplete quenching structure in the boron steel surface where the deboron phenomenon occurred. Quenching is performed by reaching the inflection point and quenching. Therefore, the occurrence of an incompletely quenched structure in the surface layer of the high-strength boron steel material is prevented, the surface structure is made uniform, and a decrease in the hardness of the surface layer is suppressed. Therefore, the static strength and fatigue strength of high-strength boron steel materials such as bolt products are improved. In addition, even low-cost boron steel can produce steel with a high-quality surface structure, so it is possible to use boron steel instead of expensive chromium-molybdenum steel or nickel-chromium-molybdenum steel. Reduction and metal resource saving can be achieved.

なお、上記実施形態では、本発明の焼入れ方法を高強度ボロン鋼に適用した場合を例に説明したが、本発明の適用範囲は、ボロン鋼の焼入れに限られず、例えば質量の大きい部材や焼入れ性の低い鋼材を用いる構造用部材全般の焼入れにおいて、焼入れ組織の改善のためにも適用し得る。   In the above embodiment, the case where the quenching method of the present invention is applied to high-strength boron steel has been described as an example, but the scope of the present invention is not limited to quenching of boron steel, for example, a member having a large mass or quenching In general quenching of structural members using low-strength steel materials, the present invention can also be applied to improve the quenching structure.

本実施形態おける焼入れ油及び従来法におけるる焼入れ油の冷却曲線と、ボロン鋼のフェライト変態線との関係を示すグラフである。It is a graph which shows the relationship between the quenching oil in this embodiment and the cooling curve of the hardening oil in the conventional method, and the ferrite transformation line of boron steel. 本発明法と従来法のそれぞれにおける鋼材表層でのフェライト発生状況を示す一覧表である。It is a table | surface which shows the ferrite generation | occurrence | production situation in the steel material surface layer in each of this invention method and the conventional method. 本発明法と従来法のそれぞれにおける鋼材の硬さの表内差を示すグラフである。It is a graph which shows the table | surface difference of the hardness of the steel materials in each of this invention method and the conventional method.

Claims (2)

焼入れ油を用いてボロン鋼を焼入れする焼入れ方法において、
焼入れ油の冷却曲線における冷却開始の時点から前記ボロン鋼鋼材の温度が急落する時点までの経過時間である蒸気膜崩壊時間を焼入れ油の特性決定のための管理項目とし、
前記蒸気膜崩壊時間が、2006年度版のJISK2242に規定された冷却性能試験において2.1秒以下となるように調整された焼入れ油を用いて常圧下で焼入れを行うことにより、前記ボロン鋼の表層部分における不完全焼入れの発生を防止することを特徴とし、
前記ボロン鋼は、Cの含有量が0.22−0.28%、Mnの含有量が0.40−0.60%、Crの含有量が0.60−0.80%であり、また焼入れ温度は880゜C以上であり、更に焼入れ油は前記JISK2242に規定された、40゜Cで動粘度が26mm /s以下の比較的低粘度の焼入れ油であることを特徴とする、焼入れ方法。
In the quenching method of quenching boron steel using quenching oil,
The vapor film disintegration time, which is the elapsed time from the start of cooling in the quenching oil cooling curve to the time when the temperature of the boron steel material suddenly drops, is a management item for determining the characteristics of the quenching oil,
By performing quenching under normal pressure using quenching oil adjusted so that the vapor film collapse time is 2.1 seconds or less in the cooling performance test defined in JIS K2242 of the 2006 version , the boron steel It is characterized by preventing the occurrence of incomplete quenching in the surface layer part,
The boron steel has a C content of 0.22 to 0.28%, a Mn content of 0.40 to 0.60%, a Cr content of 0.60 to 0.80%, and quenching temperature is 880 ° C or higher, and wherein the further hardened oils defined in the JISK2242, a kinematic viscosity at 40 ° C is 26 mm 2 / s or less in a relatively low viscosity quenching oil, quenching Method.
前記焼入れ油は、鉱物油を基油とし、添加剤としてポリマー又は石油系高分子重合油を添加することにより調整される請求項1に記載の焼入れ方法。 The quenching method according to claim 1, wherein the quenching oil is prepared by using a mineral oil as a base oil and adding a polymer or a petroleum polymer oil as an additive.
JP2006308991A 2006-11-15 2006-11-15 Hardening method for steel Active JP5642327B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006308991A JP5642327B2 (en) 2006-11-15 2006-11-15 Hardening method for steel
CN2007800425207A CN101583726B (en) 2006-11-15 2007-11-09 Method for quenching steel product
PCT/JP2007/071770 WO2008059759A1 (en) 2006-11-15 2007-11-09 Method for quenching steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308991A JP5642327B2 (en) 2006-11-15 2006-11-15 Hardening method for steel

Publications (2)

Publication Number Publication Date
JP2008121094A JP2008121094A (en) 2008-05-29
JP5642327B2 true JP5642327B2 (en) 2014-12-17

Family

ID=39401566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308991A Active JP5642327B2 (en) 2006-11-15 2006-11-15 Hardening method for steel

Country Status (3)

Country Link
JP (1) JP5642327B2 (en)
CN (1) CN101583726B (en)
WO (1) WO2008059759A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250388A (en) * 2015-02-18 2017-10-13 出光兴产株式会社 heat treatment oil composition
JP6569145B2 (en) * 2015-02-18 2019-09-04 出光興産株式会社 Heat treated oil composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659264B2 (en) * 2001-05-02 2011-03-30 出光興産株式会社 Heat treated oil composition
JP4113453B2 (en) * 2003-04-07 2008-07-09 大同特殊鋼株式会社 Bolt Steel Formed from Bonded Film with Excellent Delayed Fracture Resistance and Bolt Manufacturing Method
CN1209209C (en) * 2003-04-17 2005-07-06 南京汽车集团有限公司 Production process of high strength bolt with above 1300MPa
WO2005087955A1 (en) * 2004-03-10 2005-09-22 Idemitsu Kosan Co., Ltd. Quenching oil for reduced pressure quenching and method for quenching

Also Published As

Publication number Publication date
JP2008121094A (en) 2008-05-29
CN101583726A (en) 2009-11-18
WO2008059759A1 (en) 2008-05-22
CN101583726B (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP6031022B2 (en) Steel wire for bolt excellent in delayed fracture resistance, high-strength bolt, and method for producing them
JP5135557B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP5700322B2 (en) Workpiece made of steel hardened to the core zone formed for rolling loads and method for heat treatment
CN100439540C (en) Steel material with excellent rolling fatigue life and method of producing the same
US20120247619A1 (en) Carburized steel and its process of manufacture
FR2991694A1 (en) Strengthening a steel part useful in a car, comprises a step of carburizing or carbonitriding and a step of nitriding that are performed in a same furnace, where nitriding step is carried out next to step of carburizing or carbonitriding
JP2007131907A (en) Steel for induction hardening with excellent cold workability, and its manufacturing method
JP2011256456A (en) Method for manufacturing steel for cold forging
JP2006200003A (en) Heat-treated article and heat treatment method
Basso et al. Analysis of mechanical properties and its associated fracture surfaces in dual‐phase austempered ductile iron
KR101719560B1 (en) Heat treatment method for surface hardened alloy steel
JP5642327B2 (en) Hardening method for steel
JP2010255099A (en) Method for manufacturing bearing-component excellent in rolling fatigue characteristics under foreign matter environment
JP2009299181A (en) High strength steel having excellent delayed fracture resistance, high strength bolt, and method for producing the same
CN107904393B (en) Method for determining heat treatment strengthening process requirement of mechanical part
Yeşildal The effect of heat treatments on the fatigue strength of H13 hot work tool steel
JP2011208209A (en) Method for manufacturing bearing steel having excellent rolling fatigue characteristic, and bearing steel
JP6017944B2 (en) High strength bolt and manufacturing method thereof
JP2001123244A (en) Steel for large-sized bearing and large-sized bearing parts
JP5152832B2 (en) Hardening method of high carbon chromium bearing steel, high carbon chromium bearing steel, bearing parts and rolling bearing
JP2015531029A (en) Method for heat treating steel components and steel components
WO2018155588A1 (en) Method for manufacturing bearing component
JP5630978B2 (en) Mechanical structural steel with excellent toughness
Prabhu et al. Experimental Investigation Into Fatigue Behaviuor of EN-8 Steel (080M40/AISI 1040) Subjected to Heat Treatment and Shot Peening Processes
JP2009242918A (en) Component for machine structure having excellent rolling fatigue property, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141029

R150 Certificate of patent or registration of utility model

Ref document number: 5642327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250