JP2011208209A - Method for manufacturing bearing steel having excellent rolling fatigue characteristic, and bearing steel - Google Patents

Method for manufacturing bearing steel having excellent rolling fatigue characteristic, and bearing steel Download PDF

Info

Publication number
JP2011208209A
JP2011208209A JP2010076309A JP2010076309A JP2011208209A JP 2011208209 A JP2011208209 A JP 2011208209A JP 2010076309 A JP2010076309 A JP 2010076309A JP 2010076309 A JP2010076309 A JP 2010076309A JP 2011208209 A JP2011208209 A JP 2011208209A
Authority
JP
Japan
Prior art keywords
less
bearing steel
rolling fatigue
temperature
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010076309A
Other languages
Japanese (ja)
Other versions
JP5754077B2 (en
Inventor
Yasumasa Hirai
康正 平井
Hideto Kimura
秀途 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010076309A priority Critical patent/JP5754077B2/en
Publication of JP2011208209A publication Critical patent/JP2011208209A/en
Application granted granted Critical
Publication of JP5754077B2 publication Critical patent/JP5754077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide bearing steel having excellent rolling fatigue lifetime characteristic at low cost by suppressing generation of a white structure, in particular, under the hydrogen environment.SOLUTION: Steel having the composition consisting of C :>0.6% and ≤0.9%, Si :≥0.15% and<1.0%, Mn :≥0.2% and ≤1.2%, P :≤0.025%, S :≤0.02%, Al :≤0.05%, Cr :≥6.0 and <10.5%, and N :≤0.0100% and O :≤0.0030%, and the balance Fe with inevitable impurities, and consisting of a structure of a pearlite single layer or pearlite and proeutectoid carbide is heated at the temperature of ≥780°C and ≤980°C, kept in a soaking manner for at least 10 hours, and then, cooled at the cooling rate of ≥1°C/h to ≤20°C/h in the temperature range from the temperature at which the ferrite is started to generate from at least austenite to the temperature at which the transformation from austenite to ferrite is completed.

Description

本発明は、軸受鋼、特に水素ガス用のコンプレッサなど、水素雰囲気下で使用される軸受として用いることが可能な、転動疲労寿命に優れた軸受鋼の製造方法および軸受鋼に関する。   The present invention relates to a bearing steel, particularly a method for producing a bearing steel excellent in rolling fatigue life and bearing steel that can be used as a bearing used in a hydrogen atmosphere, such as a compressor for hydrogen gas.

軸受は、自動車や産業機械などの回転部分に用いられる部品であり、優れた転動疲労寿命が要求される。ここに、自動車のオルターネーターなどの一部の軸受において、転送軌道の直下に白色組織と呼ばれる組織が生成するため、規定寿命より短時間で剥離が発生すると言う問題が生じている。このような、白色組織生成にともなう軸受の短期間での剥離現象は、特許文献1および2に記載されているように、軸受に使用されているグリースや潤滑油、あるいは軸受に侵入した水がトライボケミカル反応により分解して水素を生成し、これらの水素が鋼中へと侵入そして蓄積し、白色組織への変化を促進して引き起こされている。   A bearing is a component used in a rotating part of an automobile or an industrial machine, and requires an excellent rolling fatigue life. Here, in some bearings such as an alternator of an automobile, a structure called a white structure is generated immediately below the transfer track, so that there is a problem that peeling occurs in a shorter time than a specified life. As described in Patent Documents 1 and 2, the peeling phenomenon in a short period of time associated with the generation of the white structure is caused by the grease and lubricating oil used in the bearing, or the water that has entered the bearing. It is caused by the tribochemical reaction to produce hydrogen, which penetrates and accumulates in the steel, promoting the change to a white structure.

ところで、自動車においては、CO2削減の観点から、水素燃料による自動車の開発が進められている。この種の自動車において、水素ガス供給用の水素ガスコンプレッサーに使用される軸受などは、多量の水素ガス雰囲気に曝されることになる。そのため水素が潤滑剤に侵入し易く、この水素は随時分解され鋼中へ侵入するため、上述の場合に比べ、白色組織への組織変化が大幅に促進される。 By the way, in automobiles, development of automobiles using hydrogen fuel is being promoted from the viewpoint of reducing CO 2 . In this type of automobile, a bearing used in a hydrogen gas compressor for supplying hydrogen gas is exposed to a large amount of hydrogen gas atmosphere. Therefore, hydrogen easily penetrates into the lubricant, and this hydrogen is decomposed at any time and penetrates into the steel, so that the structural change to a white structure is greatly promoted compared to the above case.

ここに、白色組織の生成抑制には、特許文献1および2に記載されるように、Cr添加が有効とされている。しかしながら、多量のCr添加はコストの増加につながるとともに、鋼の製造性や加工性の観点からも好ましくない。   Here, as described in Patent Documents 1 and 2, the addition of Cr is effective in suppressing the formation of white texture. However, the addition of a large amount of Cr leads to an increase in cost and is not preferable from the viewpoint of steel manufacturability and workability.

特開2005-133211号公報JP 2005-133211 A 特開2008-255399号公報JP 2008-255399 A

そこで、本発明の目的は、特に水素環境下での白色組織の生成を抑制することによって、転動疲労寿命特性に優れた軸受鋼を低コストの下に提供するための方途について提案することにある。   Accordingly, an object of the present invention is to propose a method for providing bearing steel with excellent rolling fatigue life characteristics at low cost by suppressing the formation of a white structure particularly in a hydrogen environment. is there.

発明者らは、白色組織の生成抑制を所期して鋭意検討を行ったところ、軸受鋼の組成と素材の炭化物形態を適正化することによって、低コストにて水素環境下での白色組織の生成が抑制され、転動疲労寿命が向上するとの知見を得た。さらに、炭化物球状化のための軟化焼鈍に先立って、鋼組織をパーライトもしくはパーライトと初析炭化物に制御することにより、軟化焼鈍後の炭化物が均一に分散し、その結果水素環境下での転動疲労寿命が不均一な場合に比べ2倍も向上することを見出した。
本発明は、上記の知見を基になされたものであり、その要旨とするところは以下の通りである。
(1)質量%で、
C:0.6%超0.9%以下、
Si:0.15%以上1.0%未満、
Mn:0.2%以上1.2%以下、
P:0.025%以下、
S:0.02%以下、
Al:0.05%以下、
Cr:6.0%以上10.5%未満、
N:0.0100%以下および
O:0.0030%以下
を含有し、残部Fe及び不可避的不純物の成分組成を有し、かつパーライト単層もしくはパーライトおよび初析炭化物の組織からなる鋼を、780℃以上980℃以下の温度に加熱後、10時間以上均熱保持し、その後、少なくともオーステナイトからフェライトが生成し始める温度からオーステナイトからフェライトへの変態が終了する温度までの温度範囲において、1℃/h以上20℃/h以下の冷却速度にて冷却することを特徴とする水素環境での転動疲労特性に優れた軸受鋼の製造方法。
The inventors have intensively studied to suppress the formation of a white structure, and by optimizing the composition of the bearing steel and the carbide form of the material, the generation of the white structure in a hydrogen environment at low cost. And the fact that rolling fatigue life is improved was obtained. Furthermore, prior to softening annealing for carbide spheroidization, by controlling the steel structure to pearlite or pearlite and proeutectoid carbide, the carbide after softening annealing is uniformly dispersed, resulting in rolling in a hydrogen environment. It has been found that the fatigue life is improved by a factor of 2 compared with the case where the fatigue life is not uniform.
The present invention has been made based on the above findings, and the gist of the present invention is as follows.
(1) In mass%,
C: more than 0.6% and 0.9% or less,
Si: 0.15% or more and less than 1.0%
Mn: 0.2% or more and 1.2% or less,
P: 0.025% or less,
S: 0.02% or less,
Al: 0.05% or less,
Cr: 6.0% or more and less than 10.5%,
A steel containing N: 0.0100% or less and O: 0.0030% or less, the balance Fe and inevitable impurities, and composed of a pearlite monolayer or a structure of pearlite and proeutectoid carbide is 780 ° C to 980 ° C. After heating to the following temperature, hold soak for 10 hours or more, and then at least 1 ° C / h or more and 20 ° C in a temperature range from the temperature at which ferrite starts to form from austenite to the temperature at which transformation from austenite to ferrite ends The manufacturing method of the bearing steel excellent in the rolling fatigue characteristic in the hydrogen environment characterized by cooling at the cooling rate below / h.

(2)前記成分組成は、さらに、質量%で、
Ti:0.03%以下、
Mo:0.1%未満、
Cu:0.1%以下、
Ni:0.1%以下、
W:0.1%以下および
B:0.003%以下
のうちから選ばれる1種もしくは2種以上を含有することを特徴とする前記(1)に記載の転動疲労特性に優れた軸受鋼の製造方法。
(2) The component composition is further in mass%,
Ti: 0.03% or less,
Mo: less than 0.1%,
Cu: 0.1% or less,
Ni: 0.1% or less,
W: 0.1% or less and B: One or more types selected from 0.003% or less are contained, The manufacturing method of the bearing steel excellent in rolling fatigue characteristics as described in said (1) characterized by the above-mentioned.

(3)前記(1)または(2)に記載の方法によって製造された軸受鋼であって、該鋼中に存在する炭化物の平均直径が0.4μm以上0.7μm以下、かつ炭化物の平均アスペクト比が1.0以上2.0以下であることを特徴とする転動疲労特性に優れた軸受鋼。 (3) A bearing steel manufactured by the method described in (1) or (2) above, wherein an average diameter of carbides present in the steel is 0.4 μm or more and 0.7 μm or less, and an average aspect ratio of the carbides is Bearing steel excellent in rolling fatigue characteristics characterized by being 1.0 or more and 2.0 or less.

本発明によれば、特に水素環境下での白色組織の生成を抑制することによって、転動疲労寿命特性に優れた軸受鋼を低コストの下に提供することができる。   According to the present invention, bearing steel excellent in rolling fatigue life characteristics can be provided at a low cost by suppressing the formation of a white structure particularly in a hydrogen environment.

以下、本発明の軸受鋼の製造方法について、まず成分組成の限定理由を成分毎に説明する。なお、成分に関する「%」表示は、特に断らない限り「質量%」を示している。
C:0.6%超0.9%以下
Cは、焼入れ性への影響が最も大きい元素であり、軸受を焼入れた場合に焼入れ硬化層の硬さを高めて、転動疲労寿命を向上させる上で有用である。C含有量が0.6%以下では、焼入れ硬化層の硬度が得られず、必要とされる転動疲労寿命を確保できないため、0.6%超とする。一方、0.9%を超えて添加すると、溶製後の素材に粗大な共晶炭化物が生成しやすくなり、球状化焼鈍後に粗大な炭化物が残留し、通常の転動疲労寿命および水素環境下での転動疲労寿命が大幅に低下してしまうため、0.9%以下とする。従って、C含有量は0.6%超0.9%以下とする。
Hereinafter, the reason for limitation of a component composition is first demonstrated for every component about the manufacturing method of the bearing steel of this invention. In addition, unless otherwise indicated, the "%" display regarding a component has shown "mass%".
C: More than 0.6% and 0.9% or less C is an element having the greatest effect on hardenability, and is useful for improving the rolling fatigue life by increasing the hardness of the hardened hardened layer when the bearing is hardened. is there. If the C content is 0.6% or less, the hardness of the quenched and hardened layer cannot be obtained, and the required rolling fatigue life cannot be ensured. On the other hand, if added over 0.9%, coarse eutectic carbides are likely to be formed in the raw material after melting, and coarse carbides remain after spheroidizing annealing, resulting in normal rolling fatigue life and hydrogen environment. The rolling fatigue life will be significantly reduced, so 0.9% or less. Therefore, the C content is more than 0.6% and not more than 0.9%.

Si:0.15%以上1.0%未満
Siは、白色組織の生成抑制に有効な元素であり、本発明において重要な元素である。その添加量が、0.15%未満だとは白色組織の生成抑制効果が乏しいため0.15%以上の添加とする。一方、1.0%以上添加すると、軸受製造時の加工性(切断、成形鍛造など)を著しく劣化させるため、1.0%未満とする。従って、Si含有量は0.15%以上1.0%未満とする。
Si: 0.15% or more and less than 1.0%
Si is an effective element for suppressing the formation of white texture, and is an important element in the present invention. If the addition amount is less than 0.15%, the effect of suppressing the formation of white tissue is poor, so 0.15% or more is added. On the other hand, if added in an amount of 1.0% or more, the workability (cutting, forging, etc.) at the time of producing the bearing is remarkably deteriorated. Therefore, the Si content is 0.15% or more and less than 1.0%.

Mn:0.2%以上1.2%以下
Mnは、焼入性を向上させるために添加するが、0.2%未満の添加ではその効果に乏しい。一方、1.2%を超えて添加すると、軸受製造時の加工性(切断、成形鍛造など)を著しく劣化させるため、1.2%以下とする。従って、Mn含有量は0.2%以上1.2%以下とする。
Mn: 0.2% or more and 1.2% or less
Mn is added to improve the hardenability, but its effect is poor when added below 0.2%. On the other hand, if added over 1.2%, the workability at the time of bearing manufacture (cutting, forming forging, etc.) is remarkably deteriorated. Therefore, the Mn content is 0.2% or more and 1.2% or less.

P:0.025%以下
Pは、オーステナイトの粒界に偏析し、粒界強度を低下させることにより、焼入時に焼割れを助長する。従って、その含有量は極力低下させることが望ましいが、0.025%以下であれば許容される。好ましくは、0.020%以下とする。
P: 0.025% or less P segregates at the grain boundaries of austenite and lowers the grain boundary strength, thereby promoting quench cracking during quenching. Therefore, it is desirable to reduce the content as much as possible, but it is acceptable if it is 0.025% or less. Preferably, the content is 0.020% or less.

S:0.02%以下
Sは、鋼中でMnSを形成し、転動疲労試験での破壊起点となり転動疲労強度が低下する可能性があるため、0.02%以下とする。好ましくは0.01%以下とする。
S: 0.02% or less S is 0.02% or less because MnS is formed in steel and may become a starting point of fracture in the rolling fatigue test, which may reduce the rolling fatigue strength. Preferably it is 0.01% or less.

Al:0.05%以下
Alは、脱酸に有効な元素であり低酸素化のために有用な元素であり、好ましくは0.01%以上で添加してもよい。しかし、酸化物は転動疲労特性を低下させるため、必要以上の添加は避ける方が良い。このために、0.05%以下の添加とする。
Al: 0.05% or less
Al is an element effective for deoxidation and is an element useful for reducing oxygen, and may be added at 0.01% or more. However, since oxides reduce rolling fatigue properties, it is better to avoid adding more than necessary. For this reason, 0.05% or less is added.

Cr:6.0%以上10.5%未満
Crは、白色組織の生成抑制に有効な元素であり、本発明において重要な元素である。Cr添加量が6.0%未満では、水素雰囲気下での白色組織の生成抑制効果が乏しいため、6.0%以上の添加とする。一方、10.5%以上添加すると、コスト増になるとともに、軸受製造時の加工性(切断、成形鍛造など)を著しく劣化させるため、10.5%未満とする。従って、Cr添加量の範囲は、6.0%以上10.5%未満とする。
Cr: 6.0% or more and less than 10.5%
Cr is an effective element for suppressing the formation of white texture and is an important element in the present invention. If the amount of Cr added is less than 6.0%, the effect of suppressing the formation of white structure in a hydrogen atmosphere is poor, so 6.0% or more is added. On the other hand, if it is added at 10.5% or more, the cost is increased and the workability (cutting, forming forging, etc.) at the time of producing the bearing is remarkably deteriorated. Therefore, the range of Cr addition amount is 6.0% or more and less than 10.5%.

O:0.0030%以下
Oは、硬質の酸化物系非金属介在物として存在し、O量が増加すると、酸化物系非金属介在物のサイズが粗大化する。この酸化物系非金属介在物は、特に転動疲労特性に有害であるため、極力低減することが望ましく、0.0030%以下に低減する必要がある。好ましくは、0.0010%以下とする。
O: 0.0030% or less O exists as a hard oxide-based nonmetallic inclusion, and when the amount of O increases, the size of the oxide-based nonmetallic inclusion becomes coarse. This oxide-based non-metallic inclusion is particularly harmful to rolling fatigue characteristics, so it is desirable to reduce it as much as possible, and it is necessary to reduce it to 0.0030% or less. Preferably, it is 0.0010% or less.

N:0.0100%以下
Nは、AlおよびTiと窒化物あるいは炭窒化物を形成し、焼入れのための加熱時に、オーステナイトの成長を抑制する効果があるため、好ましくは0.0030%以上で含有していてもよい。しかし、一方で、粗大な窒化物、炭窒化物は転動疲労寿命の低下を招くため0.0100%以下とする。好ましくは、0.0060%以下とする。
N: 0.0100% or less N forms nitrides or carbonitrides with Al and Ti, and has the effect of suppressing austenite growth during heating for quenching. Therefore, N is preferably contained at 0.0030% or more. Also good. However, on the other hand, coarse nitrides and carbonitrides cause a reduction in rolling fatigue life, so the content is made 0.0100% or less. Preferably, it is 0.0060% or less.

さらに、上記の成分に加えて、Ti、Mo、Cu、Ni、WおよびBのうち1種または2種以上を添加してもよい。
Ti:0.03%以下
Tiを添加すると、TiNとなることによって、オーステナイト域でピンニング効果を発揮し粒成長を抑制することから添加しても良いが、多量に添加すると、TiNが多量析出することにより転動疲労寿命を低下させるため、その添加量を0.03%以下とする。
Furthermore, in addition to the above components, one or more of Ti, Mo, Cu, Ni, W and B may be added.
Ti: 0.03% or less
When Ti is added, it may be added because it becomes TiN, thereby exhibiting a pinning effect in the austenite region and suppressing grain growth, but when added in a large amount, TiN precipitates in a large amount, thereby reducing the rolling fatigue life. In order to lower it, the amount added is 0.03% or less.

Mo:0.1%未満
Moは、転動疲労寿命を向上させるため添加してもよいが、コストが高くなるためその添加量を0.1%未満とする。
Mo: less than 0.1%
Mo may be added to improve the rolling fatigue life. However, since the cost increases, the addition amount is made less than 0.1%.

Cu:0.1%以下
Cuは、焼入性を向上させる元素であるため添加しても良いが、0.1%を超えて添加すると熱間加工性を阻害する可能性があるため、0.1%以下の添加とする。
Cu: 0.1% or less
Cu may be added because it is an element that improves hardenability, but if added over 0.1%, hot workability may be hindered, so 0.1% or less is added.

Ni:0.1%以下
Niは、焼入性を向上させる元素であるため、焼入性を調整する場合に用いることができる。Niは高価な元素であるため、添加量が多くなると鋼材価格が高くなるため、0.1%以下の添加とする。
Ni: 0.1% or less
Since Ni is an element that improves hardenability, it can be used when adjusting hardenability. Since Ni is an expensive element, the steel material price increases as the addition amount increases, so the addition is made 0.1% or less.

W:0.1%以下
Wは、焼入性を向上させる元素であるため、焼入性を調整する場合に用いることができる。Wは高価な元素であり、添加量が多くなると鋼材価格が高くなるため、0.1%以下の添加とする。
W: 0.1% or less Since W is an element that improves hardenability, it can be used to adjust hardenability. W is an expensive element, and the steel material price increases as the addition amount increases, so the addition is made 0.1% or less.

B:0.003%以下
Bは、焼入性を向上させる元素であるため、焼入性を調整する場合に用いることができる。しかし、0.003%を超えて添加しても効果が飽和するため0.003%以下の添加とする。
B: 0.003% or less Since B is an element that improves hardenability, it can be used when adjusting hardenability. However, even if added over 0.003%, the effect is saturated, so 0.003% or less should be added.

次に、上記した成分組成に従って溶製した鋼素材を、パーライト単層もしくは、パーライトおよび初析炭化物の組織に制御してから、780℃以上980℃以下の温度に加熱後、10時間以上均熱保持し、その後、少なくともオーステナイトからフェライトが生成し始める温度からオーステナイトからフェライトへの変態が終了する温度までの温度範囲において、1℃/h以上20℃/h以下の冷却速度にて冷却する、軟化焼鈍を施すことが肝要である。   Next, the steel material melted in accordance with the above component composition is controlled to a pearlite monolayer or a structure of pearlite and proeutectoid carbide, and then heated to a temperature of 780 ° C to 980 ° C, and then soaked for 10 hours or more. Holding, and then cooling at a cooling rate of 1 ° C / h or more and 20 ° C / h or less in a temperature range from at least the temperature at which ferrite starts to form from austenite to the temperature at which transformation from austenite to ferrite ends It is important to perform annealing.

すなわち、軟化焼鈍直前の組織を、パーライトもしくは、パーライトおよび初析炭化物に限定する必要がある。軟化焼鈍前組織を規定せずに、例えばマルテンサイトにした場合、軟化焼鈍後の炭化物は十分に球状化されているものの、炭化物がマルテンサイト中の針状組織に沿って列状に並ぶため、不均一な配置状態となっている。このような軸受鋼を、焼入れ−焼戻ししても炭化物の不均一配置は引き継がれる。一方、軟化焼鈍前組織をパーライトもしくは、パーライトおよび初析炭化物とした場合、軟化焼鈍後の炭化物は均一な組織を示し、焼入れ−焼戻し後も均一な組織が引き継がれ、軸受製品の転動疲労寿命は炭化物が不均一なものに比べ向上する。そのため、軟化焼鈍前組織をパーライトもしくは、パーライトおよび初析炭化物に規定する。   That is, it is necessary to limit the structure immediately before soft annealing to pearlite or pearlite and proeutectoid carbide. Without defining the structure before softening annealing, for example, when martensite is used, the carbides after softening annealing are sufficiently spheroidized, but the carbides are lined up along the acicular structure in martensite. Non-uniform arrangement. Even if such bearing steel is quenched and tempered, the uneven distribution of carbides is inherited. On the other hand, when the structure before soft annealing is pearlite or pearlite and proeutectoid carbide, the carbide after soft annealing shows a uniform structure, and the uniform structure is taken over after quenching and tempering, and the rolling fatigue life of bearing products Improves compared to non-uniform carbides. Therefore, the structure before softening annealing is defined as pearlite or pearlite and proeutectoid carbide.

なお、軟化焼鈍前組織をパーライトもしくは、パーライトおよび初析炭化物とするには、軟化焼鈍直前の熱処理、具体的には熱間圧延やノルマライジング処理において、オーステナイトからフェライトが生成し始める温度からオーステナイトからフェライトへの変態が終了する温度までの温度範囲において、徐冷することが重要である。その冷却速度は合金添加量にもよるが、おおむね0.1℃/s以下の範囲とすれば、パーライトもしくは、パーライトおよび初析炭化物の組織が得られる。   In order to make the structure before soft annealing pearlite or pearlite and proeutectoid carbide, in the heat treatment immediately before soft annealing, specifically, from the temperature at which ferrite starts to form from austenite in hot rolling and normalizing treatment, from austenite It is important to slowly cool in the temperature range up to the temperature at which the transformation to ferrite ends. Although the cooling rate depends on the added amount of the alloy, if it is set within a range of about 0.1 ° C./s or less, a structure of pearlite or pearlite and proeutectoid carbide can be obtained.

上記した成分組成および組織に従う鋼素材は、780℃以上980℃以下の温度に加熱後、10時間以上均熱保持し、その後、少なくともオーステナイトからフェライトが生成し始める温度からオーステナイトからフェライトへの変態が終了する温度までの温度範囲において、1℃/h以上20℃/h以下の冷却速度にて冷却することが肝要である。   The steel material according to the above component composition and structure is heated to a temperature of 780 ° C. or higher and 980 ° C. or lower and then held soaked for 10 hours or more, and then the transformation from austenite to ferrite starts at least from the temperature at which ferrite starts to form. It is important to cool at a cooling rate of 1 ° C./h or more and 20 ° C./h or less in the temperature range up to the end temperature.

加熱温度:780℃以上980℃以下
加熱温度が780℃未満では、炭化物球状化が不十分になり、炭化物の平均アスペクト比が2.0を超えてしまう。一方、加熱温度が980℃を超えると、炭化物が母相に溶け込みすぎて、その後の冷却中にパーライトや棒状炭化物が生成されるため、結果として炭化物の平均アスペクト比が2.0を超えてしまう。
Heating temperature: 780 ° C. or higher and 980 ° C. or lower If the heating temperature is lower than 780 ° C., carbide spheroidization becomes insufficient, and the average aspect ratio of carbide exceeds 2.0. On the other hand, when the heating temperature exceeds 980 ° C., the carbide is excessively dissolved in the parent phase, and pearlite and rod-like carbide are generated during the subsequent cooling, and as a result, the average aspect ratio of the carbide exceeds 2.0.

均熱時間:10時間以上
上記加熱後の均熱時間が10時間未満では、炭化物球状化が不十分になって炭化物の平均アスペクト比が2.0を超えてしまう。均熱時間を10時間以上とすると、素材の炭化物が球状化して平均アスペクト比が1.0以上2.0以下の良好な球状化炭化物が得られる。
Soaking time: 10 hours or more When the soaking time after the heating is less than 10 hours, carbide spheroidization becomes insufficient and the average aspect ratio of the carbide exceeds 2.0. When the soaking time is 10 hours or longer, the carbide of the material is spheroidized and a good spheroidized carbide having an average aspect ratio of 1.0 to 2.0 is obtained.

冷却:少なくともオーステナイトからフェライトが生成し始める温度からオーステナイトからフェライトへの変態が終了する温度までの温度範囲を1℃/h以上20℃/h以下
冷却は、オーステナイトからフェライトが生成し始める温度から、オーステナイトからフェライトへの変態が終了する温度までの温度範囲において、冷却底度が1℃/hより遅いと、球状化炭化物の平均直径が0.7μmを超えてしまう。一方、20℃/hより早い温度で冷却すると、球状化炭化物の平均直径が0.4μm未満となる。
Cooling: The temperature range from at least the temperature at which ferrite starts to form from austenite to the temperature at which transformation from austenite to ferrite ends is from 1 ° C / h to 20 ° C / h Cooling starts from the temperature at which ferrite starts to form from austenite, When the cooling bottom is slower than 1 ° C./h in the temperature range from the transformation to austenite to ferrite, the average diameter of the spheroidized carbide exceeds 0.7 μm. On the other hand, when cooled at a temperature faster than 20 ° C./h, the average diameter of the spheroidized carbide becomes less than 0.4 μm.

以上の製造工程を経て得られる軸受鋼は、鋼中の炭化物の平均直径を0.4μm以上0.7μm以下、炭化物の平均アスペクト比を1.0以上2.0以下に制御できる。以下に、軸受鋼における炭化物の規定について詳しく説明する。   The bearing steel obtained through the above manufacturing process can control the average diameter of carbides in the steel to 0.4 μm to 0.7 μm and the average aspect ratio of carbides to 1.0 to 2.0. Hereinafter, the definition of carbides in the bearing steel will be described in detail.

炭化物の平均直径:0.4μm以上0.7μm以下
炭化物の平均直径は、0.4μm以上0.7μm以下に規定する。すなわち、軸受鋼中の球状化炭化物は鋼中に侵入してきた水素のトラップサイトとして働く。ここで、炭化物の平均直径が0.4μmより小さい場合、トラップサイトとなる炭化物表面積の総面積が小さくなるため、トラップする水素量が少なくなってしまう。そのため、侵入した水素における拡散性水素量が増加し、結果として白色組織への組織変化を抑制できない。一方、炭化物の平均直径が0.7μmより大きい場合、通常雰囲気での転動疲労寿命および水素雰囲気下での転動疲労寿命の双方が低下する。これは、粗大な球状化炭化物が応力集中源となり、母相/炭化物界面への割れの発生を助長するためと考えられる。そのため、炭化物の平均直径は0.4μm以上0.7μm以下に規定する。
Average diameter of carbide: 0.4 μm or more and 0.7 μm or less The average diameter of carbide is specified to be 0.4 μm or more and 0.7 μm or less. That is, the spheroidized carbide in the bearing steel functions as a trap site for hydrogen that has entered the steel. Here, when the average diameter of the carbide is smaller than 0.4 μm, the total area of the carbide surface area that becomes the trap site is reduced, and the amount of trapped hydrogen is reduced. For this reason, the amount of diffusible hydrogen in the invading hydrogen increases, and as a result, the tissue change to the white tissue cannot be suppressed. On the other hand, when the average diameter of the carbide is larger than 0.7 μm, both the rolling fatigue life in a normal atmosphere and the rolling fatigue life in a hydrogen atmosphere are lowered. This is presumably because coarse spheroidized carbide serves as a stress concentration source and promotes the generation of cracks at the matrix / carbide interface. Therefore, the average diameter of carbide is specified to be 0.4 μm or more and 0.7 μm or less.

炭化物の平均アスペクト比:1.0以上2.0以下
炭化物の長径/短径であるアスペクト比は平均で、1.0以上2.0以下とする。平均アスペクト比が2.0を超えてしまうと、トラップサイトとなる炭化物表面積の総面積が小さくなるため、トラップする水素量が少なくなってしまう。そのため、侵入した水素における拡散性水素量が増加し、結果として白色組織への組織変化を抑制できない。
Average aspect ratio of carbide: 1.0 or more and 2.0 or less The average aspect ratio of the major axis / minor axis of the carbide is 1.0 or more and 2.0 or less. If the average aspect ratio exceeds 2.0, the total area of the carbide surface area that becomes the trap site becomes small, so that the amount of hydrogen to be trapped decreases. For this reason, the amount of diffusible hydrogen in the invading hydrogen increases, and as a result, the tissue change to the white tissue cannot be suppressed.

なお、炭化物の平均直径や平均アスペクト比を求めるには、走査型電子顕微鏡を用いて炭化物を観察するが、平均直径や平均アスペクト比を正確に求めることが可能な炭化物は円相当径が0.02μm以上のものであり、従って、本発明においては、円相当径が0.02μm以上の炭化物についての測定を行う。平均直径については、画像解析により観察される炭化物について円相当径を求め、0.02μm以上である炭化物の個数と円相当径とから、その円相当径の平均値を求め、これを平均直径とする。平均アスペクト比は、0.02μm以上である炭化物についてそれぞれアスペクト比を求め、この平均値を算出する。   In order to determine the average diameter and average aspect ratio of carbide, the carbide is observed using a scanning electron microscope. The carbide that can accurately determine the average diameter and average aspect ratio has an equivalent circle diameter of 0.02 μm. Accordingly, in the present invention, measurements are made on carbides having an equivalent circle diameter of 0.02 μm or more. For the average diameter, the equivalent circle diameter is obtained for the carbides observed by image analysis, and the average value of the equivalent circle diameter is obtained from the number of carbides equal to or greater than 0.02 μm and the equivalent circle diameter, and this is used as the average diameter. . The average aspect ratio is determined for each carbide having a mean aspect ratio of 0.02 μm or more, and the average value is calculated.

以下、本発明を実施例に基づいて説明する。
表1に示す化学組成の鋼を造塊法により溶製し、1250℃で30時間の拡散焼鈍を実施した。この鋼を、ブレークダウン工程を経て、150mm角ビレットに圧延したのち、1050℃に再加熱後、直径70mmの棒鋼に圧延し、空冷した。その後、再度1050℃に1時間均熱した後、保温ボックス内にて600℃〜800℃での平均冷却速度0.01℃/sで徐冷し、室温まで冷却し、軟化焼鈍前の鋼組織をパーライトおよび初析炭化物とした素材を作製した(軟化焼鈍前条件B)。また、比較として、熱間圧延ままの素材も用意した(軟化焼鈍前条件A)。
Hereinafter, the present invention will be described based on examples.
Steels having the chemical compositions shown in Table 1 were melted by the ingot-making method and subjected to diffusion annealing at 1250 ° C. for 30 hours. The steel was rolled into a 150 mm square billet through a breakdown process, reheated to 1050 ° C., rolled into a 70 mm diameter steel bar, and air-cooled. Then, after soaking again at 1050 ° C for 1 hour, it is gradually cooled in an insulation box at an average cooling rate of 600 ° C to 800 ° C at an average cooling rate of 0.01 ° C / s, cooled to room temperature, and the steel structure before softening annealing is pearlite. And the raw material made into pro-eutectoid carbide was produced (condition B before softening annealing). For comparison, a raw material as hot-rolled was also prepared (condition A before softening annealing).

以上のように、素材には、軟化焼鈍前組織の影響を比較するために、軟化焼鈍前組織をパーライトおよび初析炭化物とした素材と、熱間圧延材とを用いて、さらに、炭化物状態を変えるために、下記の諸条件にて球状化焼鈍を施した。

a:800℃に10時間加熱均熱後、25℃/hにて冷却
b:800℃に10時間加熱均熱後、15℃/hにて冷却
c:970℃に10時間加熱均熱後、15℃/hにて冷却
d:970℃に10時間加熱均熱後、5℃/hにて冷却
e:760℃に10時間加熱均熱後、15℃/hにて冷却
As described above, in order to compare the influence of the structure before softening annealing on the material, using a material in which the structure before softening annealing is pearlite and proeutectoid carbide, and a hot-rolled material, the carbide state is further changed. In order to change, spheroidizing annealing was performed under the following conditions.
A: Heated to 800 ° C for 10 hours, then cooled at 25 ° C / h b: Heated to 800 ° C for 10 hours, then cooled at 15 ° C / h c: Heated to 970 ° C for 10 hours Cooled at 15 ° C / h, d: Heated to 970 ° C for 10 hours, then cooled at 5 ° C / h e: Heated to 760 ° C for 10 hours, then cooled at 15 ° C / h

球状化焼鈍後の棒鋼は、炭化物を確認するために、輪切りサンプルを採取した後、粗研磨および鏡面研磨仕上げをし、ピクラール腐食液にて腐食した。
炭化物観察は、棒鋼の周面から直径の1/4深さ部において、SEM観察を5000倍で10視野観察し、撮影したSEM像を画像解析し、各炭化物の平均炭化物直径および平均アスペクト比(長径/短径)を求めた。
The steel bar after spheroidizing annealing was subjected to rough polishing and mirror polishing after collecting a round sample in order to confirm carbides, and was corroded with a Picral corrosive solution.
Carbide observations were conducted at 10x depth of the SEM observation at a magnification of 1/4 from the circumferential surface of the steel bar at a depth of 1/4, and the SEM images taken were image-analyzed, and the average carbide diameter and average aspect ratio of each carbide ( (Major axis / minor axis).

転動疲労試験に供する試験片は、棒鋼から直径60mmで厚さ5.5mmの粗試験片を採取した後、980℃〜1050℃で0.5時間加熱均熱後、60℃の油中にて焼入れを行った。その後、180℃で1時間焼戻しを実施した。焼戻し後のサンプルは5mm厚に研磨(試験面は▽▽▽▽仕上げ)仕上げした。試験片は、試験実施前に、転動疲労試験に影響しない位置にてビッカース硬度計を用いて、10kgfの荷重にて4点測定し、表面硬さを測定し、各試験に用いた試験片の平均値を求めた。   The specimens used for the rolling fatigue test were taken from a steel bar with a diameter of 60 mm and a thickness of 5.5 mm. After soaking at 980 ° C to 1050 ° C for 0.5 hours, quenching was performed in oil at 60 ° C. went. Thereafter, tempering was performed at 180 ° C. for 1 hour. The sample after tempering was polished to a thickness of 5 mm (the test surface was finished with ▽▽▽▽). Before performing the test, the test piece was measured at four points with a load of 10 kgf using a Vickers hardness tester at a position that does not affect the rolling fatigue test, the surface hardness was measured, and the test piece used for each test The average value of was obtained.

転動疲労試験は、スラスト型転動疲労試験機を使用し、試験片に処理を実施しないまま(通常雰囲気模擬)の転動疲労試験と、試験片を濃度20%のチオシアン酸アンモニウム水溶液(液温50℃)中での転動疲労試験との、2種類で実施した。通常雰囲気を模擬した試験では、へルツ応力5.2GPa、応力負荷速度1800cpm、FBK#68タービン油潤滑(室温)の条件で試験を実施した。また、水素雰囲気を模擬した試験ではへルツ応力3.8GPa、応力負荷速度3600cpm、FBK#68タービン油潤滑(室温)の条件で試験を実施した。各条件につき10回試験を行い、ワイブルプロットによる整理を実施して、B10寿命を求めた。 In the rolling fatigue test, a thrust type rolling fatigue tester was used, and the test piece was not treated (normal atmosphere simulation) and the test piece was treated with an aqueous solution of ammonium thiocyanate (liquid solution) with a concentration of 20%. Two types of rolling fatigue tests were performed at a temperature of 50 ° C.). In a test simulating a normal atmosphere, the test was performed under conditions of Hertz stress 5.2 GPa, stress load rate 1800 cpm, and FBK # 68 turbine oil lubrication (room temperature). In the test simulating a hydrogen atmosphere, the test was performed under the conditions of Hertz stress 3.8 GPa, stress load rate 3600 cpm, and FBK # 68 turbine oil lubrication (room temperature). We performed 10 times tested for each condition, and carried out organized by the Weibull plot to determine the B 10 life.

その結果を表2および3に示すように、本発明の条件を満足する発明例はいずれも、通常雰囲気および水素雰囲気のどちらの場合にあっても、優れた転動疲労寿命を有することがわかる。   As shown in Tables 2 and 3, the results of the invention satisfying the conditions of the present invention have excellent rolling fatigue life in both the normal atmosphere and the hydrogen atmosphere. .

Figure 2011208209
Figure 2011208209

Figure 2011208209
Figure 2011208209

Figure 2011208209
Figure 2011208209

Claims (3)

質量%で、
C:0.6%超0.9%以下、
Si:0.15%以上1.0%未満、
Mn:0.2%以上1.2%以下、
P:0.025%以下、
S:0.02%以下、
Al:0.05%以下、
Cr:6.0%以上10.5%未満、
N:0.0100%以下および
O:0.0030%以下
を含有し、残部Fe及び不可避的不純物の成分組成を有し、かつパーライト単層もしくはパーライトおよび初析炭化物の組織からなる鋼を、780℃以上980℃以下の温度に加熱後、10時間以上均熱保持し、その後、少なくともオーステナイトからフェライトが生成し始める温度からオーステナイトからフェライトへの変態が終了する温度までの温度範囲において、1℃/h以上20℃/h以下の冷却速度にて冷却することを特徴とする水素環境での転動疲労特性に優れた軸受鋼の製造方法。
% By mass
C: more than 0.6% and 0.9% or less,
Si: 0.15% or more and less than 1.0%
Mn: 0.2% or more and 1.2% or less,
P: 0.025% or less,
S: 0.02% or less,
Al: 0.05% or less,
Cr: 6.0% or more and less than 10.5%,
A steel containing N: 0.0100% or less and O: 0.0030% or less, the balance Fe and inevitable impurities, and composed of a pearlite monolayer or a structure of pearlite and proeutectoid carbide is 780 ° C to 980 ° C. After heating to the following temperature, hold soak for 10 hours or more, and then at least 1 ° C / h or more and 20 ° C in a temperature range from the temperature at which ferrite starts to form from austenite to the temperature at which transformation from austenite to ferrite ends The manufacturing method of the bearing steel excellent in the rolling fatigue characteristic in the hydrogen environment characterized by cooling at the cooling rate below / h.
前記成分組成は、さらに、質量%で、
Ti:0.03%以下、
Mo:0.1%未満、
Cu:0.1%以下、
Ni:0.1%以下、
W:0.1%以下および
B:0.003%以下
のうちから選ばれる1種もしくは2種以上を含有することを特徴とする請求項1に記載の転動疲労特性に優れた軸受鋼の製造方法。
The component composition is further mass%,
Ti: 0.03% or less,
Mo: less than 0.1%,
Cu: 0.1% or less,
Ni: 0.1% or less,
The method for producing a bearing steel excellent in rolling fatigue characteristics according to claim 1, comprising one or more selected from W: 0.1% or less and B: 0.003% or less.
請求項1または2に記載の方法によって製造された軸受鋼であって、該鋼中に存在する炭化物の平均直径が0.4μm以上0.7μm以下、かつ炭化物の平均アスペクト比が1.0以上2.0以下であることを特徴とする転動疲労特性に優れた軸受鋼。   The bearing steel manufactured by the method according to claim 1 or 2, wherein an average diameter of carbides present in the steel is 0.4 µm or more and 0.7 µm or less, and an average aspect ratio of carbides is 1.0 or more and 2.0 or less. Bearing steel with excellent rolling fatigue characteristics.
JP2010076309A 2010-03-29 2010-03-29 Manufacturing method of bearing steel excellent in rolling fatigue characteristics and bearing steel Active JP5754077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076309A JP5754077B2 (en) 2010-03-29 2010-03-29 Manufacturing method of bearing steel excellent in rolling fatigue characteristics and bearing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076309A JP5754077B2 (en) 2010-03-29 2010-03-29 Manufacturing method of bearing steel excellent in rolling fatigue characteristics and bearing steel

Publications (2)

Publication Number Publication Date
JP2011208209A true JP2011208209A (en) 2011-10-20
JP5754077B2 JP5754077B2 (en) 2015-07-22

Family

ID=44939564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076309A Active JP5754077B2 (en) 2010-03-29 2010-03-29 Manufacturing method of bearing steel excellent in rolling fatigue characteristics and bearing steel

Country Status (1)

Country Link
JP (1) JP5754077B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208208A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Bearing steel superior in rolling fatigue property and method for manufacturing the same
JP2011208209A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for manufacturing bearing steel having excellent rolling fatigue characteristic, and bearing steel
CN103032330A (en) * 2013-01-16 2013-04-10 东莞市金瑞五金制品有限公司 Compressor and application thereof
CN112301193A (en) * 2020-09-30 2021-02-02 山东钢铁股份有限公司 Thermomechanical treatment method for preparing rare earth bearing steel
CN112792126A (en) * 2020-12-18 2021-05-14 山东钢铁股份有限公司 Hot rolling method of bearing steel with large compression ratio
CN113774283A (en) * 2021-09-14 2021-12-10 鞍钢股份有限公司 High-toughness plastic steel rail for high-speed railway non-small-radius curve and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208209A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for manufacturing bearing steel having excellent rolling fatigue characteristic, and bearing steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208209A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for manufacturing bearing steel having excellent rolling fatigue characteristic, and bearing steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208208A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Bearing steel superior in rolling fatigue property and method for manufacturing the same
JP2011208209A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Method for manufacturing bearing steel having excellent rolling fatigue characteristic, and bearing steel
CN103032330A (en) * 2013-01-16 2013-04-10 东莞市金瑞五金制品有限公司 Compressor and application thereof
CN103032330B (en) * 2013-01-16 2016-01-20 东莞市金瑞五金制品有限公司 A kind of compressor and application thereof
CN112301193A (en) * 2020-09-30 2021-02-02 山东钢铁股份有限公司 Thermomechanical treatment method for preparing rare earth bearing steel
CN112301193B (en) * 2020-09-30 2022-07-05 山东钢铁股份有限公司 Thermomechanical treatment method for preparing rare earth bearing steel
CN112792126A (en) * 2020-12-18 2021-05-14 山东钢铁股份有限公司 Hot rolling method of bearing steel with large compression ratio
CN113774283A (en) * 2021-09-14 2021-12-10 鞍钢股份有限公司 High-toughness plastic steel rail for high-speed railway non-small-radius curve and production method thereof

Also Published As

Publication number Publication date
JP5754077B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
US9115415B2 (en) Case hardened steel and method for producing same
JP5257082B2 (en) Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability
JP5556151B2 (en) Manufacturing method of bearing parts with excellent rolling fatigue characteristics under foreign environment
JP2007284739A (en) Steel component and its production method
JP5754077B2 (en) Manufacturing method of bearing steel excellent in rolling fatigue characteristics and bearing steel
JP2011256456A (en) Method for manufacturing steel for cold forging
CN104024444A (en) Method for producing steel part
JP2010255099A (en) Method for manufacturing bearing-component excellent in rolling fatigue characteristics under foreign matter environment
JP6448529B2 (en) Steel wire with excellent coiling property and method for producing the same
JP5292897B2 (en) Bearing parts with excellent fatigue characteristics in a foreign environment and manufacturing method thereof
JP2017133052A (en) Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor
JP2010236049A (en) Method for manufacturing bearing part excellent in rolling-fatigue characteristics under foreign-matter environment
GB2558650A (en) Near-eutectoid bearing steel
JP7464822B2 (en) Steel for bearing raceways and bearing raceways
JP5976581B2 (en) Steel material for bearings and bearing parts with excellent rolling fatigue characteristics
JP6146381B2 (en) Case-hardened steel for bearings with excellent rolling fatigue characteristics and method for producing the same
JP6347926B2 (en) Hardened steel for gears with excellent pitting resistance under hydrogen environment
JP7057715B2 (en) Bearing steel with excellent rolling fatigue life in a hydrogen intrusion environment
JP5754076B2 (en) Bearing steel excellent in rolling fatigue characteristics and manufacturing method thereof
JP6481652B2 (en) Bearing steel
JP6705344B2 (en) Case-hardening steel excellent in coarse grain prevention characteristics and fatigue characteristics during carburization and its manufacturing method
JP2016186120A (en) Steel material for carbonitriding, and carbonitrided component
JP6085210B2 (en) Case-hardened steel with excellent rolling fatigue characteristics and method for producing the same
JP6881496B2 (en) Parts and their manufacturing methods
JP2008088482A (en) Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R150 Certificate of patent or registration of utility model

Ref document number: 5754077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250