JP2010236049A - Method for manufacturing bearing part excellent in rolling-fatigue characteristics under foreign-matter environment - Google Patents

Method for manufacturing bearing part excellent in rolling-fatigue characteristics under foreign-matter environment Download PDF

Info

Publication number
JP2010236049A
JP2010236049A JP2009087087A JP2009087087A JP2010236049A JP 2010236049 A JP2010236049 A JP 2010236049A JP 2009087087 A JP2009087087 A JP 2009087087A JP 2009087087 A JP2009087087 A JP 2009087087A JP 2010236049 A JP2010236049 A JP 2010236049A
Authority
JP
Japan
Prior art keywords
less
rolling fatigue
steel material
surface layer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009087087A
Other languages
Japanese (ja)
Inventor
Yasumasa Hirai
康正 平井
Seishi Uei
清史 上井
Hideto Kimura
秀途 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009087087A priority Critical patent/JP2010236049A/en
Publication of JP2010236049A publication Critical patent/JP2010236049A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for achieving the drastic improvement of rolling-fatigue service life under foreign-matter environment. <P>SOLUTION: To a steel material composed of 0.7-1.3% C, 0.1-0.8% Si, 0.2-1.2% Mn, ≤0.025% P, ≤0.02% S, 0.01-0.03% Ti, ≤0.1% Al, 0.9-1.8% Cr, ≤0.3% Mo, ≤0.005% N, ≤0.003% O and as 0.005+3.42×N[mass%]≤Ti[mass%], and the balance Fe with inevitable impurities, after performing a carbo-nitriding quenching treatment, a high-frequency induction-heating tempering is performed, and in the forming-work after these, after applying the working, with which the improving degree of the hardness is made to be 20 point or more of Vickers hardness to at least the surface layer portion of the steel material, the high-frequency induction-hardening and tempering, are applied to this surface layer portion. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、摩耗により生じた金属粉や、切削時に生じた金属の削りくずなどの異物が存在する環境下での転動疲労寿命に優れた軸受部品の製造方法に関する。   The present invention relates to a method for manufacturing a bearing component having an excellent rolling fatigue life in an environment in which foreign matter such as metal powder generated by abrasion or metal shavings generated during cutting is present.

従来、JIS G4805におけるSUJ2などの高炭素軸受鋼は、鍛造などで成形後、炉焼入れ・焼戻しを行うことにより製品での転動疲労特性を引き出すのが一般的である。しかし、近年では、軸受の使用環境が従来より厳しくなってきており、例えば、上記した異物環境下でも転動疲労特性の優れた軸受の開発が進められている。かような異物環境で使用される軸受の寿命特性を向上させる方法としては、製品表面部への浸炭窒化処理により、表面硬さを確保しながら、表層部に軟質な残留オーステナイト(以下、残留γと示す)を通常軸受より多量(20〜30質量%程度)に確保する方法が行われている。   Conventionally, a high carbon bearing steel such as SUJ2 in JIS G4805 generally draws rolling fatigue characteristics in a product by performing furnace quenching and tempering after forming by forging or the like. However, in recent years, the usage environment of bearings has become more severe than before, and for example, development of bearings having excellent rolling fatigue characteristics under the above-described foreign matter environment has been promoted. As a method of improving the life characteristics of a bearing used in such a foreign environment, a soft retained austenite (hereinafter referred to as residual γ) is applied to the surface layer while ensuring surface hardness by carbonitriding the product surface. Is secured in a larger amount (about 20 to 30% by mass) than a normal bearing.

例えば、特許文献1では、浸炭窒化−焼入れ後、再度、「低温オーステナイト・炭化物」域に加熱して焼入れる処理を行い、表層部のオーステナイト結晶粒度を10番以下(旧オーステナイト粒径で12.5μm以下)で、かつ残留γ量16.1%とすることによって、異物環境下での転動疲労寿命(累積破損確率10%での寿命)が通常焼入材に比べ2倍向上することに成功している。   For example, in Patent Document 1, after carbonitriding-quenching, the steel is again heated and quenched in the “low-temperature austenite / carbide” region, and the austenite grain size of the surface layer is 10 or less (old austenite grain size is 12.5 μm). ) And a residual γ content of 16.1%, the rolling fatigue life in a foreign environment (life with a cumulative failure probability of 10%) has been successfully improved by a factor of 2 compared to a normal hardened material. Yes.

特開2005−113257号公報JP 2005-113257 A

しかし、更なる転動疲労寿命向上に対するニーズが存在している昨今、通常焼入材に比べて2倍の向上では不足する傾向にあり、4倍以上の向上を目指した技術の開発が希求されていた。
そこで、本発明は、特に異物環境下での転動疲労寿命の大幅な向上を実現する方途について提案することを目的とする。
However, there is a need for further improvement in rolling fatigue life, and there is a tendency that the improvement by 2 times compared to the normal quenching material is insufficient, and there is a demand for the development of a technology aiming at an improvement of 4 times or more. It was.
Therefore, an object of the present invention is to propose a method for realizing a significant improvement in rolling fatigue life particularly in a foreign substance environment.

そこで、発明者らは、異物環境下での転動疲労寿命の向上について鋭意検討を行ったところ、以下の知見を得た。
まず、浸炭窒化−焼入れにより表層に浸炭窒化層を作る。その後、高周波焼戻しを行うと、浸炭窒化層のマルテンサイト中に固溶していたCおよび残留γの分解により微細な炭化物が生成する。この後、引抜きや鍛造などの加工により、少なくとも表層部分にはビッカース硬さで20ポイントの上昇に相当する加工歪みを導入する。さらに、加工歪みが導入された表層部に高周波焼入れを行うと、高周波の特徴である短時間加熱の効果によって旧オーステナイト粒は微細化する。また、加工歪みが導入されているため、転位がオーステナイトの核生成サイトとなるとともに、焼戻しで生成した炭化物がピン二ング効果を示し、旧オーステナイト粒の微細化が進み、平均旧オーステナイト粒径3.0μm以下の組織が得られ、転動疲労寿命が4倍以上に向上する。さらに、鋼材のTiおよびN量を0.005+3.42×N[質量%]≦Ti[質量%]の式に従って適正化すると、鋼中の固溶Tiが浸炭窒化処理中に非常に微細なTiNを形成し、最終製品の異物環境下での転動疲労寿命を、前記適正化しない場合に対し更に5倍以上改善するとの知見を得た。
Thus, the inventors have conducted intensive studies on improving the rolling fatigue life in a foreign substance environment and obtained the following knowledge.
First, a carbonitriding layer is formed on the surface layer by carbonitriding-quenching. Thereafter, when induction tempering is performed, fine carbides are generated by decomposition of C and residual γ, which were dissolved in the martensite of the carbonitrided layer. Thereafter, processing distortion corresponding to an increase of 20 points in Vickers hardness is introduced into at least the surface layer by processing such as drawing or forging. Further, when induction hardening is performed on the surface layer portion into which processing strain has been introduced, the prior austenite grains are refined by the effect of short-time heating, which is a characteristic of high frequency. In addition, because processing strain has been introduced, dislocations become austenite nucleation sites, carbides produced by tempering show a pinning effect, refinement of prior austenite grains progresses, average prior austenite grain size 3.0 A structure of μm or less is obtained, and the rolling fatigue life is improved by 4 times or more. Furthermore, when the Ti and N contents of the steel material are optimized in accordance with the formula 0.005 + 3.42 × N [mass%] ≦ Ti [mass%], the solid solution Ti in the steel becomes very fine TiN during the carbonitriding process. As a result, it was found that the rolling fatigue life of the final product in a foreign matter environment is further improved by a factor of 5 or more as compared with the case where it is not optimized.

本発明は以上の知見を基になされたものであり、その要旨とするところは以下の通りである。
(1)質量%で
C:0.7%〜1.3%、
Si:0.1〜0.8%、
Mn:0.2〜1.2%、
P:0.025%以下、
S:0.02%以下、
Ti:0.01〜0.03%、
Al:0.1%以下、
Cr:0.9%〜1.8%、
Mo:0.3%以下、
N:0.005%以下および
O:0.003%以下
を、0.005+3.42×N[質量%]≦Ti[質量%]
の下に含有し、残部Fe及び不可避的不純物からなる鋼材に、浸炭窒化−焼入れ処理を行ったのち、高周波焼戻しを行い、その後の成形加工において、硬さの向上代がビッカース硬さで20ポイント以上の加工を少なくとも鋼材の表層部分に加えた後、該表層部分に高周波焼入れし、焼戻しを行うことを特徴とする、異物環境下での転動疲労寿命に優れた軸受部品の製造方法。
The present invention has been made on the basis of the above knowledge, and the gist thereof is as follows.
(1) By mass% C: 0.7% to 1.3%,
Si: 0.1-0.8%
Mn: 0.2-1.2%
P: 0.025% or less,
S: 0.02% or less,
Ti: 0.01-0.03%,
Al: 0.1% or less,
Cr: 0.9% to 1.8%
Mo: 0.3% or less,
N: 0.005% or less and O: 0.003% or less, 0.005 + 3.42 × N [mass%] ≦ Ti [mass%]
The steel material containing the balance Fe and inevitable impurities is subjected to carbonitriding-quenching treatment, followed by induction tempering, and in the subsequent forming process, the amount of improvement in hardness is 20 points in terms of Vickers hardness. A method for producing a bearing component having an excellent rolling fatigue life in a foreign substance environment, wherein the above processing is applied to at least a surface layer portion of a steel material, and then the surface layer portion is induction-quenched and tempered.

(2)前記(1)において、前記鋼材に、さらに質量%で
Cu:0.05%〜0.50%、
Ni:0.05〜0.50%、
Sb:0.003%以下および
B:0.003%以下
のうちから選ばれる1種もしくは2種以上を含有する異物環境下での転動疲労寿命に優れた軸受部品の製造方法。
(2) In the above (1), the steel material is further added by mass%.
Cu: 0.05% to 0.50%,
Ni: 0.05-0.50%,
A method for producing a bearing component having excellent rolling fatigue life in a foreign matter environment containing one or more selected from Sb: 0.003% or less and B: 0.003% or less.

(3)前記(1)または(2)において、前記高周波焼入れ後の焼入表層部における旧オーステナイト粒径の平均値が3μm以下、当該部分での残留オーステナイト量が20〜35%である異物環境下での転動疲労寿命に優れた軸受部品の製造方法。 (3) Foreign matter environment in (1) or (2), wherein the average austenite grain size in the hardened surface layer after induction hardening is 3 μm or less, and the amount of retained austenite in the part is 20 to 35% A manufacturing method for bearing components with excellent rolling fatigue life.

本発明によれば、異物環境での転動疲労寿命を4倍以上も向上することができ、異物環境下でも転動疲労寿命に優れた軸受部品を提供することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, the rolling fatigue life in a foreign material environment can be improved 4 times or more, and it becomes possible to provide the bearing component excellent in the rolling fatigue life also in the foreign material environment.

以下、本発明の構成要件について、鋼材成分の限定理由から順に説明する。
まず、各成分の限定理由について述べる。なお、以下に示す「%」表示は、特に断らない限り「質量%」を示すものとする。
C:0.7%〜1.3%
Cは、焼入れ性への影響が最も大きい元素であり、焼入れ硬化層の硬さを高めて、転動疲労寿命を向上させる上で有用な成分である。すなわち、0.7%に満たないと必要とされる転動疲労寿命を確保できないため、0.7%以上とする。一方、1.3%を超える含有は、焼入れ処理前の切断や成形鍛造などの加工性を著しく劣化させるため、0.3%以下とする。従って、Cは0.7%以上1.3%以下の含有とする。好ましくは、0.75〜1.1%である。
Hereinafter, the constituent requirements of the present invention will be described in order from the reasons for limiting the steel material components.
First, the reasons for limiting each component will be described. In addition, “%” indicated below indicates “% by mass” unless otherwise specified.
C: 0.7% to 1.3%
C is an element having the greatest influence on the hardenability, and is a useful component for increasing the hardness of the hardened hardened layer and improving the rolling fatigue life. In other words, if it is less than 0.7%, the required rolling fatigue life cannot be secured, so 0.7% or more. On the other hand, if the content exceeds 1.3%, the workability such as cutting and forming forging before quenching is remarkably deteriorated, so the content is made 0.3% or less. Therefore, C content is 0.7% or more and 1.3% or less. Preferably, it is 0.75 to 1.1%.

Si:0.1〜0.8%、
Siは、転動疲労寿命の向上に有効な元素であるため積極的に添加するが、0.10%未満だとその効果が乏しいため0.1%以上の含有とする。しかし0.8%を超えて含有させると、Cと同様に焼入れ処理前に行われる、切断や成形鍛造などの加工性を著しく劣化させるため、0.8%以下とする。従って、Siの含有範囲は0.1%〜0.8%とする。好ましくは、0.15〜0.60%である。
Si: 0.1-0.8%
Since Si is an element effective in improving the rolling fatigue life, it is positively added. However, if it is less than 0.10%, its effect is poor, so the content is 0.1% or more. However, if the content exceeds 0.8%, the workability such as cutting and forming forging, which is performed before the quenching treatment as in the case of C, is remarkably deteriorated, so the content is made 0.8% or less. Therefore, the Si content range is 0.1% to 0.8%. Preferably, it is 0.15-0.60%.

Mn:0.2〜1.2%、
Mnは、焼入れ性を向上させ、焼入れ時の硬化深さを確保する上で必須の成分であり、かつ残留γ量を増加するのに有効な元素であるため、積極的に含有させる。すなわち、0.2%未満の含有ではその効果に乏しく、一方1.2%を超えて含有させると、Cと同様に焼入れ処理前に行われる。切断や成形鍛造などの加工性を著しく劣化させるため、1.2%以下とする。従って、Mnの含有範囲は、0.2%〜1.2%とする。好ましくは、0.25〜1.00%である。
Mn: 0.2-1.2%
Mn is an essential component for improving the hardenability and ensuring the hardening depth at the time of quenching, and is an element effective for increasing the amount of residual γ, so it is positively contained. That is, if the content is less than 0.2%, the effect is poor. On the other hand, if the content exceeds 1.2%, it is performed before the quenching treatment as in the case of C. In order to significantly deteriorate workability such as cutting and forming forging, the content is set to 1.2% or less. Therefore, the Mn content range is 0.2% to 1.2%. Preferably, it is 0.25 to 1.00%.

P:0.025%以下
Pは、オーステナイトの粒界に偏析し、粒界強度を低下させることにより、焼入れ時に焼割れを助長する。従って、その含有量は極力低下させることが望ましいが、0.025%以下であれば許容される。なお、好ましくは0.020%以下とする。
P: 0.025% or less P segregates at the grain boundaries of austenite and reduces the grain boundary strength, thereby promoting quench cracking during quenching. Therefore, it is desirable to reduce the content as much as possible, but it is acceptable if it is 0.025% or less. In addition, Preferably it is 0.020% or less.

S:0.02%以下
Sは、鋼中でMnSを形成し、鍛造性、切削性を向上させるため、好ましくは0.003%以上で添加してもよいが、0.02%を超えて添加すると、転動疲労試験での破壊起点となり転動疲労強度が低下する可能性があるため、0.02%以下の添加とする。好ましくは、0.015%以下とする。
S: 0.02% or less S may form MnS in steel and improve forgeability and machinability. Preferably, it may be added at 0.003% or more, but if added over 0.02%, rolling fatigue occurs. Addition of 0.02% or less because the rolling fatigue strength may decrease due to the starting point of fracture in the test. Preferably, it is 0.015% or less.

Ti:0.01〜0.03%
Tiは、本発明において重要な元素であり、浸炭窒化前に固溶Tiを0.005%以上確保すると、浸炭窒化時に微細なTiNが析出し、最終製品の耐異物環境下での転動疲労寿命を向上させる。そのため、含有量は0.01%以上で、かつ0.005+3.42×N[%]≦Ti[%]を満足することとする。一方、多量に含有させると、浸炭窒化時のTiN形成サイズが大きく、かつその量も多くなることから、転動疲労寿命を低下させるため、0.03%以下とする。好ましくは、0.02〜0.03%である。
Ti: 0.01-0.03%
Ti is an important element in the present invention. When solid solution Ti is ensured to be 0.005% or more before carbonitriding, fine TiN precipitates during carbonitriding, and the rolling fatigue life of the final product in a foreign matter resistant environment is increased. Improve. Therefore, the content is 0.01% or more and 0.005 + 3.42 × N [%] ≦ Ti [%] is satisfied. On the other hand, if contained in a large amount, the TiN formation size at the time of carbonitriding is large and the amount thereof is also increased, so that the rolling fatigue life is reduced, so 0.03% or less. Preferably, it is 0.02 to 0.03%.

Al:0.1%以下
Alは、脱酸に有効な元素であり低酸素化のために有用な元素であり、そのためには0.01%以上で添加することが好ましい。一方で、Alの酸化物は転動疲労特性を低下させるため、必要以上の添加は行わない方が良い。このため0.1%以下の添加とする。好ましくは、0.05%以下とする。
Al: 0.1% or less
Al is an element effective for deoxidation and is an element useful for reducing oxygen, and for that purpose, it is preferably added at 0.01% or more. On the other hand, it is better not to add more than necessary because the oxide of Al deteriorates rolling fatigue characteristics. Therefore, the addition is 0.1% or less. Preferably, it is 0.05% or less.

Cr:0.9%〜1.8%
Crは、軸受鋼の場合、球状化焼鈍において炭化物を球状化するのに有用な元素であり、積極的に添加するが、0.9%に満たない場合その効果に乏しく、1.8%を超えると、その効果が飽和しコストが高くなるのみである。従って、0.9%〜1.8%とする。好ましくは、1.0〜1.6%である。
Cr: 0.9% to 1.8%
In the case of bearing steel, Cr is an element useful for spheroidizing carbide in spheroidizing annealing, and is actively added, but if it is less than 0.9%, its effect is poor, and if it exceeds 1.8%, Only the effect is saturated and the cost is high. Therefore, it is set to 0.9% to 1.8%. Preferably, it is 1.0 to 1.6%.

Mo:0.3%以下
Moは、転動疲労寿命を向上させるため、好ましくは0.05%以上で添加してもよいが、コストが高いためその添加量を0.3%以下とする。
Mo: 0.3% or less
Mo may be added preferably at 0.05% or more in order to improve the rolling fatigue life. However, since the cost is high, the addition amount is made 0.3% or less.

N:0.005%以下
Nは、本発明において重要な元素であり、浸炭窒化前に固溶Tiを確保し、浸炭窒化時にTiNを析出させるために、含有量は0.005+3.42×N[%]≦Ti[%]を満足する範囲にする。但し、多量のNがあると、固溶Ti確保のために、Tiを多量添加する必要があるため、その量を0.005%以下とする。
N: 0.005% or less N is an important element in the present invention, and in order to secure solid solution Ti before carbonitriding and to precipitate TiN during carbonitriding, the content is 0.005 + 3.42 × N [%] ≦ Ti [%] should be satisfied. However, if there is a large amount of N, it is necessary to add a large amount of Ti to ensure solid solution Ti, so the amount is made 0.005% or less.

O:0.003%以下
Oは、硬質の酸化物系非金属介在物として存在し、この量の増大は酸化物系非金属介在物のサイズを粗大化させる。これらは、特に転動疲労特性に有害であるため、極力低減することが望ましく、0.0030%以下に低減する必要がある。好ましくは0.0010%以下とする。
O: 0.003% or less O is present as a hard oxide-based nonmetallic inclusion, and an increase in this amount coarsens the size of the oxide-based nonmetallic inclusion. Since these are particularly harmful to rolling fatigue characteristics, it is desirable to reduce them as much as possible, and it is necessary to reduce them to 0.0030% or less. Preferably it is 0.0010% or less.

さらに、上記の基本成分組成に加えて、必要に応じてCu、Ni、SbおよびBのうちの1種もしくは2種以上を添加してもよい。
Cu:0.05%〜0.50%
Cu:Cuは焼入れ性を向上させる元素であるため添加しても良いが、0.05%未満の添加ではその効果が乏しいことから、0.05%以上の添加とする。しかし、0.5%を超えて添加すると熱間加工性を阻害するため、0.5%以下の添加とする。
Furthermore, in addition to the above basic component composition, one or more of Cu, Ni, Sb and B may be added as necessary.
Cu: 0.05% to 0.50%
Cu: Cu may be added because it is an element that improves hardenability. However, if less than 0.05%, the effect is poor, so 0.05% or more is added. However, if over 0.5% is added, hot workability is impaired, so 0.5% or less is added.

Ni:0.05〜0.50%、
Niは、焼入れ性を向上させる元素であり、焼入れ性を調整する場合に用いることができる。その際、0.05%未満の添加では効果が小さいため、0.05%以上で添加する。一方、Niは極めて高価な元素であり、添加量が多くなると鋼材価格が高くなるため、0.5%以下の添加とする。
Ni: 0.05-0.50%,
Ni is an element that improves hardenability and can be used to adjust hardenability. At that time, since addition is less than 0.05%, the effect is small, so 0.05% or more is added. On the other hand, Ni is an extremely expensive element, and as the amount of addition increases, the price of the steel material increases, so 0.5% or less is added.

Sb:0.003%以下
Sbは、スクラップ等の製鋼原料から混入することがあり、その量が0.003%を超えると転動疲労寿命を低下させるため、上限を0.003%とする。
Sb: 0.003% or less
Sb may be mixed in from steelmaking raw materials such as scrap. If the amount exceeds 0.003%, the rolling fatigue life is reduced, so the upper limit is made 0.003%.

B:0.003%以下
Bは、焼入れ性を向上させる元素であるため添加してもよいが、過剰な添加は加工性を劣化させるので、0.003%以下とする。
B: 0.003% or less B may be added because it is an element that improves hardenability. However, excessive addition deteriorates workability, so it is 0.003% or less.

以上の成分組成を有する鋼材は、以下に示す各製造工程を経て軸受部品となる。各製造工程について、具体的に説明する。ここで、鋼材に浸炭窒化−焼入れを施すに先立ち、鋼材の組織を、フェライトと球状化炭化物からなるものに調整することが好ましい。すなわち、本発明が対象とする軸受素材は、通常、切断や成形鍛造が行われるため、硬度が低いことが要求される。そのため、浸炭窒化前の素材には、球状化焼鈍を施して、その組織をフェライトと球状化炭化物からなるものに調整することが好ましい。   The steel material having the above component composition becomes a bearing part through the following manufacturing steps. Each manufacturing process will be specifically described. Here, prior to carbonitriding-quenching the steel material, it is preferable to adjust the structure of the steel material to be composed of ferrite and spheroidized carbide. That is, the bearing material targeted by the present invention is usually required to have a low hardness because cutting and forming forging are performed. Therefore, it is preferable that the material before carbonitriding is subjected to spheroidizing annealing and the structure thereof is adjusted to be composed of ferrite and spheroidizing carbide.

[浸炭窒化−焼入れ処理]
浸炭窒化は、処理温度820〜900℃にて行うことが好ましい。浸炭窒化温度が820℃より低いと、焼入れ時に内部まで十分に焼きが入らないことがあり、浸炭窒化層が薄くなることを避けるために、820℃以上で処理することが好ましい。一方、処理温度が900℃を超えると、炭化物がマルテンサイト中に固溶しすぎてマルテンサイトが脆くなり、転動疲労寿命が低下する、おそれがあるため、900℃以下とすることが好ましい。
浸炭窒化の処理時間は、120分以上とすることが好ましい。なぜなら、120分に満たない場合、浸炭窒化深さが不十分となり転動疲労試験結果のばらつきが大きくなるためである。
[Carbonitriding and quenching]
Carbonitriding is preferably performed at a processing temperature of 820 to 900 ° C. When the carbonitriding temperature is lower than 820 ° C., the inside may not be sufficiently hardened during quenching, and it is preferable to perform the treatment at 820 ° C. or higher in order to avoid thinning of the carbonitriding layer. On the other hand, if the treatment temperature exceeds 900 ° C., the carbide is excessively dissolved in the martensite, the martensite becomes brittle, and the rolling fatigue life may be reduced.
The carbonitriding time is preferably 120 minutes or longer. This is because when the time is less than 120 minutes, the carbonitriding depth is insufficient and the variation of the rolling fatigue test results becomes large.

なお、浸炭窒化深さは、2mm以上とすることが好ましい。浸炭窒化深さが2mmに満たない場合、転動疲労寿命のばらつきが大きくなるためである。ここで、浸炭窒化深さは、浸炭窒化−焼入れ後の材料において表層から内部へ0.1mmピッチで硬さ測定を行い、浸炭による硬度上昇がなくなる深さまでを浸炭窒化深さとする。   The carbonitriding depth is preferably 2 mm or more. This is because when the carbonitriding depth is less than 2 mm, the variation in rolling fatigue life becomes large. Here, the carbonitriding depth is determined by measuring the hardness of the material after carbonitriding-quenching from the surface layer to the inside at a pitch of 0.1 mm, and the carbonitriding depth is the depth at which there is no increase in hardness due to carburizing.

また、浸炭窒化後の焼入れでは、組織をマルテンサイト+炭化物とする。これは、このあとの工程の高温焼戻しで微細炭化物をラス境界などに析出させ易くするためである。   In the quenching after carbonitriding, the structure is martensite + carbide. This is to facilitate precipitation of fine carbides on the lath boundary or the like by high-temperature tempering in the subsequent process.

[高周波焼戻し]
浸炭窒化処理後は、高周波焼戻しによる短時間焼戻しを行うことにより、通常の炉焼戻しではなく、高周波焼戻しを行う理由は、急速加熱することで母相中(浸炭窒化部分)に微細かつ均一に炭化物を生成させることができ、最終工程の高周波加熱における、旧オーステナイト粒の粗大化を抑制できるからである。さらに、高周波焼入れ層に炭化物が微細かつ均一に分散することにより、残留γ量を増加しても表層部で十分な硬度を確保できる。このときの焼戻し温度は、400℃以上AC1点(フェライト+炭化物相からオーステナイトが生成し始める温度)以下とし、そのときの浸炭窒化層の硬さはビッカース硬さでHv500以下に調整することが好ましい。なお、急速加熱時の加熱時間は、60s以内であることが好ましい。高周波加熱後の冷却は、水冷、油冷、空冷など特に規定しない。
[Induction tempering]
After carbonitriding, the reason for performing induction tempering instead of normal furnace tempering by short-time tempering by induction tempering is to make carbide in the parent phase (carbonitriding part) finely and uniformly by rapid heating. This is because the coarsening of the prior austenite grains in the high-frequency heating in the final step can be suppressed. Furthermore, since the carbides are finely and uniformly dispersed in the induction hardening layer, sufficient hardness can be secured in the surface layer portion even if the amount of residual γ is increased. The tempering temperature at this time is set to 400 ° C. or more and AC 1 point (temperature at which austenite starts to be generated from the ferrite + carbide phase) or less, and the hardness of the carbonitrided layer at that time can be adjusted to Hv 500 or less in terms of Vickers hardness. preferable. In addition, it is preferable that the heating time at the time of rapid heating is within 60 s. Cooling after high-frequency heating is not particularly specified such as water cooling, oil cooling, and air cooling.

[成形加工]
高周波焼戻し後の鋼材は、軸受部品に成形する。該成形は、引抜きあるいは、鍛造、鍛伸および圧延などの加工によるが、その際歪みを加えることとする。この歪み導入により、引き続く高周波焼入れ工程において、旧オーステナイト粒が微細化する。この加工歪みについては、ビッカース硬さで管理するものとし、焼入れ表層部から0.5mm位置において、ビッカース硬さで20ポイント以上は上昇させることが肝要である。ビッカース硬さの上昇が20ポイントに満たない場合、高周波焼入れによって旧オーステナイト粒が十分に微細化しない。
[Molding]
The steel material after induction tempering is formed into bearing parts. The forming is performed by drawing or processing such as forging, forging and rolling, but distortion is applied at that time. By introducing this strain, the prior austenite grains are refined in the subsequent induction hardening process. This processing strain is to be managed by Vickers hardness, and it is important to increase the Vickers hardness by 20 points or more at a position of 0.5 mm from the quenched surface layer. When the increase in Vickers hardness is less than 20 points, the prior austenite grains are not sufficiently refined by induction hardening.

[高周波焼入れ]
焼入れは高周波焼入れとする。通常の炉加熱では旧オーステナイト粒径が微細化しない。高周波加熱とすることで、急速加熱によりオーステナイトの核生成量が増加し、旧オーステナイト粒が微細化する。高周波焼入れの温度は820℃〜900℃とすることが好ましい。すなわち、820℃に満たない場合、焼入れが不十分になることがあり、転動疲労寿命がばらつく場合がある。一方、900℃を超えて加熱した場合、旧オーステナイト粒径が粗大化し、白色組織起因の破壊が起こりやすくなり、転動疲労寿命が低下する、おそれがある。
[Induction hardening]
Quenching shall be induction hardening. Ordinary furnace heating does not refine the prior austenite grain size. By using high-frequency heating, the amount of nucleation of austenite increases due to rapid heating, and the prior austenite grains become finer. The induction hardening temperature is preferably 820 ° C to 900 ° C. That is, when it is less than 820 ° C., quenching may be insufficient and the rolling fatigue life may vary. On the other hand, when heated above 900 ° C., the prior austenite grain size becomes coarse, the white structure is likely to break, and the rolling fatigue life may be reduced.

また、高周波加熱時間は規定しないが、旧オーステナイト粒成長抑制の観点からは30s以内であることが好ましい。高周波焼入れ回数についても特に限定はしない。回数を増やすことによって、旧オーステナイト粒径を均一化することはできるが、その転動疲労寿命向上への効果はさほどではない。ただし、焼入れ回数を増やすことで、焼割れの危険やコスト増加の問題が発生するため、2回以内とするのが好ましい。
焼入深さに関しては、ビッカース硬さでHv450以上となる焼入れ硬化層が、0.6mm以上であることが好ましい。焼入れ硬化層が0.6mmに満たない場合、転動疲労寿命が大幅に低下することがある。
Further, although the high frequency heating time is not specified, it is preferably within 30 s from the viewpoint of suppressing the prior austenite grain growth. There is no particular limitation on the frequency of induction hardening. By increasing the number of times, the prior austenite grain size can be made uniform, but its effect on improving the rolling fatigue life is not so great. However, increasing the number of times of quenching causes the risk of quenching cracks and the problem of increased costs.
With respect to the quenching depth, it is preferable that the hardened layer having a Vickers hardness of Hv450 or more is 0.6 mm or more. When the quench hardened layer is less than 0.6 mm, the rolling fatigue life may be significantly reduced.

[焼戻し]
高周波焼入れ後は焼戻しを行う。この焼戻し処理方法は、高周波加熱、炉加熱など特に規定はしないが、内部まで焼戻しを行うことを考え、炉加熱戻しを推奨する。なお、焼戻し条件については、用途に応じて適宜設定するものとするが、転動疲労特性以外にも圧壊特性なども要求されることから、ビッカース硬さで20ポイント〜80ポイント程度低下するように焼戻しを実施することとする。焼戻し後の表面硬さについては、ビッカース硬さでHv700以上とする。Hv700に満たない場合、転動疲労特性は大幅に低下する。
[Tempering]
Tempering after induction hardening. This tempering method is not particularly specified, such as high-frequency heating or furnace heating, but furnace heating return is recommended in consideration of tempering to the inside. The tempering conditions are set as appropriate according to the application, but because crushing characteristics are required in addition to rolling fatigue characteristics, the Vickers hardness is reduced by about 20 to 80 points. Tempering will be carried out. The surface hardness after tempering should be at least Hv 700 in terms of Vickers hardness. When it is less than Hv700, the rolling fatigue characteristics are greatly reduced.

[残留γ量]
以上の工程を経て得た軸受部品では、その残留γ量が20〜35%であることが好ましい。すなわち、残留γ量は異物環境での転動疲労寿命向上に有効であり、その量が20%に満たないと十分な転動疲労寿命が得られない場合がある。一方、残留γ量が35%以上では硬化層部の硬さが十分に得られず、その結果、転動疲労寿命が劣化する場合がある。なお、残留γ量の測定は表層部で行う。すなわち、軸受け部品に仕上げた後の転動体転送部においてX線回折を行い測定する。
[Residual γ amount]
In the bearing component obtained through the above steps, the residual γ amount is preferably 20 to 35%. That is, the residual γ amount is effective for improving the rolling fatigue life in a foreign environment, and if the amount is less than 20%, a sufficient rolling fatigue life may not be obtained. On the other hand, when the residual γ amount is 35% or more, the hardness of the hardened layer portion cannot be sufficiently obtained, and as a result, the rolling fatigue life may be deteriorated. The residual γ amount is measured at the surface layer. That is, X-ray diffraction is performed and measured in the rolling element transfer unit after finishing the bearing part.

以下、本発明を実施例に基づいて説明する.
表1に示す化学組成の鋼を転炉−連続鋳造プロセスにより溶製し、サイズ300×400mmの鋳片を製造した。この鋳片を、ブレークダウン工程を経て150mm角ビレットに圧延したのち、1050℃に再加熱後、直径20mmの棒鋼に圧延した。
Hereinafter, the present invention will be described based on examples.
Steel having the chemical composition shown in Table 1 was melted by a converter-continuous casting process to produce a slab of size 300 × 400 mm. The slab was rolled into a 150 mm square billet through a breakdown process, reheated to 1050 ° C., and then rolled into a steel bar having a diameter of 20 mm.

Figure 2010236049
Figure 2010236049

この棒鋼の中心部より、直径13.0mmおよび長さ300mmの粗試験片を採取した。粗加工試験片には、Rxガス、ブタンガス及びアンモニアガスの混合ガス中で860℃で3時間の浸炭窒化−焼入れ処理を行った。この段階で試験片を切り出し、浸炭窒化深さをビッカース硬さ(表層寄り0.1mmピッチで測定)により測定した。   From the center of this steel bar, a rough specimen having a diameter of 13.0 mm and a length of 300 mm was collected. The rough-processed test piece was subjected to carbonitriding-quenching treatment at 860 ° C. for 3 hours in a mixed gas of Rx gas, butane gas and ammonia gas. At this stage, a test piece was cut out, and the carbonitriding depth was measured by Vickers hardness (measured at a 0.1 mm pitch near the surface layer).

次に、高周波焼戻しに周波数4kHzの高周波焼入装置を使用し、加熱温度500℃で焼戻しを行った。この段階でも硬度測定用サンプルを切り出し、ビッカース硬さ(表層0.5mm位置を5点測定し平均値を算出)を測定した。
さらに、高周波焼戻し後に成形加工として、12.3mmもしくは12.6mmの径へ引抜く加工を行った。引抜き後の材料でも、ビッカース硬さ測定(表層0.5mm位置を5点測定し、平均値を算出)を行い、引抜き前後のビッカース硬さ向上代を計算した。
最後に、高周波焼入れは、周波数200kHzの高周波焼入装置を使用し、860℃に加熱後に焼入れる高周波焼入れを行った。その後、オイルバスを使用し170℃で80分間の焼戻しを行った。焼戻し後の試験片は、直径20.0mmおよび長さ22.0mmの円柱状試験片に仕上げた。
Next, tempering was performed at a heating temperature of 500 ° C. using an induction hardening apparatus with a frequency of 4 kHz for induction tempering. Even at this stage, a sample for hardness measurement was cut out and measured for Vickers hardness (measured at 5 points on the surface 0.5 mm position and calculated an average value).
Furthermore, after the induction tempering, a drawing process was performed to a diameter of 12.3 mm or 12.6 mm. The Vickers hardness measurement (measured 5 points at the surface layer 0.5 mm and calculated the average value) was performed on the material after drawing, and the Vickers hardness improvement allowance before and after drawing was calculated.
Finally, induction hardening was performed using an induction hardening apparatus with a frequency of 200 kHz and induction hardening after heating to 860 ° C. Thereafter, tempering was performed at 170 ° C. for 80 minutes using an oil bath. The specimen after tempering was finished into a cylindrical specimen having a diameter of 20.0 mm and a length of 22.0 mm.

かくして得られた試験片を用いて転動疲労を測定した。転動疲労試験は、NTN株式会社製の円筒型転動疲労試験機を使用し、ヘルツ応力500kg/mm2、試験体3/4inch鋼球(2球と接触)、応力負荷速度46240cpm、PBK#68タービン油潤滑の条件で試験を実施した。潤滑油中に異物として、Hv800程度並びに粒径74〜150μmの鉄粉を300ppm混入させて試験を行った。
評価は、各鋼種について10回の転動疲労試験を行い、累積破損確率と転動寿命の関係をワイブルプロット紙で整理し、累積破損確率10%の寿命B10を求めた。得られたB10寿命について、Ti無添加の場合に対する転動疲労寿命比として評価した。
すなわち、鋼材No.1〜4をTi無添加の基準鋼として、これら基準鋼に対してそれぞれTiを添加した鋼についてのB10を基準鋼のB10で割った値で評価した。表1中、鋼材No.5および鋼材No.6の基準鋼が鋼材No.1であり、鋼材No.7の基準鋼が鋼材No.2であり、鋼材No.8の基準鋼が鋼材No.3であり、鋼材No.9の基準鋼が鋼材No.4である。
The rolling fatigue was measured using the test piece thus obtained. The rolling fatigue test uses a cylindrical rolling fatigue tester manufactured by NTN Corporation, Hertz stress 500 kg / mm 2 , specimen 3/4 inch steel ball (contact with 2 balls), stress load speed 46240 cpm, PBK # The test was conducted under the condition of 68 turbine oil lubrication. The test was conducted by mixing 300 ppm of iron powder having a particle size of 74 to 150 μm with a Hv of about 800 as a foreign substance in the lubricating oil.
For the evaluation, 10 types of rolling fatigue tests were performed for each steel type, and the relationship between the cumulative failure probability and the rolling life was arranged using Weibull plot paper, and the life B 10 with a cumulative failure probability of 10% was obtained. The obtained B 10 life was evaluated as a rolling fatigue life ratio with respect to the case where no Ti was added.
That is, the steel No.1~4 based steel Ti not added, and evaluated by the value divided by the B 10 in the B 10 reference steel for steel with added Ti respectively these reference steel. In Table 1, the standard steel of steel material No. 5 and steel material No. 6 is steel material No. 1, the standard steel of steel material No. 7 is steel material No. 2, and the standard steel of steel material No. 8 is steel material No. 3 and the standard steel of steel material No. 9 is steel material No. 4.

また、表面硬さおよび表面残留応力は、仕上げ加工後の試験片の表面にて測定を行った。該表面の旧オーステナイト粒については、仕上げ加工後の試験片を1/2長さ位置で切断し、旧オーステナイト粒界腐食液(ガンマR液)で腐食を行った後、表層から0.2mm位置で光学顕微鏡(1000倍、3視野)で撮影を行い、撮影写真において3等分する線を縦横に引いた後、その線が切断した粒界数から平均旧オーステナイト粒径を算出した(切断法)。
これらの測定結果を、表2に示す。
The surface hardness and surface residual stress were measured on the surface of the test piece after finishing. For the former austenite grains on the surface, cut the test piece after finishing at 1/2 length position, corrode with the former austenite grain boundary corrosive liquid (gamma R liquid), and then at the 0.2 mm position from the surface layer. After taking a picture with an optical microscope (1000 times, 3 fields of view) and drawing a line equally divided into 3 in the photograph, the average prior austenite grain size was calculated from the number of grain boundaries cut by the line (cutting method). .
These measurement results are shown in Table 2.

Figure 2010236049
Figure 2010236049

Claims (3)

質量%で
C:0.7%〜1.3%、
Si:0.1〜0.8%、
Mn:0.2〜1.2%、
P:0.025%以下、
S:0.02%以下、
Ti:0.01〜0.03%、
Al:0.1%以下、
Cr:0.9%〜1.8%、
Mo:0.3%以下、
N:0.005%以下および
O:0.003%以下
を、0.005+3.42×N[質量%]≦Ti[質量%]
の下に含有し、残部Fe及び不可避的不純物からなる鋼材に、浸炭窒化−焼入れ処理を行ったのち、高周波焼戻しを行い、その後の成形加工において、硬さの向上代がビッカース硬さで20ポイント以上の加工を少なくとも鋼材の表層部分に加えた後、該表層部分に高周波焼入れし、焼戻しを行うことを特徴とする、異物環境下での転動疲労寿命に優れた軸受部品の製造方法。
In mass% C: 0.7% to 1.3%,
Si: 0.1-0.8%
Mn: 0.2-1.2%
P: 0.025% or less,
S: 0.02% or less,
Ti: 0.01-0.03%,
Al: 0.1% or less,
Cr: 0.9% to 1.8%
Mo: 0.3% or less,
N: 0.005% or less and O: 0.003% or less, 0.005 + 3.42 × N [mass%] ≦ Ti [mass%]
The steel material containing the balance Fe and inevitable impurities is subjected to carbonitriding-quenching treatment, followed by induction tempering, and in the subsequent forming process, the amount of improvement in hardness is 20 points in terms of Vickers hardness. A method for producing a bearing component having an excellent rolling fatigue life in a foreign substance environment, wherein the above processing is applied to at least a surface layer portion of a steel material, and then the surface layer portion is induction-quenched and tempered.
請求項1において、前記鋼材に、さらに質量%で
Cu:0.05%〜0.50%、
Ni:0.05〜0.50%、
Sb:0.003%以下および
B:0.003%以下
のうちから選ばれる1種もしくは2種以上を含有する異物環境下での転動疲労寿命に優れた軸受部品の製造方法。
2. The steel material according to claim 1, further comprising mass%.
Cu: 0.05% to 0.50%,
Ni: 0.05-0.50%,
A method for producing a bearing component having excellent rolling fatigue life in a foreign matter environment containing one or more selected from Sb: 0.003% or less and B: 0.003% or less.
請求項1または2において、前記高周波焼入れ後の焼入表層部における旧オーステナイト粒径の平均値が3μm以下、当該部分での残留オーステナイト量が20〜35%である異物環境下での転動疲労寿命に優れた軸受部品の製造方法。   Rolling fatigue in a foreign matter environment according to claim 1 or 2, wherein the average austenite grain size in the hardened surface layer portion after induction hardening is 3 µm or less, and the amount of retained austenite in the portion is 20 to 35%. A method for manufacturing bearing parts with excellent service life.
JP2009087087A 2009-03-31 2009-03-31 Method for manufacturing bearing part excellent in rolling-fatigue characteristics under foreign-matter environment Withdrawn JP2010236049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087087A JP2010236049A (en) 2009-03-31 2009-03-31 Method for manufacturing bearing part excellent in rolling-fatigue characteristics under foreign-matter environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087087A JP2010236049A (en) 2009-03-31 2009-03-31 Method for manufacturing bearing part excellent in rolling-fatigue characteristics under foreign-matter environment

Publications (1)

Publication Number Publication Date
JP2010236049A true JP2010236049A (en) 2010-10-21

Family

ID=43090651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087087A Withdrawn JP2010236049A (en) 2009-03-31 2009-03-31 Method for manufacturing bearing part excellent in rolling-fatigue characteristics under foreign-matter environment

Country Status (1)

Country Link
JP (1) JP2010236049A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073458A1 (en) * 2010-11-29 2012-06-07 Jfeスチール株式会社 Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering
JP2015030899A (en) * 2013-08-05 2015-02-16 新日鐵住金株式会社 Steel for bearing
US9034120B2 (en) 2010-11-29 2015-05-19 Jfe Steel Corporation Bearing steel being excellent both in workability after spheroidizing-annealing and in hydrogen fatigue resistance property after quenching and tempering
WO2015199599A1 (en) * 2014-06-27 2015-12-30 Aktiebolaget Skf Method for surface hardening a metal component
WO2023037846A1 (en) * 2021-09-07 2023-03-16 Ntn株式会社 Machine component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073458A1 (en) * 2010-11-29 2012-06-07 Jfeスチール株式会社 Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering
JP5018995B1 (en) * 2010-11-29 2012-09-05 Jfeスチール株式会社 Bearing steel with excellent workability after spheroidizing annealing and excellent hydrogen fatigue resistance after quenching and tempering
US8894779B2 (en) 2010-11-29 2014-11-25 Jfe Steel Corporation Bearing steel being excellent both in post spheroidizing-annealing workability and in post quenching-tempering hydrogen fatigue resistance property
US9034120B2 (en) 2010-11-29 2015-05-19 Jfe Steel Corporation Bearing steel being excellent both in workability after spheroidizing-annealing and in hydrogen fatigue resistance property after quenching and tempering
JP2015030899A (en) * 2013-08-05 2015-02-16 新日鐵住金株式会社 Steel for bearing
WO2015199599A1 (en) * 2014-06-27 2015-12-30 Aktiebolaget Skf Method for surface hardening a metal component
CN106661644A (en) * 2014-06-27 2017-05-10 斯凯孚公司 Method for surface hardening a metal component
CN114574668A (en) * 2014-06-27 2022-06-03 斯凯孚公司 Method for hardening surface of metal member
WO2023037846A1 (en) * 2021-09-07 2023-03-16 Ntn株式会社 Machine component

Similar Documents

Publication Publication Date Title
JP5556151B2 (en) Manufacturing method of bearing parts with excellent rolling fatigue characteristics under foreign environment
KR101413902B1 (en) Case hardened steel and method for producing same
JP5820326B2 (en) Steel for bearings with excellent rolling fatigue characteristics and method for producing the same
JP2010159476A (en) Steel wire rod having excellent cold forgeability after low temperature annealing and method for producing the same, and method for producing steel wire rod having excellent cold forgeability
JP5723233B2 (en) Steel material for spheroidized heat-treated bearings with excellent rolling fatigue life
JP2007224410A (en) Bearing steel wire rod having excellent wire drawability and its production method
JP2011174176A (en) Case-hardened steel and carburized material
JP5723232B2 (en) Steel for bearings with excellent rolling fatigue life
JP2010229508A (en) Case hardening steel having excellent size-reduction property of maximum crystal grain
JP2021188116A (en) High-carbon bearing steel and preparation method thereof
JP2010255099A (en) Method for manufacturing bearing-component excellent in rolling fatigue characteristics under foreign matter environment
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP5292897B2 (en) Bearing parts with excellent fatigue characteristics in a foreign environment and manufacturing method thereof
JP2010236049A (en) Method for manufacturing bearing part excellent in rolling-fatigue characteristics under foreign-matter environment
JP2008001943A (en) Rolling and/or sliding parts and manufacturing method thereof
JP5754077B2 (en) Manufacturing method of bearing steel excellent in rolling fatigue characteristics and bearing steel
JP2010222634A (en) Case hardening steel superior in properties of reducing size of maximum crystal grain and manufacturing method therefor
JP4569961B2 (en) Manufacturing method of parts for ball screw or one-way clutch
JP2006241572A (en) Steel for machine structure use
JP2008280612A (en) High-strength steel sheet having excellent internal fatigue damage resistance, and method for producing the same
JP5292896B2 (en) Machine structural parts having excellent rolling fatigue characteristics and manufacturing method thereof
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
JP2009256769A (en) Method for producing steel material for carburizing
JP5976581B2 (en) Steel material for bearings and bearing parts with excellent rolling fatigue characteristics
WO2009104805A1 (en) Steel products and process for production thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605