JP2008088482A - Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing - Google Patents

Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing Download PDF

Info

Publication number
JP2008088482A
JP2008088482A JP2006268720A JP2006268720A JP2008088482A JP 2008088482 A JP2008088482 A JP 2008088482A JP 2006268720 A JP2006268720 A JP 2006268720A JP 2006268720 A JP2006268720 A JP 2006268720A JP 2008088482 A JP2008088482 A JP 2008088482A
Authority
JP
Japan
Prior art keywords
bearing
roller
less
rolling fatigue
crushing strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006268720A
Other languages
Japanese (ja)
Inventor
Yasumasa Hirai
康正 平井
Yoshimichi Hino
善道 日野
Takaaki Toyooka
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006268720A priority Critical patent/JP2008088482A/en
Publication of JP2008088482A publication Critical patent/JP2008088482A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roller or a ball having an improved rolling fatigue life, and further, having improved crushing strength, and to provide a bearing using the same. <P>SOLUTION: In the roller or ball of a bearing using a bearing steel as the stock, the retained austenite grain size of the steel structure from the surface at least to a depth position of 1.5 mm is controlled to ≤3.5 μm. For obtaining the steel structure in a transferring section, treatment where the stock is heated to a two phase region of austenite and spheroidized carbides, is thereafter rapidly cooled, and is quenched is performed for two or more times. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受鋼により製造されたコロまたは球軸受のコロまたは球、さらに、それを用いた軸受に関するものであり、特に、従来より転動疲労特性と圧壊強度を向上させたコロまたは球、および、それを用いた軸受に関するものである。   The present invention relates to a roller or ball of a roller or ball bearing made of bearing steel, and further to a bearing using the roller, in particular, a roller or ball having improved rolling fatigue characteristics and crushing strength than before, And a bearing using the same.

軸受は、自動車、機械などの回転部品に利用されており、優れた転動疲労特性が要求される。また、コロ軸受または球軸受には、軸受に負荷がかかった場合であっても破壊を起こさないようコロまたは鋼球に圧壊強度が要求される。転動疲労特性を向上する方法としては、例えば、特許文献1に記載されているように、軸受鋼の加熱方法を規定する手法があり、旧オーステナイト粒径を平均4.0μm以下に微細化することで、転動疲労寿命2倍以上を達成している。しかし、この特許文献中には軸受の重要特性である圧壊強度に関しては記述されていない。表層部のみの焼入れでは良好な圧壊強度は得られない。
特開2006-152407号公報
Bearings are used in rotating parts such as automobiles and machines, and excellent rolling fatigue characteristics are required. In addition, the roller bearing or ball bearing requires the crushing strength of the roller or steel ball so as not to break even when a load is applied to the bearing. As a method for improving rolling fatigue characteristics, for example, as described in Patent Document 1, there is a method of defining a heating method of bearing steel, and the prior austenite grain size is refined to an average of 4.0 μm or less. With this, the rolling fatigue life is more than doubled. However, this patent document does not describe the crushing strength which is an important characteristic of the bearing. Good crushing strength cannot be obtained by quenching only the surface layer.
JP 2006-152407 A

本発明は、軸受の重要特性である転動疲労試験における10%累積破損確率(以下、B10寿命)を大幅に向上させた軸受のコロまたは鋼球を提供するとともに、もう1つの重要特性である軸受の圧壊強度を大幅に向上させた軸受のコロまたは鋼球を提供しようとするものである。 The present invention is, 10% cumulative failure probability in the rolling fatigue test is an important characteristic of the bearing (hereinafter, B 10 life) while providing rollers or steel ball bearings with greatly improved, another Important characteristics An object of the present invention is to provide a roller or a ball of a bearing in which the crushing strength of a certain bearing is greatly improved.

発明者らは、焼入部の旧オーステナイト粒径を微細化した軸受用コロおよび鋼球を作製し、同一条件で20回試験を行い、転走部で疲労剥離が発生するまでの転動疲労寿命を調査し、10%累積破損確率(以下、B10寿命)を求めた。その結果、転動疲労寿命は平均オーステナイト粒径3.5μm以下で大幅に向上できることが判った。さらに、圧壊強度に関して鋭意検討したところ、部品の全体がHv700以上の硬度が必要で、かつ表面〜1.5mm深さまでの平均オーステナイト粒径が3.5μm以下であれば、圧壊強度が1.3倍以上に向上することがわかった。
本発明は、この知見に基づいて完成されたものであり、その要旨構成は以下のとおりである。
The inventors made bearing rollers and steel balls with a refined prior austenite grain size in the hardened part, tested 20 times under the same conditions, and the rolling fatigue life until fatigue peeling occurred at the rolling part. investigated, 10% cumulative failure probability (hereinafter, B 10 life) were determined. As a result, it was found that the rolling fatigue life can be significantly improved when the average austenite grain size is 3.5 μm or less. Furthermore, as a result of diligent investigations on the crushing strength, if the entire part requires a hardness of Hv700 or higher and the average austenite grain size from the surface to a depth of 1.5 mm is 3.5 μm or less, the crushing strength is improved 1.3 times or more. I found out that
This invention is completed based on this knowledge, The summary structure is as follows.

(1) 軸受鋼を素材とした軸受のコロまたは鋼球において、転走部における、少なくとも表面から1.5mm深さ位置までの鋼組織が、旧オーステナイト粒径3.5μm以下であることを特徴とする転動疲労特性と圧壊強度に優れた軸受のコロまたは球。 (1) In a roller or ball of a bearing made of bearing steel, the steel structure at least from the surface to a depth of 1.5 mm in the rolling part has a prior austenite grain size of 3.5 μm or less. Roller or sphere of bearings with excellent rolling fatigue characteristics and crushing strength.

(2) 前記素材をオーステナイトと球状化炭化物の2相域に加熱後、急冷して焼き入れる処理を2回以上行うことで、前記鋼組織を得ることを特徴とする前記(1)に記載の転動疲労特性と圧壊強度に優れた軸受のコロまたは球。 (2) The steel structure is obtained as described in (1) above, wherein the steel structure is obtained by heating the material in a two-phase region of austenite and spheroidized carbide, followed by quenching and quenching twice or more. Roller or sphere of bearings with excellent rolling fatigue characteristics and crushing strength.

(3) 前記2相域への加熱を、800℃〜最高加熱温度までの加熱速度が0.5℃/s以上850℃/s以下、最高加熱温度がAc以上Ac+130℃以下、Ac点以上の温度での滞留時間が500s以下である加熱条件とすることを特徴とする請求項2に記載の転動疲労特性と圧壊強度に優れた軸受のコロまたは球 (3) Heating to the two-phase region is performed at a heating rate from 800 ° C. to the maximum heating temperature of 0.5 ° C./s or more and 850 ° C./s or less, the maximum heating temperature of Ac 3 or more and Ac 3 + 130 ° C. or less, Ac 3 The roller or sphere of a bearing excellent in rolling fatigue characteristics and crushing strength according to claim 2, characterized in that the heating condition is that the residence time at a temperature above the point is 500 s or less.

(4)前記(1)乃至(3)において、コロおよび球の硬度が深さ方向全域にわたりHv700以上であることを特徴とする転動疲労特性と圧壊強度に優れた軸受のコロまたは球。 (4) A roller or sphere of a bearing excellent in rolling fatigue characteristics and crushing strength, characterized in that the hardness of the roller and the sphere is Hv700 or more in the entire depth direction in (1) to (3).

(5)前記(1)乃至(4)において、前記素材がSUJ2からなる転動疲労特性と圧壊強度に優れた軸受のコロまたは球。 (5) A roller or sphere of a bearing having excellent rolling fatigue characteristics and crushing strength, wherein the material is SUJ2 in (1) to (4).

(6) コロまたは球として、前記(1)乃至(5)に記載の軸受のコロまたは球が用いられてなることを特徴とする軸受。 (6) A roller or sphere, wherein the roller or sphere of the bearing according to the above (1) to (5) is used.

本発明のコロまたは球、さらにはそれを用いた軸受よれば、転動疲労寿命の向上のみならず、圧壊強度も向上することができ、工業的に非常に有用である。   According to the roller or sphere of the present invention and the bearing using the roller or sphere, not only the rolling fatigue life but also the crushing strength can be improved, which is very useful industrially.

本発明の軸受のコロまたは鋼球は、鋼素材、棒鋼あるいは線材を、成型工程(鍛造・切削など)を経てベアリング内外輪、軸受ボール、軸受ころおよびニードルなどのコロ軸受または球軸受を構成する部品の形状に加工した後、転走部もしくは部品全体に焼入れを施して製造される。
本発明を得るためには、鋼素材の組成、素材組織、焼入れ表層部の旧オーステナイト粒径および深さ、焼入れ条件、焼入れ後の組織の適正化が必要である。
以下、本発明を具体的に説明する。
The roller or steel ball of the bearing of the present invention constitutes a roller bearing or ball bearing such as a bearing inner and outer ring, bearing ball, bearing roller and needle through a molding process (forging, cutting, etc.) using a steel material, a steel bar or a wire. After processing into the shape of the part, it is manufactured by quenching the rolling part or the entire part.
In order to obtain the present invention, it is necessary to optimize the composition of the steel material, the material structure, the prior austenite grain size and depth of the quenched surface layer, the quenching conditions, and the structure after quenching.
The present invention will be specifically described below.

[鋼組成]
先ず、後述するような本発明で必要とする焼入れ表層部を得るのに好適な、鋼素材について説明する。鋼素材には軸受鋼として広く用いられているSUJ2が最も好適に用いられるが、下記の成分組成を満足する鋼を用いることができる。
[Steel composition]
First, a steel material suitable for obtaining a quenched surface layer portion required in the present invention as described later will be described. SUJ2, which is widely used as a bearing steel, is most preferably used as the steel material, but steel that satisfies the following composition can be used.

C:0.6mass%〜1.5mass%
Cは、焼入れ部において部品の疲労寿命を得るために必要となる硬度確保のために必要な元素であり、0.6mass%未満では焼入れ部で十分な硬度および疲労強度が得られない。一方、1.5mass%を超えて添加すると、焼入れ前の加工性(剪断性、鍛造性)を劣化させる。よって、好適なC含有量範囲は0.6mass%〜1.0mass%である。
C: 0.6mass% ~ 1.5mass%
C is an element necessary for securing the hardness necessary for obtaining the fatigue life of the part in the quenched portion. If it is less than 0.6 mass%, sufficient hardness and fatigue strength cannot be obtained in the quenched portion. On the other hand, when added in excess of 1.5 mass%, the workability before quenching (shearability, forgeability) is deteriorated. Therefore, a suitable C content range is 0.6 mass% to 1.0 mass%.

Si:0.1〜1.0mass%
Siは、転動疲労寿命を向上するため0.1mass%以上含有されていることが好ましい。しかし、1.0mass%を越えて添加すると、Cと同様、焼入れ前の加工性(剪断性、鍛造性)を劣化させる。よって、Siの好適含有量範囲は0.1〜1.0mass%以下である。
Si: 0.1-1.0mass%
Si is preferably contained in an amount of 0.1 mass% or more in order to improve the rolling fatigue life. However, if added over 1.0 mass%, like C, the workability before quenching (shearability, forgeability) is degraded. Therefore, the preferable content range of Si is 0.1 to 1.0 mass% or less.

Mn:0.1〜1.5mass%
Mnは、焼入性を向上するため、0.1mass%以上含有されていることが好ましい。しかし、過剰に添加すると焼入れ前の加工性(剪断性、鍛造性)を劣化させる。このため、その含有量の上限は1.5mass%以下とすることが好ましい。
Mn: 0.1 ~ 1.5mass%
In order to improve hardenability, Mn is preferably contained in an amount of 0.1 mass% or more. However, if added excessively, the workability (shearability, forgeability) before quenching is deteriorated. For this reason, it is preferable that the upper limit of the content be 1.5 mass% or less.

Cr:0.05〜2.0mass%
Crは焼入性向上および炭化物球状化を促進による焼入れ前の硬度低下・加工性向上の効果があるため0.05以上含有されていることが好ましい。しかし、2.0mass%を超えて添加しても効果が飽和してしまうため0.05〜2.0mass%の範囲で含有されていることが好ましい。
Cr: 0.05-2.0mass%
Cr is preferably contained in an amount of 0.05 or more because it has the effects of improving the hardenability and reducing the hardness before quenching by promoting the spheroidization of carbide and improving the workability. However, even if added in excess of 2.0 mass%, the effect is saturated, so that it is preferably contained in the range of 0.05 to 2.0 mass%.

以上説明した元素以外の残部はFeおよび不可避的不純物であるものが、基本となる成分である。不可避的不純物としては、P、S、N、Oが挙げられ、Pは0.05mass%まで、Oは0.0150mass%までを許容できる。S、Nは不可避的不純物としても混入するが、後述するとおり積極的に添加してもよい。以上の基本成分組成に加えて、以下の元素をそれぞれ以下に説明する範囲で含有させてもよい。   The balance other than the elements described above is Fe and inevitable impurities are basic components. Inevitable impurities include P, S, N, and O. P can be up to 0.05 mass% and O can be up to 0.0150 mass%. S and N are also mixed as inevitable impurities, but may be positively added as described later. In addition to the basic component composition described above, the following elements may be contained within the ranges described below.

S:0.03mass%以下
Sは、Mnと結合して、MnSを形成して被削性を向上するため添加しても良いが、0.03mass%を越えて添加するとMnSが転動疲労試験中の割れ起点となり転動疲労特性を著しく低下するためその含有量の上限は0.03mass%とすることが好ましい。
S: 0.03 mass% or less S may be added to improve the machinability by combining with Mn to form MnS, but if added over 0.03 mass%, MnS is in the rolling fatigue test. The upper limit of the content is preferably 0.03 mass%, since it becomes a crack starting point and the rolling fatigue characteristics are remarkably lowered.

Al:0.1mass%以下
Alは、強力な脱酸作用を持ち、鋼の清浄化を向上させる効果を有する成分であるため添加しても良いが、0.10mass%を超えて添加した場合には、鋼の清浄化がむしろ劣化し、転動疲労特性が低下することから、その含有量を0.1mass%以下とすることが好ましい。
Al: 0.1 mass% or less
Al is a component that has a strong deoxidizing effect and has an effect of improving the cleaning of steel, but may be added, but when added over 0.10 mass%, the cleaning of the steel is rather Since it deteriorates and the rolling fatigue characteristics are reduced, the content is preferably 0.1 mass% or less.

Cu:1.0mass%以下
Cuは、焼入れ性向上により焼入れ部の硬度向上効果があるため添加しても良いが、この効果を得るためには1.0mass%以下で十分である。
Cu: 1.0 mass% or less
Cu may be added because it has the effect of improving the hardness of the hardened part by improving the hardenability, but 1.0 mass% or less is sufficient to obtain this effect.

Ni:1.0mass%以下
Niは、焼入性増大や焼入れ部の靭性を向上させるために1.0mass%を上限に添加しても良い。また、Cu添加時には熱間脆性抑制のためにNiをCu添加量の1/2添加することが好ましい。
Ni: 1.0 mass% or less
Ni may be added up to 1.0 mass% in order to increase the hardenability and improve the toughness of the hardened part. Further, when Cu is added, it is preferable to add 1/2 of the amount of Cu added to suppress hot brittleness.

Mo:1.0mass%以下
Moは、焼入性向上効果や焼戻し軟化抵抗の効果があるため添加してもよいが、加工性が悪くなるため1.0mass%以下とすることが好ましい。
Mo: 1.0 mass% or less
Mo may be added because it has an effect of improving hardenability and resistance to temper softening, but is preferably 1.0 mass% or less because workability deteriorates.

W:1.0mass%以下
Wは、焼入性向上効果があるため添加してもよいが、加工性が悪くなるため1.0mass%以下とすることが好ましい。
W: 1.0 mass% or less
W may be added because it has an effect of improving hardenability, but is preferably 1.0 mass% or less because workability is deteriorated.

Ti:0.01mass%以下
Tiは、窒化物形成によるオーステナイト粒成長抑制効果があるため添加してもよいが、0.01mass%を超えると、転動疲労特性が劣化するため0.01mass%以下とすることが好ましい。
Ti: 0.01 mass% or less
Ti may be added because it has the effect of suppressing the growth of austenite grains due to the formation of nitrides. However, if it exceeds 0.01 mass%, the rolling fatigue characteristics deteriorate, so 0.01 mass% or less is preferable.

Nb:0.5mass%以下
Nbは、窒化物(もしくは炭窒化物)形成によるオーステナイト粒成長抑制効果があるため添加しても良いが、その含有量が0.5mass%を超えるとその効果は飽和するので、0.5mass%以下とすることが好ましい。
Nb: 0.5 mass% or less
Nb may be added because it has an austenite grain growth suppression effect due to nitride (or carbonitride) formation, but if its content exceeds 0.5 mass%, the effect is saturated, so 0.5 mass% or less It is preferable to do.

B:0.01mass%以下
Bは、焼入性向上効果があるため0.01mass%を上限に添加しても良いが、その含有量が0.01mass%を超えるとその効果は飽和するため、0.01mass%以下とすることが好ましい。
B: 0.01 mass% or less Since B has an effect of improving hardenability, 0.01 mass% may be added to the upper limit, but if its content exceeds 0.01 mass%, the effect is saturated, so 0.01 mass% The following is preferable.

Sb:0.0050mass%以下
Sbは、転動疲労試験中のミクロ組織変化(白色層生成)の遅延に対して効果があり、転動疲労特性の劣化を防止する作用を有するので、添加してもよい。しかし、その含有量が0.01mass%を超えると、靭性が劣化するので、0.01mass%以下とすることが好ましい。
Sb: 0.0050 mass% or less
Sb is effective for delaying the microstructure change (white layer formation) during the rolling fatigue test, and has the function of preventing deterioration of the rolling fatigue characteristics, so may be added. However, if its content exceeds 0.01 mass%, the toughness deteriorates, so it is preferable to set it to 0.01 mass% or less.

N:0.01mass%以下
Nは、窒化物や炭窒化物を形成し、オーステナイト粒微細化に効果があるが、過剰添加は鋼の加工性を劣化させるため0.01mass%以下であることが好ましい。
以上説明した元素以外の残部は、Feおよび不可避的不純物である。
N: 0.01 mass% or less
N forms nitrides and carbonitrides and is effective in refining austenite grains, but excessive addition is preferably 0.01 mass% or less because it deteriorates the workability of steel.
The balance other than the elements described above is Fe and inevitable impurities.

[鋼素材の組織]
軸受用鋼部品は、焼入れ前に鋼素材から切削、研削、鍛造等の加工によって成型されることから、焼入れ前の鋼素材の組織は、球状化処理により、母相はフェライト組織、炭化物は球状化されている必要がある。このとき炭化物は、加工性、焼入れ処理中のオーステナイト粒成長抑制効果を考慮して、アスペクト比(炭化物の長径/短径の比)を平均3以下とする必要がある。
[Structure of steel material]
Steel parts for bearings are formed by cutting, grinding, forging, etc. from the steel material before quenching, so the structure of the steel material before quenching is spheroidized, the parent phase is ferrite, and the carbide is spherical. Need to be. At this time, the carbide needs to have an average aspect ratio (ratio of the major axis / minor axis of the carbide) of 3 or less in consideration of workability and the effect of suppressing the growth of austenite grains during the quenching process.

[焼入れ表層部の旧オーステナイト粒径]
軸受用鋼部品は、転動疲労特性が要求されるため焼入れ・焼戻しが施されている。本発明では、特に転動疲労特性にとって重要である焼入れ表層部において、旧オーステナイト粒径が平均3.5μm以下である必要がある。これは、転動疲労寿命が3.5μm超えのものより、格段に向上するからである。
[Old austenite grain size of hardened surface layer]
Steel parts for bearings are quenched and tempered because they require rolling fatigue characteristics. In the present invention, the prior austenite grain size needs to be an average of 3.5 μm or less in the quenched surface layer portion which is particularly important for rolling fatigue characteristics. This is because the rolling fatigue life is remarkably improved as compared with that having a rolling fatigue life exceeding 3.5 μm.

一方、軸受のもう1つの重要特性である圧壊強度を向上させるには、この旧オーステナイト粒径が3.5μm以下である領域が、少なくとも表面から1.5mmの深さまである必要がある。これにより、高い圧壊強度が得られるようになる。
なお、粒径3.5μm以下である領域の測定は以下の様にして行った。まず当社開発のガンマR液で旧オーステナイト粒界を腐食後、表面から0.1mm、0.2mm、0.3mm・・・・・と0.1mmピッチの位置で、5000倍でSEM像を4枚撮影した後、画像解析装置で1個1個のオーステナイト粒の面積を測定し、面積から円相当径(2×(面積/π)1/2)を求め、その位置での平均オーステナイト粒径を求めた。この平均旧オーステナイト粒径が3.5μm以下であった位置を、「旧オーステナイト粒径が3.5μm以下である領域」とした。
On the other hand, in order to improve the crushing strength, which is another important characteristic of the bearing, the region in which the prior austenite grain size is 3.5 μm or less needs to be at least 1.5 mm deep from the surface. Thereby, a high crushing strength can be obtained.
In addition, the measurement of the area | region whose particle size is 3.5 micrometers or less was performed as follows. First, after corroding old austenite grain boundaries with our developed gamma R solution, after taking four SEM images at a magnification of 5000x at positions of 0.1mm, 0.2mm, 0.3mm ... and 0.1mm pitch from the surface Then, the area of each austenite grain was measured with an image analyzer, the equivalent circle diameter (2 × (area / π) 1/2 ) was determined from the area, and the average austenite grain size at that position was determined. The position where the average prior austenite grain size was 3.5 μm or less was defined as “region where the prior austenite grain size was 3.5 μm or less”.

図1および図2にSUJ2(後述の表2における鋼記号1の成分組成)の圧壊強度と粒径、平均旧オーステナイト粒径が3.5μm以下の領域との関係を示す。6.0mmφ× 9.0mm長さの円柱状試験片において、旧オーステナイト粒径3.5μm以下である領域の深さが1.0mm、2.0mmの鋼(なお、焼入れ硬度は全深さに於いてHv750以上であり、中心部の旧オーステナイト粒径はいずれも4.5μm)と、比較のために、表層(表面から0.1mm位置での旧オーステナイト粒径)および中心部とも平均オーステナイト粒径が4.3μmでかつ硬度が全域でHv750以上あるような試験片(旧オーステナイト粒径3.5μm以下の領域が0mmとする)も作製した。このような試験片において、図3のように試験片が破壊するまで圧縮を行い(圧壊試験)、破壊荷重を測定した。この圧壊試験を10回行い、平均圧壊強度を算出した。   FIG. 1 and FIG. 2 show the relationship between the crushing strength of SUJ2 (component composition of steel symbol 1 in Table 2 to be described later), the particle size, and the region where the average prior austenite particle size is 3.5 μm or less. In a cylindrical test piece of 6.0mmφ × 9.0mm length, steel with depth of 1.0mm and 2.0mm in the area where the prior austenite grain size is 3.5μm or less (Note that the quenching hardness is Hv750 or more at all depths) Yes, all the prior austenite grain size in the center is 4.5μm), and for comparison, the surface layer (old austenite grain size at 0.1mm from the surface) and the central part have an average austenite grain size of 4.3μm and hardness A specimen having a Hv of 750 or more in the entire region (a region with a prior austenite grain size of 3.5 μm or less is assumed to be 0 mm) was also produced. In such a test piece, compression was performed until the test piece was broken as shown in FIG. 3 (crush test), and the breaking load was measured. This crushing test was performed 10 times, and the average crushing strength was calculated.

この算出結果を図1に示すように、旧オーステナイト粒径が3.5μm以下である領域を少なくとも表面から1.5mmの深さとすることにより、圧壊強度を高レベルにすることができ、図2に示すように、旧オーステナイト粒径が3.5μm以下である領域の深さが少なくとも表面から1.5mmまであるような鋼では、圧壊強度が1.3倍以上に向上する。   As shown in FIG. 1, the calculation result shows that the crushing strength can be increased to a high level by setting the area where the prior austenite grain size is 3.5 μm or less to a depth of at least 1.5 mm from the surface. As described above, the crushing strength is improved by 1.3 times or more in the steel in which the depth of the region where the prior austenite grain size is 3.5 μm or less is at least 1.5 mm from the surface.

[焼入れ部の硬さ]
本発明では、コロ軸受のコロまたは球軸受の球について、旧オーステナイト粒径3.5μm以下であるような領域以外に於いても、ビッカース硬度(以下Hv)で700以上であること、すなわち、コロまたは球の深さ方向全域にわたり、ビッカース硬度(以下Hv)が700以上であることとする。これは、硬度がHv700未満であるような部材では、十分な圧壊強度が得られないからである。
[Hardness of hardened part]
In the present invention, the roller of the roller bearing or the ball of the ball bearing has a Vickers hardness (hereinafter referred to as Hv) of 700 or more even in a region other than the former austenite grain size of 3.5 μm or less. It is assumed that the Vickers hardness (hereinafter referred to as Hv) is 700 or more over the entire depth direction of the sphere. This is because sufficient crushing strength cannot be obtained with a member having a hardness of less than Hv700.

[焼入れ条件]
本発明では、焼入れ表層部の旧オーステナイト粒径が平均3.5μm以下である必要があることから、焼入れ条件の最適化が非常に重要な意味を持つ。焼入れ回数に関してはN回焼入れ(N=1以上)を実施すれば良いが、N回目(最後)の焼入れ処理における加熱条件を、
(1)加熱温度:Ac点以上Ac+130℃以下
(2)加熱速度:800℃〜Ac点の温度間で平均0.5℃/s以上850℃/s以下
(3)Ac点以上の滞留時間:500秒以下
とする必要がある。
[Hardening conditions]
In the present invention, since the prior austenite grain size of the quenched surface layer portion needs to be an average of 3.5 μm or less, the optimization of the quenching condition is very important. Regarding the number of times of quenching, it is only necessary to perform N quenching (N = 1 or more), but the heating conditions in the Nth (last) quenching process are:
(1) Heating temperature: Ac 3 points or higher and Ac 3 + 130 ° C or lower (2) Heating rate: 800 ° C to Ac 3 points average temperature 0.5 ° C / s or higher and 850 ° C / s or lower (3) Ac 3 points or higher Dwell time of: need to be 500 seconds or less.

ここで、Ac点とは、加熱時にフェライトもしくはベイナイトやマルテンサイトからオーステナイトへの変態が終了する温度のこととする。加熱温度がAc点に満たないと、オーステナイトへの逆変態が終了しないので、完全なマルテンサイトの焼入れ組織とすることができず、硬度も十分に得られない。逆に、加熱温度がAc+130℃超では、球状化炭化物の溶け込みが進みオーステナイトの粒成長抑制効果が無くなり、粒成長が急速に促進するので、焼入れ後の旧オーステナイト粒径が3.5μm超となってしまう。 Here, the Ac 3 point is a temperature at which the transformation from ferrite, bainite or martensite to austenite is completed during heating. If the heating temperature is less than Ac 3 point, the reverse transformation to austenite will not be completed, so that a complete martensitic quenched structure cannot be obtained, and sufficient hardness cannot be obtained. Conversely, when the heating temperature exceeds Ac 3 + 130 ° C, the spheroidized carbides dissolve and the effect of suppressing the austenite grain growth is lost, and the grain growth is accelerated rapidly. Therefore, the prior austenite grain size after quenching exceeds 3.5 µm. End up.

焼入れ処理の加熱速度については、「800℃」〜「Ac点」温度の間で平均0.5℃/s以上〜850℃/s以下とする必要がある。この温度域で0.5℃/sより加熱速度が遅くなれば、オーステナイトへの核生成駆動力の減少などの影響で、オーステナイト粒径が微細化せず、焼入れ組織の旧オーステナイト粒径が3.5μm超となってしまう。850℃/s超えでは旧オーステナイト粒径3.5μm以下の領域が1.5mm未満となってしまい、圧壊強度が1.3倍未満となってしまう。 The heating rate of the quenching treatment needs to be an average of 0.5 ° C./s to 850 ° C./s between “800 ° C.” and “Ac 3 points” temperatures. If the heating rate is slower than 0.5 ° C / s in this temperature range, the austenite grain size will not be refined due to a decrease in nucleation driving force to austenite, and the prior austenite grain size of the quenched structure exceeds 3.5 μm. End up. If it exceeds 850 ° C./s, the area of the prior austenite grain size of 3.5 μm or less becomes less than 1.5 mm, and the crushing strength becomes less than 1.3 times.

さらに、Ac点以上の滞留時間が500秒以下となるように、加熱条件を調整する必要がある。Ac点以上の滞留時間が500秒超となると、粒成長に十分な時間となり、焼入れ後の組織の旧オーステナイト粒径が3.5μm超となってしまう。 Furthermore, it is necessary to adjust the heating conditions so that the residence time of Ac 3 points or more is 500 seconds or less. When the residence time of 3 points or more of Ac exceeds 500 seconds, the time is sufficient for grain growth, and the prior austenite grain size of the structure after quenching exceeds 3.5 μm.

上記条件による焼入れ処理は、2回以上とする。2回以上に限定する理由は、旧オーステナイト粒径3.5μmと、旧オーステナイト粒径3.5μm以下の領域1.5mm以上を両立させるためで1回加熱のみでは、旧オーステナイト粒径は3.5μm以下にできても、領域の深さは得られなかったからである。この加熱速度条件は、最終の焼入れ処理時にのみ(N回焼入れ処理を施す場合には、N回目のみ)適用すればよい。最終の焼入れ処理に先立って行う焼入れ処理(N回焼入れ処理を施す場合には、1回〜N-1回目までの焼入れ処理)では、焼入れ後の組織がベイナイトもしくはマルテンサイト組織(単相でも複合でも良い)と、残留球状炭化物とであれば良く、最終焼入れ工程に限定されるような熱処理は特に必要とはしない。但し、残留球状炭化物が溶解してしまうような高温で加熱を行うと、最終焼入れ時に球状炭化物によるオーステナイト粒成長抑制作用が消失してしまい、オーステナイト粒が粗大化・不均一化するといった問題や、母相への炭素の溶け込み量が最適値より高くなり転動疲労特性を低下するといった弊害が出るため、最終焼入れ以前の焼入れ処理時においては、球状化炭化物がオーステナイトに溶け込みオーステナイト単相となる温度以下とする必要がある。なお、焼入れ回数に関しては複数回について焼入れをしても良いが、工業面・コスト面から考えれば2回までとするのが好適である。   The quenching treatment under the above conditions should be performed twice or more. The reason for limiting to two or more times is to make both the prior austenite grain size 3.5μm and the former austenite grain size 3.5μm area 1.5mm or more compatible. With only one heating, the prior austenite grain size can be 3.5μm or less. However, the depth of the region was not obtained. This heating rate condition may be applied only at the time of the final quenching process (only the Nth time when performing the N times quenching process). In the quenching process that is performed prior to the final quenching process (in the case of N quenching process, the first to N-1 quenching process), the structure after quenching is bainite or martensite structure (single phase or complex) However, the residual spherical carbide may be used, and heat treatment limited to the final quenching step is not particularly required. However, if heating is performed at such a high temperature that the residual spherical carbide dissolves, the effect of suppressing the austenite grain growth by the spherical carbide during the final quenching disappears, and the austenite grains become coarse and non-uniform, Since the amount of carbon penetration into the parent phase becomes higher than the optimum value and the rolling fatigue characteristics are deteriorated, the temperature at which the spheroidized carbide dissolves in austenite and becomes a single austenite phase during the quenching process before the final quenching. It is necessary to do the following. In addition, regarding the number of times of quenching, quenching may be performed for a plurality of times, but from the viewpoint of industrial and cost, it is preferable that the number of quenching is up to two.

以上説明した条件にて焼入れ処理を施すことにより、平均旧オーステナイト粒径が3.5μm以下、平均旧オーステナイト粒径3.5μm以下である領域が少なくとも表面から1.5mm深さにある、軸受のコロもしくは鋼球が製造できる。   By performing quenching treatment under the conditions described above, the roller or steel of the bearing has an average prior austenite grain size of 3.5 μm or less and an area having an average prior austenite grain size of 3.5 μm or less at least 1.5 mm deep from the surface. A sphere can be manufactured.

[焼戻し]
本発明においては、焼入れ処理の後に焼戻し処理を行ってもよい。但し、焼戻し処理を行う場合、焼戻し温度が高すぎると、焼入れ表層部が軟化して、疲労強度が低下してしまい、焼入れ表層部の旧オーステナイト粒径を微細化した効果が減じてしまうため、焼戻しを行う場合、温度は200℃以下とする。また、時間は2時間以下とするのが好ましい。
[Tempering]
In the present invention, a tempering process may be performed after the quenching process. However, when performing tempering treatment, if the tempering temperature is too high, the quenched surface layer portion is softened, the fatigue strength is reduced, and the effect of refining the prior austenite grain size of the quenched surface layer portion is reduced. When tempering, the temperature should be 200 ° C or less. The time is preferably 2 hours or less.

[その他]
上記の条件で、焼入れ処理、焼戻し処理が施された後は、必要に応じてショットピーニングなどの表面処理、仕上げの表面研磨処理などが施されて、軸受用鋼部品に仕上げても問題ない。
[Others]
After the quenching and tempering treatments are performed under the above conditions, surface treatment such as shot peening and finishing surface polishing treatments are performed as necessary, and there is no problem even if the steel parts for bearings are finished.

以上の各項目毎で説明したようにすることで、転動疲労特性と圧壊強度とを両立した、コロまたは球が得られ、このようなコロまたは球を軸受のコロまたは球として用いることにより、軸受の転動疲労寿命を向上させることが可能となり、また、高負荷で使用可能な軸受とすることができる。なお、ベアリング内外輪等、コロや球以外の軸受を構成する部品についても、その転走面について上記した各条件を満足させることが好ましい。   By making it explained for each of the above items, a roller or sphere having both rolling fatigue characteristics and crushing strength can be obtained, and by using such a roller or sphere as a roller or sphere of a bearing, The rolling fatigue life of the bearing can be improved, and the bearing can be used with a high load. In addition, it is preferable to satisfy the above-described conditions for the rolling surfaces of parts constituting the bearings other than the rollers and balls, such as bearing inner and outer rings.

表1に示す各種組成の実験用100kg鋼塊を、1250℃で20hソーキングを行った後、仕上げ温度1000℃で20mmφに熱間鍛造し、丸棒とした。この丸棒を、780℃で5h保持する球状化焼鈍を行った。この丸棒の中心部分より12.2mmφの円柱状試験片を粗加工し、表2に記載の熱処理条件で焼入れ処理を行った後、焼戻しを170℃で2時間行った。
転動疲労試験は、12mmφ×22mm長さの円柱状試験片に仕上げ、転動疲労試験に供した。転動疲労特性評価は、NTN社製のラジアル型転動疲労試験機を用いて、試験片が剥離するまでの転動疲労寿命を調査した。疲労試験は、ヘルツ応力5880MPa(600kgf/mm2)応力負荷回数46400cpmで20本試験を行い、10%累積破損確立での寿命〔以下B10寿命〕を求めた。
A 100 kg steel ingot of various compositions shown in Table 1 was soaked at 1250 ° C. for 20 hours, and then hot forged to 20 mmφ at a finishing temperature of 1000 ° C. to obtain a round bar. The round bar was subjected to spheroidizing annealing at 780 ° C. for 5 hours. A cylindrical test piece having a diameter of 12.2 mmφ was roughly machined from the center portion of the round bar, subjected to quenching treatment under the heat treatment conditions shown in Table 2, and then tempered at 170 ° C. for 2 hours.
In the rolling fatigue test, a cylindrical specimen having a length of 12 mmφ × 22 mm was finished and subjected to the rolling fatigue test. In the rolling fatigue characteristic evaluation, the rolling fatigue life until the test piece was peeled was investigated using a radial rolling fatigue tester manufactured by NTN. In the fatigue test, 20 tests were conducted at a Hertzian stress of 5880 MPa (600 kgf / mm 2 ) stress load number of 46400 cpm, and the life when 10% cumulative failure was established (hereinafter referred to as B 10 life) was obtained.

また、圧壊試験は6.2mmφ×9.2mm長さの円柱状試験片を作製し、高周波焼入れを行ったもの、1100℃に加熱したソルトバスにおいて所定温度に到達後、焼入れを行う作業を2回繰り返したもので、種々の粒径と種々の平均旧オーステナイト粒径3.5μm以下の領域深さの試料を作成した。その後6.0 mmφ×9.0mmに仕上げ研磨を行い、コロ軸受を模擬した試験片を作製した。この試料を図3の試験方法で10回、圧壊試験を行い、圧壊強度の平均値を算出した。   In addition, the crushing test produced a cylindrical test piece of 6.2 mmφ x 9.2 mm length and was subjected to induction quenching. After reaching a predetermined temperature in a salt bath heated to 1100 ° C, the quenching operation was repeated twice. Thus, samples with various grain sizes and various average prior austenite grain sizes of 3.5 μm or less were prepared. Then, finish polishing to 6.0 mmφ × 9.0 mm was performed to prepare a test piece simulating a roller bearing. This sample was subjected to a crush test 10 times by the test method of FIG. 3, and the average value of the crush strength was calculated.

試験片の焼入れ硬度は、転動疲労試験片および圧壊試験片ともに、円柱状試験片の長さ方向の1/2の位置で輪切りにして鏡面に研磨し、表面部から0.1mmピッチでビッカース硬度、旧オーステナイト粒径を調査した。旧オーステナイト粒径は前述した通り、各位置の5000倍SEM像を4枚撮影した後、画像解析装置で1個1個のオーステナイト粒の面積を測定し、面積から円相当径(2×(面積/π)1/2)を求め、その位置での平均オーステナイト粒径を求めた。この平均旧オーステナイト粒径が3.5μm以下であった位置を、「旧オーステナイト粒径が3.5μm以下である領域」とした。
なお、硬度はいずれも全断面Hv700以上であった。
The quenching hardness of the test specimens was determined by rounding at a half of the length of the cylindrical specimens and polishing to a mirror surface for both rolling fatigue specimens and crush specimens, and Vickers hardness at 0.1 mm pitch from the surface. The prior austenite grain size was investigated. As described above, the previous austenite grain size was obtained by taking four 5000-fold SEM images at each position, measuring the area of each austenite grain with an image analyzer, and calculating the equivalent circle diameter (2 × (area / π) 1/2 ) and the average austenite grain size at that position. The position where the average prior austenite grain size was 3.5 μm or less was defined as “region where the prior austenite grain size was 3.5 μm or less”.
The hardness was all Hv700 or higher in all cross sections.

Figure 2008088482
Figure 2008088482

Figure 2008088482
Figure 2008088482

旧γ粒径が3.5μm以下である深さと圧壊強度との関係を示す図である。It is a figure which shows the relationship between the depth and the crushing strength whose prior γ grain size is 3.5 μm or less. 旧γ粒径が3.5μm以下である深さと圧壊強度の向上率との関係を示す図である。It is a figure which shows the relationship between the depth and the improvement rate of the crushing strength where the former γ grain size is 3.5 μm or less. 圧壊試験方法を示す図である。It is a figure which shows a crush test method.

Claims (6)

軸受鋼を素材とした、軸受のコロまたは球において、
転走部における、少なくとも表面から1.5mm深さ位置までの鋼組織が、旧オーステナイト粒径3.5μm以下であることを特徴とする転動疲労特性と圧壊強度に優れた軸受のコロまたは球。
In bearing rollers or balls made of bearing steel,
A roller or sphere of a bearing excellent in rolling fatigue characteristics and crushing strength, characterized in that the steel structure at least 1.5 mm deep from the surface in the rolling part has a prior austenite grain size of 3.5 μm or less.
前記素材をオーステナイトと球状化炭化物の2相域に加熱後、急冷して焼き入れる処理を2回以上行うことで、前記鋼組織を得ることを特徴とする請求項1に記載の転動疲労特性と圧壊強度に優れた軸受のコロまたは球。   2. The rolling fatigue property according to claim 1, wherein the steel structure is obtained by heating the material to a two-phase region of austenite and spheroidized carbide and then quenching and quenching twice or more. Bearing roller or sphere with excellent crushing strength. 前記2相域への加熱を、800℃〜最高加熱温度までの加熱速度が0.5℃/s以上850℃/s以下、最高加熱温度がAc以上Ac+130℃以下、Ac点以上の温度での滞留時間が500s以下である加熱条件とすることを特徴とする請求項2に記載の転動疲労特性と圧壊強度に優れた軸受のコロまたは球。 Heating to the two-phase region is performed at a heating rate from 800 ° C. to the maximum heating temperature of 0.5 ° C./s or more and 850 ° C./s or less, the maximum heating temperature of Ac 3 or more, Ac 3 + 130 ° C. or less, and Ac 3 points or more. The roller or sphere of a bearing excellent in rolling fatigue characteristics and crushing strength according to claim 2, wherein the heating condition is such that the residence time at temperature is 500 s or less. 請求項1乃至3において、コロおよび球の硬度が深さ方向全域にわたりHv700以上であることを特徴とする転動疲労特性と圧壊強度に優れた軸受のコロまたは球。   4. The roller or sphere of a bearing excellent in rolling fatigue characteristics and crushing strength according to claim 1, wherein the hardness of the roller and the sphere is Hv 700 or more throughout the depth direction. 請求項1乃至4において、前記素材がSUJ2からなる転動疲労特性と圧壊強度に優れた軸受のコロまたは球。   5. A roller or sphere of a bearing according to claim 1, wherein said material is made of SUJ2 and has excellent rolling fatigue characteristics and crushing strength. コロまたは球として、請求項1乃至5に記載のコロまたは球が用いられてなることを特徴とする軸受。   A roller or sphere, wherein the roller or sphere according to claim 1 is used.
JP2006268720A 2006-09-29 2006-09-29 Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing Withdrawn JP2008088482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268720A JP2008088482A (en) 2006-09-29 2006-09-29 Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268720A JP2008088482A (en) 2006-09-29 2006-09-29 Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing

Publications (1)

Publication Number Publication Date
JP2008088482A true JP2008088482A (en) 2008-04-17

Family

ID=39372945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268720A Withdrawn JP2008088482A (en) 2006-09-29 2006-09-29 Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing

Country Status (1)

Country Link
JP (1) JP2008088482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716781A1 (en) * 2011-05-25 2014-04-09 Kabushiki Kaisha Kobe Seiko Sho Steel with excellent rolling fatigue characteristics
JP2016199786A (en) * 2015-04-09 2016-12-01 株式会社神戸製鋼所 High strength steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716781A1 (en) * 2011-05-25 2014-04-09 Kabushiki Kaisha Kobe Seiko Sho Steel with excellent rolling fatigue characteristics
EP2716781A4 (en) * 2011-05-25 2015-04-22 Kobe Steel Ltd Steel with excellent rolling fatigue characteristics
US9303302B2 (en) 2011-05-25 2016-04-05 Kobe Steel, Ltd. Steel with excellent rolling-contact fatigue properties
JP2016199786A (en) * 2015-04-09 2016-12-01 株式会社神戸製鋼所 High strength steel

Similar Documents

Publication Publication Date Title
JP2008088478A (en) Steel component for bearing having excellent fatigue property
JP5682485B2 (en) Steel for cold forging and nitriding
JP6241136B2 (en) Case-hardened steel
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP5886119B2 (en) Case-hardened steel
JP6055397B2 (en) Bearing parts having excellent wear resistance and manufacturing method thereof
JP5292897B2 (en) Bearing parts with excellent fatigue characteristics in a foreign environment and manufacturing method thereof
JP4631618B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP6939670B2 (en) Steel parts with excellent rolling fatigue characteristics
JP2007231345A (en) Steel component for bearing and its manufacturing method
JP2017133052A (en) Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor
JP6601358B2 (en) Carburized parts and manufacturing method thereof
JP2008088484A (en) Steel component for bearing having excellent fatigue property, and its production method
JP2008174810A (en) Inner ring and outer ring of bearing, having excellent rolling fatigue characteristic, and bearing
JP4487748B2 (en) Manufacturing method of bearing parts
JP7464822B2 (en) Steel for bearing raceways and bearing raceways
JP6488945B2 (en) Case-hardened steel for high-strength cold forging
JP6265048B2 (en) Case-hardened steel
JP7422527B2 (en) Rolling parts and their manufacturing method
JP6447064B2 (en) Steel parts
JP2008088482A (en) Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing
JP2007204803A (en) Steel parts for bearing, and manufacturing method therefor
JP2010043331A (en) Method for manufacturing seamless steel pipe for high-strength carburized part
JP2021028414A (en) Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP6881496B2 (en) Parts and their manufacturing methods

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201