JP2007204803A - Steel parts for bearing, and manufacturing method therefor - Google Patents

Steel parts for bearing, and manufacturing method therefor Download PDF

Info

Publication number
JP2007204803A
JP2007204803A JP2006023751A JP2006023751A JP2007204803A JP 2007204803 A JP2007204803 A JP 2007204803A JP 2006023751 A JP2006023751 A JP 2006023751A JP 2006023751 A JP2006023751 A JP 2006023751A JP 2007204803 A JP2007204803 A JP 2007204803A
Authority
JP
Japan
Prior art keywords
mass
less
steel
quenching
bearings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006023751A
Other languages
Japanese (ja)
Inventor
Yasumasa Hirai
康正 平井
Kunikazu Tomita
邦和 冨田
Takaaki Toyooka
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006023751A priority Critical patent/JP2007204803A/en
Publication of JP2007204803A publication Critical patent/JP2007204803A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel parts for a bearing, which are subjected to quenching treatment suitable for inner rings, outer rings and balls of the bearing and the like, and have improved fatigue characteristics. <P>SOLUTION: A base steel material for the steel parts has a composition comprising 0.6-1.5 mass% C, 0.1-1.0 mass% Si, 0.1-1.5 mass% Mn, 0.1 mass% or less Al, 0.05-2.0 mass% Cr, and the balance Fe with unavoidable impurities. The manufacturing method comprises the steps of: spheroidizing carbides in the base steel material; then working it at a working rate of 20% or more; and subsequently quenching it so that the former austenite grains in the quenched surface layer shall have a diameter of 3.5 μm or smaller. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ベアリング内外輪、ベアリングボールなど焼入れ処理が施されている軸受用部品およびその製造方法に関し、特に、焼入れ表層部の旧オーステナイト粒径を微細化して疲労特性を向上させた軸受用鋼部品に関する。   TECHNICAL FIELD The present invention relates to a bearing component such as a bearing inner and outer ring, a bearing ball, and the like, and a manufacturing method thereof, and more particularly, a bearing steel in which fatigue properties are improved by refining a prior austenite grain size of a quenched surface layer portion. Regarding parts.

自動車、機械などに利用されているベアリングなどの軸受用鋼部品は、優れた転動疲労特性が要求される。軸受用鋼部品は、疲労特性が要求される部位に、焼入れ・焼戻しが施されて使用される。
転動疲労寿命を向上させる方法としては、例えば、特許文献1には、S53Cレベルの亜共析鋼(フェライト、パーライト組織)に2回以上のオーステナイト単相域への高周波熱処理を行い、旧オーステナイト粒径を微細化し、疲労寿命を向上させる方法が記載されており、その到達旧オーステナイト粒径は最小粒径のものでも6.2μmで、転動疲労寿命は従来材に比較して1.2〜1.5倍程度である。
一方、過共析鋼については特許文献1には記載がないが、一般的に、過共析鋼の場合は通常焼入れ材でも旧オーステナイト粒径は6〜10μm程度である。従って、更なる最適熱処理化による旧オーステナイト粒径の微細化処理を行わなければ転動疲労寿命の向上は期待できないとされる。
特開2002−256336号公報
Steel components for bearings such as bearings used in automobiles and machines are required to have excellent rolling fatigue characteristics. Steel parts for bearings are used after being quenched and tempered at sites where fatigue characteristics are required.
As a method for improving the rolling fatigue life, for example, Patent Document 1 discloses that an S53C level hypoeutectoid steel (ferrite, pearlite structure) is subjected to high-frequency heat treatment to an austenite single-phase region at least twice to obtain a prior austenite. A method to refine the grain size and improve the fatigue life is described. The achieved prior austenite grain size is 6.2 μm even with the smallest grain size, and the rolling fatigue life is 1.2 to 1.5 times that of conventional materials. Degree.
On the other hand, although hypereutectoid steel is not described in Patent Document 1, generally, in the case of hypereutectoid steel, the prior austenite grain size is about 6 to 10 μm even with a normal quenching material. Therefore, it is said that the rolling fatigue life cannot be improved unless the prior austenite grain size is refined by further optimum heat treatment.
JP 2002-256336 A

本発明は、上記の現状に鑑み開発されたもので、従来よりも転動疲労寿命を向上させた軸受用鋼部品およびその製造方法を提供することを目的とする。   The present invention has been developed in view of the above-described present situation, and an object of the present invention is to provide a steel part for a bearing that has an improved rolling fatigue life and a manufacturing method thereof.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、球状化焼鈍後に素材に加工率が20%以上の加工を施した後、焼入れを行った材料においては、この加工を施さない場合あるいは施しても加工率が20%未満である材料よりも、転動疲労寿命が向上するという知見を得た。そして、上記の加工率20%以上の加工による転動疲労寿命の向上効果は、焼入れ部の旧オーステナイト粒径が平均粒径3.5μm以下である場合に特に顕著に発現するという知見を得た。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have performed this processing in a material that has been subjected to processing with a processing rate of 20% or more after spheroidizing annealing and then quenched. It has been found that the rolling fatigue life is improved as compared with a material having a processing rate of less than 20% when not applied or when applied. And the improvement effect of the rolling fatigue life by the above-mentioned working rate of 20% or more was found to be particularly prominent when the prior austenite grain size of the quenched portion is 3.5 μm or less.

本発明は、得られた知見に更に検討を加えて完成されたものであり、その要旨構成は以下のとおりである。
(i) C:0.6〜1.5mass%、
Si:0.1〜1.0mass%、
Mn:0.1〜1.5mass%、
Al:0.1mass%以下および
Cr:0.05〜2.0mass%
を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材が用いられた軸受用鋼部品であって、該鋼素材に対し炭化物の球状化処理を行った後、加工率が20%以上の加工を施し、次いで焼入れ処理を施して得られ、該焼入れ後の焼入れ表層部の旧オーステナイト粒径が3.5μm以下である軸受用鋼部品。
The present invention has been completed by further studying the obtained knowledge, and the gist of the present invention is as follows.
(I) C: 0.6 to 1.5 mass%,
Si: 0.1-1.0mass%,
Mn: 0.1-1.5mass%,
Al: 0.1 mass% or less and
Cr: 0.05-2.0mass%
A steel part for bearings using a steel material having a composition comprising the balance Fe and unavoidable impurities, and after subjecting the steel material to a spheroidizing treatment of carbide, the processing rate is 20% or more A steel part for bearings obtained by processing and then quenching, wherein the prior austenite grain size of the quenched surface layer after quenching is 3.5 μm or less.

(ii) 前記組成は、さらに
S:0.03mass%以下、
Cu:1.0mass%以下、
Ni:1.0mass%以下、
Mo:1.0mass%以下、
W:1.0mass%以下、
Ti:0.01mass%以下、
Nb:0.5mass%以下、
B:0.01mass%以下、
Sb:0.0050mass%以下および
N:0.01mass%以下
のうちから選ばれる1種または2種以上を含有する(i)に記載の軸受用鋼部品。
(Ii) the composition further comprises
S: 0.03 mass% or less,
Cu: 1.0 mass% or less,
Ni: 1.0 mass% or less,
Mo: 1.0mass% or less,
W: 1.0 mass% or less,
Ti: 0.01 mass% or less,
Nb: 0.5 mass% or less,
B: 0.01 mass% or less,
Sb: 0.0050 mass% or less and
N: Steel component for bearing as described in (i) containing 1 type or 2 types or more chosen from 0.01 mass% or less.

(iii)前記焼入れ表層部の硬さがHv700以上である(i)または(ii)に記載の軸受用鋼部品。 (Iii) The steel part for bearing according to (i) or (ii), wherein the hardness of the quenched surface layer part is Hv 700 or more.

(iv) C:0.6〜1.5mass%、
Si:0.1〜1.0mass%、
Mn:0.1〜1.5mass%、
Al:0.1mass%以下および
Cr:0.05〜2.0mass%
を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材に対し炭化物の球状化処理を行った後、加工率が20%以上の加工を施し、次いで、Ac3点−10℃〜Ac3点の温度間での平均加熱速度を0.5℃/s以上とし、Ac3点以上Ac3点+130℃以下の温度で、Ac3点以上の保持時間が500秒以下である加熱を施して焼入れ処理を行う軸受用鋼部品の製造方法。
(Iv) C: 0.6 to 1.5 mass%,
Si: 0.1-1.0mass%,
Mn: 0.1-1.5mass%,
Al: 0.1 mass% or less and
Cr: 0.05-2.0mass%
, Spheroidizing carbide to the steel material having the balance Fe and unavoidable impurities, and then processing with a processing rate of 20% or more, then, Ac3 point -10 ° C ~ Ac3 point For bearings where the average heating rate between temperatures is 0.5 ° C / s or higher, and the quenching process is performed at a temperature of Ac3 point or higher and Ac3 point + 130 ° C or lower and holding time of Ac3 point or higher is 500 seconds or shorter. Manufacturing method of steel parts.

(v)前記組成は、さらに
S:0.03mass%以下、
Cu:1.0mass%以下、
Ni:1.0mass%以下、
Mo:1.0mass%以下、
W:1.0mass%以下、
Ti:0.01mass%以下、
Nb:0.5mass%以下、
B:0.01mass%以下、
Sb:0.0050mass%以下および
N:0.01mass%以下
のうちから選ばれる1種または2種以上を含有する(iv)に記載の軸受用鋼部品の製造方法。
(V) the composition further comprises
S: 0.03 mass% or less,
Cu: 1.0 mass% or less,
Ni: 1.0 mass% or less,
Mo: 1.0mass% or less,
W: 1.0 mass% or less,
Ti: 0.01 mass% or less,
Nb: 0.5 mass% or less,
B: 0.01 mass% or less,
Sb: 0.0050 mass% or less and
N: The manufacturing method of the steel part for bearings as described in (iv) containing 1 type, or 2 or more types chosen from 0.01 mass% or less.

本発明によれば、転動疲労寿命に優れた軸受用鋼部品が容易に得られ、工業的に非常に有用である。   ADVANTAGE OF THE INVENTION According to this invention, the steel component for bearings excellent in rolling fatigue life can be obtained easily, and it is very useful industrially.

以下、本発明を具体的に説明する。
本発明の軸受用鋼部品は、鋼素材、好ましくは棒鋼あるいは線材を、成形工程(鍛造・切削など)を経てベアリング内外輪、軸受ボール、軸受ころおよびニードルなどの軸受用鋼部品の形状に加工した後、焼入れを施して製造される。本発明の軸受用鋼部品を得るためには、鋼素材の組成、素材組織、焼入れ前の加工率、焼入れ条件、焼入れ後の組織の適正化が必要である。
The present invention will be specifically described below.
The steel parts for bearings of the present invention are processed into the shape of steel parts for bearings, such as inner and outer rings of bearings, bearing balls, bearing rollers and needles, through a forming process (forging, cutting, etc.), from steel materials, preferably steel bars or wires. After that, it is manufactured by quenching. In order to obtain the steel part for bearing of the present invention, it is necessary to optimize the composition of the steel material, the material structure, the processing rate before quenching, the quenching conditions, and the structure after quenching.

[鋼組成]
鋼素材の成分組成について説明する。
[Steel composition]
The component composition of the steel material will be described.

C:0.6〜1.5mass%
Cは、焼入れ部において部品の疲労寿命を得るために必要となる硬度確保のために必要な元素であり、0.6mass%未満では焼入れ部で十分な硬度および疲労強度が得られない。一方、1.5mass%を超えて含有されると、焼入れ前の加工性(剪断性、鍛造性)を劣化させる。よって、Cの含有量は0.6〜1.5mass%の範囲とする。
C: 0.6-1.5mass%
C is an element necessary for securing the hardness necessary for obtaining the fatigue life of the part in the quenched portion. If it is less than 0.6 mass%, sufficient hardness and fatigue strength cannot be obtained in the quenched portion. On the other hand, when the content exceeds 1.5 mass%, the workability before quenching (shearability, forgeability) is deteriorated. Therefore, the C content is in the range of 0.6 to 1.5 mass%.

Si:0.1〜1.0mass%
Siは、転動疲労寿命を向上させる元素であるため、0.1mass%以上含有される必要がある。しかし、1.0mass%を超えて含有されると、Cと同様、焼入れ前の加工性(剪断性、鍛造性)を劣化させる。よって、Siの含有量は0.1〜1.0mass%とする。
Si: 0.1-1.0mass%
Since Si is an element that improves the rolling fatigue life, it is necessary to contain 0.1 mass% or more. However, when it contains exceeding 1.0 mass%, like C, the workability before quenching (shearability, forgeability) is deteriorated. Therefore, the Si content is 0.1 to 1.0 mass%.

Mn:0.1〜1.5mass%
Mnは、焼入れ性を向上させる元素であるため、0.1mass%以上で含有される必要がある。しかし、過剰に含有されると焼入れ前の加工性(剪断性、鍛造性)を劣化させる。このため、その含有量の上限は1.5mass%とする。
Mn: 0.1-1.5mass%
Since Mn is an element that improves hardenability, it must be contained at 0.1 mass% or more. However, when it contains excessively, the workability (shearability, forgeability) before hardening will deteriorate. For this reason, the upper limit of the content is set to 1.5 mass%.

Cr:0.05〜2.0mass%
Crは焼入性向上および炭化物球状化促進による焼入れ前の硬度低下、加工性向上の効果があるため0.05mass%以上含有されているものとする。しかし、2.0mass%を超えて添加しても効果が飽和してしまうため0.05〜2.0mass%の範囲とする。
Cr: 0.05-2.0mass%
Cr is contained in an amount of 0.05 mass% or more because it has the effect of improving the hardenability and reducing the hardness before quenching by promoting the spheroidization of carbide and improving the workability. However, even if added in excess of 2.0 mass%, the effect is saturated, so the range is 0.05 to 2.0 mass%.

Al:0.1mass%以下
Alは、強力な脱酸作用を持ち、鋼を清浄化する効果を有する元素であるため含有されていることが好ましい。しかし、0.10mass%を超えて添加した場合には、鋼の清浄化作用がむしろ低下し、疲労寿命が低下することから、その含有量は0.1mass%以下とする。更に好ましくは、0.005〜0.1mass%である。
以上が本発明の基本成分組成であるが、以下に示す元素がさらに含有されていてもよい。
Al: 0.1 mass% or less
Al is preferably contained because it is an element having a strong deoxidizing action and an effect of cleaning steel. However, when it is added in excess of 0.10 mass%, the cleaning effect of the steel is rather lowered and the fatigue life is lowered, so the content is made 0.1 mass% or less. More preferably, it is 0.005-0.1 mass%.
The above is the basic component composition of the present invention, but the following elements may further be contained.

S:0.03mass%以下
Sは後述するとおり、不可避的不純物としても鋼中に存在するが、SはMnと結合してMnSを形成し、鋼の被削性を向上させる作用を有するので0.03mass%を上限として積極的に添加してもよい。しかし、0.03mass%を超えて添加するとMnSが割れの起点となり疲労寿命を著しく低下させるため、添加する場合はその含有量の上限を0.03mass%とする。
S: 0.03 mass% or less
As described later, S is also present in steel as an unavoidable impurity, but S combines with Mn to form MnS and has the effect of improving the machinability of steel, so it is positive with 0.03 mass% as the upper limit. You may add to. However, if added over 0.03 mass%, MnS becomes the starting point of cracking and significantly reduces the fatigue life. Therefore, when added, the upper limit of the content is set to 0.03 mass%.

Cu:1.0mass%以下
Cuは焼入れ性向上により焼入れ部の硬度を上昇させる効果があるため添加してもよい。この効果を得るために添加する場合にはその上限を1.0mass%とする。
Cu: 1.0 mass% or less
Cu may be added because it has the effect of increasing the hardness of the quenched portion by improving the hardenability. When adding in order to acquire this effect, the upper limit shall be 1.0 mass%.

Ni:1.0mass%以下
Niは鋼の焼入れ性増大し、また焼入れ部の靭性を向上させる作用を有する。そのため1.0mass%を上限として添加してもよい。特に、Cu添加時には熱間脆性を抑制するためにNiをCu添加量の1/2添加することが特に好ましい。
Ni: 1.0 mass% or less
Ni has the effect of increasing the hardenability of the steel and improving the toughness of the hardened part. Therefore, you may add 1.0 mass% as an upper limit. In particular, when Cu is added, in order to suppress hot brittleness, it is particularly preferable to add Ni to the amount of Cu added.

Mo:1.0mass%以下
Moは焼入れ性を向上させる作用や、焼戻し軟化抵抗を向上させる作用を有するため添加してもよいが、1.0mass%を超えて含有させると加工性が悪くなるため、添加する場合はその含有量は1.0mass%以下とする。
Mo: 1.0 mass% or less
Mo may be added because it has an effect of improving hardenability and an effect of improving temper softening resistance. However, if it exceeds 1.0 mass%, workability deteriorates. Is 1.0 mass% or less.

W:1.0mass%以下
Wは焼入れ性を向上させる作用を有するため添加してもよいが、1.0mass%を超えて含有させると加工性が悪くなるため、添加する場合はその含有量を1.0mass%以下とする。
W: 1.0mass% or less
W may be added because it has an effect of improving hardenability. However, if it is added in an amount exceeding 1.0 mass%, the workability deteriorates. Therefore, when W is added, the content is made 1.0 mass% or less.

Nb:0.5mass%以下
Nbは窒化物形成によるオーステナイト粒成長抑制作用があるため添加してもよいが、0.01mass%を超えると、疲労特性が劣化するため、添加する場合は0.01mass%以下とする。
Nb: 0.5 mass% or less
Nb may be added because it has an austenite grain growth-inhibiting action due to nitride formation. However, if it exceeds 0.01 mass%, the fatigue characteristics deteriorate. Therefore, when Nb is added, the Nb content should be 0.01 mass% or less.

B:0.01mass%以下
Bは焼入れ性を向上させる作用を有するため添加してもよいが、0.01mass%を超えて添加してもその効果は飽和するので、添加する場合は0.01mass%を上限とする。
B: 0.01 mass% or less
B may be added because it has the effect of improving hardenability, but the effect is saturated even if added over 0.01 mass%, so when added, the upper limit is 0.01 mass%.

Sb:0.0050mass%以下
Sbはミクロ組織変化を遅延させる作用を有し、転動疲労特性の劣化を防止する作用を有するので、添加してもよい。しかし、その含有量が0.0050mass%を超えると、靭性が劣化するので、添加する場合は、0.0050mass%以下とする。
Sb: 0.0050 mass% or less
Sb has the effect of delaying the microstructure change and has the effect of preventing the deterioration of rolling fatigue characteristics, so it may be added. However, if the content exceeds 0.0050 mass%, the toughness deteriorates, so when added, the content is made 0.0050 mass% or less.

N:0.01mass%以下
Nは後述するとおり、不可避的不純物としても鋼中に存在するが、窒化物(もしくは炭窒化物)を形成し、γ粒微細化に対して有用ので、0.01mass%を上限として積極的に添加してもよい。0.01mass%超の過剰添加は鋼の加工性を劣化させるため、添加する場合は0.01mass%を上限とする。
N: 0.01 mass% or less
N is present in steel as an inevitable impurity, as will be described later, but it forms nitrides (or carbonitrides) and is useful for refining γ grains, so it is actively added up to 0.01 mass%. May be. Since excessive addition exceeding 0.01 mass% deteriorates the workability of steel, when adding, 0.01 mass% is made an upper limit.

以上説明した元素以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、P、Oがあり、上述したS、Nは積極的に添加しない場合であっても不可避的不純物として混入する。Pは0.05mass%まで、Oは0.0150mass%までは許容できる。また、Sは積極添加しない場合であっても0.01mass%を上限として、Nは積極添加しない場合であっても0.0080%を上限として含有される。   The balance other than the elements described above is Fe and inevitable impurities. Inevitable impurities include P and O, and the above-described S and N are mixed as inevitable impurities even when not actively added. P is acceptable up to 0.05 mass%, and O is acceptable up to 0.0150 mass%. Further, even if S is not actively added, 0.01 mass% is the upper limit, and N is contained up to 0.0080% even if not actively added.

[焼入れ前の加工率]
焼入れ前の加工率は本発明の根幹をなすところであり、上述したとおり、加工率20%以上の加工を行うことが重要である。加工は、複数回に分けて実施しても良く、合計の加工率で20%以上となればよい。
[Processing rate before quenching]
The processing rate before quenching forms the basis of the present invention, and as described above, it is important to perform processing with a processing rate of 20% or more. Processing may be performed in multiple steps, and the total processing rate may be 20% or more.

ここで言う加工率とは、棒・線材の場合断面積の減面率を意味し、また板の場合は圧下率を意味する。さらに、鋳造などの複雑な形状のものではビッカース硬度が素材より50ポイント以上向上した場合、加工率20%以上とみなす。   The processing rate mentioned here means a reduction in area of the cross-sectional area in the case of a rod / wire, and means a reduction rate in the case of a plate. Furthermore, in the case of complicated shapes such as casting, if the Vickers hardness is improved by 50 points or more than the material, the processing rate is considered 20% or more.

図1に、表層焼入れ部の平均旧オーステナイト粒径を3.3μmと6.1μmの2水準とした鋼について、焼入れ前の加工時の減面率と寿命比(各減面率におけるB10寿命/減面率0%におけるB10寿命)との関係を示す。ここで、鋼素材は1.0mass%C―0.2mass%Si―0.35mass%Mn−1.5mass%Cr鋼を用いた。そして、球状化処理後に0〜58%の範囲の種々の加工率(減面率)で引抜き加工を行い、減面率の影響を調査した。加工時の減面率による寿命向上を明確とするために、各旧オーステナイト粒径の鋼における減面率0%のサンプルのB10寿命を基として、これに対する減面率の増加により何倍寿命が増加したかを、各減面率におけるB10寿命/減面率0%におけるB10寿命(以下寿命比と呼ぶ)で求めた。   Fig. 1 shows the reduction in area and life ratio (B10 life / reduction in each area reduction) for steel with the average prior austenite grain size of the surface hardened part at 3.3 μm and 6.1 μm in two levels. B10 life at a rate of 0%). Here, 1.0 mass% C-0.2 mass% Si-0.35 mass% Mn-1.5 mass% Cr steel was used as the steel material. Then, after the spheroidizing treatment, drawing was performed at various processing rates (area reduction rate) in the range of 0 to 58%, and the influence of the area reduction rate was investigated. In order to clarify the improvement of the life due to the reduction in area during processing, the lifespan is increased by increasing the reduction in area based on the B10 life of the 0% area reduction sample in each old austenite grain size steel. The increase was determined by B10 life at each area reduction ratio / B10 life at 0% area reduction ratio (hereinafter referred to as life ratio).

図1に示すように、寿命比は平均旧オーステナイト粒径6.1μmのサンプルにおいては10%程度の減面率で1.3倍まで向上した後飽和するのに対し、平均旧オーステナイト粒径3.3μmのサンプルにおいては、その寿命比は減面率20%未満では、減面率を増加させるほど向上する傾向にあり、減面率20%で寿命比2.3倍程度に達し、飽和する。   As shown in Figure 1, the life ratio of the sample with an average prior austenite grain size of 6.1μm is saturated after improving to 1.3 times with a reduction in area of about 10%, whereas the sample with an average prior austenite grain size of 3.3μm However, when the area reduction ratio is less than 20%, the life ratio tends to improve as the area reduction ratio increases, and when the area reduction ratio is 20%, the life ratio reaches about 2.3 times and becomes saturated.

[焼入れ表層部の旧オーステナイト粒径]
軸受用鋼部品では、転動疲労特性が要求される部位に通常、焼入れ・焼戻しが施されて使用される。本発明では、特に転動疲労特性が要求される表層部に焼入れ部を有し(以下焼入れ表層部と呼ぶ)、かつ、この焼入れ表層部の旧オーステナイト粒径が3.5μm以下とする。焼入れ表層部とは、焼入れが施されてマルテンサイトを有する組織となっている表層部のことを言うが、表層に限らず全厚についてマルテンサイト組織を有する組織となっていても、表層部の旧オーステナイト粒径が3.5μm以下となっていればよい。
[Old austenite grain size of hardened surface layer]
Steel parts for bearings are usually used after being quenched and tempered at sites where rolling fatigue characteristics are required. In the present invention, a hardened portion (hereinafter referred to as a hardened surface layer portion) is provided in a surface layer portion particularly requiring rolling fatigue characteristics, and the prior austenite grain size of the hardened surface layer portion is 3.5 μm or less. The hardened surface layer portion means a surface layer portion that has been subjected to quenching and has a martensite structure, but not only the surface layer but also a structure having a martensite structure for the entire thickness, The prior austenite grain size should just be 3.5 micrometers or less.

なお、平均旧オーステナイト粒径が3.5μm以下となっている表層部の厚さは、少なくとも0.2mm以上であることが好ましい。発明者等の調査によれば、前述のとおり、焼入れ前の素材に対して加工率が20%以上である加工を施した場合に転動疲労寿命が格段に向上するのは、旧オーステナイト粒径が3.5μm以下である場合であることを知見されている。このことをわかりやすくするために、図2に旧オーステナイト粒径と素材の球状化処理と焼入れ処理との間で行う加工時の減面率との関係を示した。旧オーステナイト粒径が3.5μm以下である場合には、旧オーステナイト粒径が3.5μm超である場合に比べて、寿命比が2倍以上に向上していることがわかる。   In addition, it is preferable that the thickness of the surface layer part whose average prior austenite particle size is 3.5 μm or less is at least 0.2 mm or more. According to the investigations by the inventors, as described above, the rolling fatigue life is remarkably improved when the raw material before quenching is processed with a processing rate of 20% or more. Has been found to be a case of 3.5 μm or less. In order to make this easier to understand, FIG. 2 shows the relationship between the prior austenite grain size and the reduction in area during processing performed between the spheroidizing treatment and the quenching treatment of the material. It can be seen that when the prior austenite particle size is 3.5 μm or less, the life ratio is improved by a factor of two or more compared to when the prior austenite particle size is more than 3.5 μm.

ここで、焼入れ表層部の硬さはビッカース硬さ(以下Hv)で700以上であることが好ましい。Hv700未満では、硬度不足となり軸受用鋼部品の転動疲労寿命が低下する傾向にあるためである。焼入れ表層部の硬さをHv700以上とするためには、焼戻し処理時の加熱温度を配慮する必要があるが、焼戻し処理の詳細については後述する。
以上、本発明の軸受用鋼部品の構成に関して説明したが、次に、本発明の軸受用鋼部品の製造方法について説明する。
Here, the hardness of the hardened surface layer portion is preferably 700 or more in terms of Vickers hardness (hereinafter referred to as Hv). If it is less than Hv700, the hardness is insufficient and the rolling fatigue life of the bearing steel part tends to decrease. In order to set the hardness of the hardened surface layer portion to Hv700 or higher, it is necessary to consider the heating temperature during the tempering process, but details of the tempering process will be described later.
The structure of the steel part for bearing according to the present invention has been described above. Next, the method for manufacturing the steel part for bearing according to the present invention will be described.

[焼入れ前の鋼組織]
焼入れ前の鋼の組織は球状化処理により炭化物が球状化されている必要があるが、球状炭化物以外の組織が、フェライト、ベイナイト、マルテンサイトのいずれかの単相組織あるいはこれらの2種以上の複相組織となっていてもよい。ただし、後述するように、本発明では焼入れ前に加工率20%以上の加工を行うことを考えれば、加工性の観点からフェライトと球状化炭化物の組合わせが好適である。なお、本発明において球状化炭化物とはアスペクト比が3.0以下の炭化物を指す。
[Steel structure before quenching]
The structure of the steel before quenching needs to have a carbide spheroidized by spheroidizing treatment, but the structure other than the spherical carbide is a single phase structure of ferrite, bainite, martensite or two or more of these. It may be a multiphase structure. However, as will be described later, in the present invention, a combination of ferrite and spheroidized carbide is preferable from the viewpoint of workability in consideration of processing with a processing rate of 20% or more before quenching. In the present invention, the spheroidized carbide refers to a carbide having an aspect ratio of 3.0 or less.

なお、球状化焼鈍の方法としては特に規定しないが、組成に最適な通常の熱処理パターンで行えばよい。たとえば1.0mass%−0.2Si−0.4Mn−1.5Cr鋼では780℃程度で5時間保持し徐冷すればよい。   In addition, although it does not prescribe | regulate especially as a method of spheroidizing annealing, what is necessary is just to perform by the normal heat processing pattern optimal for a composition. For example, 1.0 mass% -0.2Si-0.4Mn-1.5Cr steel may be held at about 780 ° C. for 5 hours and gradually cooled.

[焼入れ条件]
上述したとおり、本発明では、焼入れ表層部の平均旧オーステナイト粒径が3.5μm以下である必要があるが、このためには、球状化処理、加工率20%以上の加工の後に行われる少なくとも表層部の焼入れ処理時の加熱条件を、Ac3点−10℃〜Ac3点の温度間での平均加熱速度を0.5℃/s以上、加熱温度をAc3点以上Ac3点+130℃以下とし、さらに、Ac3点以上の保持時間が500秒以下とする必要がある。
[Hardening conditions]
As described above, in the present invention, the average prior austenite grain size of the quenched surface layer portion needs to be 3.5 μm or less. For this purpose, at least the surface layer that is formed after the spheroidizing treatment and the processing rate of 20% or more is performed. The heating conditions during the quenching treatment of the part were set to an average heating rate of 0.5 ° C / s or higher between temperatures from Ac3 point -10 ° C to Ac3 point, heating temperature from Ac3 point to Ac3 point + 130 ° C, and further to Ac3 The retention time above the point needs to be 500 seconds or less.

ここで、Ac3点とは、加熱時にフェライトもしくはベイナイトやマルテンサイトからオーステナイトへの逆変態が終了する温度のことを言う。加熱温度がAc3点に満たないと、オーステナイトへの逆変態が終了しないので、焼入れ後に完全なマルテンサイト組織とすることができず、転動疲労特性に必要な十分な硬度が得られない。逆に、加熱温度がAc3点+130℃超では、オーステナイトの粒成長が急速に促進するので、焼入れ後の組織の旧オーステナイト粒径が3.5μm超となってしまう。   Here, the Ac3 point means a temperature at which the reverse transformation from ferrite, bainite or martensite to austenite is completed during heating. If the heating temperature is less than the Ac3 point, the reverse transformation to austenite is not completed, so that a complete martensite structure cannot be obtained after quenching, and sufficient hardness required for rolling fatigue characteristics cannot be obtained. On the contrary, when the heating temperature is higher than Ac3 point + 130 ° C., the austenite grain growth is rapidly promoted, so that the prior austenite grain size of the structure after quenching exceeds 3.5 μm.

焼入れ処理時の加熱時の加熱速度については、Ac3点−10℃〜Ac3点の温度間での平均で0.5℃/s以上とする必要がある。この温度域で0.5℃/sより加熱速度が遅くなれば、オーステナイトへの核生成駆動力の減少などの影響で、オーステナイト粒径が微細化せず、焼入れ組織の旧オーステナイト粒径が3.5μm超となってしまう。
さらに、Ac3点以上の保持時間が500秒超となると、粒成長に十分な時間となり、焼入れ後の組織の旧オーステナイト粒径が3.5μm超となってしまう。
About the heating rate at the time of the heating at the time of a quenching process, it is necessary to set it as 0.5 degree-C / s or more on the average between the temperature of Ac3 point-10 degreeC-Ac3 point. If the heating rate is slower than 0.5 ° C / s in this temperature range, the austenite grain size will not be refined due to a decrease in nucleation driving force to austenite, and the prior austenite grain size of the quenched structure exceeds 3.5 μm. End up.
Furthermore, when the holding time of the Ac3 point or more exceeds 500 seconds, it becomes a sufficient time for grain growth, and the prior austenite grain size of the structure after quenching exceeds 3.5 μm.

なお、上記条件による焼入れ処理は、1回のみでも複数回でもよい。複数回の焼入れを行う場合には、この加熱速度条件は、最終の焼入れ処理時にのみ(N回焼入れ処理を施す場合には、N回目のみ)適用すればよい。最終の焼入れ処理に先立って行う焼入れ処理(N回焼入れ処理を施す場合には、1〜N−1回目までの焼入れ処理)では、焼入れ後の組織がベイナイトもしくはマルテンサイト組織(単相でも復相でもよい)と、残留球状炭化物とからなっていればよく、最終焼入れ工程に限定されるような熱処理は特に必要とはしない。但し、残留球状炭化物が溶解してしまうような高温で加熱を行うと、最終焼入れ時に球状炭化物によるオーステナイト粒成長抑制作用が消失してしまい、粒が粗大化するといった問題や、母相への炭素の溶け込み量が高くなり転動疲労特性が低下するといった弊害が出るため、最終焼入れ以前の焼入れ処理時においては、Acm点(球状炭化物がオーステナイトに溶け込みオーステナイト単相となる温度)以下とする必要がある。   The quenching process under the above conditions may be performed only once or multiple times. In the case of performing quenching a plurality of times, this heating rate condition may be applied only at the time of the final quenching process (only the Nth time when performing the N times quenching process). In the quenching process that is performed prior to the final quenching process (in the case of N quenching process, the first to N-1 quenching processes), the structure after quenching is a bainite or martensite structure (single-phase or rephased) As long as it is composed of residual spherical carbides, and heat treatment limited to the final quenching step is not particularly required. However, if heating is performed at such a high temperature that the residual spherical carbide dissolves, the effect of suppressing the austenite grain growth caused by the spherical carbide during the final quenching disappears, and the grains become coarse, and the carbon to the parent phase Therefore, it is necessary to make the Acm point (the temperature at which spherical carbide dissolves in austenite and becomes an austenite single phase) at the time of quenching before the final quenching. is there.

複数回焼入れ処理を行う場合に、すべての焼入れ処理について上記の焼入れ条件を適用することにより微細な旧オーステナイト粒を持つ焼入れ表層部が得られるので、複数回のすべてについて上記の焼入れ条件を適用してもかまわない。ただし、焼入れ処理の回数は、工業的な生産性や、コスト上昇の防止の観点からは2回とするのが好適である。
以上説明した条件にて焼入れ処理を施すことにより、平均旧オーステナイト粒径が3.5μm以下である焼入れ表層部が得られる。
When performing multiple quenching treatments, a quenching surface layer having fine prior austenite grains can be obtained by applying the above quenching conditions for all quenching treatments. It doesn't matter. However, the number of quenching treatments is preferably two from the viewpoint of industrial productivity and prevention of cost increase.
A quenching surface layer part having an average prior austenite grain size of 3.5 μm or less is obtained by performing the quenching treatment under the conditions described above.

[焼戻し]
本発明においては、焼入れ処理の後に焼戻し処理を行ってもよい。但し、焼戻し処理を行う場合、焼戻し温度が高すぎると、焼入れ表層部が軟化して、疲労強度が低下してしまい、焼入れ表層部の旧オーステナイト粒径を微細化した効果が減じてしまうため、焼戻しを行う場合は、200℃以下とすることが好ましい。焼戻し温度が200℃以下であれば、上述の成分組成の鋼を用いれば硬さがHv700以上である焼入れ表層部を得ることができる。
[Tempering]
In the present invention, a tempering process may be performed after the quenching process. However, when performing tempering treatment, if the tempering temperature is too high, the quenched surface layer portion is softened, the fatigue strength is reduced, and the effect of refining the prior austenite grain size of the quenched surface layer portion is reduced. When tempering is performed, the temperature is preferably 200 ° C. or lower. When the tempering temperature is 200 ° C. or less, a hardened surface layer portion having a hardness of Hv 700 or more can be obtained by using the steel having the above-described composition.

上記の条件で、焼入れ処理、焼戻し処理が施した後は、必要に応じてショットピーニングなどの表面処理、仕上げの表面研磨処理などを施して、軸受用鋼部品とする。   After the quenching and tempering treatments are performed under the above-described conditions, surface treatment such as shot peening and finishing surface polishing treatment are performed as necessary to obtain steel parts for bearings.

表1に示す各種組成の100kg鋼塊を、1250℃で15hソーキングを行った後、850℃以上で熱間鍛造し、13〜20mmΦの棒鋼とした。この棒鋼に、球状化焼鈍(SA)を行い、フェライトと表2および表3に示す平均アスペクト比の炭化物とからなる鋼組織とした後、表2、表3に示す種々の減面率にて冷間引抜きを行い13.0mmΦに仕上げた。この線材の中心部分よりラジアル型転動疲労試験片を作製するため、まず12.2mmΦ径の円柱状試験片に粗加工し、表2、表3に記載の熱処理条件で焼入れ処理を行った後、170℃あるいは250℃で焼戻しを行い、12mmΦ×22mm長さの円柱状試験片に仕上げ加工を行った。   A 100 kg steel ingot having various compositions shown in Table 1 was soaked at 1250 ° C. for 15 hours, and then hot forged at 850 ° C. or more to obtain a 13-20 mmφ bar steel. The steel bar is subjected to spheroidizing annealing (SA) to form a steel structure composed of ferrite and carbides having an average aspect ratio shown in Tables 2 and 3, and then various surface reduction rates shown in Tables 2 and 3 are used. Cold drawing was performed to 13.0mmΦ. In order to produce a radial type rolling fatigue test piece from the center of this wire, first, it was roughly processed into a cylindrical test piece having a diameter of 12.2 mmΦ, and after quenching under the heat treatment conditions shown in Tables 2 and 3, Tempering was performed at 170 ° C. or 250 ° C., and a cylindrical test piece having a length of 12 mmΦ × 22 mm was finished.

得られた試験片について、ラジアル型疲労試験機(NTN社製円筒型疲労試験機)を用いて剥離までの転動疲労寿命を調査し、転動疲労特性の評価を行った。疲労試験は、ヘルツ応力5884MPa(600kgf/mm2)、回転数46400cpmで20本のサンプルについて行い、10%破損確率寿命(以下B10寿命という)を求めた。そして、各鋼種について、上記の冷間引抜き時の減面率0、すなわち冷間引抜きを行わないで作成した試験片のB10寿命で、各試験片のB10寿命を除して求めた値を寿命比として、転疲寿命の向上の度合いを評価した。 About the obtained test piece, the rolling fatigue life to peeling was investigated using the radial type fatigue testing machine (Cylinder type fatigue testing machine made by NTN), and the rolling fatigue characteristic was evaluated. The fatigue test was performed on 20 samples at a Hertz stress of 5884 MPa (600 kgf / mm 2 ) and a rotational speed of 46400 cpm, and a 10% failure probability life (hereinafter referred to as B10 life) was obtained. For each steel type, the area reduction rate at the time of cold drawing is 0, that is, the value obtained by dividing the B10 life of each test piece by the B10 life of the test piece prepared without performing cold drawing. As a ratio, the degree of improvement in rolling fatigue life was evaluated.

また、試験片の表層部ビッカース硬さ、表層部旧オーステナイト粒径を調査するために、未試験の円柱状試験片を疲労試験の転送面と対応するで試験片円周が観察できるように切断し、樹脂に埋め込み、研磨した。この切断面(以下C断面)で表面から0.1mm内部のビッカース硬さを荷重2.94N(300gf)で90°間隔で4点測定し平均した。表層部の平均旧オーステナイト粒径は、旧オーステナイト粒界現出液(JFEスチール製、ガンマR)を用いて腐食を行い、SEMを用いてC断面表層直下を90°間隔で4視野×各2枚、5000倍で撮影した後、切断法を用いて定量化した。切断法による平均旧オーステナイト粒径の、各SEM像において縦および横方向に4分割する線分3本を引き、この線分(1視野当り108μm)が旧オーステナイト粒界と交差した数(X)を測定し、旧オーステナイト粒径(μm)=108/(0.89×X)として算出した後、8枚のSEM像から得られる値を平均することで求めた。
表2、表3に、焼入表層部のビッカース硬さ、平均旧オーステナイト粒径、疲労特性を併せて示す。
Also, in order to investigate the Vickers hardness of the surface layer of the test piece and the prior austenite grain size of the surface layer, the untested cylindrical test piece is cut so that the circumference of the test piece can be observed by corresponding to the transfer surface of the fatigue test. And embedded in resin and polished. At this cut surface (hereinafter referred to as C section), Vickers hardness within 0.1 mm from the surface was measured at a load of 2.94 N (300 gf) at 90 ° intervals and averaged. The average prior austenite grain size of the surface layer is corroded using the former austenite grain boundary appearing liquid (manufactured by JFE Steel, Gamma R), and 4 fields of view at 90 ° intervals immediately below the C cross-section surface layer using SEM 2 each Images were taken at 5,000 magnifications and then quantified using the cutting method. The number of cross-sections of the average prior austenite grain size obtained by the cutting method, which are divided into four in the vertical and horizontal directions in each SEM image, and this line segment (108 μm per field of view) intersects the prior austenite grain boundaries (X) Was calculated as old austenite particle size (μm) = 108 / (0.89 × X), and then obtained by averaging the values obtained from the 8 SEM images.
Tables 2 and 3 also show the Vickers hardness, average prior austenite grain size, and fatigue characteristics of the quenched surface layer portion.

Figure 2007204803
Figure 2007204803

Figure 2007204803
Figure 2007204803

Figure 2007204803
Figure 2007204803

表2、表3からわかるように、焼入れ表層部の平均旧オーステナイト粒径が3.5μm以下である場合において、焼入れ前の引抜き加工における減面率が20%以上とすることで、疲労寿命が向上していることがわかる。一方、焼入れ処理時に、Ac3点−10℃〜Ac3点の間の平均加熱速度を0.5℃/s未満としたり、あるいは、平均旧オーステナイト粒径が3.5μm超となった鋼においては、焼入れ前の引抜き加工における減面率を20%以上とすることにより疲労寿命の向上が認められるものの、その向上の度合いは小さい。   As can be seen from Tables 2 and 3, when the average prior austenite grain size of the quenching surface layer is 3.5 μm or less, the fatigue life is improved by making the area reduction rate in the drawing process before quenching 20% or more. You can see that On the other hand, during the quenching process, the average heating rate between Ac3 point -10 ° C and Ac3 point is less than 0.5 ° C / s, or in the steel whose average prior austenite grain size exceeds 3.5 µm, Although the fatigue life can be improved by reducing the area reduction ratio in the drawing process to 20% or more, the degree of improvement is small.

焼入れ前の加工時の減面率が転動疲労寿命に及ぼす影響を示すグラフである。It is a graph which shows the influence which the area reduction rate at the time of the process before hardening has on a rolling fatigue life. 焼入れ表層部の平均旧オーステナイト粒径が転動疲労寿命に及ぼす影響を示すグラフである。It is a graph which shows the influence which the average prior austenite particle size of a hardening surface layer part has on a rolling fatigue life.

Claims (5)

C:0.6〜1.5mass%、
Si:0.1〜1.0mass%、
Mn:0.1〜1.5mass%、
Al:0.1mass%以下および
Cr:0.05〜2.0mass%
を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材が用いられた軸受用鋼部品であって、該鋼素材に対し炭化物の球状化処理を行った後、加工率が20%以上の加工を施し、次いで焼入れ処理を施して得られ、該焼入れ後の焼入れ表層部の旧オーステナイト粒径が3.5μm以下である軸受用鋼部品。
C: 0.6-1.5 mass%,
Si: 0.1-1.0mass%,
Mn: 0.1-1.5mass%,
Al: 0.1 mass% or less and
Cr: 0.05-2.0mass%
A steel part for bearings using a steel material having a composition comprising the balance Fe and unavoidable impurities, and after subjecting the steel material to a spheroidizing treatment of carbide, the processing rate is 20% or more A steel part for bearings obtained by processing and then quenching, wherein the prior austenite grain size of the quenched surface layer after quenching is 3.5 μm or less.
前記組成は、さらに
S:0.03mass%以下、
Cu:1.0mass%以下、
Ni:1.0mass%以下、
Mo:1.0mass%以下、
W:1.0mass%以下、
Ti:0.01mass%以下、
Nb:0.5mass%以下、
B:0.01mass%以下、
Sb:0.0050mass%以下および
N:0.01mass%以下
のうちから選ばれる1種または2種以上を含有する請求項1に記載の軸受用鋼部品。
The composition further comprises
S: 0.03 mass% or less,
Cu: 1.0 mass% or less,
Ni: 1.0 mass% or less,
Mo: 1.0mass% or less,
W: 1.0 mass% or less,
Ti: 0.01 mass% or less,
Nb: 0.5 mass% or less,
B: 0.01 mass% or less,
Sb: 0.0050 mass% or less and
N: The steel part for bearings of Claim 1 containing 1 type, or 2 or more types chosen from 0.01 mass% or less.
前記焼入れ表層部の硬さがHv700以上である請求項1または2に記載の軸受用鋼部品。   The steel part for bearings according to claim 1 or 2 whose hardness of said hardened surface layer part is Hv700 or more. C:0.6〜1.5mass%、
Si:0.1〜1.0mass%、
Mn:0.1〜1.5mass%、
Al:0.1mass%以下および
Cr:0.05〜2.0mass%
を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材に対し炭化物の球状化処理を行った後、加工率が20%以上の加工を施し、次いで、Ac3点−10℃〜Ac3点の温度間での平均加熱速度を0.5℃/s以上とし、Ac3点以上Ac3点+130℃以下の温度で、Ac3点以上の保持時間が500秒以下である加熱を施して焼入れ処理を行う軸受用鋼部品の製造方法。
C: 0.6-1.5 mass%,
Si: 0.1-1.0mass%,
Mn: 0.1-1.5mass%,
Al: 0.1 mass% or less and
Cr: 0.05-2.0mass%
, Spheroidizing carbide to the steel material having the balance Fe and unavoidable impurities, and then processing with a processing rate of 20% or more, then, Ac3 point -10 ° C ~ Ac3 point For bearings where the average heating rate between temperatures is 0.5 ° C / s or higher, and the quenching process is performed at a temperature of Ac3 point or higher and Ac3 point + 130 ° C or lower and holding time of Ac3 point or higher is 500 seconds or shorter. Manufacturing method of steel parts.
前記組成は、さらに
S:0.03mass%以下、
Cu:1.0mass%以下、
Ni:1.0mass%以下、
Mo:1.0mass%以下、
W:1.0mass%以下、
Ti:0.01mass%以下、
Nb:0.5mass%以下、
B:0.01mass%以下、
Sb:0.0050mass%以下および
N:0.01mass%以下
のうちから選ばれる1種または2種以上を含有する請求項4に記載の軸受用鋼部品の製造方法。

The composition further comprises
S: 0.03 mass% or less,
Cu: 1.0 mass% or less,
Ni: 1.0 mass% or less,
Mo: 1.0mass% or less,
W: 1.0 mass% or less,
Ti: 0.01 mass% or less,
Nb: 0.5 mass% or less,
B: 0.01 mass% or less,
Sb: 0.0050 mass% or less and
N: The manufacturing method of the steel component for bearings of Claim 4 containing 1 type, or 2 or more types chosen from 0.01 mass% or less.

JP2006023751A 2006-01-31 2006-01-31 Steel parts for bearing, and manufacturing method therefor Withdrawn JP2007204803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006023751A JP2007204803A (en) 2006-01-31 2006-01-31 Steel parts for bearing, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006023751A JP2007204803A (en) 2006-01-31 2006-01-31 Steel parts for bearing, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007204803A true JP2007204803A (en) 2007-08-16

Family

ID=38484522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006023751A Withdrawn JP2007204803A (en) 2006-01-31 2006-01-31 Steel parts for bearing, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007204803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007234A (en) * 2009-06-24 2011-01-13 Nsk Ltd Rolling bearing
JP2012220015A (en) * 2011-04-14 2012-11-12 Nsk Ltd Rolling guide device
JP2016199786A (en) * 2015-04-09 2016-12-01 株式会社神戸製鋼所 High strength steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007234A (en) * 2009-06-24 2011-01-13 Nsk Ltd Rolling bearing
JP2012220015A (en) * 2011-04-14 2012-11-12 Nsk Ltd Rolling guide device
JP2016199786A (en) * 2015-04-09 2016-12-01 株式会社神戸製鋼所 High strength steel

Similar Documents

Publication Publication Date Title
CN100439540C (en) Steel material with excellent rolling fatigue life and method of producing the same
JP5257082B2 (en) Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability
JP6610808B2 (en) Soft nitriding steel and parts
JP5824063B2 (en) Manufacturing method of steel parts
JP2015096657A (en) Case hardened steel and carburized material
JP5299118B2 (en) Vacuum carburizing steel and vacuum carburized parts
JP2008088478A (en) Steel component for bearing having excellent fatigue property
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP5292897B2 (en) Bearing parts with excellent fatigue characteristics in a foreign environment and manufacturing method thereof
JP2007231345A (en) Steel component for bearing and its manufacturing method
JP4631618B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP6055397B2 (en) Bearing parts having excellent wear resistance and manufacturing method thereof
JP6939670B2 (en) Steel parts with excellent rolling fatigue characteristics
JP2010222634A (en) Case hardening steel superior in properties of reducing size of maximum crystal grain and manufacturing method therefor
JP4631617B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP2008174810A (en) Inner ring and outer ring of bearing, having excellent rolling fatigue characteristic, and bearing
JP2008088484A (en) Steel component for bearing having excellent fatigue property, and its production method
JP6431456B2 (en) Soft nitriding steel and parts, and methods for producing them
JP4487748B2 (en) Manufacturing method of bearing parts
JP5332410B2 (en) Manufacturing method of carburizing steel
JP2007204803A (en) Steel parts for bearing, and manufacturing method therefor
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP2011208262A (en) Method for producing case hardening steel having high fatigue strength
JP5151662B2 (en) Method of manufacturing steel for soft nitriding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407