JP6569145B2 - Heat treated oil composition - Google Patents

Heat treated oil composition Download PDF

Info

Publication number
JP6569145B2
JP6569145B2 JP2015030026A JP2015030026A JP6569145B2 JP 6569145 B2 JP6569145 B2 JP 6569145B2 JP 2015030026 A JP2015030026 A JP 2015030026A JP 2015030026 A JP2015030026 A JP 2015030026A JP 6569145 B2 JP6569145 B2 JP 6569145B2
Authority
JP
Japan
Prior art keywords
heat
petroleum resin
oil composition
seconds
treated oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015030026A
Other languages
Japanese (ja)
Other versions
JP2016151054A (en
Inventor
秀章 服部
秀章 服部
克実 市谷
克実 市谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2015030026A priority Critical patent/JP6569145B2/en
Priority to US15/550,973 priority patent/US20180023021A1/en
Priority to PCT/JP2016/052632 priority patent/WO2016132860A1/en
Priority to CN201680010378.7A priority patent/CN107250389A/en
Priority to TW105103121A priority patent/TWI681051B/en
Publication of JP2016151054A publication Critical patent/JP2016151054A/en
Application granted granted Critical
Publication of JP6569145B2 publication Critical patent/JP6569145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/005Macromolecular compounds, e.g. macromolecular compounds composed of alternatively specified monomers not covered by the same main group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/02Natural products
    • C10M159/04Petroleum fractions, e.g. tars, solvents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/003Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/242Hot working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/02Reduction, e.g. hydrogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Lubricants (AREA)

Description

本発明は、熱処理油組成物に関する。   The present invention relates to a heat-treated oil composition.

鋼材などの金属材料においては、その性質の改善を目的として、焼入れ、焼戻し、焼なまし、焼ならしなどの熱処理が施される。これらの熱処理の中で、焼入れは、加熱された金属材料を冷却剤中に浸漬して所定の焼入れ組織に変態させる処理であり、この焼入れによって、処理物は非常に硬くなる。例えばオーステナイト状態にある加熱された鋼材を冷却剤中に浸漬し、上部臨界速度以上で冷却すると、マルテンサイトなどの焼入れ組織に変態させることができる。   Metal materials such as steel are subjected to heat treatment such as quenching, tempering, annealing, and normalization for the purpose of improving their properties. Among these heat treatments, quenching is a treatment in which a heated metal material is immersed in a coolant and transformed into a predetermined quenching structure, and the treated product becomes very hard by this quenching. For example, when a heated steel material in an austenite state is immersed in a coolant and cooled at an upper critical speed or higher, it can be transformed into a quenched structure such as martensite.

冷却剤としては、一般に油系、水系の熱処理剤が用いられる。油系の熱処理剤(熱処理油)を用いた金属材料の焼入れについて説明すると、加熱された金属材料を冷却剤である熱処理油に投入した場合、通常は3つの段階を経て冷却される。具体的には、(1)金属材料が熱処理油の蒸気膜で覆われる第1段階(蒸気膜段階)、(2)蒸気膜が破れて沸騰が起こる第2段階(沸騰段階)、(3)金属材料の温度が熱処理油の沸点以下となり、対流により熱が奪われる第3段階(対流段階)である。そして、各段階では金属材料の周囲の雰囲気が異なることを原因として冷却速度は異なっており、第2段階(沸騰段階)の冷却速度が最も速くなっている。   As the coolant, oil-based or water-based heat treatment agents are generally used. The quenching of the metal material using the oil-based heat treatment agent (heat treatment oil) will be described. When the heated metal material is put into the heat treatment oil as a coolant, it is usually cooled through three stages. Specifically, (1) a first stage (vapor film stage) in which the metal material is covered with a vapor film of heat-treated oil, (2) a second stage (boiling stage) in which the vapor film is broken and boiling occurs, (3) This is a third stage (convection stage) in which the temperature of the metal material is equal to or lower than the boiling point of the heat-treated oil and heat is taken away by convection. In each stage, the cooling rate is different because the atmosphere around the metal material is different, and the cooling rate in the second stage (boiling stage) is the fastest.

一般に、熱処理油においては、蒸気膜段階から沸騰段階に移行した際に急激に冷却速度が速くなる。金属材料が単純な平面形状ではない場合、金属材料の表面で蒸気膜段階と沸騰段階とが混在しやすくなる。そして、該混在が起こった場合には、蒸気膜段階と沸騰段階との冷却速度の差によって金属材料の表面で極めて大きな温度差が生じる。そして、この温度差によって、熱応力や変態応力が発生して金属材料に歪が生じる。
それ故、金属材料の熱処理、特に焼入れにおいては、その熱処理条件に適した熱処理油の選定が重要であり、その選定が不適切な場合には、金属材料に歪が生じるとともに、十分な焼入れ硬さが得られないことがある。
Generally, in the heat-treated oil, the cooling rate is rapidly increased when shifting from the vapor film stage to the boiling stage. When the metal material is not a simple planar shape, the vapor film stage and the boiling stage are likely to be mixed on the surface of the metal material. When the mixture occurs, a very large temperature difference is generated on the surface of the metal material due to a difference in cooling rate between the vapor film stage and the boiling stage. And this temperature difference generates thermal stress and transformation stress and causes distortion in the metal material.
Therefore, in heat treatment of metal materials, especially quenching, it is important to select heat treatment oils suitable for the heat treatment conditions. If the selection is inappropriate, the metal materials will be distorted and sufficient hardened May not be obtained.

一方、熱処理油は、JIS K2242:2012で1種から3種まで分類されており、焼入れに使用するのは1種の1号油、2号油、2種の1号油、2号油である。この中でJISK2242:2012では、冷却性能の目安として800℃から400℃までの冷却秒が規定され、1種2号では4.0秒以下、2種1号では5.0秒以下、2種2号では6.0秒以下と定められている。この冷却秒数が短いほど冷却性能が高く、金属材料が硬くなる。
一般に、焼入れ後の金属の硬さと歪とはトレードオフの関係にあり、硬いほど歪は大きくなる。
On the other hand, heat-treated oil is classified into 1 to 3 types according to JIS K2242: 2012, and 1 type 1 oil, 2 oil, 2 types 1 oil and 2 oil are used for quenching. is there. Among them, in JISK2242: 2012, a cooling time from 800 ° C. to 400 ° C. is defined as a measure of cooling performance, and for Type 1 No. 2 it is 4.0 seconds or less, for Type 2 No. 1 it is 5.0 seconds or less, 2 types In No. 2, it is set to 6.0 seconds or less. The shorter the cooling time, the higher the cooling performance and the harder the metal material.
Generally, the hardness and strain of a metal after quenching are in a trade-off relationship, and the harder the strain, the greater the strain.

また、工業的には油剤の冷却性を示す指標として、300℃秒数も用いられている。300℃秒数とは、JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線の800℃から300℃に至るまでの冷却時間である。
ユーザーは目的の硬さと歪を得るために、上記のような指標を元に焼入油を選択している。例えば、歪が問題となる自動車用の歯車部品などの焼入れには、上記2種1号油が広く用いられている。これは、上記1種油では歪が大きくなることに加え、部品によっては硬度が高すぎるためである。また、上記2種2号油では歪は小さくなるものの、硬度が不足するためである。
Industrially, 300 ° C. seconds are also used as an index indicating the cooling property of the oil. The number of seconds at 300 ° C. is a cooling time from 800 ° C. to 300 ° C. of the cooling curve obtained in accordance with the cooling performance test method of JIS K2242: 2012.
In order to obtain the desired hardness and distortion, the user selects the quenching oil based on the above-mentioned indices. For example, the above-mentioned Type 2 No. 1 oil is widely used for quenching of gear parts for automobiles in which distortion is a problem. This is because the above-mentioned type 1 oil increases the strain and, depending on the part, the hardness is too high. In addition, although the type 2 No. 2 oil has less strain, the hardness is insufficient.

ところで、自動車用変速機や減速機などの部品は、ほとんどの場合が大量生産され、1つのトレイに大量の処理物を段積みして一度に焼入れを行ういわゆる団体焼入れが行われている。その際に、段積みした部品をセットした位置により、冷却性能にばらつきが生じ、部品ごとの硬さや歪にばらつきが生じるという問題がある。例えば、下部にセットした部品の硬さが高く、上部にセットした部品の硬さが低くなる、などである。
以上の状況に鑑み、特許文献1〜6の技術が提案されている。
By the way, most parts such as automobile transmissions and reduction gears are mass-produced, and so-called group quenching is performed in which a large amount of processed products are stacked on one tray and quenched at a time. At that time, there is a problem that the cooling performance varies depending on the position where the stacked components are set, and the hardness and strain of each component vary. For example, the hardness of the part set in the lower part is high, and the hardness of the part set in the upper part is low.
In view of the above situation, techniques of Patent Documents 1 to 6 have been proposed.

特開2003−286517号公報JP 2003-286517 A 特開2002−38214号公報JP 2002-38214 A 特開2001−152243号公報JP 2001-152243 A 特開2002−327191号公報JP 2002-327191 A 特開2007−9238号公報JP 2007-9238 A 特開2013−194262号公報JP 2013-194262 A

団体焼入れ時の部品ごとの硬さや歪のばらつきを低減するために、特許文献1では、振動機や噴射装置など特殊な設備を追加することが提案されている。
しかしながら、従来の装置に上記設備を追加することはコストがかかり、また設備によっては改造が困難であった。このため、特許文献1のように設備投資をすることなく、熱処理油組成物の特性のみで硬さや歪のばらつきを低減できる技術が望まれていた。
In order to reduce variations in hardness and strain for each part during group quenching, Patent Document 1 proposes to add special equipment such as a vibrator and an injection device.
However, adding the above equipment to a conventional apparatus is costly and it is difficult to modify the equipment depending on the equipment. For this reason, the technique which can reduce the dispersion | variation in hardness and a distortion only by the characteristic of heat-processed oil composition, without investing in equipment like patent document 1 was desired.

また、蒸気膜段階が長くなると、蒸気膜段階と沸騰段階とが混在する時間も長くなり、歪が大きくなりやすい。このため、蒸気膜段階が終了する温度(特性温度)に到達するまでの秒数(特性秒数)を短くすることが好ましい。
特許文献2では、特性秒数の影響をなくすため、ガスにより特性温度以下まで冷却してから油焼入する方法が提案されている。
一方、特許文献3では、冷却むらによる処理物の温度差を解消するため、マルテンサイト変態開始温度直上で一旦焼入油から処理物を引き上げ均熱する方法が提案されている。
しかし、特許文献2及び3の手段は、いずれも単純な油焼入れよりもコストや時間がかかる。また、特許文献2及び3の手段は、歪を小さくする方法であり、団体焼入れ時の部品ごとの硬さや歪のばらつきを小さくすることはできない。
In addition, when the vapor film stage is long, the time during which the vapor film stage and the boiling stage are mixed also becomes long, and the distortion tends to increase. For this reason, it is preferable to shorten the number of seconds (characteristic seconds) until reaching the temperature at which the vapor film stage ends (characteristic temperature).
Patent Document 2 proposes a method of quenching with oil after cooling to a characteristic temperature or lower with a gas in order to eliminate the influence of characteristic seconds.
On the other hand, Patent Document 3 proposes a method of once raising the temperature of the processed material from the quenching oil immediately above the martensite transformation start temperature in order to eliminate the temperature difference of the processed material due to uneven cooling.
However, the means of Patent Documents 2 and 3 are more costly and time consuming than simple oil quenching. The means of Patent Documents 2 and 3 are methods for reducing distortion, and it is not possible to reduce variations in hardness and distortion for each part during group quenching.

特許文献4では、金属材料の焼入れにおいて、冷却むらが生じにくく、焼入れ処理物の硬さを確保するとともに、焼入れ歪を低減し得る熱処理油組成物として、40℃における動粘度が5〜60mm/sの低粘度基油50〜95重量%と、40℃における動粘度が300mm/s以上の高粘度基油50〜5重量%とからなる混合基油からなる熱処理油組成物が提案されている。
また、特許文献5では、上記2種1号油と同程度の冷却性能を持ちながら、団体焼入れ時の冷却性能のばらつきを低減する熱処理油組成物が提案されている。具体的には、5%留出温度が300℃以上400℃以下の低沸点基油5質量%以上50質量%未満と、5%留出温度が500℃以上の高沸点基油50質量%を超え95%以下とからなる混合基油を含むことを特徴とする熱処理油組成物である。
しかし、特許文献4及び5の熱処理油組成物は、蒸気膜破断剤を用いていないことから特性秒数が長く、団体焼入れ時の部品ごとの硬さや歪のばらつきを小さくすることはできない。
In Patent Document 4, in the quenching of a metal material, uneven cooling is less likely to occur, and the kneaded viscosity at 40 ° C. is 5 to 60 mm 2 as a heat-treated oil composition that can secure the hardness of the quenched product and reduce quenching distortion. A heat-treated oil composition comprising a mixed base oil consisting of 50 to 95% by weight of a low-viscosity base oil of / s and 50 to 5% by weight of a high-viscosity base oil having a kinematic viscosity at 40 ° C. of 300 mm 2 / s or more is proposed. ing.
Patent Document 5 proposes a heat-treated oil composition that reduces the variation in cooling performance during group quenching while having a cooling performance comparable to that of Type 2 No. 1 oil. Specifically, 5% by mass of a low boiling point base oil having a 5% distillation temperature of 300 ° C. or more and 400 ° C. or less and less than 50% by mass, and 50% by mass of a high boiling point base oil having a 5% distillation temperature of 500 ° C. or more. A heat-treated oil composition comprising a mixed base oil comprising more than 95%.
However, since the heat-treated oil compositions of Patent Documents 4 and 5 do not use a vapor film breaker, the characteristic seconds are long, and it is not possible to reduce variations in hardness and strain for each part during group quenching.

特許文献6では、40℃動粘度が5mm/s以上60mm/s以下である基油を組成物全量基準で50質量%以上95質量%以下と、40℃動粘度が300mm/s以上である基油を組成物全量基準で5質量%以上50質量%以下と、αオレフィン共重合体とを配合することにより、団体焼入れ時の冷却性能のばらつきを低減できる熱処理油組成物が提案されている。
しかし、特許文献6の熱処理油組成物では、繰り返し焼入れを行うことにより、冷却性能が経時的に低下するという問題がある。
In Patent Document 6, a base oil having a 40 ° C. kinematic viscosity of 5 mm 2 / s to 60 mm 2 / s is 50% by mass to 95% by mass based on the total amount of the composition, and a 40 ° C. kinematic viscosity is 300 mm 2 / s or more. A heat-treated oil composition is proposed that can reduce variation in cooling performance during group quenching by blending 5% by mass to 50% by mass of the base oil, based on the total amount of the composition, and an α-olefin copolymer. ing.
However, the heat-treated oil composition of Patent Document 6 has a problem that the cooling performance decreases with time due to repeated quenching.

本発明は、このような状況下でなされたもので、焼入れ等により金属材料を熱処理する際に、JISK2242:2012の2種1号油と同程度の冷却性能を保ちながら、団体焼入れ時の部品ごとの冷却性能のばらつきを低減できるとともに、該熱処理を繰り返し行った際の冷却性能の経時変化を抑制できる熱処理油組成物を提供することを目的とする。   The present invention has been made under such circumstances, and when heat-treating a metal material by quenching or the like, while maintaining the same cooling performance as JIS K2242: 2012 Type 2 No. 1 parts, parts during group quenching It is an object of the present invention to provide a heat-treated oil composition that can reduce the variation in cooling performance of each and can suppress the change with time of the cooling performance when the heat treatment is repeated.

上記課題を解決すべく、本発明の実施形態では、(A)基油と、(B)石油樹脂及び/又は石油樹脂の誘導体から選ばれる一種以上を含み、JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線から得られる特性秒数が1.00秒以下であるとともに、該冷却曲線の800℃から300℃に至るまでの冷却時間である300℃秒数が6.00秒以上14.50秒以下であることを特徴とする熱処理油組成物を提供する。   In order to solve the above-mentioned problem, in the embodiment of the present invention, the cooling performance test method of JIS K2242: 2012 includes (A) base oil and (B) one or more selected from petroleum resin and / or petroleum resin derivatives. The characteristic seconds obtained from the cooling curve obtained according to the above are 1.00 seconds or less, and the cooling time from 800 ° C. to 300 ° C. of the cooling curve is 6.00. Provided is a heat-treated oil composition characterized by being at least 14 seconds and not longer than 14.50 seconds.

本発明の熱処理油組成物は、焼入れ等により金属材料を熱処理する際に、JISK2242:2012の2種1号油と同程度の冷却性能を保ちながら、団体焼入れ時の部品ごとの冷却性能のばらつきを低減できる。さらに、本発明の熱処理油組成物は、金属材料の熱処理を繰り返し行った際の冷却性能の経時変化を抑制できる。   The heat-treated oil composition of the present invention has a cooling performance equivalent to that of JIS K2242: 2012 Type 2 No. 1 oil when heat-treating a metal material by quenching or the like, and variation in cooling performance for each part during group quenching. Can be reduced. Furthermore, the heat-treated oil composition of the present invention can suppress the change in cooling performance with time when the heat treatment of the metal material is repeated.

以下、本発明の実施形態を説明する。本実施形態の熱処理油組成物は、(A)基油と、(B)石油樹脂及び/又は石油樹脂の誘導体から選ばれる一種以上を含み、JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線から得られる特性秒数が1.00秒以下であるとともに、該冷却曲線の800℃から300℃に至るまでの冷却時間である300℃秒数が6.00秒以上14.50秒以下であるものである。   Embodiments of the present invention will be described below. The heat-treated oil composition of the present embodiment includes (A) a base oil and (B) one or more selected from petroleum resins and / or petroleum resin derivatives, and conforms to the cooling performance test method of JIS K2242: 2012. The characteristic seconds obtained from the obtained cooling curve is 1.00 seconds or less, and the cooling time from 800 ° C. to 300 ° C. of the cooling curve is 6.00 seconds or more and 14. It is 50 seconds or less.

(A)基油
(A)成分の基油としては、鉱油及び/又は合成油が挙げられる。
鉱油としては、溶剤精製、水添精製等の通常の精製法により得られた、パラフィン基系鉱油、中間基系鉱油及びナフテン基系鉱油等、あるいは、フィッシャートロプシュプロセス等により製造されるワックス(ガストゥリキッドワックス)や鉱油系ワックスを異性化することによって製造されるもの等が挙げられる。
合成油としては、炭化水素系合成油、エーテル系合成油等が挙げられる。炭化水素系合成油としては、アルキルベンゼン、アルキルナフタレン等を挙げることができる。エーテル系合成油としては、ポリオキシアルキレングリコール、ポリフェニルエーテル等が挙げられる。
(A) Base oil (A) As a base oil of a component, mineral oil and / or synthetic oil are mentioned.
Mineral oils include paraffin-based mineral oils, intermediate-based mineral oils and naphthenic-based mineral oils obtained by ordinary refining methods such as solvent refining and hydrogenation refining, or waxes produced by the Fischer-Tropsch process (gas (Turi Liquid Wax) and mineral oil-based waxes.
Examples of synthetic oils include hydrocarbon synthetic oils and ether synthetic oils. Examples of the hydrocarbon-based synthetic oil include alkylbenzene and alkylnaphthalene. Examples of ether synthetic oils include polyoxyalkylene glycol and polyphenyl ether.

(A)成分の基油は、上述の鉱油及び合成油のうちの一種を用いた単一系でもよいが、鉱油の二種以上を混合したもの、合成油の二種以上を混合したもの、鉱油及び合成油のそれぞれの一種又は二種以上を混合したもののように、混合系であってもよい。   (A) The base oil of component may be a single system using one of the above-described mineral oil and synthetic oil, but a mixture of two or more mineral oils, a mixture of two or more synthetic oils, It may be a mixed system such as a mixture of one or more of mineral oil and synthetic oil.

(A)成分の基油の40℃動粘度は、40mm/s以上500mm/s以下であることが好ましく、50mm/s以上350mm/s以下であることがより好ましく、60mm/s以上200mm/s以下であることがさらに好ましい。
(A)成分の基油の40℃動粘度を上記範囲とすることにより、(A)成分に基づく本質的な冷却性能を確保して、特性秒数及び300℃秒数を後述する範囲にしやすくできる。
(A)成分の基油が、二種以上の基油が混合された基油である場合、混合基油の動粘度が上記範囲を満たすことが好ましい。
なお、本実施形態において、基油及び熱処理油組成物の動粘度は、JIS K2283:2000に準拠して測定することができる。
40 ° C. The kinematic viscosity of the base oil of the component (A), is preferably 40 mm 2 / s or more 500 mm 2 / s or less, more preferably at most 50 mm 2 / s or more 350mm 2 / s, 60mm 2 / More preferably, it is s or more and 200 mm 2 / s or less.
By setting the 40 ° C. kinematic viscosity of the base oil of component (A) within the above range, it is possible to ensure essential cooling performance based on component (A) and to make the characteristic seconds and 300 ° C. seconds within the ranges described below. it can.
When the base oil of the component (A) is a base oil in which two or more kinds of base oils are mixed, the kinematic viscosity of the mixed base oil preferably satisfies the above range.
In this embodiment, the kinematic viscosity of the base oil and heat-treated oil composition can be measured according to JIS K2283: 2000.

熱処理油組成物の全量に対する(A)成分の基油の含有割合は、10〜99.9質量%であることが好ましく、50〜98質量%であることがより好ましく、80〜95質量%であることがさらに好ましい。
(A)成分の含有割合を80質量%以上とすることにより、(A)成分に基づく本質的な冷却性能を確保することができ、(A)成分の含有割合を100質量%未満とすることにより、(B)成分の石油樹脂及び/又は石油樹脂の誘導体の使用量を確保して、後述する(B)成分に基づく効果を得やすくできる。
The content ratio of the base oil of the component (A) with respect to the total amount of the heat-treated oil composition is preferably 10 to 99.9% by mass, more preferably 50 to 98% by mass, and 80 to 95% by mass. More preferably it is.
By making the content ratio of the component (A) 80% by mass or more, the essential cooling performance based on the component (A) can be secured, and the content ratio of the component (A) should be less than 100% by mass. Thereby, the usage-amount of the petroleum resin of a (B) component and / or the derivative | guide_body of a petroleum resin can be ensured, and the effect based on the (B) component mentioned later can be acquired easily.

(B)石油樹脂及び/又は石油樹脂の誘導体
本実施形態の熱処理油組成物は、(B)石油樹脂及び/又は石油樹脂の誘導体の一種以上を含む。(B)成分の石油樹脂及び/又は石油樹脂の誘導体は、蒸気膜破断剤としての役割を有する。
蒸気膜破断剤として、石油樹脂及び/又は石油樹脂の誘導体を用いることにより、蒸気膜段階を短くでき、熱処理油組成物の冷却性能をJISK2242:2012の2種1号油と同程度にしやすくできる。
また、石油樹脂及び/又は石油樹脂の誘導体を用いることにより、蒸気膜段階を短くできるため、金属材料の表面で蒸気膜段階と沸騰段階とを混在しにくくできる。このため、石油樹脂及び/又は石油樹脂の誘導体を用いることにより、団体焼入れ時に部品ごとの冷却性能のばらつき(硬さや歪みのばらつき)を生じにくくできる。また、石油樹脂及び/又は石油樹脂の誘導体を用いることにより、部品が複雑な形状の場合、該部品の場所ごとの冷却性能のばらつきを生じにくくできるため、各部品の歪みを抑制できる。
さらに、石油樹脂及び/又は石油樹脂の誘導体を用いることにより、金属材料の熱処理を繰り返し行った際に、熱処理油組成物の冷却性能の経時変化を抑制できる。具体的には、金属材料の熱処理を繰り返し行った際に、蒸気膜段階が終了する温度に到達するまでの秒数(特性秒数)の経時的な増加、及び動粘度の経時的な低下を抑制することができる。すなわち、石油樹脂及び/又は石油樹脂の誘導体を用いることにより、熱処理油組成物の寿命を長くすることができる。
また、石油樹脂及び/又は石油樹脂の誘導体によって、熱処理の初期段階の特性秒数を短くすることができる。初期段階から優れた冷却性能を付与できる。
石油樹脂及び/又は石油樹脂の誘導体が上記効果を発揮できる理由は、石油樹脂及び石油樹脂の誘導体の熱可塑性特徴、基油への優れた溶解性であると考えられる。
(B) Petroleum Resin and / or Petroleum Resin Derivative The heat-treated oil composition of the present embodiment comprises (B) one or more petroleum resins and / or petroleum resin derivatives. The component (B) petroleum resin and / or petroleum resin derivative has a role as a vapor film breaker.
By using petroleum resin and / or petroleum resin derivatives as the vapor film breaker, the vapor film stage can be shortened, and the cooling performance of the heat-treated oil composition can be easily made comparable to JISK2242: 2012 Type 2 No. 1 oil. .
Moreover, since the vapor film stage can be shortened by using petroleum resin and / or petroleum resin derivatives, it is difficult to mix the vapor film stage and the boiling stage on the surface of the metal material. For this reason, by using petroleum resins and / or petroleum resin derivatives, it is possible to make it difficult for variations in cooling performance (variations in hardness and strain) to occur between parts during group quenching. In addition, by using petroleum resin and / or a derivative of petroleum resin, when a component has a complicated shape, it is difficult to cause variation in cooling performance at each location of the component, so that distortion of each component can be suppressed.
Furthermore, by using petroleum resin and / or a derivative of petroleum resin, when the heat treatment of the metal material is repeatedly performed, it is possible to suppress a change with time in the cooling performance of the heat-treated oil composition. Specifically, when the heat treatment of the metal material is repeated, the number of seconds (characteristic seconds) until the vapor film stage is reached and the kinematic viscosity decreases over time. Can be suppressed. That is, the lifetime of the heat-treated oil composition can be extended by using petroleum resin and / or petroleum resin derivatives.
Further, the characteristic seconds in the initial stage of the heat treatment can be shortened by the petroleum resin and / or the petroleum resin derivative. Excellent cooling performance can be imparted from the initial stage.
The reason why petroleum resins and / or petroleum resin derivatives can exert the above-described effects is considered to be the thermoplastic characteristics of petroleum resins and petroleum resin derivatives, and the excellent solubility in base oils.

石油樹脂は、ナフサなど石油類の熱分解によるエチレンなどのオレフィン製造時に副生物として得られる炭素数4〜10の脂肪族オレフィン類や脂肪族ジオレフィン類、あるいは炭素数8以上でかつオレフィン性不飽和結合を有する芳香族化合物から選ばれる1種または2種以上の不飽和化合物を、重合または共重合して得られる樹脂である。石油樹脂は、例えば、脂肪族オレフィン類や脂肪族ジオレフィン類を重合した「脂肪族系石油樹脂」、オレフィン性不飽和結合を有する芳香族化合物を重合した「芳香族系石油樹脂」、脂肪族オレフィン類や脂肪族ジオレフィン類と、オレフィン性不飽和結合を有する芳香族化合物とを共重合した「脂肪族−芳香族共重合石油樹脂」に大別できる。   Petroleum resins are aliphatic olefins and aliphatic diolefins having 4 to 10 carbon atoms, which are obtained as by-products during the production of olefins such as ethylene by thermal decomposition of petroleum such as naphtha, or those having 8 or more carbon atoms and having no olefinic properties. A resin obtained by polymerizing or copolymerizing one or more unsaturated compounds selected from aromatic compounds having a saturated bond. Petroleum resins include, for example, “aliphatic petroleum resins” obtained by polymerizing aliphatic olefins and aliphatic diolefins, “aromatic petroleum resins” obtained by polymerizing aromatic compounds having an olefinically unsaturated bond, and aliphatic resins. It can be roughly classified into “aliphatic-aromatic copolymer petroleum resins” obtained by copolymerizing olefins and aliphatic diolefins with aromatic compounds having an olefinically unsaturated bond.

この炭素数4〜10の脂肪族オレフィン類としては、ブテン、ペンテン、ヘキセン、ヘプテンなどが挙げられる。また、炭素数4〜10の脂肪族ジオレフィン類としては、ブタジエン、ペンタジエン、イソプレン、シクロペンタジエン、ジシクロペンタジエン、メチルペンタジエンなどが挙げられる。さらに、炭素数8以上でかつオレフィン性不飽和結合を有する芳香族化合物としては、スチレン、α−メチルスチレン、β−メチルスチレン、ビニルトルエン、ビニルキシレン、インデン、メチルインデン、エチルインデンなどが挙げられる。
また、この石油樹脂の原料化合物は、その全てがナフサなど石油類の熱分解によるオレフィン製造時の副生物である必要はなく、化学合成された不飽和化合物を用いてもよい。例えば、シクロペンタジエンやジシクロペンタジエンの重合により得られるジシクロペンタジエン系石油樹脂や、これらシクロペンタジエンやジシクロペンタジエンとスチレンを共重合させて得られるジシクロペンタジエン−スチレン系石油樹脂が挙げられる。
Examples of the aliphatic olefins having 4 to 10 carbon atoms include butene, pentene, hexene, heptene and the like. Examples of the aliphatic diolefin having 4 to 10 carbon atoms include butadiene, pentadiene, isoprene, cyclopentadiene, dicyclopentadiene, and methylpentadiene. Furthermore, examples of the aromatic compound having 8 or more carbon atoms and having an olefinically unsaturated bond include styrene, α-methylstyrene, β-methylstyrene, vinyltoluene, vinylxylene, indene, methylindene, and ethylindene. .
In addition, all of the raw material compounds of the petroleum resin need not be by-products during the production of olefins by thermal decomposition of petroleum such as naphtha, and chemically synthesized unsaturated compounds may be used. Examples thereof include dicyclopentadiene petroleum resins obtained by polymerization of cyclopentadiene and dicyclopentadiene, and dicyclopentadiene-styrene petroleum resins obtained by copolymerizing these cyclopentadiene or dicyclopentadiene and styrene.

石油樹脂の誘導体は、上記石油樹脂に水素原子を付加した水添石油樹脂が挙げられる。また、石油樹脂の誘導体としては、前記石油樹脂をカルボン酸等に代表される酸性官能基により変性した酸変性石油樹脂や、該酸変性石油樹脂をアルコール、アミン、アルカリ金属、アルカリ土類金属等の化合物により反応修飾した化合物が挙げられる。
酸変性石油樹脂としては石油樹脂を不飽和カルボン酸、不飽和カルボン酸無水物により変性したカルボン酸変性石油樹脂、酸無水物変性石油樹脂に大別できる。不飽和カルボン酸としては、例えばアクリル酸、メタクリル酸などの不飽和モノカルボン酸類;マレイン酸、フマル酸、イタコン酸、シトラコン酸等の不飽和多価カルボン酸類;マレイン酸モノメチル、フマル酸モノエチル等の不飽和多価カルボン酸の部分エステル類;などが挙げられ、不飽和カルボン酸無水物としては、例えば無水マレイン酸、無水イタコン酸等の不飽和多価カルボン酸無水物が挙げられる。
Examples of petroleum resin derivatives include hydrogenated petroleum resins in which hydrogen atoms are added to the above petroleum resins. In addition, as a derivative of the petroleum resin, an acid-modified petroleum resin obtained by modifying the petroleum resin with an acidic functional group typified by carboxylic acid, the acid-modified petroleum resin may be alcohol, amine, alkali metal, alkaline earth metal, or the like. And compounds modified by reaction with the above compound.
Acid-modified petroleum resins can be roughly classified into carboxylic acid-modified petroleum resins obtained by modifying petroleum resins with unsaturated carboxylic acids and unsaturated carboxylic acid anhydrides, and acid anhydride-modified petroleum resins. Examples of unsaturated carboxylic acids include unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; unsaturated polycarboxylic acids such as maleic acid, fumaric acid, itaconic acid, and citraconic acid; monomethyl maleate, monoethyl fumarate, etc. Examples of unsaturated carboxylic acid anhydrides include unsaturated polyvalent carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride.

上記石油樹脂、石油樹脂の誘導体としては、脂肪族−芳香族共重合石油樹脂及び水添脂肪族−芳香族共重合石油樹脂が、特性秒数を短くできる傾向にある点で好ましい。
石油樹脂、石油樹脂の誘導体の数平均分子量は、本実施形態による効果を発揮しやすくする観点から、200〜5000であることが好ましく、250〜2500であることがより好ましく、300〜1500であることがさらに好ましい。
As the above-mentioned petroleum resins and petroleum resin derivatives, aliphatic-aromatic copolymer petroleum resins and hydrogenated aliphatic-aromatic copolymer petroleum resins are preferred because they tend to shorten the characteristic seconds.
The number average molecular weight of the petroleum resin or petroleum resin derivative is preferably 200 to 5000, more preferably 250 to 2500, and more preferably 300 to 1500 from the viewpoint of easily exerting the effect of the present embodiment. More preferably.

石油樹脂及び/又は石油樹脂の誘導体は、JIS K2207:2006の環球法により測定した軟化点が40℃以上であることが好ましく、60℃以上150℃以下であることがより好ましく、80℃以上140℃以下であることがさらに好ましく、85℃以上130℃以下であることがよりさらに好ましい。
石油樹脂及び/又は石油樹脂の誘導体の軟化点を40℃以上とすることにより、団体焼入れ時に部品ごとの冷却性能のばらつき(硬さや歪みのばらつき)をより生じにくくできるとともに、部品が複雑な形状の場合、該部品の場所ごとの冷却性能のばらつきを生じにくくすることができ、各部品の歪みを抑制できる。
さらに、石油樹脂及び/又は石油樹脂の誘導体の軟化点を40℃以上とすることにより、熱処理を繰り返し行った際の冷却性能の経時変化(特性秒数の経時的な増加及び動粘度の経時的な低下)をより抑制できるとともに、熱処理の初期段階での特性秒数を短くすることができる。すなわち、石油樹脂及び/又は石油樹脂の誘導体の軟化点を40℃以上とすることにより、初期段階はもちろんのこと、繰り返して使用した後においても熱処理油組成物の冷却性能をより維持しやすくことができ、団体焼入れ時の部品ごとの冷却性能のばらつき、及び各部品の歪みをより長期に渡って抑制できる。
また、石油樹脂及び/又は石油樹脂の誘導体の軟化点を150℃以下とすることにより、熱処理油組成物によって金属材料等の被加工物を冷却した後の、該被加工物表面のべたつきを低減できる。
石油樹脂及び/又は石油樹脂の誘導体の軟化点は、石油樹脂の重合の度合い、変性成分、変性の度合いにより調整できる。
なお、石油樹脂及び/又は石油樹脂の誘導体として、二種以上の材料を用いる場合、全ての材料が上記軟化点の範囲であることが好ましい。
The petroleum resin and / or petroleum resin derivative preferably has a softening point of 40 ° C. or higher, more preferably 60 ° C. or higher and 150 ° C. or lower, and 80 ° C. or higher and 140 ° C. or higher, as measured by the ring and ball method of JIS K2207: 2006. More preferably, it is 85 degrees C or less, and it is still more preferable that it is 85 to 130 degreeC.
By setting the softening point of petroleum resin and / or petroleum resin derivatives to 40 ° C. or higher, variation in cooling performance (variation in hardness and strain) between components can be made more difficult during group quenching, and the shape of the component is complicated. In this case, it is possible to make it difficult for variations in the cooling performance of each part location to occur, and to suppress distortion of each part.
Further, by setting the softening point of petroleum resin and / or petroleum resin derivative to 40 ° C. or higher, the change in cooling performance with time (when the heat treatment is repeated) (the increase in characteristic seconds over time and the kinematic viscosity over time) Can be further suppressed, and the characteristic seconds in the initial stage of the heat treatment can be shortened. That is, by making the softening point of petroleum resin and / or petroleum resin derivative 40 ° C. or higher, it is easier to maintain the cooling performance of the heat-treated oil composition not only at the initial stage but also after repeated use. Therefore, it is possible to suppress the variation in the cooling performance of each part during group quenching and the distortion of each part for a longer period.
In addition, by setting the softening point of petroleum resin and / or petroleum resin derivative to 150 ° C. or less, stickiness of the surface of the workpiece after cooling the workpiece such as a metal material with the heat treatment oil composition is reduced. it can.
The softening point of the petroleum resin and / or petroleum resin derivative can be adjusted by the degree of polymerization of the petroleum resin, the modifying component, and the degree of modification.
In addition, when using 2 or more types of materials as a petroleum resin and / or a petroleum resin derivative, it is preferable that all the materials are in the range of the softening point.

熱処理油組成物の全量に対する(B)成分の石油樹脂及び/又は石油樹脂の誘導体の含有割合は、0.1〜90質量%であることが好ましく、2〜50質量%であることがより好ましく、5〜20質量%であることがさらに好ましい。
(B)成分の含有割合を0.1質量%以上とすることにより、上述した(B)成分に基づく効果を得やすくすることができる。また、(B)成分の含有割合を90質量%以下とすることにより、本質的な冷却性能を担保する(A)成分の基油の使用量を確保して、熱処理油組成物に冷却性能を付与できる。
(A)成分及び(B)成分を合計した含有量は、熱処理油組成物の全量に対して80質量%以上が好ましく、90質量%以上がより好ましく、100質量%がさらに好ましい。
なお、本実施形態の効果を阻害しない範囲であれば、熱処理油組成物中に、石樹脂及び/又は石油樹脂の誘導体以外の蒸気膜破断剤を含んでもよい。他の蒸気膜破断剤としては、テルペン樹脂、テルペン樹脂の誘導体、ロジン、ロジンの誘導体等が挙げられる。
The content ratio of the petroleum resin and / or petroleum resin derivative of the component (B) with respect to the total amount of the heat-treated oil composition is preferably 0.1 to 90% by mass, and more preferably 2 to 50% by mass. 5 to 20% by mass is more preferable.
By making the content rate of (B) component into 0.1 mass% or more, the effect based on the (B) component mentioned above can be made easy to be acquired. In addition, by setting the content ratio of the component (B) to 90% by mass or less, the amount of the base oil of the component (A) that secures the essential cooling performance is secured, and the heat treatment oil composition has the cooling performance. Can be granted.
The total content of the component (A) and the component (B) is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass with respect to the total amount of the heat-treated oil composition.
In addition, if it is a range which does not inhibit the effect of this embodiment, you may contain vapor | steam film | membrane breaking agents other than a stone resin and / or a derivative | guide_body of petroleum resin in the heat-treatment oil composition. Other vapor film breakers include terpene resins, terpene resin derivatives, rosin, rosin derivatives, and the like.

(C)添加剤
本実施形態の熱処理油組成物は、酸化防止剤、冷却性能向上剤等の添加剤を含有してもよい。
酸化防止剤、冷却性能向上剤等の含有割合は、熱処理油組成物の全量に対して、それぞれ10質量%以下であることが好ましく、0.01〜5質量%であることがより好ましい。
(C) Additive The heat-treated oil composition of the present embodiment may contain additives such as an antioxidant and a cooling performance improver.
The content ratio of the antioxidant, the cooling performance improver, etc. is preferably 10% by mass or less, and more preferably 0.01 to 5% by mass with respect to the total amount of the heat-treated oil composition.

熱処理油組成物の物性
本実施形態の熱処理油組成物は、JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線から得られる特性秒数が1.00秒以下であることを要する。
熱処理油組成物の特性秒数が1.00秒を超えると、団体焼入れ時の部品ごとの冷却性能のばらつきの低減が困難となり、また、各部品の歪みの抑制も困難となる。
Physical property of heat-treated oil composition The heat-treated oil composition of the present embodiment is characterized in that the characteristic seconds obtained from the cooling curve obtained in accordance with the cooling performance test method of JIS K2242: 2012 is 1.00 seconds or less. Cost.
When the characteristic seconds of the heat-treated oil composition exceeds 1.00 seconds, it becomes difficult to reduce variation in cooling performance for each part during group quenching, and it is also difficult to suppress distortion of each part.

熱処理油組成物の特性秒数は、0.95秒以下であることが好ましく、0.90秒以下であることがより好ましい。
特性秒数は、より具体的には、以下の(1)、(2)により算出できる。
(1)JIS K2242:2012の冷却性能試験方法に準拠して、810℃に加熱した銀試料を熱処理油組成物に投入し、時間をx軸、該銀試料表面の温度をy軸とした冷却曲線を求める。
(2)前記冷却曲線から、接線交差法により、熱処理油組成物の蒸気膜段階が終了する温度(特性温度)に到達するまでの秒数を算出し、該秒数を特性秒数とする。
なお、上記(1)では、測定時間の間隔を1/100秒とすることが好ましい。
The characteristic seconds of the heat-treated oil composition is preferably 0.95 seconds or less, and more preferably 0.90 seconds or less.
More specifically, the characteristic number of seconds can be calculated by the following (1) and (2).
(1) In accordance with the cooling performance test method of JIS K2242: 2012, a silver sample heated to 810 ° C. is charged into the heat-treated oil composition, and cooling is performed with time as the x axis and the temperature of the silver sample surface as the y axis. Find a curve.
(2) From the cooling curve, the number of seconds until reaching the temperature (characteristic temperature) at which the vapor film stage of the heat-treated oil composition ends is calculated by the tangential intersection method, and the number of seconds is defined as the characteristic number of seconds.
In the above (1), the measurement time interval is preferably 1/100 second.

さらに、本実施形態の熱処理油組成物は、JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線の800℃から300℃に至るまでの冷却時間である「300℃秒数」が6.00秒以上14.50秒以下であることを要する。
熱処理油組成物の300℃秒数が上記範囲を外れると、熱処理油組成物の冷却性能をJISK2242:2012の2種1号油と同程度にすることが困難となる。
Furthermore, the heat-treated oil composition of the present embodiment is “300 ° C. seconds”, which is a cooling time from 800 ° C. to 300 ° C. of the cooling curve obtained in accordance with the cooling performance test method of JIS K2242: 2012. Is required to be 6.00 seconds or more and 14.50 seconds or less.
If the heat-treated oil composition has 300 ° C. seconds outside the above range, it becomes difficult to make the cooling performance of the heat-treated oil composition comparable to that of JIS K2242: 2012 Type 2 No. 1 oil.

熱処理油組成物の300℃秒数は、6.50〜13.50秒であることが好ましく、7.00〜12.50秒であることがより好ましい。   The heat-treated oil composition preferably has 300 ° C. seconds of 6.50 to 13.50 seconds, and more preferably 7.00 to 12.50 seconds.

熱処理油組成物の特性秒数、及び300℃秒数を上記範囲とするためには、(A)成分の含有量及び40℃動粘度、並びに、(B)成分の含有量、軟化点及び数平均分子量を、上述した実施形態の範囲内とすることが好ましい。   In order to set the characteristic seconds of the heat-treated oil composition and the number of seconds at 300 ° C. within the above range, the content of component (A) and the kinematic viscosity at 40 ° C., and the content, softening point and number of component (B) The average molecular weight is preferably within the range of the above-described embodiment.

本実施形態の熱処理油組成物は、100℃動粘度が10〜30mm/sであることが好ましく、15〜20mm/sであることがより好ましい。 Heat treatment oil composition of the present embodiment is preferably from 100 ° C. kinematic viscosity of 10 to 30 mm 2 / s, more preferably 15 to 20 mm 2 / s.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

A.評価、測定
A−1.硬さ及び歪
焼入れ評価用材料として、円筒形状の肌焼鋼(外径φ85mm、高さ44mm、肉厚4mm、材質SCM415)を用いて下記の条件で熱処理等を行い、さらに、下記の項目について評価した。
<熱処理等条件>
熱処理条件:浸炭工程930℃×150分、CP=1.1質量%
拡散工程:930℃×60分、CP=0.8質量%
均熱工程:850℃×20分、CP=0.8質量%
油冷条件:油温120℃、油冷時間10分、撹拌20Hz
焼戻し条件:180℃×60分
セット方法:刀掛け(焼入れワーク8個、4個×2段)
<評価項目>
・平均楕円率(mm)
・楕円率3σ(mm)
・平均テーパー歪(mm)
・テーパー歪3σ(mm)
・平均内部硬度(焼入れ材料1.5mm内部、HV)
・平均有効硬化層深さ(mm)
A. Evaluation and measurement A-1. Hardness and strain Heat treatment is performed under the following conditions using cylindrical case-hardened steel (outer diameter φ85mm, height 44mm, wall thickness 4mm, material SCM415) as a material for quenching evaluation. evaluated.
<Conditions for heat treatment>
Heat treatment conditions: carburizing step 930 ° C. × 150 minutes, CP = 1.1% by mass
Diffusion process: 930 ° C. × 60 minutes, CP = 0.8 mass%
Soaking process: 850 ° C. × 20 minutes, CP = 0.8% by mass
Oil cooling conditions: Oil temperature 120 ° C., oil cooling time 10 minutes, stirring 20 Hz
Tempering conditions: 180 ° C x 60 minutes Setting method: sword rack (8 quenching workpieces, 4 pieces x 2 steps)
<Evaluation items>
・ Average ellipticity (mm)
・ Ellipticity 3σ (mm)
・ Average taper strain (mm)
・ Taper strain 3σ (mm)
・ Average internal hardness (hardened material 1.5mm inside, HV)
・ Average effective hardened layer depth (mm)

A−2.初期の冷却性能
JIS K2242:2012に規定される冷却性能試験方法に準拠して、810℃に加熱した銀試料を熱処理油組成物に投入し、銀試料の冷却曲線を求め、以下の「特性秒数」及び「300℃秒数」を算出した。銀試料の投入前の熱処理油組成物の油温は、実施例1−1〜1−9、比較例1、実施例2及び比較例2−1〜2−2のすべてを120℃とした。
<特性秒数>
上記冷却曲線において、JIS K2242:2012に準拠して、蒸気膜段階が終了する温度(特性温度)を算出し、該温度に到達するまでの秒数を特性秒数とした。
<300℃秒数>
上記冷却曲線における800℃から300℃に至るまでの冷却時間を300℃秒数とした。
A-2. Initial cooling performance In accordance with the cooling performance test method defined in JIS K2242: 2012, a silver sample heated to 810 ° C. is put into the heat-treated oil composition, and a cooling curve of the silver sample is obtained. Number ”and“ 300 ° C. seconds ”were calculated. The oil temperature of the heat-treated oil composition before charging the silver sample was 120 ° C. for all of Examples 1-1 to 1-9, Comparative Example 1, Example 2, and Comparative Examples 2-1 to 2-2.
<Characteristic seconds>
In the above cooling curve, the temperature at which the vapor film stage ends (characteristic temperature) was calculated in accordance with JIS K2242: 2012, and the number of seconds until the vapor film stage was reached was defined as characteristic seconds.
<300 ° C seconds>
The cooling time from 800 ° C. to 300 ° C. in the cooling curve was set to 300 ° C. seconds.

A−3.冷却性能の経時安定性
上記A−2の結果を、繰り返し焼入れ劣化試験前の結果とした。次に、以下に示す条件で繰り返し焼入れ劣化試験を行った。該劣化試験後、再度、上記A−2と同様の試験及び評価を行い、これを繰り返し焼入れ劣化試験後の結果とした。以下の式(2)により、試験前後の変化率を算出した。
[(試験後の値−試験前の値)/試験前の値]×100 (2)
<試験条件>
テストピース:SUS316
焼入温度:850℃
油量:400ml
油温:170℃
焼入回数:400回
A-3. Stability of cooling performance with time The results of A-2 above were the results before repeated quenching deterioration tests. Next, repeated quenching deterioration tests were performed under the following conditions. After the deterioration test, the same test and evaluation as in A-2 were performed again, and this was taken as the result after repeated quenching deterioration tests. The rate of change before and after the test was calculated by the following equation (2).
[(Value after test−value before test) / value before test] × 100 (2)
<Test conditions>
Test piece: SUS316
Quenching temperature: 850 ° C
Oil volume: 400ml
Oil temperature: 170 ° C
Quenching times: 400 times

A−4.動粘度
JIS K2283:2000に準拠して、熱処理油組成物の100℃動粘度を、上記A−3の繰り返し焼入れ劣化試験の前後で測定した。
A-4. Dynamic viscosity According to JIS K2283: 2000, the 100 degreeC dynamic viscosity of the heat processing oil composition was measured before and after the repeated quenching deterioration test of said A-3.

B.熱処理油組成物の調製及び評価
(実施例1−1〜1−9、比較例1)
表1の組成の熱処理油組成物を調製し、上記A−2及びA−4の評価及び測定を行った。結果を表1に示す。
B. Preparation and evaluation of heat-treated oil composition (Examples 1-1 to 1-9, Comparative Example 1)
The heat-treated oil composition having the composition shown in Table 1 was prepared, and evaluation and measurement of the above A-2 and A-4 were performed. The results are shown in Table 1.

表1の材料は以下の通りである。
基油1:40℃動粘度90mm/sの鉱油
石油1−1:部分水添脂肪族−芳香族共重合石油樹脂、軟化点110℃、数平均分子量760
石油1−2:脂肪族石油樹脂、軟化点99℃、数平均分子量1300
石油1−3:脂肪族−芳香族共重合石油樹脂、軟化点103℃、数平均分子量900
石油1−4:水添脂肪族石油樹脂、軟化点105℃、数平均分子量400
石油1−5:水添脂肪族石油樹脂、軟化点125℃、数平均分子量430
石油1−6:水添脂肪族石油樹脂、軟化点87℃、数平均分子量370
石油1−7:水添脂肪族石油樹脂、軟化点103℃、数平均分子量410
石油1−8:部分水添芳香族変性脂肪族石油樹脂、軟化点102℃、数平均分子量500
石油1−9:脂肪族石油樹脂、軟化点124℃、数平均分子量430
The materials in Table 1 are as follows.
Base oil 1: Mineral oil with a kinematic viscosity of 90 mm 2 / s at 40 ° C. 1-1: Partially hydrogenated aliphatic-aromatic copolymer petroleum resin, softening point 110 ° C., number average molecular weight 760
Petroleum 1-2: aliphatic petroleum resin, softening point 99 ° C., number average molecular weight 1300
Petroleum 1-3: aliphatic-aromatic copolymer petroleum resin, softening point 103 ° C., number average molecular weight 900
Petroleum 1-4: Hydrogenated aliphatic petroleum resin, softening point 105 ° C., number average molecular weight 400
Petroleum 1-5: Hydrogenated aliphatic petroleum resin, softening point 125 ° C., number average molecular weight 430
Petroleum 1-6: Hydrogenated aliphatic petroleum resin, softening point 87 ° C., number average molecular weight 370
Petroleum 1-7: Hydrogenated aliphatic petroleum resin, softening point 103 ° C., number average molecular weight 410
Petroleum 1-8: partially hydrogenated aromatic modified aliphatic petroleum resin, softening point 102 ° C., number average molecular weight 500
Petroleum 1-9: aliphatic petroleum resin, softening point 124 ° C., number average molecular weight 430

表1の結果から明らかなように、実施例1−1〜1−9の熱処理油組成物は、300℃秒数が短く、JISK2242:2012の2種1号油と同程度の冷却性能を有することが確認できる。
また、実施例1−1〜1−9の熱処理油組成物は、特性秒数が短いことが確認できる。このため、実施例1−1〜1−9の熱処理油組成物を用いた場合、団体焼入れ時の部品ごとの冷却性能のばらつきの抑制や、各部品の歪の抑制が期待できることが分かる。
As is clear from the results in Table 1, the heat-treated oil compositions of Examples 1-1 to 1-9 have a short cooling time of 300 ° C. and the same cooling performance as Type 2 No. 1 oil of JISK2242: 2012. I can confirm that.
Moreover, it can be confirmed that the heat-treated oil compositions of Examples 1-1 to 1-9 have short characteristic seconds. For this reason, when the heat-treated oil composition of Examples 1-1 to 1-9 is used, it can be seen that suppression of variation in cooling performance for each part during group quenching and suppression of distortion of each part can be expected.

(実施例2、比較例2−1〜2−2)
表2の組成の熱処理油組成物を調製し、上記A−1〜A−4の測定及び評価を行った。なお、上記A−4の100℃動粘度は、上記A−3の繰り返し焼入れ劣化試験の前後で測定した。結果を表2に示す。
(Example 2, Comparative Examples 2-1 to 2-2)
The heat-treated oil composition having the composition shown in Table 2 was prepared, and the above A-1 to A-4 were measured and evaluated. The 100 ° C. kinematic viscosity of A-4 was measured before and after the repeated quenching deterioration test of A-3. The results are shown in Table 2.

表2の材料は以下の通りである。
基油2−1:40℃動粘度120mm/sの鉱油
基油2−2:40℃動粘度60mm/sの鉱油
基油2−3:40℃動粘度200mm/sの鉱油
石油樹脂2:部分水添脂肪族−芳香族共重合石油樹脂、軟化点110℃、数平均分子量760
αオレフィン共重合体:100℃動粘度2000mm/sのαオレフィン共重合体
The materials in Table 2 are as follows.
Base Oil 2-1: 40 ° C. kinematic viscosity 120 mm 2 / s of the mineral base oil 2-2: 40 ° C. kinematic viscosity 60 mm 2 / s of the mineral base oil 2-3: 40 ° C. mineral oil resins kinematic viscosity 200 mm 2 / s 2: Partially hydrogenated aliphatic-aromatic copolymer petroleum resin, softening point 110 ° C., number average molecular weight 760
α-olefin copolymer: α-olefin copolymer having a kinematic viscosity of 2000 mm 2 / s at 100 ° C.

表2の結果から明らかなように、実施例2の熱処理油組成物は、300℃秒数が短く、JISK2242:2012の2種1号油と同程度の冷却性能を有することが確認できる。また、実施例2の熱処理油組成物は、楕円率3σ及びテーパー歪み3σの値が小さく、団体焼入れ時の歪のばらつきを抑制できることが確認できる。さらに、実施例2の熱処理油組成物は、繰り返し熱処理を行った際の経時的な性能劣化(特性秒数の増加、300℃秒数の増加、動粘度の減少)を抑制できることが確認できる。
また、実施例2の熱処理油組成物は、初期段階の特性秒数及び300℃秒数が良好な値を示すことから、初期段階から繰り返し使用後の長期に渡って良好な性能を維持できることが確認できる。
As is clear from the results in Table 2, it can be confirmed that the heat-treated oil composition of Example 2 has a short cooling time of 300 ° C. and has a cooling performance comparable to that of JIS K2242: 2012 Type 2 No. 1 oil. Moreover, the heat-treated oil composition of Example 2 has small values of ellipticity 3σ and taper strain 3σ, and it can be confirmed that variation in strain during group quenching can be suppressed. Furthermore, it can be confirmed that the heat-treated oil composition of Example 2 can suppress deterioration of performance over time (increase in characteristic seconds, increase in 300 ° C. seconds, decrease in kinematic viscosity) when repeated heat treatment is performed.
In addition, the heat-treated oil composition of Example 2 can maintain good performance over a long period after repeated use from the initial stage because the characteristic seconds in the initial stage and 300 seconds at 300 ° C. show good values. I can confirm.

本実施形態の熱処理油組成物は、JIS K2242:2012の2種1号油と同程度の冷却性能を保ちながら、団体焼入れ時の部品ごとの冷却性能のばらつきを低減できるとともに、金属材料の熱処理を繰り返し行った際の冷却性能の経時変化を抑制できる。このため、本実施形態の熱処理油組成物は、炭素鋼、ニッケル−マンガン鋼、クロム−モリブデン鋼、マンガン鋼などの合金鋼に焼入れ、焼きなまし、焼戻し等の熱処理を施す際の熱処理油として好適に使用され、特に、その中でも焼入れを行う際の熱処理油として好適に使用される。   The heat-treated oil composition of the present embodiment can reduce the variation in cooling performance of parts during group quenching while maintaining the same cooling performance as Type 2 No. 1 oil of JIS K2242: 2012, and heat treatment of metal materials It is possible to suppress the change in cooling performance with time when the above is repeated. For this reason, the heat treatment oil composition of this embodiment is suitable as a heat treatment oil when performing heat treatment such as quenching, annealing, and tempering on alloy steels such as carbon steel, nickel-manganese steel, chromium-molybdenum steel, and manganese steel. In particular, among them, it is preferably used as a heat-treated oil when quenching.

Claims (6)

(A)基油と、(B)石油樹脂及び/又は石油樹脂の誘導体から選ばれる一種以上を含み、JIS K2242:2012の冷却性能試験方法に準拠して求められた冷却曲線から得られる特性秒数が1.00秒以下であるとともに、該冷却曲線の800℃から300℃に至るまでの冷却時間である300℃秒数が6.00秒以上14.50秒以下であり、
JIS K2207:2006の環球法により測定した(B)成分の石油樹脂及び/又は石油樹脂の誘導体の軟化点が40℃以上であることを特徴とする熱処理油組成物。
Characteristic seconds obtained from a cooling curve obtained according to the cooling performance test method of JIS K2242: 2012, including (A) base oil and (B) one or more selected from petroleum resins and / or petroleum resin derivatives. as the number is less than 1.00 seconds, Ri 14.50 seconds der below 300 ° C. the number of seconds more than 6.00 seconds cooling time until 300 ° C. from 800 ° C. of the cooling curve,
JIS K2207: 2006 of was measured by the ring and ball method (B) a petroleum resin and / or heat treatment oil composition having a softening point of derivatives of petroleum resin is characterized der Rukoto 40 ° C. or more components.
JIS K2207:2006の環球法により測定した(B)成分の石油樹脂及び/又は石油樹脂の誘導体の軟化点が60℃以上150℃以下である請求項1記載の熱処理油組成物。 The heat-treated oil composition according to claim 1 , wherein the softening point of the petroleum resin and / or petroleum resin derivative of component (B) measured by the ring and ball method of JIS K2207: 2006 is 60 ° C or higher and 150 ° C or lower. (A)成分の基油の40℃動粘度が40〜500mm/sである請求項1又は2に記載の熱処理油組成物。 The heat-treated oil composition according to claim 1 or 2 , wherein the base oil of the component (A) has a 40 ° C kinematic viscosity of 40 to 500 mm 2 / s. 熱処理油組成物の全量に対して、(A)成分の基油を10〜99.9質量%、(B)成分の石油樹脂及び/又は石油樹脂の誘導体を0.1〜90質量%含む請求項1〜3のいずれか1項に記載の熱処理油組成物。 Based on the total amount of the heat treatment oil composition, (A) a base oil component from 10 to 99.9 wt%, (B) claims a derivative of a petroleum resin and / or petroleum resin component containing 0.1 to 90 wt% Item 4. The heat-treated oil composition according to any one of Items 1 to 3 . 前記熱処理油組成物の100℃動粘度が10〜30mm/sである請求項1〜4のいずれか1項に記載の熱処理油組成物。 The heat-treated oil composition according to any one of claims 1 to 4 , wherein the heat-treated oil composition has a kinematic viscosity at 100 ° C of 10 to 30 mm 2 / s. (B)成分の石油樹脂及び/又は石油樹脂の誘導体の数平均分子量が200〜5000である請求項1〜5のいずれか1項に記載の熱処理油組成物。The heat-treated oil composition according to any one of claims 1 to 5, wherein the number average molecular weight of the component (B) petroleum resin and / or petroleum resin derivative is 200 to 5,000.
JP2015030026A 2015-02-18 2015-02-18 Heat treated oil composition Active JP6569145B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015030026A JP6569145B2 (en) 2015-02-18 2015-02-18 Heat treated oil composition
US15/550,973 US20180023021A1 (en) 2015-02-18 2016-01-29 Heat treatment oil composition
PCT/JP2016/052632 WO2016132860A1 (en) 2015-02-18 2016-01-29 Heat treatment oil composition
CN201680010378.7A CN107250389A (en) 2015-02-18 2016-01-29 Heat treatment oil composition
TW105103121A TWI681051B (en) 2015-02-18 2016-02-01 Heat treatment oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030026A JP6569145B2 (en) 2015-02-18 2015-02-18 Heat treated oil composition

Publications (2)

Publication Number Publication Date
JP2016151054A JP2016151054A (en) 2016-08-22
JP6569145B2 true JP6569145B2 (en) 2019-09-04

Family

ID=56692096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030026A Active JP6569145B2 (en) 2015-02-18 2015-02-18 Heat treated oil composition

Country Status (5)

Country Link
US (1) US20180023021A1 (en)
JP (1) JP6569145B2 (en)
CN (1) CN107250389A (en)
TW (1) TWI681051B (en)
WO (1) WO2016132860A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355033B1 (en) * 2017-08-22 2018-07-11 大同化学工業株式会社 Water-soluble heat treatment composition
CN111868269A (en) * 2018-03-28 2020-10-30 出光兴产株式会社 Heat treatment oil composition
US20210009917A1 (en) * 2018-03-28 2021-01-14 Idemitsu Kosan Co.,Ltd. Heat-treatment oil composition
CN111560498B (en) * 2020-06-08 2021-12-24 马鞍山常裕机械设备有限公司 High-temperature isothermal quenching process for high-chromium alloy casting grinding ball

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567640A (en) * 1970-03-25 1971-03-02 Park Chem Co Quench oil composition and method of use
US3681150A (en) * 1970-05-25 1972-08-01 Exxon Research Engineering Co Fast cold quench oil for metals
US3855014A (en) * 1973-06-25 1974-12-17 Atlantic Richfield Co Quenching oil composition and method of quenching metal
JP4659264B2 (en) * 2001-05-02 2011-03-30 出光興産株式会社 Heat treated oil composition
CA2470323A1 (en) * 2001-12-18 2003-06-26 The Lubrizol Corporation Quenching oil compositions
JP4764336B2 (en) * 2004-03-10 2011-08-31 出光興産株式会社 Quenching oil for quenching under reduced pressure and quenching method
JP4691405B2 (en) * 2005-06-28 2011-06-01 出光興産株式会社 Heat treated oil composition
JP5642327B2 (en) * 2006-11-15 2014-12-17 株式会社三ツ知春日井 Hardening method for steel
JP5253772B2 (en) * 2007-07-27 2013-07-31 出光興産株式会社 Heat treated oil composition
CN102021280B (en) * 2011-01-07 2012-05-30 山东卡松科技有限公司 Heat treating oil and preparation method thereof
CN102212662B (en) * 2011-06-09 2012-10-03 上海德润宝特种润滑剂有限公司 Ultra quick quenching oil and preparation method thereof
JP5809088B2 (en) * 2012-03-16 2015-11-10 出光興産株式会社 Heat treated oil composition
JP5930981B2 (en) * 2013-02-06 2016-06-08 出光興産株式会社 Heat treated oil composition

Also Published As

Publication number Publication date
JP2016151054A (en) 2016-08-22
CN107250389A (en) 2017-10-13
US20180023021A1 (en) 2018-01-25
TW201634682A (en) 2016-10-01
WO2016132860A1 (en) 2016-08-25
TWI681051B (en) 2020-01-01

Similar Documents

Publication Publication Date Title
JP6569145B2 (en) Heat treated oil composition
JP4691405B2 (en) Heat treated oil composition
US7708876B2 (en) Heavy fuel oil
JPWO2005087955A1 (en) Quenching oil for quenching under reduced pressure and quenching method
JP5930981B2 (en) Heat treated oil composition
JP5809088B2 (en) Heat treated oil composition
JP6657544B2 (en) Heat treated oil composition
JP5792108B2 (en) Heat treatment method
CN110747319B (en) Overspeed quenching oil and preparation method thereof
JP4659264B2 (en) Heat treated oil composition
WO2019189135A1 (en) Heat-treatment oil composition
JPWO2019189136A1 (en) Heat treatment oil composition
JP2004256918A (en) Use of coke formation preventive low-alloy steel increased in silicon and manganese content in petroleum refining and petrochemical application, and new steel composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190718

R150 Certificate of patent or registration of utility model

Ref document number: 6569145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150