JP5314509B2 - Steel for machine structure - Google Patents

Steel for machine structure Download PDF

Info

Publication number
JP5314509B2
JP5314509B2 JP2009144267A JP2009144267A JP5314509B2 JP 5314509 B2 JP5314509 B2 JP 5314509B2 JP 2009144267 A JP2009144267 A JP 2009144267A JP 2009144267 A JP2009144267 A JP 2009144267A JP 5314509 B2 JP5314509 B2 JP 5314509B2
Authority
JP
Japan
Prior art keywords
mass
less
steel
content
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009144267A
Other languages
Japanese (ja)
Other versions
JP2010024549A (en
Inventor
智一 増田
武広 土田
睦久 永濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009144267A priority Critical patent/JP5314509B2/en
Publication of JP2010024549A publication Critical patent/JP2010024549A/en
Application granted granted Critical
Publication of JP5314509B2 publication Critical patent/JP5314509B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、機械構造用鋼材に関するものであり、特に、断続切削加工が施される機械構造用鋼材に関する。   The present invention relates to a machine structural steel material, and in particular, to a machine structural steel material subjected to intermittent cutting.

自動車用変速機や差動装置等の各種歯車伝達装置に利用される歯車、シャフト、プーリ、等速ジョイント、クランクシャフト、コンロッド等の機械構造用部品は、一般に、鋼材に鍛造等の熱間加工を施した後、切削加工を施すことによって最終形状に仕上げられる。そして、最終形状に仕上げられた機械構造用部品は、浸炭や浸炭窒化処理(大気圧、低圧、真空、プラズマ雰囲気を含む)等の表面硬化処理を施され、さらに、必要に応じて焼入れ−焼戻しや高周波焼入れ等が施されて所定の強度が確保される。このような機械構造用部品の製造において、切削加工に要するコストは占める割合が大きいことから、機械構造部品を構成する鋼材(機械構造用鋼)は被削性が良好であることが要求される。   Machine structural parts such as gears, shafts, pulleys, constant velocity joints, crankshafts and connecting rods used in various gear transmissions such as automobile transmissions and differentials are generally hot-worked such as forging steel. After finishing, the final shape is finished by cutting. The machine structure parts finished in the final shape are subjected to surface hardening treatment such as carburizing and carbonitriding (including atmospheric pressure, low pressure, vacuum, and plasma atmosphere), and further quenching and tempering as necessary. And induction hardening are performed to ensure a predetermined strength. In the manufacture of such machine structural parts, the cost required for cutting is large, and therefore the steel (machine structural steel) constituting the machine structural parts is required to have good machinability. .

機械構造用部品の一つである歯車の製造方法は、一般的に、機械構造用鋼を鍛造し、ホブ加工によって粗切し(歯切り)、シェービングにて最終形状に仕上げた後、浸炭等の熱処理を行い、再度研磨加工(ホーニング加工)を行う。さらに、近年では、歯車の寸法精度の向上のため、熱処理による形状の歪みを完全に矯正するために、前記研磨加工の前に研削加工(ハードフィニッシュ)を行うことがある。このように、歯車の製造は非常に多くの工程を必要とし、その中には切削や研削の工程が多いため、特に歯車の材料とする機械構造用鋼には被削性を向上させることが求められている。   The manufacturing method of gears, which are one of the parts for machine structure, is generally forged steel for machine structure, rough cutting (hobbing) by hobbing, finishing to the final shape by shaving, carburizing etc. Then, the polishing process (honing process) is performed again. Further, in recent years, in order to improve the dimensional accuracy of gears, a grinding process (hard finish) may be performed before the polishing process in order to completely correct the distortion of the shape due to the heat treatment. In this way, the manufacture of gears requires a great number of processes, including many cutting and grinding processes, so that machinability can be improved particularly for mechanical structural steels used as gear materials. It has been demanded.

被削性の劣化要因の一つとして、例えば、被削材中の硬質の介在物によるアブレシブ摩耗があり、特に連続切削において顕著である。一方、ホブ加工等の、工具が被削材に連続的には接触していない断続切削においては、工具の空転時すなわち工具に被削材が接触していない瞬間があり、工具に付着した鋼材の新生面が、このとき空気に曝され、さらに切削で発熱しているので急速に酸化する。その結果、断続切削に用いられる工具は酸化摩耗し易く、その寿命が短いという問題がある。さらに、ホブ加工に用いられる工具は高価であるため、ホブ加工等の断続切削に供される機械構造用鋼には、被削性、特に工具寿命を向上させることが求められている。   As one of the deterioration factors of machinability, for example, there is abrasive wear due to hard inclusions in the work material, which is particularly noticeable in continuous cutting. On the other hand, in intermittent cutting, such as hobbing, where the tool is not continuously in contact with the work material, there is a moment when the tool is idling, that is, the work material is not in contact with the tool, and the steel material attached to the tool The new surface is exposed to air at this time, and is rapidly oxidized because it generates heat during cutting. As a result, there is a problem that tools used for interrupted cutting are subject to oxidative wear and have a short life. Furthermore, since the tool used for hobbing is expensive, the steel for machine structure used for intermittent cutting such as hobbing is required to improve machinability, particularly the tool life.

そこで、例えば、特許文献1は、JIS鋼にB,S,Caを添加することで硫化物を生成させ、この硫化物を析出核として微細なBNを析出させることにより被削性、疲労強度、および靭性を向上させた鋼材を開示している。また、特許文献2は、被削性を向上させる元素(快削元素)であるSの代わりに、Pb,Caを添加して、靭性を保ちつつ被削性を向上させた鋼材を開示している。また、特許文献3は、Al,Nの各含有量と両者の比を制御することでAlNを析出させ、AlNの潤滑効果により断続切削時の被削性を向上させた鋼材を開示している。特許文献4は、Alを多く添加することにより、MnSを均一分散させて衝撃特性を向上させ、また、高温脆化により被削性を向上させる固溶Al、および高温脆化効果と劈開の結晶構造とにより被削性を向上させるAlNを適量確保し、さらにAlNの微細析出および固溶Alによって降伏比を高くし、一方で被削性および衝撃特性を劣化させる固溶Nを低く抑えた鋼材を開示している。   Therefore, for example, Patent Document 1 generates sulfide by adding B, S, and Ca to JIS steel, and precipitates fine BN using this sulfide as a precipitation nucleus, thereby improving machinability, fatigue strength, And steel materials with improved toughness. Further, Patent Document 2 discloses a steel material that has improved machinability while maintaining toughness by adding Pb and Ca instead of S, which is an element that improves machinability (free-cutting element). Yes. Patent Document 3 discloses a steel material in which AlN is precipitated by controlling the contents of Al and N and the ratio between the two, and the machinability during intermittent cutting is improved by the lubricating effect of AlN. . Patent Document 4 discloses a solid solution Al that improves impact characteristics by uniformly dispersing MnS by adding a large amount of Al, and improves machinability by high temperature embrittlement, and a crystal of high temperature embrittlement effect and cleavage. A steel material that secures an appropriate amount of AlN that improves machinability depending on the structure, further increases the yield ratio by fine precipitation of AlN and solute Al, while keeping solid solution N low, which degrades machinability and impact properties. Is disclosed.

特開平6−145890公報(段落0009)JP-A-6-145890 (paragraph 0009) 特開平3−10050号公報(請求項1)JP-A-3-10050 (Claim 1) 特許第3922691号公報(段落0018〜0023)Japanese Patent No. 392691 (paragraphs 0018 to 0023) 特開2008−13788号公報(請求項1、段落0016)JP 2008-13788 A (Claim 1, paragraph 0016)

しかしながら、特許文献1,2に開示された鋼材は、超硬工具による旋削に対応したものである。また、鋼材に限らず、近年ではPbを含有しない(Pbフリー)材料が求められている。また、特許文献3に開示された鋼材は、断続切削に対応したものではあるが、特許文献1,2に開示された鋼材と同様に、鋼材中の析出物により被削性を向上させるものである。これらのような鋼材中の介在物や析出物は、鋼材の機械的特性を劣化させ易いという問題がある。また、特許文献4に開示された鋼材は連続切削に対応したものであり、断続切削に適用すると、工具の空転時に酸素を固着するように活性化した固溶Alは、ある程度抑えられているとはいえ残存する固溶Nに酸素以上に結合し易いため、酸素を固着する効果が失われてしまう。さらに、特許文献3,4に開示された鋼材において、AlNは熱間加工時の加熱(800〜1200℃)で固溶Alと固溶Nに分解される。その後、熱間加工を施すと、固溶Alと固溶NによりAlNが粒界に偏析し、粒界強度を著しく劣化させる。   However, the steel materials disclosed in Patent Documents 1 and 2 correspond to turning with a carbide tool. Further, not only steel materials but also materials that do not contain Pb (Pb-free) have been demanded in recent years. Moreover, although the steel material disclosed by patent document 3 respond | corresponds to intermittent cutting, it improves machinability by the precipitate in steel materials similarly to the steel materials disclosed by patent documents 1 and 2. is there. Such inclusions and precipitates in the steel material have a problem that the mechanical properties of the steel material are easily deteriorated. In addition, the steel material disclosed in Patent Document 4 is compatible with continuous cutting, and when applied to intermittent cutting, the solid solution Al activated to fix oxygen during idling of the tool is suppressed to some extent. However, since the remaining solid solution N is easily bonded to oxygen or more, the effect of fixing oxygen is lost. Furthermore, in the steel materials disclosed in Patent Documents 3 and 4, AlN is decomposed into solute Al and solute N by heating (800 to 1200 ° C.) during hot working. Thereafter, when hot working is performed, AlN is segregated at the grain boundary due to solute Al and solute N, and the grain boundary strength is remarkably deteriorated.

本発明は、前記問題点に鑑みてなされたものであり、被削性を向上させる手段に靭性や加工性等の機械的特性を兼備させるため、鋼材中の介在物や析出物によらずに断続切削時の被削性を向上させる、特に工具寿命を向上させる機械構造用鋼を提供することを目的とする。   The present invention has been made in view of the above problems, and in order to combine mechanical properties such as toughness and workability with a means for improving machinability, regardless of inclusions and precipitates in the steel material. An object of the present invention is to provide a steel for machine structure that improves machinability at the time of interrupted cutting, in particular, improves the tool life.

本発明者らは、Feより酸化傾向の大きい、すなわちFeと比較してO(酸素)が結合し易いAlを機械構造用鋼に添加して固溶させることにより、断続切削における機械構造用鋼の新生面の急速な酸化を防止して、工具の酸化摩耗を抑制することにした。一方、Alの添加により、熱間加工時にAlNが偏析して熱間延性(熱間加工性)を劣化させることを防止するために、Tiを添加してNと結合させることによりAlNの析出を抑制し、さらに、形成されたTiNにより結晶粒の粗大化を防止して、機械的特性を向上させることを見出した。   The inventors of the present invention have a tendency to oxidize more than Fe, that is, steel for machine structure in intermittent cutting by adding and solid-solving Al to which O (oxygen) is easy to bind compared to Fe. It was decided to prevent rapid oxidation of the new surface of the tool and suppress oxidative wear of the tool. On the other hand, in order to prevent AlN from segregating during hot working and deteriorating hot ductility (hot workability) due to the addition of Al, precipitation of AlN is caused by adding Ti and bonding with N. In addition, the present inventors have found that the formed TiN prevents the coarsening of crystal grains and improves the mechanical properties.

すなわち、請求項1に係る機械構造用鋼は、C:0.05〜1.2質量%、Si:0.03〜2質量%、Mn:0.2〜1.8質量%、Cr:0.1〜3質量%、Al:0.06〜0.5質量%、Ti:0.01〜0.1質量%、N:0.02質量%以下、O:0.003質量%以下を含有し、さらに、Ca:0.0005〜0.02質量%、Mg:0.0001〜0.005質量%のうち1種以上を含有し、PおよびSを各0.03質量%以下に規制し、残部がFeおよび不可避的不純物からなり、前記Cr,Al,Oの各含有量(質量%)を[Cr]、[Al]、[O]として表したとき、(0.1×[Cr]+[Al])/[O]≧150を満足し、前記N,Tiの各含有量(質量%)を[N]、[Ti]として表したとき、[N]−0.3×[Ti]≦0.0005を満足し、N固溶量が0.0005質量%以下であることを特徴とする。   That is, the steel for machine structure according to claim 1 is C: 0.05 to 1.2 mass%, Si: 0.03 to 2 mass%, Mn: 0.2 to 1.8 mass%, Cr: 0 0.1 to 3% by mass, Al: 0.06 to 0.5% by mass, Ti: 0.01 to 0.1% by mass, N: 0.02% by mass or less, O: 0.003% by mass or less Furthermore, it contains at least one of Ca: 0.0005 to 0.02 mass%, Mg: 0.0001 to 0.005 mass%, and regulates P and S to 0.03 mass% or less. When the balance is composed of Fe and inevitable impurities, and the respective contents (mass%) of Cr, Al, O are expressed as [Cr], [Al], [O], (0.1 × [Cr] + [Al]) / [O] ≧ 150, and when the respective contents (mass%) of N and Ti are expressed as [N] and [Ti], [N] −0.3 × [Ti ] ≦ 0.0005 Satisfied, N solid solution amount is equal to or less than 0.0005 wt%.

このように、Feより酸化傾向の大きいAlを添加することにより、断続切削において、機械構造用鋼の新生面が急速に酸化することを防止できる。そして、Tiを添加することで、N(窒素)をAlとではなくTiと結合させてAlNの形成を抑制し、一方で形成したTiNにより結晶粒を微細化させる。さらにTiに対するNの含有量を一定以下に制限することにより、Nの固溶量を所定値以下に抑制する。これによって、断続切削時にAlが固溶Nに結合することなく、酸化摩耗抑制効果を十分に発揮できる。さらに、鋼中のAlNや固溶Nによる熱間加工時のAlNの偏析を防止できる。一方、Ca,Mgの少なくとも1種を添加することで、Al酸化物が硬質介在物としてアブレシブ摩耗を生じさせることを防止できる。また、Cr,Alに対するO(酸素)の含有量を一定以下に制限することで、粗大な酸化物系介在物の生成を抑制することができる。   Thus, by adding Al, which has a higher oxidation tendency than Fe, it is possible to prevent the new surface of the steel for machine structural use from being rapidly oxidized in intermittent cutting. Then, by adding Ti, N (nitrogen) is combined with Ti instead of Al to suppress the formation of AlN, while the crystal grains are refined by the formed TiN. Further, by limiting the content of N with respect to Ti to a certain value or less, the solid solution amount of N is suppressed to a predetermined value or less. As a result, the effect of suppressing oxidative wear can be sufficiently exhibited without Al being bonded to the solute N during intermittent cutting. Furthermore, segregation of AlN during hot working due to AlN or solute N in steel can be prevented. On the other hand, by adding at least one of Ca and Mg, it is possible to prevent the Al oxide from causing abrasive wear as a hard inclusion. Moreover, the production | generation of a coarse oxide type inclusion can be suppressed by restrict | limiting content of O (oxygen) with respect to Cr and Al below fixed.

また、請求項2に係る機械構造用鋼は、請求項1に記載の機械構造用鋼が、さらに、Mo:1質量%以下を含有することを特徴とする。Moを添加することにより、機械構造用鋼の焼入れ性を向上させて、焼入れ後の硬さを向上させることができる。   In addition, the steel for machine structure according to claim 2 is characterized in that the steel for machine structure according to claim 1 further contains Mo: 1% by mass or less. By adding Mo, the hardenability of the steel for machine structure can be improved, and the hardness after quenching can be improved.

請求項3に係る機械構造用鋼は、請求項1または請求項2に記載の機械構造用鋼が、さらに、Nb:0.2質量%以下を含有することを特徴とする。Nbを添加することにより、浸炭処理における結晶粒の異常成長を効果的に防止することができる。   The steel for machine structure according to claim 3 is characterized in that the steel for machine structure according to claim 1 or 2 further contains Nb: 0.2% by mass or less. By adding Nb, abnormal growth of crystal grains in the carburizing process can be effectively prevented.

また、請求項4に係る機械構造用鋼は、請求項1ないし請求項3のいずれか1項に記載の機械構造用鋼が、さらに、V:0.5質量%以下、Cu:3質量%以下、Ni:3質量%以下、およびB:0.005質量%以下のうち1種以上を含有することを特徴とする。V,Bを添加することにより、浸炭処理における結晶粒の異常成長を効果的に防止することができる。また、Cu,Niを添加することにより、機械構造用鋼の焼入れ性を向上させて、焼入れ後の硬さを向上させることができる。   Further, in the steel for machine structure according to claim 4, the steel for machine structure according to any one of claims 1 to 3, further includes V: 0.5 mass% or less, Cu: 3 mass%. Hereinafter, one or more of Ni: 3% by mass or less and B: 0.005% by mass or less are contained. By adding V and B, abnormal growth of crystal grains in the carburizing process can be effectively prevented. Moreover, by adding Cu and Ni, the hardenability of the steel for machine structure can be improved, and the hardness after quenching can be improved.

本発明に係る機械構造用鋼は、靭性等の機械的特性および熱間加工性を十分有し、また、被削性を向上させたものである。本発明に係る機械構造用鋼は、特に、歯車等の機械構造部品を構成する鋼材として、断続切削における被削性を向上させたものであり、これにより切削工具の酸化摩耗を抑制して工具寿命を延ばすことができる。   The steel for machine structure according to the present invention has sufficient mechanical properties such as toughness and hot workability, and has improved machinability. The steel for machine structure according to the present invention has improved machinability in interrupted cutting, particularly as a steel material constituting machine structural parts such as gears, thereby suppressing oxidative wear of the cutting tool. Life can be extended.

引張試験における試験片の平面図である。It is a top view of the test piece in a tension test.

以下、本発明に係る機械構造用鋼を実施する形態について説明する。
本発明に係る機械構造用鋼は、C:0.05〜1.2質量%、Si:0.03〜2質量%、Mn:0.2〜1.8質量%、Cr:0.1〜3質量%、Al:0.06〜0.5質量%、Ti:0.01〜0.1質量%、N:0.02質量%以下、O:0.003質量%以下を含有し、さらに、Ca:0.0005〜0.02質量%、Mg:0.0001〜0.005質量%のうち1種以上を含有し、PおよびSを各0.03質量%以下に規制し、残部がFeおよび不可避的不純物で構成されるものであり、さらに、N固溶量を0.0005質量%以下とするものである。
Hereinafter, the form which carries out steel for machine structure concerning the present invention is explained.
The steel for machine structure according to the present invention has C: 0.05 to 1.2 mass%, Si: 0.03 to 2 mass%, Mn: 0.2 to 1.8 mass%, Cr: 0.1 to 0.1 mass%. 3% by mass, Al: 0.06 to 0.5% by mass, Ti: 0.01 to 0.1% by mass, N: 0.02% by mass or less, O: 0.003% by mass or less, , Ca: 0.0005 to 0.02% by mass, Mg: 0.0001 to 0.005% by mass, one or more of them are contained, P and S are restricted to 0.03% by mass or less, and the balance is It is composed of Fe and inevitable impurities, and the N solid solution amount is 0.0005 mass% or less.

そして、本発明に係る機械構造用鋼は、前記各成分のうち、酸化物系介在物を形成し易いCr,Alの各含有量の、O含有量に対する比を所定値以上に限定するものである。すなわち、Cr,Al,Oの含有量(質量%)それぞれを[Cr]、[Al]、[O]で表したとき、下式を満足するように、これらの成分の含有量が調整されるものである。
(0.1×[Cr]+[Al])/[O]≧150
And the steel for machine structure which concerns on this invention limits the ratio with respect to O content of each content of Cr and Al which is easy to form an oxide inclusion among said each component to more than predetermined value. is there. That is, when the contents (mass%) of Cr, Al, and O are expressed by [Cr], [Al], and [O], the contents of these components are adjusted so that the following formulas are satisfied. Is.
(0.1 × [Cr] + [Al]) / [O] ≧ 150

さらに、本発明に係る機械構造用鋼は、前記各成分のうち、Nの含有量を、Alと比較してNが結合し易いTiの含有量に対して所定値以下に限定するものである。すなわち、N,Tiの含有量(質量%)それぞれを[N]、[Ti]で表したとき、下式を満足するように、これらの成分の含有量が調整されるものである。
[N]−0.3×[Ti]≦0.0005
Furthermore, in the steel for machine structure according to the present invention, among the above components, the content of N is limited to a predetermined value or less with respect to the content of Ti that is easy to bond N as compared with Al. . That is, when the contents (mass%) of N and Ti are represented by [N] and [Ti], the contents of these components are adjusted so as to satisfy the following formula.
[N] −0.3 × [Ti] ≦ 0.0005

以下に、本発明に係る機械構造用鋼を構成する各成分の含有量の数値範囲およびその数値範囲の限定理由について説明する。   Below, the numerical range of content of each component which comprises the steel for machine structure which concerns on this invention, and the reason for limitation of the numerical range are demonstrated.

(C:0.05〜1.2質量%)
Cは、機械構造用鋼の強度を向上させる効果を有し、機械構造用部品に必要な芯部の硬さを確保するために有効な元素である。機械構造用鋼の硬さを十分なものとするため、C含有量は0.05質量%以上とされ、0.10質量%以上が好ましく、0.15質量%以上がさらに好ましい。一方、Cが過剰に添加されると、硬さが過剰となって被削性や靭性、加工性が低下する。したがって、C含有量は1.2質量%以下とされ、1.0質量%以下が好ましく、0.8質量%以下がさらに好ましい。
(C: 0.05-1.2% by mass)
C is an element that has an effect of improving the strength of steel for machine structural use and is effective for ensuring the hardness of the core part necessary for machine structural parts. In order to make the mechanical structural steel sufficiently hard, the C content is 0.05% by mass or more, preferably 0.10% by mass or more, and more preferably 0.15% by mass or more. On the other hand, when C is added excessively, the hardness becomes excessive and the machinability, toughness, and workability deteriorate. Therefore, the C content is 1.2% by mass or less, preferably 1.0% by mass or less, and more preferably 0.8% by mass or less.

(Si:0.03〜2質量%)
Siは、脱酸効果を有し、機械構造用鋼の酸化物系介在物を低減させて内部品質を向上させる。この効果を十分なものとするため、Si含有量は0.03質量%以上とされ、0.05質量%以上が好ましく、0.1質量%以上がさらに好ましい。また、FeよりもSiにOが結合し易いため、Siは断続切削時の工具の酸化摩耗を抑制する効果を有する。一方、Siが過剰に添加されると、浸炭時に異常組織が生成したり、熱処理(焼入れ)後の残留オーステナイト(残留γ相)の量が増大して浸炭相に十分な硬さが得られない。したがって、Si含有量は2質量%以下とされ、1.8質量%以下が好ましく、1.5質量%以下がさらに好ましい。
(Si: 0.03 to 2% by mass)
Si has a deoxidizing effect and reduces the oxide inclusions in the steel for machine structural use to improve the internal quality. In order to make this effect sufficient, the Si content is 0.03% by mass or more, preferably 0.05% by mass or more, and more preferably 0.1% by mass or more. Further, since O is more easily bonded to Si than Fe, Si has an effect of suppressing oxidative wear of the tool during intermittent cutting. On the other hand, if Si is added excessively, an abnormal structure is generated during carburizing, or the amount of retained austenite (residual γ phase) after heat treatment (quenching) increases, so that sufficient hardness cannot be obtained in the carburized phase. . Therefore, the Si content is 2% by mass or less, preferably 1.8% by mass or less, and more preferably 1.5% by mass or less.

(Mn:0.2〜1.8質量%)
Mnは、焼入れ性を向上させる効果を有し、焼入れ後の機械構造用鋼の硬さを向上させる。この効果を十分なものとするため、Mn含有量は0.2質量%以上とされ、0.3質量%以上が好ましく、0.5質量%以上がさらに好ましい。また、FeよりもMnにOが結合し易いため、Mnは断続切削時の工具の酸化摩耗を抑制する効果を有する。一方、Mnが過剰に添加されると、焼入れ性が過剰となって、焼ならし後でも過冷組織が生成して被削性を低下させる。したがって、Mn含有量は1.8質量%以下とされ、1.6質量%以下が好ましく、1.4質量%以下がさらに好ましい。
(Mn: 0.2 to 1.8% by mass)
Mn has the effect of improving the hardenability and improves the hardness of the steel for machine structure after quenching. In order to make this effect sufficient, the Mn content is 0.2% by mass or more, preferably 0.3% by mass or more, and more preferably 0.5% by mass or more. Further, since O is more easily bonded to Mn than Fe, Mn has an effect of suppressing oxidative wear of the tool during intermittent cutting. On the other hand, when Mn is added excessively, hardenability becomes excessive, and a supercooled structure is generated even after normalization, thereby reducing machinability. Therefore, the Mn content is 1.8% by mass or less, preferably 1.6% by mass or less, and more preferably 1.4% by mass or less.

(Cr:0.1〜3質量%)
Crは、焼入れ性を向上させる効果を有し、焼入れ後の機械構造用鋼の硬さを向上させる。この効果を十分なものとするため、Cr含有量は0.1質量%以上とされ、0.3質量%以上が好ましく、0.7質量%以上がさらに好ましい。また、FeよりもCrにOが結合し易いため、Crは断続切削時の工具の酸化摩耗を抑制する効果を有する。一方、Crが過剰に添加されると、焼入れ性が過剰となって過冷組織が発達するとともに、粒界に粗大な炭化物が生成して被削性が劣化し、また、焼入れ後の硬さが過剰となって靭性が低下する。したがって、Cr含有量は3質量%以下とされ、2質量%以下が好ましく、1.6質量%以下がさらに好ましい。
(Cr: 0.1 to 3% by mass)
Cr has the effect of improving hardenability and improves the hardness of the steel for machine structure after quenching. In order to make this effect sufficient, the Cr content is 0.1% by mass or more, preferably 0.3% by mass or more, and more preferably 0.7% by mass or more. Further, since O is more easily bonded to Cr than Fe, Cr has an effect of suppressing oxidative wear of the tool during intermittent cutting. On the other hand, if Cr is added excessively, hardenability becomes excessive and a supercooled structure develops, coarse carbides are formed at the grain boundaries, and machinability deteriorates. Becomes excessive and the toughness decreases. Therefore, the Cr content is 3% by mass or less, preferably 2% by mass or less, and more preferably 1.6% by mass or less.

(Al:0.06〜0.5質量%)
Alは、強い脱酸効果を有し、機械構造用鋼の内部品質を向上させる。また、FeよりもAlにOが結合し易いため、Alは断続切削時の工具の酸化摩耗を抑制する効果を有する。また、Alは、微量であるが鋼中のNと結合してAlNを形成し、このAlNが、浸炭処理において結晶粒の異常成長(異常粒成長)を抑制する効果を有する。これらの効果を十分なものとするため、Al含有量は0.06質量%以上とされ、0.1質量%以上が好ましく、0.15質量%以上がさらに好ましい。一方、Alが過剰に添加されると、アルミナ(Al23)が過剰に形成されて硬質介在物となる割合が増加して被削性が低下したり、浸炭における熱処理(焼入れ)後の残留オーステナイト(残留γ相)の量が増大して浸炭相に十分な硬さが得られない。したがって、Al含有量は0.5質量%以下とされ、0.45質量%以下が好ましく、0.4質量%以下がさらに好ましい。
(Al: 0.06-0.5% by mass)
Al has a strong deoxidation effect and improves the internal quality of the steel for machine structural use. Further, since O is more easily bonded to Al than Fe, Al has an effect of suppressing oxidative wear of the tool during intermittent cutting. In addition, although Al is a trace amount, it combines with N in steel to form AlN, and this AlN has an effect of suppressing abnormal growth of crystal grains (abnormal grain growth) in carburizing treatment. In order to make these effects sufficient, the Al content is 0.06% by mass or more, preferably 0.1% by mass or more, and more preferably 0.15% by mass or more. On the other hand, if Al is added excessively, the proportion of alumina (Al 2 O 3 ) being excessively formed and becoming hard inclusions increases, and the machinability decreases, or after heat treatment (quenching) in carburizing. The amount of residual austenite (residual γ phase) increases, and sufficient hardness cannot be obtained for the carburized phase. Therefore, the Al content is 0.5% by mass or less, preferably 0.45% by mass or less, and more preferably 0.4% by mass or less.

(Ti:0.01〜0.1質量%)
Tiは、鋼中に不可避的に含有するNと結合することにより、製品中のN固溶量を減少させる。また、形成されたTiNは、熱処理において結晶粒を微細化する効果を有し、機械構造用鋼の機械的特性を向上させる。これらの効果を十分なものとするため、Ti含有量は0.01質量%以上とされ、0.02質量%以上が好ましく、0.03質量%以上がさらに好ましい。さらに、TiNは、浸炭処理時の異常粒成長を抑制する効果を有する。一方、Tiが過剰に添加されると、TiNのサイズが大きくなって加工性等の機械的特性および被削性が劣化する。したがって、Ti含有量は0.1質量%以下とされ、0.09質量%以下が好ましく、0.08質量%以下がさらに好ましい。
(Ti: 0.01 to 0.1% by mass)
Ti combines with N inevitably contained in steel to reduce the amount of N solid solution in the product. Further, the formed TiN has an effect of refining crystal grains in the heat treatment, and improves the mechanical characteristics of the steel for machine structure. In order to make these effects sufficient, the Ti content is set to 0.01% by mass or more, preferably 0.02% by mass or more, and more preferably 0.03% by mass or more. Furthermore, TiN has an effect of suppressing abnormal grain growth during the carburizing process. On the other hand, when Ti is added excessively, the size of TiN becomes large and mechanical properties such as workability and machinability deteriorate. Therefore, the Ti content is 0.1% by mass or less, preferably 0.09% by mass or less, and more preferably 0.08% by mass or less.

(N:0.02質量%以下)
N(窒素)は鋼の溶融工程で不可避的に混入する元素であり、鋼中にTi等と共存する場合はこれに結合して窒素化合物を形成させ、あるいは鋼中に固溶する。固溶Nは、後記するように、鋼中にAlと共存する場合は、Alによる断続切削時の酸化摩耗抑制効果を低下させ、また機械的特性を劣化させるため、できる限り低減する必要がある。鋼中にNが多く含有されると、それに伴い、鋼中に固溶するNも増大するため、その含有量は制限されて、さらにNは極力窒素化合物として固着させることが好ましい。しかし、鋼中のNの多くを窒素化合物としても、Nが多く含有されると過剰に形成され、そのサイズも大きくなるため、被削性および浸炭処理時の異常粒成長の抑制効果が劣化する。したがって、N含有量は0.02質量%以下とされ、0.018質量%以下が好ましく、0.015質量%以下がさらに好ましい。
(N: 0.02 mass% or less)
N (nitrogen) is an element that is inevitably mixed in the melting process of steel, and when coexisting with Ti or the like in the steel, it binds to this to form a nitrogen compound, or dissolves in the steel. As will be described later, when the solute N coexists with Al in the steel, it is necessary to reduce it as much as possible in order to reduce the effect of suppressing oxidative wear during intermittent cutting by Al and to deteriorate the mechanical properties. . When a large amount of N is contained in the steel, the amount of N dissolved in the steel increases accordingly. Therefore, the content is limited, and it is preferable to fix N as a nitrogen compound as much as possible. However, even if a large amount of N in the steel is a nitrogen compound, if it contains a large amount of N, it is excessively formed and its size increases, so the machinability and the effect of suppressing abnormal grain growth during carburizing treatment deteriorate. . Therefore, the N content is 0.02% by mass or less, preferably 0.018% by mass or less, and more preferably 0.015% by mass or less.

(N固溶量:0.0005質量%以下)
機械構造用鋼中に固溶したNは、それ自体は被削性を向上させる効果があるが、鋼中にAlと共存する場合は、切削時の発熱で固溶Alと結合してAlNを形成、工具表面に付着させる。その結果、断続切削時におけるAlのOへの結合力が損なわれて工具の酸化摩耗抑制効果が低下する。また、固溶Nは熱間加工時にもAlと結合してオーステナイト粒界にAlNとして偏析することで、粒界強度を著しく低下させる。さらにNが過剰に固溶されていると、時効硬化が進み過ぎて、延性および靭性が低下する場合がある。したがって、N固溶量はできる限り低減して、0.0005質量%以下とされ、0.0004質量%以下が好ましく、0.0003質量%以下がさらに好ましい。このようなN固溶量は、前記のN含有量の制限および後記のN含有量とTi含有量との関係式を満足することにより、制御される。なお、本発明におけるN(窒素)固溶量の値は、JIS G 1228に準拠され、機械構造用鋼の全窒素量(N含有量)から窒素化合物における窒素量の差とされる。以下に、鋼中のそれぞれの窒素量を測定する方法を説明する。
(N solid solution amount: 0.0005 mass% or less)
N dissolved in machine structural steel itself has the effect of improving the machinability. However, when coexisting with Al in the steel, it combines with the solute Al by the heat generated during cutting, so that AlN is dissolved. Form and adhere to the tool surface. As a result, the bonding force of Al to O during intermittent cutting is impaired, and the effect of suppressing oxidative wear of the tool is reduced. Further, solute N is combined with Al even during hot working, and segregates as AlN at the austenite grain boundaries, thereby significantly reducing the grain boundary strength. Further, when N is excessively dissolved, age hardening may proceed excessively and ductility and toughness may be reduced. Therefore, the N solid solution amount is reduced as much as possible to 0.0005% by mass or less, preferably 0.0004% by mass or less, and more preferably 0.0003% by mass or less. Such an N solid solution amount is controlled by satisfying the above-described limitation of the N content and the relational expression between the N content and the Ti content described later. In addition, the value of the N (nitrogen) solid solution amount in the present invention is based on JIS G 1228, and is the difference between the total nitrogen amount (N content) of the steel for machine structural use and the nitrogen amount in the nitrogen compound. Below, the method to measure each nitrogen amount in steel is demonstrated.

鋼中の全窒素量は、不活性ガス融解法−熱伝導度法により測定される。この方法は、供試鋼材から切り出された試料をるつぼに投入し、この試料を不活性ガス気流中で融解して窒素を含めたガスを抽出し、このガスを熱伝導度セルに搬送して熱伝導度の変化を測定して、窒素の量を求めるものである。   The total amount of nitrogen in the steel is measured by an inert gas melting method-thermal conductivity method. In this method, a sample cut from a test steel material is put into a crucible, the sample is melted in an inert gas stream, a gas containing nitrogen is extracted, and the gas is conveyed to a thermal conductivity cell. The amount of nitrogen is determined by measuring the change in thermal conductivity.

鋼中の窒素化合物における窒素量は、アンモニア蒸留分離インドフェノール青吸光光度法により測定される。この方法は以下の通りである。まず、供試鋼材から切り出された約0.5gの試料は、10%AA系電解液(鋼材の表面に不動態皮膜を生成させない非水溶媒系の電解液であり、具体的には、10%アセチルアセトン、10%塩化テトラメチルアンモニウム、残部:メタノール)中での定電流電解により溶解される。この溶解した試料(と電解液)はメッシュサイズ0.1μmのポリカーボネート製フィルタでろ過されて、不溶解残渣(窒素化合物)とろ液とに分離される。不溶解残渣は硫酸、硫酸カリウム、および純Cuチップ中で加熱、分解された後、前記ろ液に混合される。この混合された溶液は、水酸化ナトリウムでアルカリ化された後、水蒸気蒸留されて、留出したアンモニウムが希硫酸に吸収される。溶液はフェノール、次亜塩素酸ナトリウム、およびペンタシアノニトロシル鉄(III)酸ナトリウムを加えられて青色錯体を生成させる。この青色錯体の吸光度を光度計を用いて測定して、この吸光度から窒素化合物中の窒素の量を求めるものである。   The amount of nitrogen in the nitrogen compound in the steel is measured by ammonia distillation separation indophenol blue absorptiometry. This method is as follows. First, an approximately 0.5 g sample cut from the test steel material is a 10% AA electrolyte solution (a non-aqueous solvent electrolyte solution that does not generate a passive film on the surface of the steel material. % Acetylacetone, 10% tetramethylammonium chloride, balance: methanol). The dissolved sample (and electrolyte solution) is filtered through a polycarbonate filter having a mesh size of 0.1 μm, and separated into an insoluble residue (nitrogen compound) and a filtrate. The insoluble residue is heated and decomposed in sulfuric acid, potassium sulfate, and pure Cu chips, and then mixed with the filtrate. The mixed solution is alkalized with sodium hydroxide and then steam distilled to absorb the distilled ammonium by dilute sulfuric acid. The solution is added with phenol, sodium hypochlorite, and sodium pentacyanonitrosyl iron (III) to form a blue complex. The absorbance of this blue complex is measured using a photometer, and the amount of nitrogen in the nitrogen compound is determined from this absorbance.

(Ca:0.0005〜0.02質量%、Mg:0.0001〜0.005質量%のうち1種以上)
Ca,Mgは、それぞれがアルミナ等の硬質介在物を軟質化させる作用があるので、硬質介在物による工具摩耗を抑制する。また、Ca,Mgは、それぞれがMnS介在物を球状化する作用があるので、このMnS介在物による靭性の劣化を抑制する。これらの効果を十分なものとするため、Ca含有量は0.0005質量%以上とされ、0.0007質量%以上が好ましく、0.001質量%以上がさらに好ましい。同様に、Mg含有量は0.0001質量%以上とされ、0.0002質量%以上が好ましく、0.0003質量%以上がさらに好ましい。Ca,Mgは、いずれか1種のみ前記それぞれの規定含有量を含有されていれば前記工具摩耗を抑制する効果を得られ、もう1種は含有されていない、あるいは規定含有量未満を含有されていてもよい。また、Ca,Mgが共に規定含有量を含有されていてもよい。一方、Ca,Mgは、どちらも過剰に添加されると、CaO,MgO等の介在物が増大して、これらの介在物により延性および靭性が低下する。したがって、Ca含有量は0.02質量%以下とされ、0.015質量%以下が好ましく、0.01質量%以下がさらに好ましい。同様に、Mg含有量は0.005質量%以下とされ、0.004質量%以下が好ましく、0.003質量%以下がさらに好ましい。
(Ca: 0.0005 to 0.02 mass%, Mg: one or more of 0.0001 to 0.005 mass%)
Since Ca and Mg each have an action of softening hard inclusions such as alumina, tool wear due to the hard inclusions is suppressed. Moreover, since Ca and Mg each have the effect | action which spheroidizes MnS inclusion, it suppresses the deterioration of toughness by this MnS inclusion. In order to make these effects sufficient, the Ca content is set to 0.0005% by mass or more, preferably 0.0007% by mass or more, and more preferably 0.001% by mass or more. Similarly, the Mg content is 0.0001% by mass or more, preferably 0.0002% by mass or more, and more preferably 0.0003% by mass or more. Ca, Mg can obtain the effect of suppressing the tool wear if only one of the specified contents is contained, and the other is not contained or contained less than the specified content. It may be. Further, both Ca and Mg may contain a specified content. On the other hand, when both Ca and Mg are added excessively, inclusions such as CaO and MgO increase, and the ductility and toughness decrease due to these inclusions. Therefore, the Ca content is 0.02 mass% or less, preferably 0.015 mass% or less, and more preferably 0.01 mass% or less. Similarly, the Mg content is 0.005% by mass or less, preferably 0.004% by mass or less, and more preferably 0.003% by mass or less.

(P:0.03質量%以下)
Pは鋼に不可避的に含まれる元素(不純物)である。Pは、熱間加工時の割れを助長するので可能な限り低減されることが好ましい。したがって、P含有量は0.03質量%以下とされ、0.025質量%以下が好ましく、0.02質量%以下がさらに好ましい。
(P: 0.03 mass% or less)
P is an element (impurity) inevitably contained in steel. P is preferably reduced as much as possible because it promotes cracking during hot working. Therefore, the P content is 0.03% by mass or less, preferably 0.025% by mass or less, and more preferably 0.02% by mass or less.

(S:0.03質量%以下)
Sは鋼に不可避的に含まれる元素(不純物)である。Sは、被削性を向上させる効果を有するが、一方で、延性および靭性を低下させる。さらに、SはMnと反応してMnS介在物を形成する。この介在物が圧延時に圧延方向に伸展することにより、鋼材の圧延方向に対して垂直な方向(この方向を一般に「横目」という)の靭性が劣化する。したがって、S含有量は0.03質量%以下とされ、0.025質量%以下が好ましく、0.02質量%以下がさらに好ましい。
(S: 0.03 mass% or less)
S is an element (impurity) inevitably contained in steel. S has the effect of improving machinability, but on the other hand, reduces ductility and toughness. Furthermore, S reacts with Mn to form MnS inclusions. When the inclusions extend in the rolling direction during rolling, the toughness in a direction perpendicular to the rolling direction of the steel material (this direction is generally referred to as “horizontal”) deteriorates. Therefore, the S content is 0.03% by mass or less, preferably 0.025% by mass or less, and more preferably 0.02% by mass or less.

(O:0.003質量%以下)
O(酸素)は鋼の溶融工程で不可避的に混入する元素である。O含有量が過剰になると、粗大な酸化物系介在物が生成して、この酸化物系介在物により被削性や延性、靭性、鋼の熱間加工性が低下する。したがって、O含有量は0.003質量%以下とされ、0.002質量%以下が好ましく、0.0015質量%以下がさらに好ましい。
(O: 0.003 mass% or less)
O (oxygen) is an element inevitably mixed in the steel melting process. When the O content is excessive, coarse oxide inclusions are generated, and the machinability, ductility, toughness, and hot workability of steel are reduced by the oxide inclusions. Accordingly, the O content is 0.003% by mass or less, preferably 0.002% by mass or less, and more preferably 0.0015% by mass or less.

前記の本発明に係る機械構造用鋼の各成分のうち、Cr,Alは、Feより酸化傾向が大きい、すなわちFeと比較してOに結合し易いため、断続切削時の工具の酸化摩耗を抑制する効果を有するが、一方で、硬質な酸化物系介在物Cr23,Al23等を形成する。Cr含有量の1/10と、CrよりさらにOが結合し易いAl含有量との和が、O含有量の150倍未満では、前記の酸化摩耗の抑制効果が十分に得られず、断続切削時の被削性が劣化すると共に、硬質な酸化物系介在物を過剰に形成して、アブレシブ摩耗が顕著になって連続切削時の被削性も劣化する。したがって、Cr,Al,Oの含有量(質量%)それぞれを[Cr]、[Al]、[O]で表したとき、下式を満足するように、これらの成分の含有量は調整される。
(0.1×[Cr]+[Al])/[O]≧150
Among the components of the mechanical structural steel according to the present invention, Cr and Al have a tendency to oxidize more than Fe, that is, they are more likely to bond to O compared to Fe. On the other hand, a hard oxide inclusion Cr 2 O 3 , Al 2 O 3 or the like is formed. If the sum of 1/10 of the Cr content and the Al content in which O is more easily bonded than Cr is less than 150 times the O content, the effect of suppressing the above-mentioned oxidation wear cannot be obtained sufficiently, and intermittent cutting is performed. While the machinability at the time deteriorates, hard oxide inclusions are excessively formed, the abrasive wear becomes remarkable, and the machinability at the time of continuous cutting also deteriorates. Accordingly, when the contents (% by mass) of Cr, Al, and O are expressed by [Cr], [Al], and [O], the contents of these components are adjusted so as to satisfy the following formula. .
(0.1 × [Cr] + [Al]) / [O] ≧ 150

また、前記の本発明に係る機械構造用鋼の各成分において、前記したように、Tiは、Nと結合してTiNを形成することにより固溶Nを低減させ、さらに熱間加工時にはAlに優先して固溶Nと結合することにより、粒界へのAlNの偏析を抑制する効果を有する。したがって、N含有量がTi含有量に対して過剰である、具体的にはTiが結合できるN量を過大に超えると、これらの効果が十分に得られずに、Nの一部が固溶状態となり、またAlNを形成する。その結果、断続切削時の酸化摩耗抑制効果を低下させ、また熱間延性が劣化する。Tiが結合できるN量とは、両者の原子量の比から、質量にしてTi量の約0.3倍であり、Tiに結合していないNが固溶Nになると推定できる。すなわち、N,Tiの含有量(質量%)それぞれを[N]、[Ti]で表したとき、下式を満足するように、これらの成分の含有量は調整される。
[N]−0.3×[Ti]≦0.0005
Moreover, in each component of the steel for machine structure according to the present invention, as described above, Ti is combined with N to form TiN to reduce solid solution N, and further to Al during hot working. By preferentially bonding with solid solution N, it has an effect of suppressing segregation of AlN to the grain boundary. Therefore, if the N content is excessive with respect to the Ti content, specifically, if the N content exceeds the amount of Ti that can be bound to Ti, these effects cannot be obtained sufficiently, and a part of N is dissolved. A state is formed and AlN is formed. As a result, the effect of suppressing oxidative wear during intermittent cutting is reduced, and the hot ductility is deteriorated. The amount of N that can be bonded to Ti is approximately 0.3 times the amount of Ti in terms of mass, and it can be estimated that N that is not bonded to Ti becomes solid solution N. That is, when the contents (% by mass) of N and Ti are expressed by [N] and [Ti], the contents of these components are adjusted so as to satisfy the following formula.
[N] −0.3 × [Ti] ≦ 0.0005

本発明に係る機械構造用鋼は、Mo:1質量%以下をさらに含有してもよい。また、本発明に係る機械構造用鋼は、Nb:0.2質量%以下をさらに含有してもよい。また、本発明に係る機械構造用鋼は、さらに、V:0.5質量%以下、Cu:3質量%以下、Ni:3質量%以下、およびB:0.005質量%以下のうち1種以上を含有してもよい。   The machine structural steel according to the present invention may further contain Mo: 1% by mass or less. Moreover, the steel for machine structure which concerns on this invention may further contain Nb: 0.2 mass% or less. The mechanical structural steel according to the present invention is further one of V: 0.5% by mass or less, Cu: 3% by mass or less, Ni: 3% by mass or less, and B: 0.005% by mass or less. You may contain the above.

(Mo:1質量%以下)
Moは、鋼に固溶して焼入れ性を確保し、不完全焼入れ組織の生成を抑制する効果を有し、Mo含有量増加に伴いこの効果が大きくなる。この効果を得るために、Mo含有量は0.005質量%以上が好ましく、0.008質量%以上がより好ましく、0.01質量%以上がさらに好ましい。一方、Moが過剰に添加されると、焼入れ性が過剰となって、焼ならし後でも過冷組織が生成して被削性が低下する。したがって、Mo含有量は1質量%以下とされ、0.9質量%以下が好ましく、0.8質量%以下がさらに好ましい。
(Mo: 1% by mass or less)
Mo is dissolved in steel to ensure hardenability and has the effect of suppressing the formation of an incompletely hardened structure, and this effect increases as the Mo content increases. In order to obtain this effect, the Mo content is preferably 0.005% by mass or more, more preferably 0.008% by mass or more, and further preferably 0.01% by mass or more. On the other hand, when Mo is added excessively, the hardenability becomes excessive, and even after normalization, a supercooled structure is generated and the machinability is lowered. Therefore, the Mo content is 1% by mass or less, preferably 0.9% by mass or less, and more preferably 0.8% by mass or less.

(Nb:0.2質量%以下)
機械構造用鋼の中でも特に肌焼鋼は、通常、表面硬化のために浸炭処理が施される。この浸炭処理時に、処理温度および処理時間、加熱速度等によっては異常粒成長が発生する場合がある。Nbは、この異常粒成長を防止する効果を有する。この効果を得るために、Nb含有量は0.001質量%以上が好ましく、0.002質量%以上がさらに好ましい。一方、Nbが過剰に添加されると、硬質炭化物が生成して加工性等の機械的特性および被削性が劣化する。したがって、Nb含有量は0.2質量%以下とされ、0.15質量%以下が好ましく、0.1質量%以下がさらに好ましい。
(Nb: 0.2% by mass or less)
Among machine structural steels, case-hardened steel is usually carburized for surface hardening. During this carburizing process, abnormal grain growth may occur depending on the processing temperature, processing time, heating rate, and the like. Nb has the effect of preventing this abnormal grain growth. In order to obtain this effect, the Nb content is preferably 0.001% by mass or more, and more preferably 0.002% by mass or more. On the other hand, when Nb is added excessively, hard carbides are generated and mechanical properties such as workability and machinability deteriorate. Therefore, the Nb content is 0.2% by mass or less, preferably 0.15% by mass or less, and more preferably 0.1% by mass or less.

(V:0.5質量%以下、Cu:3質量%以下、Ni:3質量%以下、B:0.005質量%以下)
V,Bは、前記Nbと同様に、浸炭処理時の異常粒成長を防止する効果を有する。この効果を得るために、V含有量は0.001質量%以上が好ましく、0.002質量%以上がさらに好ましい。同様に、B含有量は0.0004質量%以上が好ましく、0.0008質量%以上がさらに好ましい。また、Bは、被削性を向上させる効果を有する。一方、これらの元素が過剰に添加されると、硬質炭化物が生成して加工性等の機械的特性および被削性が劣化する。したがって、V含有量は0.5質量%以下とされ、0.4質量%以下が好ましく、0.3質量%以下がさらに好ましい。B含有量は0.005質量%以下とされ、0.003質量%以下が好ましく、0.001質量%以下がさらに好ましい。
(V: 0.5 mass% or less, Cu: 3 mass% or less, Ni: 3 mass% or less, B: 0.005 mass% or less)
V and B have the effect of preventing abnormal grain growth during the carburizing process, like Nb. In order to obtain this effect, the V content is preferably 0.001% by mass or more, and more preferably 0.002% by mass or more. Similarly, the B content is preferably 0.0004% by mass or more, more preferably 0.0008% by mass or more. Further, B has an effect of improving machinability. On the other hand, when these elements are added excessively, hard carbides are generated, and mechanical properties such as workability and machinability deteriorate. Therefore, the V content is 0.5% by mass or less, preferably 0.4% by mass or less, and more preferably 0.3% by mass or less. The B content is 0.005% by mass or less, preferably 0.003% by mass or less, and more preferably 0.001% by mass or less.

CuおよびNiは、焼入れ性を向上させる効果を有し、焼入れ後の機械構造用鋼の硬さを向上させる。さらに、CuおよびNiの含有量増加に伴いこの効果が大きくなる。この効果を得るために、Cu,Niの各含有量は0.1質量%以上が好ましく、0.3質量%以上がさらに好ましい。一方、これらの元素が過剰に添加されると、焼入れ性が増大して過冷組織が生成し、延性および靭性が低下する。したがって、Cu,Niの各含有量は3質量%以下とされ、2質量%以下が好ましく、1質量%以下がさらに好ましい。   Cu and Ni have the effect of improving the hardenability and improve the hardness of the steel for machine structure after quenching. Furthermore, this effect increases as the content of Cu and Ni increases. In order to acquire this effect, each content of Cu and Ni is preferably 0.1% by mass or more, and more preferably 0.3% by mass or more. On the other hand, when these elements are added excessively, the hardenability increases, a supercooled structure is generated, and the ductility and toughness decrease. Therefore, each content of Cu and Ni is 3% by mass or less, preferably 2% by mass or less, and more preferably 1% by mass or less.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例によって制限を受けるものではなく、請求項に示した範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. It should be noted that the present invention is not limited by this embodiment, and can be implemented with appropriate modifications within the scope of the claims, all of which are included in the technical scope of the present invention. The

〔供試材作製〕
表1および表2に示される化学成分組成の鋼150kgが、真空誘導炉で溶解され、上面:φ245mm、下面:φ210mm×高さ480mmのインゴットに鋳造された。このインゴットは、1200℃×3hr程度でソーキングされた後、1100℃×1hr程度で、150mm角×長さ680mmの四角材に鍛造されて、長さ100mm程度に切断された。この切断された四角材は、1100℃×1hr程度で、厚さ30mm×幅155mmの板材およびφ80mmの丸棒材に、それぞれ熱間鍛造された。そして、板材は長さ100mmに、丸棒材は長さ300mmに、それぞれ切断された。これらの板材および丸棒材は、焼ならし(900℃×2hrの熱処理後、放冷)されて、供試材No.1〜70(実施例、比較例)に作製された。Cr,Al,Oの含有量の関係式「(0.1×[Cr]+[Al])/[O]」およびN,Tiの含有量の関係式「[N]−0.3×[Ti]」は、前記化学成分組成から算出されて表1および表2に併記されている。また、供試材(板材)から切り出したサンプルで、不活性ガス融解法−熱伝導度法およびアンモニア蒸留分離インドフェノール青吸光光度法にて測定されたN固溶量は、表1および表2に併記されている。作製された供試材で、以下の測定および評価が行われた。
[Sample preparation]
150 kg of steel having the chemical composition shown in Table 1 and Table 2 was melted in a vacuum induction furnace and cast into an ingot having an upper surface of φ245 mm and a lower surface of φ210 mm × height 480 mm. The ingot was soaked at about 1200 ° C. × 3 hr, forged into a square material of 150 mm square × length 680 mm at about 1100 ° C. × 1 hr, and cut to a length of about 100 mm. The cut square material was hot forged into a plate material of 30 mm thickness × 155 mm width and a round bar material of φ80 mm at about 1100 ° C. × 1 hr. The plate material was cut to a length of 100 mm, and the round bar material was cut to a length of 300 mm. These plate materials and round bar materials were normalized (after heat treatment at 900 ° C. × 2 hr and then allowed to cool), and the test material No. 1 to 70 (Examples and Comparative Examples). Relational expression of content of Cr, Al, O “(0.1 × [Cr] + [Al]) / [O]” and relational expression of content of N, Ti “[N] −0.3 × [ “Ti]” is calculated from the chemical composition and listed in Tables 1 and 2. Moreover, the amount of N solid solution measured by the inert gas melting method-thermal conductivity method and ammonia distillation separation indophenol blue absorptiometry in the sample cut out from the test material (plate material) is shown in Tables 1 and 2. It is written together. The following measurements and evaluations were performed on the prepared specimens.

〔測定、評価〕
(被削性)
断続切削時の被削性を評価するために、エンドミル工具での断続切削によるホブ加工の模擬評価が行われた後、工具摩耗が観察された。供試材(板材)は、スケールを除去されて、その表面を厚さ方向に2mm研削されて、厚さ25mm×幅145mm×長さ100mmの切削試験片に作製された。マニシングセンタ主軸にエンドミル工具(三菱マテリアル製ハイスエンドミル、型番K−2SL、外径φ10mm、TiAlNコーティング厚さ2.6μm)が取り付けられ、バイスにより固定された切削試験片に対して、乾式の切削雰囲気下で断続切削が行われた。断続切削条件は下記に示される。200カット(切削距離:約3000m)の断続切削の後、使用されたエンドミル工具が光学顕微鏡にて観察され、平均逃げ面摩耗幅(工具摩耗量)が測定された。被削性の合格基準は、工具摩耗量が70μm以下とされた。なお、同じ切削試験片の表面のビッカース硬さが測定された。工具摩耗量およびビッカース硬さは表1および表2に示される。
[Measurement and evaluation]
(Machinability)
In order to evaluate the machinability during interrupted cutting, tool wear was observed after a simulated evaluation of hobbing by interrupted cutting with an end mill tool. The test material (plate material) was made into a cut specimen having a thickness of 25 mm, a width of 145 mm, and a length of 100 mm by removing the scale and grinding the surface by 2 mm in the thickness direction. An end mill tool (Mitsubishi Materials High-Speed End Mill, model number K-2SL, outer diameter φ10 mm, TiAlN coating thickness 2.6 μm) is attached to the main spindle of the machining center. Intermittent cutting was performed in an atmosphere. The interrupted cutting conditions are shown below. After intermittent cutting of 200 cuts (cutting distance: about 3000 m), the used end mill tool was observed with an optical microscope, and the average flank wear width (tool wear amount) was measured. The acceptance criteria for machinability was a tool wear amount of 70 μm or less. In addition, the Vickers hardness of the surface of the same cutting test piece was measured. Table 1 and Table 2 show the tool wear amount and Vickers hardness.

(断続切削条件)
軸方向切り込み量:1.0mm
径方向切り込み量:1.0mm
送り量 :0.117mm/rev
送り速度 :558.9mm/min
切削速度 :150m/min
回転速度 :4777rpm
(Intermittent cutting conditions)
Axial cut depth: 1.0mm
Radial cut depth: 1.0mm
Feed amount: 0.117 mm / rev
Feeding speed: 558.9 mm / min
Cutting speed: 150 m / min
Rotation speed: 4777 rpm

(横目の靭性)
機械的特性として、浸炭処理後の供試材の横目の靭性が評価された。供試材(丸棒材)は、圧延(鍛伸)方向に垂直な方向(横目)に沿ったノッチ(R:10mm、深さ:2mm)を形成され、10mm×10mm×55mmのサイズに削り出されて、シャルピー衝撃試験片に作製された。この試験片は、下記の条件で浸炭処理され、次に60℃のコールド油を用いて油焼入れされた後、焼戻しされた(170℃×120minの熱処理後、空冷)。以上の処理後の試験片でシャルピー衝撃値(シャルピー吸収エネルギー)が測定された。測定したシャルピー吸収エネルギーは表1および表2に示される。横目の靭性の合格基準は、シャルピー吸収エネルギーが10.0J以上とされた。
(Toughness of lateral eye)
As the mechanical properties, the toughness of the cross-section of the specimen after carburization was evaluated. The test material (round bar material) is formed with a notch (R: 10 mm, depth: 2 mm) along a direction (horizontal line) perpendicular to the rolling (forging) direction, and is cut into a size of 10 mm × 10 mm × 55 mm. And made into a Charpy impact test piece. The test piece was carburized under the following conditions, then quenched with 60 ° C. cold oil and then tempered (after heat treatment at 170 ° C. × 120 min, air-cooled). The Charpy impact value (Charpy absorbed energy) was measured on the test piece after the above treatment. The measured Charpy absorbed energy is shown in Tables 1 and 2. The acceptance criterion for the toughness of the transverse eye was a Charpy absorbed energy of 10.0 J or more.

(浸炭処理条件)
900℃×90min(CO2濃度:0.11%、カーボンポテンシャル(以下、CP):1.0%狙い)→900℃×90min(CO2濃度:0.17%、CP:0.8%狙い)→840℃×60min(CO2濃度:0.39%、CP:0.8%狙い)
(Carburizing conditions)
900 ° C. × 90 min (CO 2 concentration: 0.11%, carbon potential (CP): 1.0% target) → 900 ° C. × 90 min (CO 2 concentration: 0.17%, CP: 0.8% target) ) → 840 ° C. × 60 min (CO 2 concentration: 0.39%, CP: 0.8% target)

(熱間加工性)
熱間加工性として、供試材の熱間延性が評価された。供試材(丸棒材)は、図1に示される形状の試験片に作製された。この試験片は、熱間加工再現試験装置(富士電波工業(株)製)によって、900℃まで加熱された状態において0.01mm/sで引張試験を行われ、以下の式から断面減少率(%)を測定した。なお、試験片の標点距離は平行部の長さと同じ15mmである。測定した断面減少率は表1および表2に示される。熱間加工性の合格基準は、断面減少率が40%以上とされた。
(断面減少率)={(標点間部の断面積)−(破断部の断面積)}/(標点間部の断面積)×100
(Hot workability)
As the hot workability, the hot ductility of the test material was evaluated. The test material (round bar) was made into a test piece having the shape shown in FIG. This test piece was subjected to a tensile test at 0.01 mm / s in a state heated to 900 ° C. by a hot working reproduction test apparatus (manufactured by Fuji Denpa Kogyo Co., Ltd.). %). The gauge distance of the test piece is 15 mm which is the same as the length of the parallel part. The measured cross-sectional reduction rate is shown in Tables 1 and 2. The acceptance criterion for hot workability was a cross-section reduction rate of 40% or more.
(Cross section reduction rate) = {(Cross sectional area between gauge points) − (Cross sectional area)} / (Cross sectional area between gauge points) × 100

Figure 0005314509
Figure 0005314509

Figure 0005314509
Figure 0005314509

(評価)
表1に示すように、供試材No.1〜27,61〜70は、その各成分の含有量および相関が本発明の範囲の実施例であるので、断続切削試験後の工具摩耗量が小さくて断続切削時の被削性に優れており、横目の靭性および熱間加工性も良好であった。
(Evaluation)
As shown in Table 1, the test material No. Since 1-227 and 61-70 are examples in which the content and correlation of each component are within the scope of the present invention, the amount of tool wear after the intermittent cutting test is small, and the machinability during intermittent cutting is excellent. Further, the toughness and hot workability of the transverse eye were also good.

これに対して、表2に示すように、供試材No.28〜60は、その各成分の含有量や相関の少なくとも1つが本発明の範囲外の比較例である。供試材No.28はC含有量が過剰なため、被削性、横目の靱性、および熱間加工性が低下した。供試材No.29は、Si含有量が不足しているため、またO含有量が過剰なため、被削性が低下した。一方、供試材No.30はSi含有量が過剰なため、浸炭処理による強度向上効果が不十分で横目の靱性が低下した。供試材No.31はMn含有量が不足しているため、焼入れ性が不十分で横目の靱性が低下した。一方、供試材No.32は、Mn含有量が過剰なため被削性が低下し、さらにP含有量が過剰なため横目の靱性が低下した。供試材No.33はS含有量が過剰なため、被削性は向上したが横目の靱性および熱間加工性は低下した。   On the other hand, as shown in Table 2, the test material No. 28 to 60 are comparative examples in which at least one of the content and correlation of each component is outside the scope of the present invention. Specimen No. No. 28 had an excessive C content, so that machinability, transverse toughness, and hot workability deteriorated. Specimen No. In No. 29, the machinability decreased because the Si content was insufficient and the O content was excessive. On the other hand, the test material No. Since No. 30 had an excessive Si content, the effect of improving the strength by carburizing treatment was insufficient, and the toughness of the transverse line was lowered. Specimen No. No. 31 had insufficient Mn content, so the hardenability was insufficient and the toughness of the transverse eye was lowered. On the other hand, the test material No. In No. 32, the machinability was lowered due to the excessive Mn content, and the toughness of the transverse eye was lowered due to the excessive P content. Specimen No. No. 33 had an excessive S content, so machinability was improved, but the toughness and hot workability of the transverse eye were lowered.

供試材No.34はCr含有量が不足しているため、被削性が低下した。一方、供試材No.35はCr含有量が過剰なため、被削性および横目の靱性が低下した。供試材No.36はAl含有量が不足しているため、被削性が低下し、さらに浸炭処理における異常粒成長が抑制されず横目の靱性が低下した。また、供試材No.37はAl含有量がそれ自体で不足し、かつO含有量に対してCr,Alの各含有量が不足しているため、被削性および横目の靱性が低下した。一方、供試材No.38はAl含有量が過剰なため、浸炭処理による強度向上効果が不十分で横目の靱性が低下した。   Specimen No. Since the Cr content of 34 was insufficient, machinability decreased. On the other hand, the test material No. Since the Cr content of 35 was excessive, machinability and transverse toughness were reduced. Specimen No. As for No. 36, since the Al content is insufficient, the machinability is lowered, and the abnormal grain growth in the carburizing process is not suppressed, and the toughness of the transverse eye is lowered. In addition, specimen No. In No. 37, the Al content itself was insufficient, and the Cr and Al contents were insufficient with respect to the O content. On the other hand, the test material No. In No. 38, the Al content was excessive, so that the effect of improving the strength by carburizing treatment was insufficient, and the toughness of the transverse eye was lowered.

供試材No.39は、N含有量が過剰なため被削性が低下し、また固溶Nも過剰になって横目の靱性および熱間加工性が低下した。供試材No.40はTi含有量が不足している(無添加である)ため、相対的にN含有量が過剰となったことで固溶Nが過剰になって、熱間加工性が低下した。一方、供試材No.41はTi含有量が過剰なため、被削性および熱間加工性が低下した。   Specimen No. In No. 39, the machinability decreased due to an excessive N content, and solid solution N also increased, resulting in a decrease in the toughness and hot workability of the transverse eye. Specimen No. In No. 40, since the Ti content was insufficient (no addition), the N content was relatively excessive, so that the solid solution N was excessive and the hot workability was lowered. On the other hand, the test material No. Since No. 41 had an excessive Ti content, machinability and hot workability decreased.

供試材No.42,43は、Ca,Mgの各含有量がいずれも不足している(無添加である)ため、それぞれ被削性が低下した。一方、供試材No.44はCa含有量が過剰なため、被削性および横目の靱性が低下した。   Specimen No. As for 42 and 43, since each content of Ca and Mg was insufficient (no addition), machinability fell, respectively. On the other hand, the test material No. No. 44 had an excessive Ca content, so that machinability and toughness of the transverse eye were lowered.

供試材No.45はMo含有量が過剰なため、被削性が低下した。供試材No.46はNb含有量が過剰なため、供試材No.47はV含有量が過剰なため、それぞれ被削性および熱間加工性が低下した。供試材No.48はB含有量が過剰なため、被削性は向上したが熱間加工性が低下した。   Specimen No. No. 45 has an excessive Mo content, so the machinability was lowered. Specimen No. No. 46 has an excessive Nb content. Since No. 47 had an excessive V content, machinability and hot workability were reduced. Specimen No. No. 48 had an excessive B content, so that machinability was improved but hot workability was lowered.

供試材No.49は、各成分の含有量は本発明の範囲であるが、O含有量に対してCr,Alの各含有量が不足しているため、被削性が低下した。供試材No.50〜60は、各成分の含有量は本発明の範囲であるが、N含有量に対してTi含有量が不足しているため、固溶Nが過剰になっていずれも熱間加工性が低下した。さらに、供試材No.51〜60は、Alによる被削性の向上効果が低下した。一方、供試材No.50は、N含有量が本発明の範囲内における上限近傍で、Ti含有量に対する過剰分が特に大きいため、固溶N単独による作用で被削性は向上したが、横目の靱性が低下した。   Specimen No. No. 49, the content of each component is within the scope of the present invention, but the machinability deteriorated because the Cr and Al contents were insufficient with respect to the O content. Specimen No. 50-60, the content of each component is within the scope of the present invention, but since the Ti content is insufficient with respect to the N content, the solid solution N becomes excessive and both have hot workability. Declined. Furthermore, the test material No. In 51-60, the improvement effect of the machinability by Al fell. On the other hand, the test material No. No. 50 has an N content in the vicinity of the upper limit within the range of the present invention, and an excessive amount with respect to the Ti content is particularly large. Therefore, machinability was improved by the action of solid solution N alone, but the toughness of the transverse eye was lowered.

Claims (4)

C:0.05〜1.2質量%、Si:0.03〜2質量%、Mn:0.2〜1.8質量%、Cr:0.1〜3質量%、Al:0.06〜0.5質量%、Ti:0.01〜0.1質量%、N:0.02質量%以下、O:0.003質量%以下を含有し、さらに、Ca:0.0005〜0.02質量%、Mg:0.0001〜0.005質量%のうち1種以上を含有し、PおよびSを各0.03質量%以下に規制し、残部がFeおよび不可避的不純物からなり、
前記Cr,Al,Oの各含有量(質量%)を、[Cr]、[Al]、[O]として表したとき、(0.1×[Cr]+[Al])/[O]≧150を満足し、
前記N,Tiの各含有量(質量%)を、[N]、[Ti]として表したとき、[N]−0.3×[Ti]≦0.0005を満足し、
N固溶量が0.0005質量%以下であることを特徴とする機械構造用鋼。
C: 0.05-1.2 mass%, Si: 0.03-2 mass%, Mn: 0.2-1.8 mass%, Cr: 0.1-3 mass%, Al: 0.06- 0.5% by mass, Ti: 0.01 to 0.1% by mass, N: 0.02% by mass or less, O: 0.003% by mass or less, and Ca: 0.0005 to 0.02 Mass%, Mg: containing at least one of 0.0001 to 0.005 mass%, regulating P and S to 0.03 mass% or less, the balance consisting of Fe and inevitable impurities,
When each content (mass%) of the Cr, Al, O is expressed as [Cr], [Al], [O], (0.1 × [Cr] + [Al]) / [O] ≧ 150 satisfied,
When each content (% by mass) of N and Ti is expressed as [N] and [Ti], [N] −0.3 × [Ti] ≦ 0.0005 is satisfied,
A machine structural steel, wherein the N solid solution amount is 0.0005 mass% or less.
さらに、Mo:1質量%以下を含有することを特徴とする請求項1に記載の機械構造用鋼。   Furthermore, Mo: 1 mass% or less is contained, Steel for machine structure of Claim 1 characterized by the above-mentioned. さらに、Nb:0.2質量%以下を含有することを特徴とする請求項1または請求項2に記載の機械構造用鋼。   Furthermore, Nb: 0.2 mass% or less is contained, Steel for machine structure of Claim 1 or Claim 2 characterized by the above-mentioned. さらに、V:0.5質量%以下、Cu:3質量%以下、Ni:3質量%以下、およびB:0.005質量%以下のうち1種以上を含有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の機械構造用鋼。   Furthermore, it contains 1 or more types among V: 0.5 mass% or less, Cu: 3 mass% or less, Ni: 3 mass% or less, and B: 0.005 mass% or less. The steel for machine structure of any one of thru | or 3.
JP2009144267A 2008-06-19 2009-06-17 Steel for machine structure Expired - Fee Related JP5314509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009144267A JP5314509B2 (en) 2008-06-19 2009-06-17 Steel for machine structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008160750 2008-06-19
JP2008160750 2008-06-19
JP2009144267A JP5314509B2 (en) 2008-06-19 2009-06-17 Steel for machine structure

Publications (2)

Publication Number Publication Date
JP2010024549A JP2010024549A (en) 2010-02-04
JP5314509B2 true JP5314509B2 (en) 2013-10-16

Family

ID=41730636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144267A Expired - Fee Related JP5314509B2 (en) 2008-06-19 2009-06-17 Steel for machine structure

Country Status (1)

Country Link
JP (1) JP5314509B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2594654T3 (en) * 2010-07-14 2016-09-30 Steel having excellent machinability for mechanical structure
JP6623686B2 (en) * 2015-10-30 2019-12-25 日本製鉄株式会社 Manufacturing method of product member and product member
CN113151738B (en) * 2021-04-01 2022-09-13 山东钢铁股份有限公司 High-cleanliness camshaft steel and rolling method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847681B2 (en) * 2004-02-06 2011-12-28 株式会社神戸製鋼所 Ti-containing case-hardened steel
JP2006291335A (en) * 2005-04-14 2006-10-26 Kobe Steel Ltd Steel for case hardening having excellent high temperature carburizing characteristic and workability
JP4464864B2 (en) * 2005-04-27 2010-05-19 株式会社神戸製鋼所 Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP2008013788A (en) * 2006-07-03 2008-01-24 Nippon Steel Corp Steel for mechanical structural use having excellent machinability and strength property
JP5166959B2 (en) * 2008-04-28 2013-03-21 株式会社神戸製鋼所 Machine structural steel for oxygen-enriched atmosphere cutting

Also Published As

Publication number Publication date
JP2010024549A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4193998B1 (en) Machine structural steel excellent in machinability and manufacturing method thereof
JP4295314B2 (en) Steel for high-speed cold work, method for producing the same, and method for producing high-speed cold-worked parts
KR101369113B1 (en) Steel for machine structural use, manufacturing method for same, case hardened steel components, and manufacturing method for same
WO2012046779A1 (en) Case hardened steel and method for producing the same
JP5138991B2 (en) Machine structural steel with excellent machinability
JP4986203B2 (en) BN free-cutting steel with excellent tool life
JP5368885B2 (en) Machine structural steel with excellent hot workability and machinability
JP5260460B2 (en) Case-hardened steel parts and manufacturing method thereof
JP5237696B2 (en) Steel for machine structure
JP5314509B2 (en) Steel for machine structure
JP4347763B2 (en) High temperature carburizing steel and method for producing the same
JPH0791620B2 (en) High speed tool steel with excellent grindability
JP5576895B2 (en) BN free-cutting steel with excellent tool life
JP3297500B2 (en) High-strength steel bar with excellent machinability
JP2011080100A (en) Steel for machine structural use, and method for producing the same
JP5166959B2 (en) Machine structural steel for oxygen-enriched atmosphere cutting
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP5363827B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP2017057475A (en) Free cutting steel
JP6226071B2 (en) Case-hardened steel
JP5318638B2 (en) Machine structural steel with excellent machinability
JP6569650B2 (en) Case-hardened steel
JPH11293389A (en) Hot worked steel material excellent in machinability, product, and their production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees