JP2011080100A - Steel for machine structural use, and method for producing the same - Google Patents

Steel for machine structural use, and method for producing the same Download PDF

Info

Publication number
JP2011080100A
JP2011080100A JP2009230911A JP2009230911A JP2011080100A JP 2011080100 A JP2011080100 A JP 2011080100A JP 2009230911 A JP2009230911 A JP 2009230911A JP 2009230911 A JP2009230911 A JP 2009230911A JP 2011080100 A JP2011080100 A JP 2011080100A
Authority
JP
Japan
Prior art keywords
less
steel
excluding
aln
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009230911A
Other languages
Japanese (ja)
Other versions
JP5286220B2 (en
Inventor
Takehiro Tsuchida
武広 土田
Tomokazu Masuda
智一 増田
Mutsuhisa Nagahama
睦久 永濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009230911A priority Critical patent/JP5286220B2/en
Priority to US13/395,696 priority patent/US9200357B2/en
Priority to EP10820702.8A priority patent/EP2484789A4/en
Priority to CN201080044768.9A priority patent/CN102686759B/en
Priority to KR1020127008374A priority patent/KR101369113B1/en
Priority to PCT/JP2010/067185 priority patent/WO2011040587A1/en
Publication of JP2011080100A publication Critical patent/JP2011080100A/en
Application granted granted Critical
Publication of JP5286220B2 publication Critical patent/JP5286220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for machine structural use exhibiting excellent machinability (particularly, elongation of a tool life) in interrupted cutting at low speeds using high speed tools (e.g., hob working), further exhibiting excellent machinability (particularly, the elongation of a tool life) in continuous cutting at high speeds using cemented carbide tools (e.g., turning), as well as excellent impact performance, even after being subjected to a heat treatment such as quenching and tempering, and to provide a method for producing the same. <P>SOLUTION: In the steel having a composition comprising 0.05 to 0.8% C, 0.03 to 2% Si, 0.2 to 1.8% Mn, 0.1 to 0.5% Al, 0.0005 to 0.008% B and 0.002 to 0.015% N, and satisfying &le;0.03% (excluding 0%) P, &le;0.03% (excluding 0%) S and &le;0.002% (excluding 0%) O, and the balance iron with inevitable impurities, mass ratio between BN and AlN (BN/AlN) precipitated in the steel is controlled to 0.020 to 0.2. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、切削加工して機械構造部品を製造するために用いる機械構造用鋼、およびその製造方法に関するものである。   The present invention relates to a steel for machine structure used for manufacturing machine structural parts by cutting, and a method for manufacturing the same.

自動車用変速機や差動装置をはじめとする各種歯車伝達装置に利用される歯車、シャフト、プーリーや等速ジョイント等、更にはクランクシャフト、コンロッド等の機械構造部品は、機械構造用鋼に鍛造等の加工を施した後、切削加工することによって最終形状(部品形状)に仕上げられるのが一般的である。切削加工に要するコストは製作費全体中に占める割合が大きいことから、上記機械構造用鋼には被削性の良いことが要求される。   Machine structural parts such as gears, shafts, pulleys, constant velocity joints, etc. used in various gear transmissions including automobile transmissions and differential gears, as well as crankshafts and connecting rods, are forged into steel for machine structural use. In general, a final shape (part shape) is finished by performing a cutting process. Since the cost required for cutting accounts for a large proportion of the total production cost, the machine structural steel is required to have good machinability.

上記機械構造部品のうち特に歯車を製造するときの切削加工においては、ホブによる歯切りを行うのが一般的であり、この場合の切削は断続切削と呼ばれている。ホブ加工に用いられる工具としては、高速度工具鋼にAlTiNなどのコーティングを施したもの(以下、「ハイス工具」と略称することがある)が現状の主流である。しかしハイス工具を用いたホブ加工(断続切削)による歯切りは、低速(具体的には、切削速度150m/min程度以下)・低温(具体的には、200〜600℃程度)であるが、断続切削のため空気と触れ易く、工具が酸化・摩耗し易くなるという弊害がある。そのためホブ加工等の低速断続切削に供される機械構造用鋼は、被削性のなかでも特に工具寿命を伸ばすことが求められている。   Of the mechanical structural parts described above, in particular when cutting gears, cutting with a hob is generally performed, and the cutting in this case is called intermittent cutting. As a tool used for hobbing, a high-speed tool steel coated with AlTiN or the like (hereinafter sometimes abbreviated as “high-speed tool”) is the current mainstream. However, gear cutting by hobbing (intermittent cutting) using a high-speed tool is low speed (specifically, cutting speed of about 150 m / min or less) and low temperature (specifically, about 200 to 600 ° C.), Because of the intermittent cutting, there is an adverse effect that it is easy to come into contact with air and the tool is likely to be oxidized and worn. Therefore, machine structural steels used for low-speed intermittent cutting such as hobbing are required to extend the tool life especially among machinability.

断続切削性を改善する技術として、特許文献1に、Al:0.04〜0.20%、O:0.0030%以下を含有する断続高速切削用鋼が提案されている。この技術では、Al含有量を高めた鋼を高速で断続切削することで、工具面上にAl酸化物を付着させており、これにより工具寿命を向上させている。しかしこの断続高速切削用鋼は、切削速度200m/min以上の高速断続切削が念頭に置かれることが多く、ホブ加工のような低速断続切削は意図されていない。   As a technique for improving the intermittent cutting performance, Patent Document 1 proposes an intermittent high-speed cutting steel containing Al: 0.04 to 0.20% and O: 0.0030% or less. In this technique, Al oxide is deposited on the tool surface by intermittently cutting steel with a high Al content at a high speed, thereby improving the tool life. However, the steel for intermittent high-speed cutting is often intended for high-speed intermittent cutting with a cutting speed of 200 m / min or more, and low-speed intermittent cutting such as hobbing is not intended.

一方、切削加工に用いられる工具としては、上記ハイス工具の他、超硬合金にAlTiNなどのコーティングを施したもの(以下、「超硬工具」と略称することがある)もある。この超硬工具は、焼きならし材に対して適用すると「欠け」が発生し易いという問題があることから、旋削等の連続切削に適用されることが多い。旋削等による連続切削は、通常、切削速度が150m/minを超え、多くの場合は200m/min以上の高速で行われる。   On the other hand, in addition to the above-mentioned high-speed tools, there are also tools used for cutting, such as cemented carbide with a coating such as AlTiN (hereinafter sometimes referred to as “carbide tool”). This carbide tool is often applied to continuous cutting such as turning because there is a problem that “chip” tends to occur when applied to a normalizing material. Continuous cutting by turning or the like is usually performed at a cutting speed exceeding 150 m / min, and in many cases at a high speed of 200 m / min or more.

このように上記断続切削と連続切削とでは切削機構が異なり、夫々の切削に応じた工具が選ばれる。しかし被削材としての機械構造用鋼には、いずれの切削においても良好な被削性を発揮することが望まれる。   Thus, the cutting mechanism is different between the intermittent cutting and the continuous cutting, and a tool corresponding to each cutting is selected. However, it is desired that steel for machine structure as a work material exhibits good machinability in any cutting.

ところで最終形状に仕上げられた後は、浸炭処理や浸炭窒化処理(大気圧、低圧、真空、プラズマ雰囲気を含む)等の表面硬化処理を施され、更に焼入れ焼戻しや高周波焼入れ等の熱処理が施されて所定の強度に高められる。しかし熱影響を受けると靱性が低下し、衝撃特性が悪化することがある。   By the way, after finishing to the final shape, surface hardening treatment such as carburizing treatment and carbonitriding treatment (including atmospheric pressure, low pressure, vacuum and plasma atmosphere) is performed, and further heat treatment such as quenching and tempering and induction hardening is performed. To a predetermined strength. However, when affected by heat, the toughness decreases and the impact properties may deteriorate.

衝撃特性を改善する技術として、特許文献2には0.1%を超え0.3%以下の範囲でAlを含有する機械構造用鋼が提案されている。この文献には、固溶N量を低減することによって被削性と衝撃特性を向上できることや、Al含有量を適正化して被削性向上効果に有効な固溶AlおよびAlNを適量確保することによって低速から高速までの幅広い切削速度域に対して有効な切削性能が得られることが開示されている。この文献では機械構造用鋼の衝撃特性をシャルピー衝撃試験による吸収エネルギーを測定することによって評価している。しかしこの文献で達成できている吸収エネルギーは、50J/cm2に到達しておらず、衝撃特性の更なる向上が求められる。 As a technique for improving impact characteristics, Patent Document 2 proposes a steel for machine structure containing Al in a range of more than 0.1% and 0.3% or less. In this document, the machinability and impact characteristics can be improved by reducing the amount of solid solution N, and the proper amount of solid solution Al and AlN effective for the machinability improvement effect can be secured by optimizing the Al content. It is disclosed that effective cutting performance can be obtained for a wide cutting speed range from low speed to high speed. In this document, the impact characteristics of mechanical structural steel are evaluated by measuring the absorbed energy by the Charpy impact test. However, the absorbed energy achieved in this document does not reach 50 J / cm 2 , and further improvement in impact characteristics is required.

本出願人もハイス工具での断続切削と超硬工具での連続切削の両方で優れた被削性を発揮し、更に浸炭−油焼入れした後、焼戻し処理した場合であっても優れた衝撃特性を示す機械構造用鋼を特許文献3に提案している。この技術では、CrとAlの含有量と、これらの含有量の比を適切に制御することで、被削性と衝撃特性を改善している。   The present applicant also exhibits excellent machinability both in intermittent cutting with a high-speed tool and continuous cutting with a carbide tool, and also has excellent impact characteristics even when tempering after carburizing and oil quenching. Patent Document 3 proposes a machine structural steel showing In this technique, the machinability and impact characteristics are improved by appropriately controlling the content of Cr and Al and the ratio of these contents.

特開2001−342539号公報JP 2001-342539 A 特開2008−13788号公報JP 2008-13788 A 特開2009−30160号公報JP 2009-30160 A

本発明の目的は、本出願人が先に提案した上記特許文献3とは異なる方法で、ハイス工具を用いた低速での断続切削(例えば、ホブ加工)において優れた被削性(特に、工具寿命の延長)を発揮し、しかも超硬工具を用いた高速での連続切削(例えば、旋削)においても優れた被削性(特に、工具寿命の延長)を発揮し、更に焼入れ焼戻し等の熱処理を施した後でも優れた衝撃特性を示す機械構造用鋼、およびその製造方法を提供することにある。   An object of the present invention is to provide excellent machinability (especially a tool) in intermittent cutting (for example, hobbing) at a low speed using a high-speed tool by a method different from the above-mentioned Patent Document 3 proposed previously by the present applicant. (Extended tool life) and excellent machinability (especially extended tool life) in high-speed continuous cutting (for example, turning) using carbide tools, and further heat treatment such as quenching and tempering. It is an object of the present invention to provide a mechanical structural steel exhibiting excellent impact characteristics even after being subjected to the treatment, and a method for producing the same.

上記課題を解決することのできた本発明に係る機械構造用鋼は、C:0.05〜0.8%(質量%の意味、以下同じ)、Si:0.03〜2%、Mn:0.2〜1.8%、Al:0.1〜0.5%、B:0.0005〜0.008%、N:0.002〜0.015%を含有し、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、O:0.002%以下(0%を含まない)を満足し、残部が鉄および不可避不純物からなる鋼であり、鋼中に析出しているBNとAlNの質量比(BN/AlN)が0.020〜0.2である点に要旨を有している。   The mechanical structural steel according to the present invention that has solved the above problems is C: 0.05 to 0.8% (meaning of mass%, the same shall apply hereinafter), Si: 0.03 to 2%, Mn: 0 2 to 1.8%, Al: 0.1 to 0.5%, B: 0.0005 to 0.008%, N: 0.002 to 0.015%, P: 0.03% The following are satisfied (excluding 0%), S: 0.03% or less (not including 0%), O: 0.002% or less (not including 0%), and the balance is made of iron and inevitable impurities. It is steel and has a gist in that the mass ratio (BN / AlN) of BN and AlN precipitated in the steel is 0.020 to 0.2.

鋼中に析出しているBNは、旧オーステナイト粒界に析出しているBNと旧オーステナイト粒内に析出しているBNの個数比(粒界BN/粒内BN)が0.50以下であることが好ましい。   In the BN precipitated in the steel, the number ratio of BN precipitated in the prior austenite grain boundaries and BN precipitated in the prior austenite grains (grain boundary BN / intragrain BN) is 0.50 or less. It is preferable.

上記機械構造用鋼は、更に他の元素として、
(a)Cr:3%以下(0%を含まない)、
(b)Mo:1%以下(0%を含まない)、
(c)Nb:0.15%以下(0%を含まない)、
(d)Zr:0.02%以下(0%を含まない)、Hf:0.02%以下(0%を含まない)、Ta:0.02%以下(0%を含まない)、およびTi:0.02%以下(0%を含まない)よりなる群から選ばれる少なくとも1種、
(e)V:0.5%以下(0%を含まない)、Cu:3%以下(0%を含まない)、およびNi:3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種、
等を含有してもよい。
The steel for machine structure is still another element,
(A) Cr: 3% or less (excluding 0%),
(B) Mo: 1% or less (excluding 0%),
(C) Nb: 0.15% or less (excluding 0%),
(D) Zr: 0.02% or less (not including 0%), Hf: 0.02% or less (not including 0%), Ta: 0.02% or less (not including 0%), and Ti : At least one selected from the group consisting of 0.02% or less (excluding 0%),
(E) V: 0.5% or less (not including 0%), Cu: 3% or less (not including 0%), and Ni: 3% or less (not including 0%) At least one,
Etc. may be contained.

本発明に係る機械構造用鋼は、上記成分組成を満足する鋼をいったん1100℃以上に加熱した後、900〜1050℃の温度域で150秒以上保持し、その後冷却するに際し900℃から700℃までの平均冷却速度を0.05〜10℃/秒とすることによって製造できる。本発明では、上記成分組成を満足する鋼を1100℃以上に加熱した後、1000℃以上で熱間加工すると共に、900〜1050℃の温度域での保持時間を150秒以上としてもよい。   The steel for machine structural use according to the present invention once heats steel satisfying the above composition to 1100 ° C. or higher, then holds it in a temperature range of 900 to 1050 ° C. for 150 seconds or more, and then cools it to 900 ° C. to 700 ° C. Up to an average cooling rate of 0.05 to 10 ° C./second. In this invention, after heating the steel which satisfies the said component composition to 1100 degreeC or more, while hot-working at 1000 degreeC or more, it is good also considering the holding time in a 900-1050 degreeC temperature range as 150 seconds or more.

本発明には、上記機械構造用鋼を用いて得られた機械構造部品も包含される。   The present invention includes a machine structural component obtained using the above steel for machine structure.

本発明によれば、AlNの析出を抑える一方でBNを積極的に析出させて、鋼中に析出しているBNとAlNの質量比(BN/AlN)を適切な範囲に調整しているため、低速での断続切削と高速での連続切削の両方で優れた被削性(特に、工具寿命の延長)を発揮し、更に熱処理しても優れた衝撃特性を示す機械構造用鋼、およびその製造方法を提供できる。   According to the present invention, BN is positively precipitated while suppressing precipitation of AlN, and the mass ratio of BN and AlN (BN / AlN) precipitated in the steel is adjusted to an appropriate range. , Steel for machine structural use that exhibits excellent machinability (especially extension of tool life) in both intermittent cutting at low speed and continuous cutting at high speed, and excellent shock characteristics even after heat treatment, and A manufacturing method can be provided.

本発明者らは、低速での断続切削と高速での連続切削の両方で優れた被削性(特に、工具寿命の延長)を発揮し、更に焼入れ焼戻し等の熱処理を施しても優れた衝撃特性を示す機械構造用鋼を提供するために様々な角度から検討を重ねてきた。その結果、機械構造用鋼の化学成分組成を適切に調整しつつ、鋼中に析出しているBNとAlNの質量比(BN/AlN)を適切に制御すれば、断続切削と連続切削の両方で良好な被削性を示し、且つ熱処理後の衝撃特性も向上できることを見出し、本発明を完成した。   The inventors have demonstrated excellent machinability (particularly extension of tool life) in both intermittent cutting at low speed and continuous cutting at high speed, and excellent impact even when subjected to heat treatment such as quenching and tempering. In order to provide mechanical structural steels that exhibit properties, investigations have been made from various angles. As a result, both the intermittent cutting and continuous cutting can be achieved if the mass ratio of BN and AlN (BN / AlN) deposited in the steel is appropriately controlled while appropriately adjusting the chemical composition of the mechanical structural steel. The present invention has been completed by finding that it exhibits good machinability and can improve impact characteristics after heat treatment.

まず、本発明に係る機械構造用鋼の化学成分組成について説明した後、本発明を特徴付けるBNとAlNの質量比について説明する。   First, after describing the chemical composition of the steel for machine structural use according to the present invention, the mass ratio of BN and AlN that characterizes the present invention will be described.

本発明の機械構造用鋼は、C:0.05〜0.8%、Si:0.03〜2%、Mn:0.2〜1.8%、Al:0.1〜0.5%、B:0.0005〜0.008%、およびN:0.002〜0.015%を含有し、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、およびO:0.002%以下(0%を含まない)を満足するものである。このような範囲を規定した理由は次の通りである。   The steel for mechanical structure of the present invention is C: 0.05 to 0.8%, Si: 0.03 to 2%, Mn: 0.2 to 1.8%, Al: 0.1 to 0.5% , B: 0.0005 to 0.008%, and N: 0.002 to 0.015%, P: 0.03% or less (excluding 0%), S: 0.03% or less ( 0% is not included) and O: 0.002% or less (not including 0%) is satisfied. The reason for specifying such a range is as follows.

Cは、強度を確保するために必要な元素であり、0.05%以上含有する必要がある。好ましくは0.1%以上であり、より好ましくは0.15%以上である。しかしC含有量が過剰になると、硬さが上昇し過ぎて被削性や靭性が低下する。従ってC量は0.8%以下とする。好ましくは0.6%以下であり、より好ましくは0.5%以下である。   C is an element necessary for ensuring the strength, and it is necessary to contain 0.05% or more. Preferably it is 0.1% or more, More preferably, it is 0.15% or more. However, when the C content is excessive, the hardness is excessively increased and the machinability and toughness are reduced. Therefore, the C content is 0.8% or less. Preferably it is 0.6% or less, More preferably, it is 0.5% or less.

Siは、脱酸元素として作用し、内部品質を向上させる元素であり、0.03%以上含有させる必要がある。好ましくは0.1%以上、より好ましくは0.15%以上である。しかしSi含有量が過剰になると、部品形状に加工するときの熱間加工性や冷間加工性が劣化したり、部品形状に切削加工した後に行う浸炭処理時や浸炭窒化処理時に粒界酸化などの異常組織が生成することがある。従ってSi量は2%以下とする必要があり、好ましくは1.5%以下、より好ましくは1%以下、更に好ましくは0.6%以下である。   Si is an element that acts as a deoxidizing element and improves internal quality, and needs to be contained by 0.03% or more. Preferably it is 0.1% or more, More preferably, it is 0.15% or more. However, when the Si content is excessive, hot workability and cold workability when processing into a part shape deteriorate, grain boundary oxidation during carburizing or carbonitriding performed after cutting into a part shape, etc. Abnormal tissue may be generated. Therefore, the amount of Si needs to be 2% or less, preferably 1.5% or less, more preferably 1% or less, and still more preferably 0.6% or less.

Mnは、焼入れ性を向上させて強度を高める元素であり、0.2%以上含有させる必要がある。好ましくは0.4%以上であり、より好ましくは0.5%以上である。しかしMn含有量が過剰になると、焼入れ性が向上し過ぎて、焼きならし後でも過冷組織が生成して被削性が低下する。従ってMn量は、1.8%以下とする必要がある。好ましくは1.5%以下、より好ましくは1%以下である。   Mn is an element that improves the hardenability and increases the strength, and should be contained by 0.2% or more. Preferably it is 0.4% or more, More preferably, it is 0.5% or more. However, if the Mn content is excessive, the hardenability is excessively improved, and even after normalization, a supercooled structure is generated and the machinability is lowered. Therefore, the amount of Mn needs to be 1.8% or less. Preferably it is 1.5% or less, More preferably, it is 1% or less.

Alは、鋼中に固溶状態で存在させることによって断続切削したときの被削性を向上させるために必要な元素である。また、Nと結合して析出したAlNは、部品形状に切削加工した後に行う浸炭処理時や浸炭窒化処理時に結晶粒が異常成長するのを抑制し、また靱性の低下による衝撃特性の悪化を防止するのに寄与する。またAlは、脱酸作用を有する元素であり、内部品質を向上させるために必要な元素である。従って本発明ではAlを0.1%以上、好ましくは0.13%以上含有させる。しかしAlを過剰に含有してAlNが多く析出すると連続切削したときの被削性が劣化する。また過剰なAlNは、部品形状に加工するときの熱間加工性を低下させる。従ってAl量は0.5%以下、好ましくは0.4%以下、更に好ましくは0.35%以下とする。   Al is an element necessary for improving machinability when intermittent cutting is performed by being present in a solid solution state in steel. In addition, AlN precipitated by bonding with N suppresses abnormal growth of crystal grains during carburizing or carbonitriding after cutting into a part shape, and prevents impact characteristics from deteriorating due to reduced toughness. To contribute to. Al is an element having a deoxidizing action and is an element necessary for improving the internal quality. Therefore, in the present invention, Al is contained in an amount of 0.1% or more, preferably 0.13% or more. However, if Al is contained excessively and a large amount of AlN is precipitated, the machinability at the time of continuous cutting deteriorates. Excessive AlN also reduces hot workability when processing into a part shape. Therefore, the Al content is 0.5% or less, preferably 0.4% or less, and more preferably 0.35% or less.

Bは、Nと結合して鋼中にBNを析出し、断続切削したときの被削性と連続切削したときの被削性の両方を改善するのに寄与元素である。また、BNを析出させることで固溶N量を少ない方向に調整できるため、部品形状に加工するときの熱間加工性も改善できる。また、Bは、切削加工後に焼入れ焼戻し等の熱処理を行うときに、焼入れ性を向上させると共に、粒界強度を高め、機械構造部品の強度向上に寄与する元素である。従ってB量は、0.0005%以上含有させる必要がある。好ましくは0.0007%以上、より好ましくは0.0010%以上である。しかし過剰に含有すると硬くなり過ぎるため被削性が低下する。従ってB量は0.008%以下とする必要があり、好ましくは0.006%以下、より好ましくは0.0035%以下である。   B is an element that contributes to improving both the machinability when intermittent cutting and the machinability when continuous cutting are performed by combining with N to precipitate BN in the steel. Moreover, since the amount of solute N can be adjusted in a small direction by precipitating BN, the hot workability when processing into a component shape can also be improved. Further, B is an element that improves the hardenability and increases the grain boundary strength and contributes to the improvement of the strength of the machine structural component when heat treatment such as quenching and tempering is performed after the cutting. Therefore, the amount of B must be 0.0005% or more. Preferably it is 0.0007% or more, More preferably, it is 0.0010% or more. However, when it contains excessively, it will become hard too much and machinability will fall. Therefore, the B content needs to be 0.008% or less, preferably 0.006% or less, more preferably 0.0035% or less.

Nは、Bと結合して鋼中にBNを析出し、上述したように、断続切削時と連続切削時の被削性向上に寄与する元素である。またNは、Alと結合して鋼中にAlNを析出し、部品形状に切削加工した後に行う浸炭処理時や浸炭窒化処理時に結晶粒が異常成長するのを防止するのに寄与する元素であり、靱性の低下が抑制されることで衝撃特性を向上させるのに作用する。こうした作用を発揮させるために、N量は0.002%以上とする。好ましくは0.003%以上、より好ましくは0.004%以上である。しかしNを過剰に含有してAlNが多く析出し過ぎると、連続切削したときの被削性が劣化する。またAlNの析出量が多くなると熱間加工性が低下する。従ってN量は0.015%以下、好ましくは0.010%以下、より好ましくは0.008%以下とする。   N is an element that combines with B to precipitate BN in the steel and contribute to improving machinability during intermittent cutting and continuous cutting as described above. N is an element that contributes to preventing abnormal growth of crystal grains during carburizing or carbonitriding after bonding to Al and precipitating AlN in steel and cutting into a part shape. It acts to improve impact characteristics by suppressing the decrease in toughness. In order to exert such an effect, the N amount is set to 0.002% or more. Preferably it is 0.003% or more, More preferably, it is 0.004% or more. However, if N is contained excessively and a large amount of AlN is precipitated, the machinability at the time of continuous cutting deteriorates. Moreover, when the amount of precipitation of AlN increases, hot workability will fall. Therefore, the N content is 0.015% or less, preferably 0.010% or less, more preferably 0.008% or less.

Pは、不可避的に含まれる不純物元素であり、熱間加工時に割れが発生するのを助長するため、できるだけ低減する。従って本発明では、P量は0.03%以下、好ましくは0.02%以下、より好ましくは0.015%以下とする。なお、P量を0%とすることは工業的に困難である。   P is an impurity element that is inevitably contained, and is reduced as much as possible in order to promote the occurrence of cracks during hot working. Therefore, in the present invention, the P amount is 0.03% or less, preferably 0.02% or less, more preferably 0.015% or less. In addition, it is industrially difficult to make P amount 0%.

Sは、鋼中にMnS系介在物を生成させて被削性を向上させるのに寄与する元素である。しかしMnS系介在物を過剰に含有すると延性や靭性が低下する。MnS系介在物は圧延時に圧延方向に伸展し易いため、圧延方向に対して特に直角方向の靭性(横目の靭性)を劣化させる。従ってS量は0.03%以下、好ましくは0.02%以下とする。なお、Sは、不可避的に含まれる不純物元素であるため、S量を0%とすることは工業的に困難である。   S is an element that contributes to improving the machinability by generating MnS inclusions in the steel. However, when MnS inclusions are excessively contained, ductility and toughness are lowered. Since the MnS inclusions easily extend in the rolling direction during rolling, the toughness (lateral toughness) in the direction perpendicular to the rolling direction is deteriorated. Therefore, the S content is 0.03% or less, preferably 0.02% or less. In addition, since S is an impurity element contained unavoidable, it is industrially difficult to make S amount 0%.

Oは、不可避的に含まれる不純物元素であり、粗大な酸化物系介在物を形成して、被削性や延性、靭性、熱間加工性などに悪影響を及ぼす元素である。従ってO量は0.002%以下、好ましくは0.0015%以下とする。なお、O量についても0%とすることは工業的に困難である。   O is an inevitably contained impurity element, which forms coarse oxide inclusions and adversely affects machinability, ductility, toughness, hot workability, and the like. Therefore, the O content is 0.002% or less, preferably 0.0015% or less. Note that it is industrially difficult to set the O amount to 0%.

本発明の機械構造用鋼は、上記成分組成を満足するものであり、残部は、鉄および不可避不純物である。   The steel for machine structure of the present invention satisfies the above component composition, and the balance is iron and inevitable impurities.

本発明の機械構造用鋼は、更に他の元素として、
(a)Cr:3%以下(0%を含まない)、
(b)Mo:1%以下(0%を含まない)、
(c)Nb:0.15%以下(0%を含まない)、
(d)Zr:0.02%以下(0%を含まない)、Hf:0.02%以下(0%を含まない)、Ta:0.02%以下(0%を含まない)、およびTi:0.02%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素、
(e)V:0.5%以下(0%を含まない)、Cu:3%以下(0%を含まない)、およびNi:3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素、
等を含有してもよい。
The steel for machine structural use of the present invention is further added as another element,
(A) Cr: 3% or less (excluding 0%),
(B) Mo: 1% or less (excluding 0%),
(C) Nb: 0.15% or less (excluding 0%),
(D) Zr: 0.02% or less (not including 0%), Hf: 0.02% or less (not including 0%), Ta: 0.02% or less (not including 0%), and Ti : At least one element selected from the group consisting of 0.02% or less (excluding 0%),
(E) V: 0.5% or less (not including 0%), Cu: 3% or less (not including 0%), and Ni: 3% or less (not including 0%) At least one element,
Etc. may be contained.

(a)Crは、焼入性を向上させ、強度を高める元素である。またAlと複合添加することによって、断続切削したときの被削性を改善するのにも作用する元素である。こうした効果を発揮させるには、Crは0.1%以上含有することが好ましい。好ましくは0.3%以上であり、より好ましくは0.7%以上である。しかし過剰に含有すると、粗大な炭化物を生成させたり、過冷組織を生成させて被削性を劣化させる。従ってCr量は3%以下とすることが好ましい。より好ましくは2%以下であり、更に好ましくは1.6%以下である。   (A) Cr is an element that improves hardenability and increases strength. In addition, it is an element that also acts to improve the machinability when intermittently cut by adding together with Al. In order to exert such effects, it is preferable to contain Cr by 0.1% or more. Preferably it is 0.3% or more, More preferably, it is 0.7% or more. However, when it contains excessively, a coarse carbide | carbonized_material will be produced | generated or a supercooled structure | tissue will be produced | generated and machinability will be deteriorated. Therefore, the Cr content is preferably 3% or less. More preferably, it is 2% or less, More preferably, it is 1.6% or less.

(b)Moは、焼入れ性を高め、不完全焼入れ組織が生成するのを抑制する元素である。こうした効果はMo含有量が増加するにつれて増大するが、好ましくは0.01%以上、より好ましくは0.05%以上、更に好ましくは0.1%以上含有するのがよい。しかし過剰に含有すると、焼きならし後でも過冷組織が生成して被削性が低下する。従ってMo量は1%以下とすることが好ましい。より好ましくは0.8%以下、更に好ましくは0.5%以下である。   (B) Mo is an element that enhances hardenability and suppresses generation of an incompletely hardened structure. Such an effect increases as the Mo content increases, but is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.1% or more. However, when it contains excessively, a supercooled structure | tissue will produce | generate after normalization and machinability will fall. Therefore, the Mo amount is preferably 1% or less. More preferably, it is 0.8% or less, More preferably, it is 0.5% or less.

(c)Nbは、CやNと結合して炭化物や窒化物、炭窒化物を形成し、これらの化合物が、部品形状に切削加工した後に浸炭処理や浸炭窒化処理を行うときに結晶粒が異常成長するのを抑制するのに作用し、衝撃特性が向上する。こうした効果はNb量を増加するにつれて増大するが、有効に発揮させるには0.05%以上含有させることが好ましい。しかし過剰に含有させると、硬質の炭化物や窒化物等が過剰に析出して被削性が低下する。従ってNb量は0.15%以下とすることが好ましく、より好ましくは0.13%以下である。   (C) Nb combines with C and N to form carbides, nitrides, and carbonitrides, and when these compounds are carburized or carbonitrided after being cut into a part shape, It acts to suppress abnormal growth and improves impact characteristics. Such an effect increases as the amount of Nb increases, but it is preferable to contain 0.05% or more for effective display. However, if it is contained excessively, hard carbides, nitrides and the like are precipitated excessively and machinability is lowered. Therefore, the Nb content is preferably 0.15% or less, more preferably 0.13% or less.

(d)Zr、Hf、Ta、およびTiは、上記Nbと同様に、結晶粒が異常成長するのを抑制する元素であり、衝撃特性向上に寄与する。こうした効果は、これらの元素の含有量が増加するにつれて増大するが、有効に発揮させるには、各元素とも、夫々単独で、0.002%以上含有させることが好ましい。より好ましくは各元素とも、夫々単独で、0.005%以上である。しかし過剰に含有させると、硬質の炭化物や窒化物等が多く析出して被削性が低下する。従って各元素とも、夫々単独で、0.02%以下であることが好ましい。より好ましくは0.015%以下である。Zr、Hf、Ta、Tiは、任意に選ばれる2種以上の元素を含有してもよい。2種以上の元素を含有する場合は、合計量を0.02%以下とすることが好ましい。合計量は、より好ましくは0.015%以下である。   (D) Zr, Hf, Ta, and Ti are elements that suppress the abnormal growth of crystal grains, as in the case of Nb, and contribute to improvement of impact characteristics. Such an effect increases as the content of these elements increases. However, in order to effectively exhibit these elements, it is preferable to contain 0.002% or more of each element alone. More preferably, each element is individually 0.005% or more. However, if it is contained excessively, a large amount of hard carbides, nitrides, etc. are precipitated and the machinability is lowered. Therefore, each element is preferably 0.02% or less by itself. More preferably, it is 0.015% or less. Zr, Hf, Ta, and Ti may contain two or more elements selected arbitrarily. When two or more elements are contained, the total amount is preferably 0.02% or less. The total amount is more preferably 0.015% or less.

(e)V、CuおよびNiは、焼入れ性を向上させて強度を高めるのに有効に作用する元素である。こうした効果は、これらの元素の含有量が増加するにつれて増大するが、有効に発揮させるには、Vは0.05%以上、Cuは0.1%以上、Niは0.3%以上含有させることが好ましい。しかし過剰に含有させると、過冷組織が生成したり、延性や靭性が低下するので、Vは0.5%以下、Cuは3%以下、Niは3%以下とすることが好ましい。より好ましくはVは0.3%以下、Cuは2%以下、Niは2%以下である。   (E) V, Cu and Ni are elements that effectively act to improve the hardenability and increase the strength. These effects increase as the content of these elements increases, but in order to effectively exhibit these effects, V is 0.05% or more, Cu is 0.1% or more, and Ni is 0.3% or more. It is preferable. However, if excessively contained, a supercooled structure is formed or ductility and toughness are lowered. Therefore, V is preferably 0.5% or less, Cu is 3% or less, and Ni is preferably 3% or less. More preferably, V is 0.3% or less, Cu is 2% or less, and Ni is 2% or less.

本発明では、機械構造用鋼の化学成分組成を上記規定範囲に調整することに加えて、鋼中に析出しているBNとAlNの質量比(BN/AlN)が0.020〜0.2であることが重要である。   In the present invention, in addition to adjusting the chemical composition of the steel for machine structural use to the above specified range, the mass ratio (BN / AlN) of BN and AlN precipitated in the steel is 0.020 to 0.2. It is important that

即ち本発明では、Alを比較的多く、0.1〜0.5%の範囲で含有させて鋼中にAlを固溶状態で存在させることで、断続切削したときの被削性を向上させている。しかしAlを多く含有させると、固溶Al量は増加する反面、一部のAlが鋼中のNと結合してAlNを析出し、このAlNが旋削やドリルなどの工具摩耗を促進して工具寿命を短くする。AlNは、硬質粒子であるため工具摩耗を促進し、特に連続切削したときの工具寿命(被削性)を劣化させる。   That is, in the present invention, a relatively large amount of Al is contained in the range of 0.1 to 0.5%, and Al is present in a solid solution state in the steel, thereby improving the machinability when intermittent cutting is performed. ing. However, if a large amount of Al is contained, the amount of solute Al increases, but some Al bonds with N in the steel and precipitates AlN, which promotes tool wear such as turning and drilling, and the tool. Shorten the service life. Since AlN is a hard particle, it promotes tool wear and deteriorates the tool life (machinability) particularly when continuous cutting is performed.

そこで本発明では、鋼中のNをBと積極的に結合させて、鋼中にBNを析出させることで、AlNの析出を抑制し、鋼中に析出しているBNとAlNの質量比(BN/AlN)を0.020〜0.2とする。BN/AlN比を0.020〜0.2とすることで、断続切削したときの被削性と、連続切削したときの被削性を両方改善でき、しかも熱処理後の衝撃特性も改善できる。   Therefore, in the present invention, N in the steel is positively combined with B to precipitate BN in the steel, thereby suppressing the precipitation of AlN, and the mass ratio of BN and AlN precipitated in the steel ( (BN / AlN) is set to 0.020 to 0.2. By setting the BN / AlN ratio to 0.020 to 0.2, both the machinability when performing intermittent cutting and the machinability when performing continuous cutting can be improved, and the impact characteristics after heat treatment can also be improved.

BN/AlNが0.020未満では、BNに比べてAlNが多く析出していることになるので、連続切削したときの被削性が劣化する。従ってBN/AlNは0.020以上とする。好ましくは0.025以上、より好ましくは0.030以上である。   When BN / AlN is less than 0.020, a large amount of AlN is precipitated as compared with BN, so that machinability when continuously cut is deteriorated. Accordingly, BN / AlN is set to 0.020 or more. Preferably it is 0.025 or more, More preferably, it is 0.030 or more.

BN/AlNの値は大きい方が好ましいが、AlNが少なくなり過ぎてBN/AlNが0.2を超えると熱処理後の衝撃特性が劣化する。従ってBN/AlNは0.2以下とする。好ましくは0.15以下、より好ましくは0.1以下、更に好ましくは0.08以下である。   Although it is preferable that the value of BN / AlN is large, if the AlN content becomes too small and the BN / AlN exceeds 0.2, the impact characteristics after the heat treatment deteriorate. Therefore, BN / AlN is 0.2 or less. Preferably it is 0.15 or less, More preferably, it is 0.1 or less, More preferably, it is 0.08 or less.

鋼中に析出しているBNは、例えば、電解抽出と酸溶解と吸光光度法とを組み合わせることで定量できる。一方、鋼中に析出しているAlNは、例えば、臭素−酢酸メチル法で定量できる。   BN precipitated in steel can be quantified by combining, for example, electrolytic extraction, acid dissolution, and absorptiometry. On the other hand, AlN precipitated in steel can be quantified by, for example, bromine-methyl acetate method.

鋼中に析出しているBNのうち、旧オーステナイト粒界に析出しているBNと旧オーステナイト粒内に析出しているBNの個数比(粒界BN/粒内BN)は0.50以下であることが好ましい。旧オーステナイト(以下、旧γと表記することがある)粒界に析出しているBNの個数を低減し、旧γ粒内に析出しているBNの個数を増加させることで、特に部品形状に切削加工した後に焼入れ焼戻し等の熱処理を行っても衝撃特性が劣化することなく衝撃特性を一層改善できる。粒界BN/粒内BNは、より好ましくは0.45以下であり、更に好ましくは0.40以下である。なお、粒界BN/粒内BNの下限値は、0.30程度である。   Among the BN precipitated in the steel, the number ratio of BN precipitated in the prior austenite grain boundaries and BN precipitated in the prior austenite grains (grain boundary BN / intragrain BN) is 0.50 or less. Preferably there is. By reducing the number of BN precipitated in the prior austenite (hereinafter sometimes referred to as old γ) grain boundaries and increasing the number of BN precipitated in the old γ grains, the shape of the part is particularly improved. Even if heat treatment such as quenching and tempering is performed after cutting, the impact characteristics can be further improved without deterioration. The grain boundary BN / intragrain BN is more preferably 0.45 or less, and further preferably 0.40 or less. The lower limit of grain boundary BN / intragrain BN is about 0.30.

旧γ粒界に析出しているBNの個数と旧γ粒内に析出しているBNの個数は、走査型電子顕微鏡(SEM)に付属しているエネルギー分散型X線分析装置(EDS)を用いて存在位置と成分組成分析すれば測定できる。   The number of BN precipitated in the old γ grain boundary and the number of BN precipitated in the old γ grain boundary are determined using the energy dispersive X-ray analyzer (EDS) attached to the scanning electron microscope (SEM). It can be measured by using the existing position and component composition analysis.

次に、本発明に係る機械構造用鋼を製造できる方法について説明する。   Next, the method by which the machine structural steel according to the present invention can be manufactured will be described.

本発明に係る機械構造用鋼は、上記成分組成を満足する鋼を1100℃以上に加熱した後、900〜1050℃の温度域で150秒以上保持し、その後冷却するに際し900℃から700℃までの平均冷却速度を0.05〜10℃/秒とすれば製造できる。また、上記成分組成を満足する鋼を1100℃以上に加熱した後、1000℃以上で熱間加工すると共に、900〜1050℃の温度域での保持時間を150秒以上とすれば、その後の冷却過程で旧γ粒内にBNを積極的に析出させることができるため一層好ましい。このような範囲を規定した理由について説明する。   The steel for machine structural use according to the present invention heats steel satisfying the above composition to 1100 ° C. or higher, holds it in a temperature range of 900 to 1050 ° C. for 150 seconds or more, and thereafter cools from 900 ° C. to 700 ° C. If the average cooling rate is set to 0.05 to 10 ° C./second, it can be produced. Further, after heating the steel satisfying the above component composition to 1100 ° C. or higher and hot working at 1000 ° C. or higher, if the holding time in the temperature range of 900 to 1050 ° C. is 150 seconds or longer, the subsequent cooling In the process, BN can be positively precipitated in the old γ grains, which is more preferable. The reason for defining such a range will be described.

[1100℃以上に加熱]
上記成分組成を満足する鋼をいったん1100℃以上に加熱し、鋼中に含まれるAlNやBNなどの析出物を再固溶させる必要がある。即ち、Alを0.1%以上含有する鋼は、その製造条件によって、AlやB、Nの固溶状態と析出状態が大きく変化するため、本発明では、鋼を1100℃以上に加熱することで、鋼中に含まれるAlNとBNを鋼中に再固溶させる。
[Heating above 1100 ° C]
It is necessary to once heat steel satisfying the above component composition to 1100 ° C. or higher to re-dissolve precipitates such as AlN and BN contained in the steel. That is, in steel containing 0.1% or more of Al, the solid solution state and precipitation state of Al, B, and N vary greatly depending on the production conditions. Therefore, in the present invention, the steel is heated to 1100 ° C. or more. Then, AlN and BN contained in the steel are re-dissolved in the steel.

[900〜1050℃の温度域で150秒以上保持]
1100℃以上に加熱した後は、900〜1050℃の温度域で150秒以上保持することで、BNを析出させることができる。即ち、AlNの析出温度はおおよそ900℃未満、BNの析出温度はおおよそ1050℃以下であるため、900〜1050℃の温度域で保持することで、BNを選択的に析出させることができる。
[Holding at 900 to 1050 ° C for 150 seconds or more]
After heating to 1100 ° C. or higher, BN can be precipitated by holding at a temperature range of 900 to 1050 ° C. for 150 seconds or longer. That is, since the precipitation temperature of AlN is approximately less than 900 ° C. and the precipitation temperature of BN is approximately 1050 ° C. or less, BN can be selectively precipitated by maintaining in the temperature range of 900 to 1050 ° C.

但し、保持時間が150秒未満では、BNの析出が充分に進まず、BN不足となり、連続切削したときの被削性を改善できない。また、熱処理後の衝撃特性も劣化する。従って保持時間は150秒以上とし、好ましくは170秒以上、より好ましくは200秒以上である。保持時間の上限は特に限定されないが、長時間保持してもBNの析出量は飽和し、また生産性が悪くなるため、例えば、600秒以下とするのがよい。   However, if the holding time is less than 150 seconds, the precipitation of BN does not proceed sufficiently, the BN becomes insufficient, and the machinability at the time of continuous cutting cannot be improved. Moreover, the impact characteristics after heat treatment are also deteriorated. Accordingly, the holding time is 150 seconds or longer, preferably 170 seconds or longer, more preferably 200 seconds or longer. The upper limit of the holding time is not particularly limited. However, even if the holding time is long, the precipitation amount of BN is saturated and the productivity is deteriorated. For example, the holding time is preferably 600 seconds or less.

900〜1050℃の温度域での保持は、恒温で行ってもよいし、この温度域内で加熱および/または冷却してもよく、該温度域での保持時間が150秒以上であればよい。   The holding in the temperature range of 900 to 1050 ° C. may be performed at a constant temperature, may be heated and / or cooled within this temperature range, and the holding time in the temperature range may be 150 seconds or more.

[900℃から700℃までの平均冷却速度が0.05〜10℃/秒]
900〜1050℃で保持してBNを析出させた後は、900〜700℃の温度域を通過する時間を短くすることで、AlNの析出を抑制すると共に、BNがAlNに変化するのを防止し、BNの析出量を確保できる。即ち、900〜700℃の温度域では、BNよりもAlNの方が熱力学的に安定なため、900〜1050℃の高温域でBNを選択的に析出させても、900〜700℃の低温域を通過する時間が長くなると、BNがAlNに変化し、BNの析出量が減少する。そのためBN/AlN比を上記範囲に制御することができない。従って本発明では、900℃から700℃までの低温域を冷却するときの平均冷却速度を0.05℃/秒以上とする。好ましくは0.1℃/秒以上、より好ましくは0.5℃/秒以上、更に好ましくは1℃/秒以上である。しかしこの温度域の平均冷却速度が大き過ぎると、マルテンサイトやベイナイト等の過冷組織が生成して被削性が却って低下する。従って900℃から700℃までの平均冷却速度は10℃/秒以下とする。好ましくは9.5℃/秒以下、より好ましくは8℃/秒以下、更に好ましくは5℃/秒以下、特に好ましくは3℃/秒以下である。
[Average cooling rate from 900 ° C to 700 ° C is 0.05 to 10 ° C / second]
After depositing BN while maintaining at 900 to 1050 ° C., the time for passing through the temperature range of 900 to 700 ° C. is shortened to suppress the precipitation of AlN and prevent BN from changing to AlN. In addition, the amount of BN deposited can be secured. That is, since AlN is thermodynamically more stable than BN in the temperature range of 900 to 700 ° C., even if BN is selectively precipitated in the high temperature range of 900 to 1050 ° C., the low temperature of 900 to 700 ° C. As the time for passing through the zone increases, BN changes to AlN, and the amount of BN deposited decreases. Therefore, the BN / AlN ratio cannot be controlled within the above range. Therefore, in this invention, the average cooling rate when cooling the low temperature range from 900 degreeC to 700 degreeC shall be 0.05 degreeC / second or more. Preferably it is 0.1 degree-C / second or more, More preferably, it is 0.5 degree-C / second or more, More preferably, it is 1 degree-C / second or more. However, if the average cooling rate in this temperature range is too large, a supercooled structure such as martensite or bainite is generated, and the machinability deteriorates. Therefore, the average cooling rate from 900 ° C. to 700 ° C. is 10 ° C./second or less. It is preferably 9.5 ° C./second or less, more preferably 8 ° C./second or less, further preferably 5 ° C./second or less, and particularly preferably 3 ° C./second or less.

[1000℃以上で熱間加工]
本発明では、上記成分組成を満足する鋼を1100℃以上に加熱した後、1000℃以上で熱間加工すると共に、900〜1050℃の温度域での保持時間を150秒以上としてもよい。1100℃以上に加熱してAlNとBNを再固溶させた後に、1000℃以上で熱間加工を施すことにより、鋼中に加工歪を導入することができ、この加工歪がBNの析出ポイントとなり、その後の冷却過程でBNがγ粒界よりもγ粒内に析出し易くなる。その結果、BNを旧γ粒内に析出させることができ、焼入れ焼戻し等の熱処理を行った後の衝撃特性を一層改善することができる。上記熱間加工は、1050℃以上で行うことがより好ましい。熱間加工温度の上限は、上記加熱温度よりも低ければよい。熱間加工は、例えば、熱間鍛造すればよい。
[Hot processing at 1000 ° C or higher]
In this invention, after heating the steel which satisfies the said component composition to 1100 degreeC or more, while hot-working at 1000 degreeC or more, it is good also considering the holding time in a 900-1050 degreeC temperature range as 150 seconds or more. After heating to 1100 ° C or higher and re-dissolving AlN and BN, hot straining is performed at 1000 ° C or higher to introduce processing strain into the steel. This processing strain is the precipitation point of BN. In the subsequent cooling process, BN is more easily precipitated in the γ grains than in the γ grain boundaries. As a result, BN can be precipitated in the old γ grains, and the impact characteristics after heat treatment such as quenching and tempering can be further improved. The hot working is more preferably performed at 1050 ° C. or higher. The upper limit of the hot working temperature may be lower than the heating temperature. For example, hot working may be performed by hot forging.

なお、上記熱間加工を1000〜1050℃の温度域で行う場合は、熱間加工を行っている時間を上記900〜1050℃の温度域で行う保持の時間に合算して保持時間を制御する。   In addition, when performing the said hot working in the temperature range of 1000-1050 degreeC, the time which is performing hot working is added to the time of the holding performed in the said 900-1050 degreeC temperature range, and holding time is controlled. .

このようにして得られる本発明に係る機械構造用鋼は、BNとAlNのバランスが適切に制御されているため、低速での断続切削と高速での連続切削の両方で優れた被削性(特に、工具寿命の延長)を発揮する。   The steel for machine structure according to the present invention thus obtained has an excellent machinability in both intermittent cutting at low speed and continuous cutting at high speed because the balance of BN and AlN is appropriately controlled. In particular, it extends the tool life).

また、本発明の機械構造用鋼は、BNとAlNのバランスが適切に制御されているため、この機械構造用鋼を部品形状に切削加工した後、焼入れ焼戻し等の熱処理を施して得られる機械構造部品は、衝撃特性に優れたものとなる。   In addition, since the balance of BN and AlN is appropriately controlled in the machine structural steel of the present invention, the machine structural steel is obtained by cutting the mechanical structural steel into a part shape and then subjecting it to a heat treatment such as quenching and tempering. The structural component has excellent impact characteristics.

熱処理条件は、機械構造部品を製造するときに通常採用される条件であればよい。例えば、800〜1000℃程度に加熱した後、焼入れを行ない、次いで150〜600℃程度で、20分〜1時間程度保持して焼戻しを行えばよい。   The heat treatment condition may be a condition that is usually employed when manufacturing a machine structural component. For example, after heating to about 800 to 1000 ° C., quenching is performed, and then tempering is performed at about 150 to 600 ° C. for about 20 minutes to 1 hour.

部品形状に切削加工した後、焼入れ焼戻し等の熱処理を行う前には、常法に従って浸炭処理や浸炭窒化処理を行なってもよい。このとき浸炭処理または浸炭窒化処理は、例えば、上記900〜1050℃の温度域で行うのがよい。浸炭処理または浸炭窒化処理した後は、引続き焼入れ焼戻し等の熱処理を上記条件で行えばよい。   After cutting into a part shape and before heat treatment such as quenching and tempering, carburizing treatment or carbonitriding treatment may be performed according to a conventional method. At this time, the carburizing process or the carbonitriding process is preferably performed in the temperature range of 900 to 1050 ° C., for example. After carburizing or carbonitriding, heat treatment such as quenching and tempering may be performed under the above conditions.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示すNo.18〜22以外の化学成分組成の鋼150kgを真空誘導炉で溶解し、上面:φ245mm×下面:φ210mm×長さ:480mmのインゴットに鋳造し、鍛造(ソーキング:1250℃×3時間程度、鍛造加熱:1100℃×1時間程度)および切断し、一辺150mm×長さ680mmの四角材形状を経由して、下記(a)、(b)の2種類の鍛造材に加工した。
(a)板材 :厚さ30mm、幅155mm、長さ100mm
(b)丸棒材:φ80mm、長さ350mm
No. shown in Table 1 below. 150 kg of steel with a chemical composition other than 18-22 is melted in a vacuum induction furnace, cast into an ingot of upper surface: φ245 mm × lower surface: φ210 mm × length: 480 mm, and forged (soaking: about 1250 ° C. × about 3 hours, forged and heated : 1100 ° C. × about 1 hour) and cut, and processed into the following two types of forged materials (a) and (b) through a square material shape with a side of 150 mm × length of 680 mm.
(A) Plate material: thickness 30 mm, width 155 mm, length 100 mm
(B) Round bar: φ80mm, length 350mm

Figure 2011080100
Figure 2011080100

得られた(a)板材と(b)丸棒材を加熱した後、冷却した。冷却するに際して、900〜1050℃の温度域で所定時間保持した。また、冷却するに際して、900℃から700℃までの平均冷却速度を変化させた。下記表2に加熱温度(℃)、900〜1050℃の温度域での保持時間(秒)、900℃から700℃までの平均冷却速度(℃/秒)を夫々示す。   The obtained (a) plate material and (b) round bar were heated and then cooled. When cooling, the temperature was maintained at 900 to 1050 ° C. for a predetermined time. Further, when cooling, the average cooling rate from 900 ° C. to 700 ° C. was changed. Table 2 below shows the heating temperature (° C.), the holding time (second) in the temperature range of 900 to 1050 ° C., and the average cooling rate (° C./second) from 900 ° C. to 700 ° C., respectively.

一方、下記表1に示すNo.18〜22の化学成分組成の鋼については、上記と同じ条件で一辺150mm×長さ680mmの四角材形状とした後、1200℃に加熱し、次いで1100℃にて150mm角からφ80mmへ鍛伸する熱間加工を行った後、上記(a)、(b)の2種類の鍛造材に加工し、冷却した。冷却するに際して、900〜1050℃の温度域で所定時間保持した。また、冷却するに際して、900℃から700℃までの平均冷却速度を変化させた。下記表2に加熱温度(℃)、900〜1050℃の温度域での保持時間(秒)、900℃から700℃までの平均冷却速度(℃/秒)を夫々示す。   On the other hand, No. 1 shown in Table 1 below. For steel with a chemical composition of 18-22, a square material shape with a side of 150 mm and a length of 680 mm was formed under the same conditions as above, then heated to 1200 ° C., and then forged from 150 mm square to φ80 mm at 1100 ° C. After hot working, the two types of forged materials (a) and (b) were processed and cooled. When cooling, the temperature was maintained at 900 to 1050 ° C. for a predetermined time. Further, when cooling, the average cooling rate from 900 ° C. to 700 ° C. was changed. Table 2 below shows the heating temperature (° C.), the holding time (second) in the temperature range of 900 to 1050 ° C., and the average cooling rate (° C./second) from 900 ° C. to 700 ° C., respectively.

冷却後の丸棒材に含まれるBNとAlNを定量分析し、質量比でBN/AlN比を算出した。BN量とAlN量は、同じ部位から採取したサンプルを2つ用意し、次の手順で定量した。   BN and AlN contained in the round bar after cooling were quantitatively analyzed, and the BN / AlN ratio was calculated as a mass ratio. Two samples collected from the same site were prepared and quantified by the following procedure for the BN amount and the AlN amount.

サンプルに含まれるBN量は、電解抽出と酸溶解と吸光光度法とを組み合わせて定量した。具体的には、AA系電解液(10質量%のアセチルアセトンと1質量%の塩化テトラメチルアンモニウムを含むメタノール溶液)を用いてサンプルを電気分解した後、濾過して未溶解残渣を採取し、この残渣を塩酸と硝酸で分解した後、硫酸とリン酸を加えて加熱分解した。その後、JIS G1227に準じてホウ素をホウ酸メチルとして蒸留し、水酸化ナトリウムに吸収させる。吸収させたホウ酸メチルに含まれるホウ素量を、JIS G1227に準じてホウ酸メチル蒸留分離クルクミン吸光光度法で定量した。定量したホウ素が全量BNを生成しているものとしてこのホウ素に結合するN量を計算し、定量したホウ素量に計算された結合N量を加えたものをBN量とした。   The amount of BN contained in the sample was quantified by a combination of electrolytic extraction, acid dissolution, and absorptiometry. Specifically, the sample was electrolyzed with an AA electrolyte solution (methanol solution containing 10% by mass of acetylacetone and 1% by mass of tetramethylammonium chloride), and then filtered to collect an undissolved residue. The residue was decomposed with hydrochloric acid and nitric acid, and then heated and decomposed with sulfuric acid and phosphoric acid. Thereafter, boron is distilled as methyl borate according to JIS G1227 and absorbed by sodium hydroxide. The amount of boron contained in the absorbed methyl borate was quantified by methyl borate distillation separation curcumin spectrophotometry according to JIS G1227. The amount of N bound to the boron was calculated assuming that the quantified boron produced the entire amount of BN, and the amount of BN determined by adding the calculated amount of bound N to the boron amount was defined as the amount of BN.

また、サンプルに含まれるAlN量は、臭素−酢酸メチル法で定量した。具体的には、サンプルをフラスコに入れ、臭素と酢酸メチル中で70℃に加熱して溶解した後、濾過して未溶解残渣を採取し、この残渣を酢酸メチルで充分に洗浄した後、乾燥させる。乾燥させた残渣を、JIS G1228に準じてアンモニア蒸留器に水酸化ナトリウムを加えて蒸留し、0.1%ホウ酸を吸収液として吸収させ、得られた吸収液をJIS G1228に準じてアミド硫酸標準液で滴定し、吸収液中のN量およびサンプルの計り取り量からAlN量を定量した。   The amount of AlN contained in the sample was quantified by the bromine-methyl acetate method. Specifically, the sample is placed in a flask, heated and dissolved in bromine and methyl acetate at 70 ° C., filtered to collect an undissolved residue, this residue is thoroughly washed with methyl acetate, and then dried. Let The dried residue was distilled by adding sodium hydroxide to an ammonia distiller according to JIS G1228, and 0.1% boric acid was absorbed as an absorbent, and the resulting absorbent was amidosulfuric according to JIS G1228. Titration with a standard solution was performed, and the amount of AlN was quantified from the amount of N in the absorbing solution and the measured amount of the sample.

定量結果に基づいて、質量比でBN/AlN比を算出した。算出結果を下記表2に示す。   Based on the quantitative results, the BN / AlN ratio was calculated as a mass ratio. The calculation results are shown in Table 2 below.

また、冷却後の丸棒材の表面から10mm位置を中心として走査型電子顕微鏡(SEM)を用いて観察し、観察視野内に認められる析出物の成分組成をSEMに付属するエネルギー分散型X線分析装置(EDS)を用いて分析すると共に、旧γ粒界に存在するBNの個数と旧γ粒内に存在するBNの個数を測定し、粒界BN/粒内BNの個数比を算出した。BNの個数は、検出限界を直径0.1μmとし、観察倍率10000倍で10視野測定した結果を平均して算出した。算出結果を下記表2に示す。   Further, the component composition of precipitates observed in a scanning electron microscope (SEM) centered on a 10 mm position from the surface of the round bar after cooling and observed in the observation field is energy dispersive X-ray attached to the SEM. While analyzing using an analyzer (EDS), the number of BN existing in the old γ grain boundary and the number of BN existing in the old γ grain boundary were measured, and the number ratio of grain boundary BN / intra grain BN was calculated. . The number of BN was calculated by averaging the results of 10 fields of view with a detection limit of 0.1 μm in diameter and an observation magnification of 10,000 times. The calculation results are shown in Table 2 below.

Figure 2011080100
Figure 2011080100

次に、冷却後の板材と丸棒材を用い、下記条件で断続切削したときの被削性と連続切削したときの被削性を評価した。   Next, using the plate material and the round bar material after cooling, the machinability when intermittently cut under the following conditions and the machinability when continuously cut were evaluated.

[断続切削時の被削性評価(エンドミル切削試験)]
断続切削時の被削性を評価するために、エンドミル加工したときの工具摩耗量を測定した。エンドミル切削試験には、上記板材をスケール除去した後、表面を約2mm研削したものを試験片(被削材)として用いた。具体的には、マニシングセンタ主軸にエンドミル工具を取り付け、上記のようにして製造した厚さ25mm×幅150mm×長さ100mmの試験片をバイスにより固定し、乾式の切削雰囲気下でダウンカット加工を行った。詳細な加工条件を下記表3に示す。断続切削を200カット行った後、工具表面を光学顕微鏡下、100倍で観察して平均逃げ面摩耗量(工具摩耗量)Vbを測定した。結果を上記表2に示す。本発明では、断続切削後のVbが80μm以下のものを「断続切削時の被削性が優れる」と評価した。
[Machinability evaluation during intermittent cutting (end mill cutting test)]
In order to evaluate the machinability at the time of interrupted cutting, the amount of tool wear during end milling was measured. In the end mill cutting test, after removing the scale of the plate material, the surface was ground by about 2 mm and used as a test piece (work material). Specifically, an end mill tool is attached to the main spindle of the machining center, and a test piece of 25 mm thickness × 150 mm width × 100 mm length manufactured as described above is fixed with a vise, and downcut processing is performed in a dry cutting atmosphere. Went. Detailed processing conditions are shown in Table 3 below. After performing 200 intermittent cuttings, the tool surface was observed 100 times under an optical microscope, and the average flank wear amount (tool wear amount) Vb was measured. The results are shown in Table 2 above. In the present invention, those having Vb of 80 μm or less after intermittent cutting were evaluated as “excellent machinability during intermittent cutting”.

Figure 2011080100
Figure 2011080100

[連続切削時の被削性評価(旋削試験)]
連続切削時の被削性を評価するために、上記丸棒材(φ80mm×長さ350mm)をスケール除去した後、表面を約2mm研削したものを旋削試験片(被削材)として用い、外周旋削加工を行なった。外周旋削加工の条件は、下記の通りである。
(外周旋削加工条件)
工具 :超硬合金P10(JIS B4053)
切削速度:200m/min
送り :0.25mm/rev
切り込み:1.5mm
潤滑方式:乾式
[Machinability evaluation during continuous cutting (turning test)]
In order to evaluate machinability during continuous cutting, the round bar (φ80 mm x length 350 mm) was scaled and the surface was ground approximately 2 mm as a turning test piece (workpiece). Turned. The conditions for the peripheral turning are as follows.
(Outer peripheral turning conditions)
Tool: Cemented carbide P10 (JIS B4053)
Cutting speed: 200 m / min
Feeding: 0.25mm / rev
Cutting depth: 1.5mm
Lubrication system: dry

外周旋削加工後、工具表面を光学顕微鏡下、100倍で観察して平均逃げ面摩耗量(工具摩耗量)Vbを測定した。結果を上記表2に示す。本発明では、連続切削後のVbが100μm以下のものを「連続切削時の被削性が優れる」と評価し、Vbが70μm以下のものを「連続切削時の被削性が特に優れる」と評価した。   After the peripheral turning, the tool surface was observed under an optical microscope at a magnification of 100 to measure the average flank wear amount (tool wear amount) Vb. The results are shown in Table 2 above. In the present invention, the case where Vb after continuous cutting is 100 μm or less is evaluated as “excellent machinability during continuous cutting”, and the case where Vb is 70 μm or less is “excellent machinability during continuous cutting”. evaluated.

次に、冷却後の丸棒材を用い、下記条件でシャルピー衝撃試験を行って熱処理後の衝撃特性を評価した。   Next, a Charpy impact test was conducted under the following conditions using the round bar material after cooling, and the impact characteristics after the heat treatment were evaluated.

[衝撃特性の評価]
熱処理後の衝撃特性を評価するために、冷却後の上記丸棒材から、幅12mm×幅12mm×長さ55mmのサンプルを切り出し、これを850℃に加熱した後、焼入れを行ない、次いで500℃で30分間焼戻して熱処理したものからJIS4号 Uノッチを切り出したものをシャルピー衝撃試験片とした。この試験片を用いてJIS Z2242に準じてシャルピー衝撃試験を行った。結果を上記表2に示す。
[Evaluation of impact characteristics]
In order to evaluate the impact characteristics after heat treatment, a sample having a width of 12 mm, a width of 12 mm, and a length of 55 mm was cut out from the round bar after cooling, and after heating to 850 ° C., quenching was performed, followed by 500 ° C. A JIS No. 4 U-notch cut out from the product tempered for 30 minutes and heat-treated was used as a Charpy impact test piece. A Charpy impact test was performed according to JIS Z2242 using this test piece. The results are shown in Table 2 above.

表2から次のように考察できる。No.1〜22は、本発明で規定する要件を満足する例であり、鋼中に析出しているBNとAlNの質量比(BN/AlN)を適切な範囲に調整しているため、低速での断続切削と高速での連続切削の両方で優れた被削性(特に、工具寿命の延長)を発揮し、焼入れ焼戻しした後であっても衝撃特性に優れている。   It can be considered from Table 2 as follows. No. 1-22 are examples that satisfy the requirements defined in the present invention, and the mass ratio of BN and AlN precipitated in steel (BN / AlN) is adjusted to an appropriate range, so at low speed Excellent machinability (especially extension of tool life) in both interrupted cutting and continuous cutting at high speed, and excellent impact characteristics even after quenching and tempering.

特にNo.18〜22は、1200℃に加熱した後、1100℃で熱間鍛造すると共に、900〜1050℃で所定時間保持した例であり、これらNo.18〜22の化学成分組成は、夫々、No.3、6、7、8、9と同じである。No.3とNo.18、No.6とNo.19、No.7とNo.20、No.8とNo.21、No.9とNo.22を比較すると、熱間鍛造することで、粒界BN/粒内BNを0.50以下に制御することができ、熱処理後の衝撃特性を、熱間鍛造なしの場合よりも相対的に高めることができている。   In particular, no. Nos. 18 to 22 are examples in which after heating to 1200 ° C., hot forging at 1100 ° C. and holding at 900 to 1050 ° C. for a predetermined time. The chemical composition of 18 to 22 is No. The same as 3, 6, 7, 8, and 9. No. 3 and no. 18, no. 6 and no. 19, no. 7 and no. 20, no. 8 and no. 21, no. 9 and No. 22, the grain boundary BN / intragrain BN can be controlled to 0.50 or less by hot forging, and the impact characteristics after the heat treatment are relatively enhanced as compared with the case without hot forging. Is able to.

これに対し、No.23とNo.28は、加熱温度が1100℃を下回っており、BNの析出が不充分となり、BN/AlN比が0.020を下回っているため、連続切削時の被削性と、熱処理後の衝撃特性が劣っている。No.24は、900〜1050℃の温度域での保持時間が150秒より短く、BNの析出が不充分となり、BN/AlN比が0.020を下回っているため、連続切削時の被削性と、熱処理後の衝撃特性が劣っている。No.25は、900℃から700℃までの温度域の平均冷却速度が0.05℃/秒を下回っており、AlNが多く生成し、BN/AlN比が0.020を下回っているため、連続切削時の被削性と、熱処理後の衝撃特性が劣っている。No.26は、Al量が少ない例であり、固溶Al量が不足しているため、断続切削時の被削性が劣っている。No.27は、B量が少ない例であり、BNの析出が不充分となり、BN/AlN比が0.020を下回っているため、連続切削時の被削性と、熱処理後の衝撃特性が劣っている。   In contrast, no. 23 and no. In No. 28, the heating temperature is lower than 1100 ° C., the precipitation of BN becomes insufficient, and the BN / AlN ratio is lower than 0.020. Therefore, the machinability during continuous cutting and the impact characteristics after heat treatment are Inferior. No. 24, the holding time in the temperature range of 900 to 1050 ° C. is shorter than 150 seconds, the precipitation of BN becomes insufficient, and the BN / AlN ratio is less than 0.020. The impact properties after heat treatment are inferior. No. 25, the average cooling rate in the temperature range from 900 ° C. to 700 ° C. is lower than 0.05 ° C./second, a large amount of AlN is generated, and the BN / AlN ratio is lower than 0.020. The machinability at the time and the impact properties after heat treatment are inferior. No. No. 26 is an example in which the amount of Al is small, and since the amount of dissolved Al is insufficient, the machinability during intermittent cutting is inferior. No. No. 27 is an example with a small amount of B, since the precipitation of BN is insufficient, and the BN / AlN ratio is less than 0.020, so the machinability during continuous cutting and the impact properties after heat treatment are inferior. Yes.

Claims (10)

C :0.05〜0.8%(質量%の意味、以下同じ)、
Si:0.03〜2%、
Mn:0.2〜1.8%、
Al:0.1〜0.5%、
B :0.0005〜0.008%、
N :0.002〜0.015%を含有し、
P :0.03%以下(0%を含まない)、
S :0.03%以下(0%を含まない)、
O :0.002%以下(0%を含まない)を満足し、
残部が鉄および不可避不純物からなる鋼であり、
鋼中に析出しているBNとAlNの質量比(BN/AlN)が0.020〜0.2であることを特徴とする機械構造用鋼。
C: 0.05 to 0.8% (meaning mass%, the same shall apply hereinafter)
Si: 0.03 to 2%,
Mn: 0.2-1.8%
Al: 0.1 to 0.5%,
B: 0.0005 to 0.008%,
N: 0.002 to 0.015% is contained,
P: 0.03% or less (excluding 0%),
S: 0.03% or less (excluding 0%),
O: 0.002% or less (excluding 0%) is satisfied,
The balance is steel consisting of iron and inevitable impurities,
A steel for mechanical structure, wherein the mass ratio of BN and AlN (BN / AlN) precipitated in the steel is 0.020 to 0.2.
鋼中に析出しているBNのうち、旧オーステナイト粒界に析出しているBNと旧オーステナイト粒内に析出しているBNの個数比(粒界BN/粒内BN)が0.50以下である請求項1に記載の機械構造用鋼。 Among the BN precipitated in the steel, the number ratio of BN precipitated in the prior austenite grain boundaries and BN precipitated in the prior austenite grains (grain boundary BN / intragrain BN) is 0.50 or less. The mechanical structural steel according to claim 1. 更に他の元素として、
Cr:3%以下(0%を含まない)を含有する請求項1または2に記載の機械構造用鋼。
As other elements,
The steel for machine structural use according to claim 1 or 2, containing Cr: 3% or less (not including 0%).
更に他の元素として、
Mo:1%以下(0%を含まない)を含有する請求項1〜3のいずれかに記載の機械構造用鋼。
As other elements,
The steel for machine structure according to any one of claims 1 to 3, containing Mo: 1% or less (not including 0%).
更に他の元素として、
Nb:0.15%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の機械構造用鋼。
As other elements,
The steel for machine structure in any one of Claims 1-4 containing Nb: 0.15% or less (0% is not included).
更に他の元素として、
Zr:0.02%以下(0%を含まない)、
Hf:0.02%以下(0%を含まない)、
Ta:0.02%以下(0%を含まない)、および
Ti:0.02%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有する請求項1〜5のいずれかに記載の機械構造用鋼。
As other elements,
Zr: 0.02% or less (excluding 0%),
Hf: 0.02% or less (excluding 0%),
6. The composition according to claim 1, comprising at least one selected from the group consisting of Ta: 0.02% or less (not including 0%) and Ti: 0.02% or less (not including 0%). Machine structural steel as described in 1.
更に他の元素として、
V :0.5%以下(0%を含まない)、
Cu:3%以下(0%を含まない)、および
Ni:3%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有する請求項1〜6のいずれかに記載の機械構造用鋼。
As other elements,
V: 0.5% or less (excluding 0%),
The machine according to any one of claims 1 to 6, comprising at least one selected from the group consisting of Cu: 3% or less (excluding 0%) and Ni: 3% or less (excluding 0%). Structural steel.
請求項1〜7のいずれかに記載の機械構造用鋼を製造する方法であって、
上記成分組成を満足する鋼を1100℃以上に加熱した後、
900〜1050℃の温度域で150秒以上保持し、
その後冷却するに際し900℃から700℃までの平均冷却速度を0.05〜10℃/秒とすることを特徴とする機械構造用鋼の製造方法。
A method for producing the machine structural steel according to any one of claims 1 to 7,
After heating the steel satisfying the above component composition to 1100 ° C. or higher,
Hold for at least 150 seconds in the temperature range of 900 to 1050 ° C,
A method for producing steel for machine structure, characterized in that an average cooling rate from 900 ° C. to 700 ° C. is set to 0.05 to 10 ° C./second when cooling thereafter.
上記成分組成を満足する鋼を1100℃以上に加熱した後、
1000℃以上で熱間加工すると共に、900〜1050℃の温度域での保持時間を150秒以上とする請求項8に記載の製造方法。
After heating the steel satisfying the above component composition to 1100 ° C. or higher,
The manufacturing method according to claim 8, wherein hot working is performed at 1000 ° C. or higher, and a holding time in a temperature range of 900 to 1050 ° C. is 150 seconds or longer.
請求項1〜7のいずれかに記載の機械構造用鋼を用いて得られた機械構造部品。 A machine structural component obtained using the machine structural steel according to claim 1.
JP2009230911A 2009-10-02 2009-10-02 Steel for machine structure and manufacturing method thereof Expired - Fee Related JP5286220B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009230911A JP5286220B2 (en) 2009-10-02 2009-10-02 Steel for machine structure and manufacturing method thereof
US13/395,696 US9200357B2 (en) 2009-10-02 2010-09-30 Steel for machine structural use, manufacturing method for same, case hardened steel component, and manufacturing method for same
EP10820702.8A EP2484789A4 (en) 2009-10-02 2010-09-30 Steel for machine structural use, manufacturing method for same, case hardened steel components, and manufacturing method for same
CN201080044768.9A CN102686759B (en) 2009-10-02 2010-09-30 Steel for machine structural use, manufacturing method for same, case hardened steel components, and manufacturing method for same
KR1020127008374A KR101369113B1 (en) 2009-10-02 2010-09-30 Steel for machine structural use, manufacturing method for same, case hardened steel components, and manufacturing method for same
PCT/JP2010/067185 WO2011040587A1 (en) 2009-10-02 2010-09-30 Steel for machine structural use, manufacturing method for same, case hardened steel components, and manufacturing method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230911A JP5286220B2 (en) 2009-10-02 2009-10-02 Steel for machine structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011080100A true JP2011080100A (en) 2011-04-21
JP5286220B2 JP5286220B2 (en) 2013-09-11

Family

ID=44074433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230911A Expired - Fee Related JP5286220B2 (en) 2009-10-02 2009-10-02 Steel for machine structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5286220B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001928A (en) * 2011-06-14 2013-01-07 Kobe Steel Ltd Steel for induction hardening having excellent machinability, and method for producing the same
JP2013001929A (en) * 2011-06-14 2013-01-07 Kobe Steel Ltd Steel for induction hardening having excellent machinability, and method for producing the same
WO2016017162A1 (en) * 2014-07-29 2016-02-04 新日鐵住金株式会社 Steel for carbonitrided bearing
KR20200052711A (en) * 2018-11-07 2020-05-15 현대자동차주식회사 Alloy steel for cage of constant velocity joint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238314A (en) * 1994-02-25 1995-09-12 Kobe Steel Ltd Heat treatment for free-cutting carburizing steel before processing
JPH07238343A (en) * 1994-02-25 1995-09-12 Kobe Steel Ltd Free cutting carburizing steel and heat treatment therefor before machining
JP2003342635A (en) * 2002-05-30 2003-12-03 Aichi Steel Works Ltd Method for manufacturing case-hardened boron steel while preventing abnormal growth of crystal grain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238314A (en) * 1994-02-25 1995-09-12 Kobe Steel Ltd Heat treatment for free-cutting carburizing steel before processing
JPH07238343A (en) * 1994-02-25 1995-09-12 Kobe Steel Ltd Free cutting carburizing steel and heat treatment therefor before machining
JP2003342635A (en) * 2002-05-30 2003-12-03 Aichi Steel Works Ltd Method for manufacturing case-hardened boron steel while preventing abnormal growth of crystal grain

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001928A (en) * 2011-06-14 2013-01-07 Kobe Steel Ltd Steel for induction hardening having excellent machinability, and method for producing the same
JP2013001929A (en) * 2011-06-14 2013-01-07 Kobe Steel Ltd Steel for induction hardening having excellent machinability, and method for producing the same
WO2016017162A1 (en) * 2014-07-29 2016-02-04 新日鐵住金株式会社 Steel for carbonitrided bearing
WO2016017160A1 (en) * 2014-07-29 2016-02-04 新日鐵住金株式会社 Carbonitrided bearing member
JPWO2016017162A1 (en) * 2014-07-29 2017-04-27 新日鐵住金株式会社 Carbonitrided steel for bearings
JPWO2016017160A1 (en) * 2014-07-29 2017-05-25 新日鐵住金株式会社 Carbonitriding bearing parts
KR20200052711A (en) * 2018-11-07 2020-05-15 현대자동차주식회사 Alloy steel for cage of constant velocity joint
KR102586921B1 (en) * 2018-11-07 2023-10-10 현대자동차주식회사 Alloy steel for cage of constant velocity joint

Also Published As

Publication number Publication date
JP5286220B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
WO2011040587A1 (en) Steel for machine structural use, manufacturing method for same, case hardened steel components, and manufacturing method for same
JP4193998B1 (en) Machine structural steel excellent in machinability and manufacturing method thereof
JP5260460B2 (en) Case-hardened steel parts and manufacturing method thereof
JP6384629B2 (en) Induction hardening steel
JP5567747B2 (en) Soft nitriding steel, soft nitriding component and manufacturing method thereof
JP5152441B2 (en) Steel parts for machine structure and manufacturing method thereof
JP6384630B2 (en) Induction hardening steel
JP2012246527A (en) Steel component for machine structure with high fatigue strength and high toughness, and method of manufacturing the same
JP6384628B2 (en) Induction hardening steel
JP2014034683A (en) Bar steel or wire for case hardening
JP5286220B2 (en) Steel for machine structure and manufacturing method thereof
JP5152440B2 (en) Steel parts for machine structure and manufacturing method thereof
JP5370073B2 (en) Alloy steel for machine structural use
JP6477382B2 (en) Free-cutting steel
JP2017066460A (en) Age hardening steel
JP5472063B2 (en) Free-cutting steel for cold forging
JP5687944B2 (en) Induction hardening steel excellent in machinability and manufacturing method thereof
JP6477383B2 (en) Free-cutting steel
JP5443277B2 (en) High-strength steel with excellent machinability and method for producing the same
JP2016084541A (en) Steel bar for case hardening and wire
JP5310095B2 (en) Manufacturing method of steel material with excellent black skin peripheral turning and torsional fatigue strength
JP4900251B2 (en) Manufacturing method of nitrided parts
JP5217486B2 (en) Steel material with excellent black skin peripheral turning and torsional strength
JP5619366B2 (en) Aging treatment parts and method for manufacturing the same
JP5706766B2 (en) Induction hardening steel excellent in machinability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5286220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees