JPH11293389A - Hot worked steel material excellent in machinability, product, and their production - Google Patents

Hot worked steel material excellent in machinability, product, and their production

Info

Publication number
JPH11293389A
JPH11293389A JP9608098A JP9608098A JPH11293389A JP H11293389 A JPH11293389 A JP H11293389A JP 9608098 A JP9608098 A JP 9608098A JP 9608098 A JP9608098 A JP 9608098A JP H11293389 A JPH11293389 A JP H11293389A
Authority
JP
Japan
Prior art keywords
steel
content
hot
steel material
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9608098A
Other languages
Japanese (ja)
Other versions
JP3874533B2 (en
Inventor
Toyoaki Eguchi
豊明 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Bars and Shapes Corp
Original Assignee
NKK Bars and Shapes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Bars and Shapes Co Ltd filed Critical NKK Bars and Shapes Co Ltd
Priority to JP09608098A priority Critical patent/JP3874533B2/en
Publication of JPH11293389A publication Critical patent/JPH11293389A/en
Application granted granted Critical
Publication of JP3874533B2 publication Critical patent/JP3874533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To improve machinability and to provide high strength and toughness by subjecting a steel, in which chemical composition is specified and also Ni/Cu in the composition and graphitization index are respectively specified, to hot working and to cooling and precipitating graphite and forming a pearlitic structure. SOLUTION: This steel has a composition which consists of, by weight, 0.80-1.70% C, 0.70-2.50% Si, 0.01-2.0% Cu, 0.01-2.0% Ni, 0.0005-0.0100% Ca, 0.001-0.10% Al, ⊥.050% P, <0.050% S, <=0.0050% O, <=0.015% N, and the balance Fe and in which Ni/Cu>=0.2 is satisfied and also the graphitization index CE computed by CE=C+Si/3+Cu/9+Ni/9+Al/6 is regulated to >=1.30. This steel is hot worked and cooled to a room temperature. A product is produced by using this steel as a stock, and graphite of >=0.5 μm average grain size is precipitated by >=100 pieces/mm<2> and the metallic structure is composed essentially of pearlite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、クランクシャフ
ト、デファレンシャルギア等、自動車や産業機械の部品
の素材として使用される棒鋼等鋼材、及び上記部品等製
品に関するものであって、Cu、Ni等の不純物の多い
低級なスクラップを利用して安価に製造することがで
き、黒鉛を析出させるための熱処理を行わなくても、熱
間加工ままで微細な黒鉛を有し、Ca等との複合効果に
より被削性が極めて良好で、且つ、従来の球状黒鉛鋳鉄
より高い強度と靱性とを有する、熱間加工鋼材及び製
品、並びに、それらの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material such as a steel bar used as a material for parts of automobiles and industrial machines, such as a crankshaft and a differential gear, and a product such as the above-mentioned parts. It can be manufactured at low cost by using low-grade scrap with many impurities, and even without heat treatment for depositing graphite, it has fine graphite as it is hot worked, and due to the combined effect with Ca etc. The present invention relates to a hot-worked steel material and a product having extremely good machinability and having higher strength and toughness than conventional spheroidal graphite cast iron, and a method for producing the same.

【0002】[0002]

【従来の技術】近年市中に出回っているスクラップは自
動車、電気製品の廃材が多量に混入する。例えば電気モ
ーターには多量の銅が使用されているし、排ガスのマフ
ラー、触媒等にはNiを多量に含むステンレス鋼が使用
されており、これらが必然的にスクラップの中に混入す
る。従って、これらスクラップの品位が低下する。この
スクラップ品位の低級化に伴い、これを主原料として用
いる電気炉溶製鋼においては、その鋼材製品に不純物が
多量混じってくるのは避けられないものである。
2. Description of the Related Art In recent years, a large amount of scrap from automobiles and electric products is mixed in scraps that have been marketed in the market. For example, a large amount of copper is used in an electric motor, and a stainless steel containing a large amount of Ni is used in an exhaust gas muffler, a catalyst, and the like, and these are inevitably mixed into scrap. Therefore, the quality of these scraps is reduced. In accordance with the lowering of the grade of the scrap, it is inevitable that the steel product contains a large amount of impurities in the electric furnace smelting steel using the scrap as a main raw material.

【0003】スクラップ品位の低級化により鋼材の延性
低下も懸念されており、これら低品位スクラップが利用
されず、不純物の少ない高級スクラップばかり利用され
ると、将来的に鉄源としての鋼スクラップの循環が悪く
なって、低級スクラップが市場に放置される事態も招き
かねない。したがってこうした低級スクラップの有効利
用が強く求められている。
[0003] There is also a concern that the ductility of steel materials may be reduced due to lower grades of scrap. If these low grade scraps are not used and only high-grade scraps with less impurities are used, the recycling of steel scraps as an iron source in the future. The situation may worsen and low-grade scrap may be left on the market. Therefore, effective use of such low-grade scrap is strongly demanded.

【0004】ところで、スクラップを鉄源として製造さ
れた棒鋼は、自動車、建設機械、産業機械等の部品の素
材として広く使われている。例えば、建設機械のピスト
ンロッドなどにおいては、圧延棒鋼の外周を直接切削し
てのち高周波焼入れを行って使用するが、棒鋼の内部組
織は圧延ままである。従って、棒鋼は優れた被削性とと
もに、圧延ままで所望の強度、延性を有していることが
必要である。また棒鋼から熱間鍛造により製造した部品
を切削により機械加工する場合、例えば、自動車のエン
ジン廻り部品であるコネクチングロッド、クランクシャ
フト、カムシャフト、ハイポイドギア、ピニオンギアの
加工においても、これら機械加工仕上げ前の鍛造品には
優れた被削性が要求されるとともに、鍛造まま、あるい
は熱処理後に所望の強度、延性を有することが必要であ
る。
[0004] Steel bars manufactured using scrap as an iron source are widely used as materials for parts of automobiles, construction machines, industrial machines and the like. For example, a piston rod of a construction machine is used by directly cutting the outer periphery of a rolled steel bar and then performing induction hardening, but the internal structure of the steel bar remains rolled. Therefore, it is necessary that the steel bar has not only excellent machinability but also desired strength and ductility as rolled. In the case of machining parts manufactured by hot forging from steel bars by cutting, for example, in the processing of connecting rods, crankshafts, camshafts, hypoid gears, and pinion gears that are parts around automobile engines, these parts are not machined before finishing. The forged product must have excellent machinability and have desired strength and ductility as forged or after heat treatment.

【0005】このように多くの部品は機械加工により部
品形状に仕上げられるが、鋼に求められる被削性として
は、切削工具の寿命が長く、且つ切り屑の処理性が良い
ことが重要である。今日の切削は、生産性を高めるた
め、従来より極めて高速で行われるため、工具の摩耗が
従来より大きくなって、工具寿命に優れた快削鋼が求め
られている。
As described above, many parts are finished into a part shape by machining, but as for the machinability required for steel, it is important that the life of the cutting tool is long and the processing ability of chips is good. . Today's cutting is performed at a much higher speed than before in order to increase productivity, so tool wear is greater than before, and there is a need for free-cutting steel with excellent tool life.

【0006】また最近は自動盤により無人で機械加工さ
れることが多く、切り屑が長くつながって絡まってしま
うと、機械の停止や切り屑を取り除くための余計な作業
を行う必要が生じ、生産性を低下させることになる。こ
のため切り屑が適当な大きさに細かく分断するような、
処理性に優れた快削鋼が求められている。
In recent years, automatic machining is often carried out by unmanned machines, and when chips are long and entangled, it is necessary to stop the machine and perform extra work for removing the chips, which leads to a problem in production. Will decrease the performance. For this reason, chips are finely divided into appropriate sizes,
There is a need for free-cutting steel with excellent processability.

【0007】またコネクチングロッド、クランクシャフ
トにおいては潤滑油を供給するための、径の細い穴をい
くつか有しているが、この穴は深いために、穴明け加工
においては、切り屑が細かく分断して、ドリル穴から支
障なく排出されることが必要である。即ち分断しにくい
切り屑では穴から排出されず、切り屑が穴に詰まってド
リル折損を引き起こすのである。
Further, connecting rods and crankshafts have several small diameter holes for supplying lubricating oil. However, since these holes are deep, in drilling, chips are finely divided. Therefore, it is necessary that the liquid is discharged from the drill hole without any trouble. That is, chips that are difficult to cut are not ejected from the holes, and the chips are clogged in the holes, causing breakage of the drill.

【0008】従って、上記のような部品の機械加工に当
たっては、工具寿命、切り屑処理性の改善のため、快削
元素である鉛を0.05〜0.30wt.%添加した鉛快削
鋼が広く用いられてきた。鉛は低融点であるため、切削
加工の熱により容易に溶解して、鋼の延性を低下させ、
これによって、工具寿命を延ばし、切り屑を適度な大き
さに分断する。
Accordingly, in machining the above-mentioned parts, in order to improve tool life and chip disposability, lead free-cutting steel containing 0.05 to 0.30 wt.% Of lead as a free-cutting element is used. Has been widely used. Because lead has a low melting point, it is easily melted by the heat of cutting, reducing the ductility of steel,
This extends the life of the tool and cuts the chips into appropriate sizes.

【0009】しかしながら、鉛快削鋼の切り屑は小さく
カールして、切削応力が工具の刃先に集中する結果、す
くい面の摩耗が大きくなり、切削工具の寿命は必ずしも
長いとはいえない。
However, the chips of the lead free-cutting steel are curled into small pieces, and the cutting stress is concentrated on the cutting edge of the tool. As a result, the wear of the rake face increases, and the life of the cutting tool is not necessarily long.

【0010】また、鉛には毒性があるため、近年の地球
環境保護の機運の高まりに伴って、無鉛の快削鋼が強く
求められている。切削性を向上させる元素としてはPb
の他にS、Ca、Bi、Se、Te等の元素が知られて
いるが、これら元素は単独では、被削性改善効果が鉛
に及ばない、高価である、毒性がある、といった欠
点を少なくとも1つ有しているために、鉛代替の元素に
はなり得ない。
[0010] Further, since lead is toxic, there has been a strong demand for lead-free free-cutting steel along with the recent trend of protecting the global environment. Pb is an element that improves machinability
In addition, elements such as S, Ca, Bi, Se, and Te are known, but these elements alone have disadvantages such as an effect of improving machinability that does not reach that of lead, being expensive, and toxic. Since it has at least one element, it cannot be a substitute element for lead.

【0011】一方黒鉛は鋳鉄にみられる如く、被削性を
極めて向上させる元素であるが、鋼に炭素を添加すると
セメンタイトを析出するので、鋼材に黒鉛の析出を得る
のは容易ではない。従来の発明における炭素0.10〜
1.5wt.%を有する鋼の場合には、例えば特開平2−1
07742号公報、特開平3−140411号公報に
は、600〜800℃の温度で数時間〜200時間もの
長い時間の焼鈍を行って黒鉛を析出させる鋼材または方
法が開示されている。
[0011] On the other hand, graphite is an element that greatly improves machinability as seen in cast iron, but when carbon is added to steel, cementite precipitates, and it is not easy to obtain graphite in steel. 0.10 carbon in the conventional invention
In the case of steel having 1.5 wt.%, For example,
JP-A-07742 and JP-A-3-140411 disclose a steel material or a method of performing annealing at a temperature of 600 to 800 ° C. for a long time of several hours to 200 hours to precipitate graphite.

【0012】また特開昭49−67816号公報、特開
昭49−67817号公報には750〜950℃で焼入
れ、600〜750℃で焼戻して黒鉛を析出させた黒鉛
快削鋼が開示されている。
JP-A-49-67816 and JP-A-49-67817 disclose graphite free-cutting steels which are quenched at 750 to 950 ° C. and tempered at 600 to 750 ° C. to deposit graphite. I have.

【0013】従って、従来の開示例においてはいずれ
も、黒鉛を得るための、黒鉛化熱処理を施す必要があ
り、このため極めてコスト高になってしまう。また黒鉛
化熱処理により金属組織がフェライトになってしまい、
このため強度の低い部品や冷間鍛造によって製造可能な
小さな部品の製造に限定されてしまい、クランクシャフ
トやコネクチングロッドといった大型の鍛造部品の製造
には適用することができなかった。
[0013] Therefore, in each of the conventional disclosure examples, it is necessary to perform a graphitization heat treatment to obtain graphite, which results in an extremely high cost. In addition, the metal structure becomes ferrite by the graphitization heat treatment,
For this reason, the production is limited to the production of low-strength parts and small parts that can be produced by cold forging, and cannot be applied to the production of large forged parts such as crankshafts and connecting rods.

【0014】一方炭素量が3.8wt.%前後の鋳鉄、鋳鋼
はCa、Mg等の接種により鋳造ままで容易に球状黒鉛
が得られ、被削性が良好であることは良く知られてい
る。しかしながら、鋳鉄、鋳鋼は鋳込ままで使用するた
め、鋼材製品の形状の自由度はあるものの、伸び、絞
り、衝撃値といった靱性が低いという欠点がある。
On the other hand, it is well known that cast iron and cast steel having a carbon content of about 3.8% by weight can easily obtain spheroidal graphite as cast by inoculation with Ca, Mg, etc., and have good machinability. . However, since cast iron and cast steel are used up to casting, although there is a degree of freedom in the shape of the steel product, there is a drawback that toughness such as elongation, drawing and impact value is low.

【0015】近年はオーステンパー処理により基地組織
をベイナイトにすることにより, その靱性が改善されて
きてはいる。例えば特開昭61−243121号公報に
は球状黒鉛鋳鉄にオーステンパー処理を施すクランクシ
ャフトの製造方法が、特開昭61−174332号公報
には同じく球状黒鉛鋳鉄にオーステンパー処理を施すコ
ネクチングロッドの製造方法が開示されている。しかし
ながらこれら鋳造品は、従来鋼のS48Cを基本成分に
して0.10wt.%程度のVを添加した非調質鋼の鍛造品
に較べるとヤング率が低く、疲労強度に劣る。また靱性
もなお鍛造品には及ばない。またこれら鋳造品には0.
1mm程度の鋳造巣が発生することがあり、これは疲労
破壊の起点となるので材料の信頼性が劣るのが欠点であ
り、鋳造方法ならびに製品の超音波検査に厳重な注意を
払う必要がある。
In recent years, the toughness has been improved by making the base structure bainite by austempering. For example, Japanese Patent Application Laid-Open No. Sho 61-243121 discloses a method of manufacturing a crankshaft which performs austempering on spheroidal graphite cast iron. A manufacturing method is disclosed. However, these cast products have a lower Young's modulus and are inferior in fatigue strength as compared with forged products of non-heat treated steel to which V of about 0.10 wt. Also, the toughness is still inferior to forged products. In addition, these castings have 0.1%.
Cast cavities of about 1 mm may be generated, which is a starting point of fatigue fracture, so that the reliability of the material is inferior. The drawback is that strict attention must be paid to the casting method and ultrasonic inspection of the product. .

【0016】[0016]

【発明が解決しようとする課題】上述した各種先行技術
には、下記問題点のいずれかが未解決となっている。 問題点1:使用されている快削元素には毒性があり、環
境対策上問題がある。 問題点2:毒性のない快削元素として炭素を利用し、黒
鉛の形態に析出させて快削効果を発揮させ得るが、黒鉛
化熱処理を施さなければならないので、コストが嵩む。 問題点3:炭素含有率の高い鋳鉄や鋳鋼であれば接種に
よる球状黒鉛の析出により快削性が確保されるが、靱性
が劣っている。
Any of the following problems has not been solved in the above various prior arts. Problem 1: The free-cutting elements used are toxic and have problems in environmental measures. Problem 2: Although carbon can be used as a non-toxic free-cutting element and precipitated in the form of graphite to exhibit a free-cutting effect, it requires a graphitizing heat treatment, which increases the cost. Problem 3: In the case of cast iron or cast steel having a high carbon content, free cutting properties are secured by precipitation of spheroidal graphite by inoculation, but the toughness is poor.

【0017】問題点4:快削鋳鉄や快削鋳鋼の熱処理に
より靱性改善を図っても、十分な靱性が得られず、ま
た、鋳造巣欠陥により製品の信頼性に問題がある。 問題点5:将来、CuやNi等がトランプエレメントと
して高濃度に混入した低品位スクラップを相当量、鉄源
として使用した場合には、鋼材の延性低下が懸念される
が、これに対する有効な技術が見当たらない。この発明
においては、この問題の解決が極めて重要であると位置
づけしている。
Problem 4: Even if the toughness is improved by heat treatment of free-cutting cast iron or free-cutting cast steel, sufficient toughness cannot be obtained, and there is a problem in the reliability of products due to defects in casting cavities. Problem 5: In the future, when a considerable amount of low-grade scrap in which Cu, Ni, etc. are mixed in a high concentration as a tramp element is used as an iron source, there is a concern that the ductility of the steel material may be reduced. Is missing. In the present invention, it is considered that solving this problem is extremely important.

【0018】この発明では、上記諸問題点を解決して、
自動車や産業機械の部品類の素材として用いられる熱間
加工状態の棒鋼、及び、その棒鋼を熱間加工し、切削加
工仕上げをして製品とし、熱処理を施さないで上記部品
類を製造するために、被削性が良好であり、トラン
プエレメントを高濃度に含むスクラップを使用しても、
強度及び靱性に優れており、表面疵発生が抑制され、し
かも、安価で且つ環境保護上問題なく製造し得る技術
を開発することを目的とする。本発明者等は、上記目的
を達成するために、特に、熱処理を行なわず熱間加工ま
まで微細で適切な黒鉛を析出させ、且つ、トランプエレ
メントのCu及びNi混入の製造上及び品質上の悪影響
を回避することを主な課題とした。
According to the present invention, the above problems are solved.
For hot-worked steel bars used as materials for parts of automobiles and industrial machines, and for hot-working the steel bars, cutting and finishing to produce products, and manufacturing the above components without heat treatment In addition, the machinability is good, even when using scrap containing a high concentration of tramp elements,
An object of the present invention is to develop a technology which is excellent in strength and toughness, suppresses surface flaws, and can be manufactured at low cost without environmental protection problems. The present inventors, in order to achieve the above object, in particular, to precipitate fine and appropriate graphite while hot working without heat treatment, and to reduce the production and quality of mixed Cu and Ni of the Trump element. The main task was to avoid adverse effects.

【0019】[0019]

【課題を解決するための手段】以上の従来技術を背景に
して、本発明者等は、低級なスクラップを利用し、且つ
鋳物に匹敵する被削性を有する無鉛の超快削鋼製品の開
発を目的として、鋭意研究を重ねた結果、化学成分を適
正に組み合わせることによって、良好な熱間延性を有
し、熱間での棒圧延が可能で、焼鈍を行なわず熱間加工
ままで直接微細な黒鉛を有する快削性に優れた熱間加工
鋼材及び製品を得ることができるとの知見を得た。
SUMMARY OF THE INVENTION With the background of the prior art as described above, the present inventors have developed a lead-free ultra-free-cutting steel product utilizing low-grade scrap and having machinability comparable to that of casting. As a result of diligent research for the purpose, by appropriately combining the chemical components, it has good hot ductility, hot-rolling is possible, and it is possible to directly fine It has been found that a hot-worked steel material and a product having excellent graphite and excellent free-cutting properties can be obtained.

【0020】この発明は、上記知見に基づきなされたも
のであり、その要旨は次の通りである。請求項1記載の
快削性に優れた熱間加工鋼材及び製品は、 C:0.80〜1.70wt.%、Si:0.70〜
2.50wt.%、Cu:0.01〜2.0wt.%、Ni:
0.01〜2.0wt.%、Ca:0.0005〜0.01
00wt.%、Al:0.001〜0.10wt.%、P:0.
050wt.%以下、S:0.050wt.%以下、O:0.0
050wt.%以下、及び、N:0.015wt.%以下を含有
し、残部鉄(Fe)および不可避的不純物からなり、且
つ、Ni含有率とCu含有率とのwt.%比Ni/Cuが、
下記(1)式:Ni/Cu≧0.2 ------(1)を満
たし、そして、下記(2)式: CE=C+Si/3+Cu/9+Ni/9+Al/6 --------(2) 但し、各元素記号:各元素の含有率(wt.%)で算出され
る黒鉛化指数CEが、下記(3)式: CE≧1.30 ------(3) を満たす化学成分組成を有し、且つ、 熱間加工された後、室温まで冷却された、 熱間加工鋼材及びこの熱間加工鋼材を素材とした製
品であって、 平均粒径が0.5μm以上の黒鉛が100個/mm
2 以上析出しており、且つ、金属組織の主体がパーライ
トであることに特徴を有するものである。 即ち、上記において、の熱間加工鋼材及びこの熱間加
工鋼材を素材とした製品とは、上記に述べた通りに、
化学成分組成的にいかなるものを要件としているのか、
そして、上記に述べた通りに、熱間加工ままという履
歴下にあるものである、という両方の要件を備えたもの
であることを意味しているのである。そして、この発明
品は、このような熱間加工鋼材及びその製品であって、
上記に述べた通りに、いかなる状態に黒鉛が析出して
いることを要件としているのか、という特定をされたも
のである。請求項2記載の快削性に優れた熱間加工鋼材
及び製品は、請求項1記載の発明において、黒鉛化指数
CEの算出式として、下記(4)式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B ------(4) 但し、各元素記号:各元素の含有率(wt.%)を用い、そ
して、上記鋼材及び上記製品の化学成分組成に、下記4
種の化学成分組成からなる群から選ばれた少なくとも1
種が、更に付加されて含まれていることに特徴を有する
ものである。ここで、上記4種の化学成分組成とは、M
n:0.01〜1.0wt.%、Cr:0.01〜1.0w
t.%、Mo:0.01〜0.50wt.%、及び、B :
0.0005〜0.010wt.%を指す。
The present invention has been made based on the above findings, and the gist is as follows. The hot-worked steel material and product excellent in free-cutting property according to claim 1 are: C: 0.80 to 1.70 wt.%, Si: 0.70 to
2.50 wt.%, Cu: 0.01 to 2.0 wt.%, Ni:
0.01 to 2.0 wt.%, Ca: 0.0005 to 0.01
00 wt.%, Al: 0.001 to 0.10 wt.%, P: 0.
050 wt.% Or less, S: 0.050 wt.% Or less, O: 0.0
050 wt.% Or less and N: 0.015 wt.% Or less, the balance consisting of iron (Fe) and unavoidable impurities, and the Ni / Cu ratio of Ni / Cu of Ni / Cu ,
The following formula (1) is satisfied: Ni / Cu ≧ 0.2 (1), and the following formula (2) is satisfied: CE = C + Si / 3 + Cu / 9 + Ni / 9 + Al / 6 -(2) However, each element symbol: the graphitization index CE calculated by the content (wt.%) Of each element is expressed by the following equation (3): CE ≧ 1.30 ------ (3 A hot-worked steel material having a chemical composition that satisfies the following and cooled to room temperature after hot-working, and a product made of the hot-worked steel material, wherein the average particle size is 0. 100 µm / mm graphite of 5μm or more
It is characterized in that two or more are precipitated and the main constituent of the metal structure is pearlite. That is, in the above, the hot-worked steel material and the product made of this hot-worked steel material are, as described above,
What is required in terms of chemical composition,
And, as described above, it means that it has both requirements that it is under the history of hot working as it is. And this invention is such a hot-worked steel material and its product,
As described above, it has been specified in what state the graphite is required to be precipitated. A hot-worked steel material and a product excellent in free-cutting property according to claim 2 is the invention according to claim 1, wherein the graphing index CE is calculated by the following equation (4): CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B (4) However, each element symbol: The content (wt.%) Of each element is used, and the steel material and the product are used. The chemical composition of the following 4
At least one selected from the group consisting of species of chemical components
It is characterized in that the seed is further included. Here, the four kinds of chemical component compositions are defined as M
n: 0.01 to 1.0 wt.%, Cr: 0.01 to 1.0 w
t.%, Mo: 0.01 to 0.50 wt.%, and B:
0.0005 to 0.010 wt.%.

【0021】請求項3記載の快削性に優れた熱間加工鋼
材及び製品は、請求項1又は請求項2記載の発明におい
て、黒鉛化指数CEの算出式として、下記(5)式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B+Al/6+Ti/3+Zr/3−V/3−Nb/3 ------(5) 但し、各元素記号:各元素の含有率(wt.%)を用い、そ
して、上記鋼材及び上記製品の化学成分組成に、下記4
種の化学成分組成からなる群から選ばれた少なくとも1
種が、更に付加されて含まれていることに特徴を有する
ものである。ここで、上記4種の化学成分組成とは、T
i:0.001〜0.10wt.%、Zr:0.001〜
0.10wt.%、V :0.005〜0.30wt.%、及
び、Nb:0.005〜0.30wt.%を指す。
A hot-worked steel material and a product excellent in free-cutting property according to claim 3 is the invention according to claim 1 or 2, wherein the graphitization index CE is calculated by the following equation (5): CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 ------ (5) where each element symbol : Using the content (wt.%) Of each element, and adding the following 4
At least one selected from the group consisting of species of chemical components
It is characterized in that the seed is further included. Here, the above four chemical component compositions are T
i: 0.001 to 0.10 wt.%, Zr: 0.001
0.10 wt.%, V: 0.005 to 0.30 wt.%, And Nb: 0.005 to 0.30 wt.%.

【0022】請求項4記載の快削性に優れた熱間加工鋼
材及び製品は、請求項1、請求項2、又は請求項3記載
の発明において、黒鉛化指数CEの算出式として、下記
(5)式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B+Al/6+Ti/3+Zr/3−V/3−Nb/3 ------(5) 但し、各元素記号:各元素の含有率(wt.%)用い、そし
て、上記鋼材及び上記製品の化学成分組成に、下記2種
の化学成分組成からなる群から選ばれた少なくとも1種
が、更に付加されて含まれていることに特徴を有するも
のである。ここで、上記2種の化学成分組成とは、Mg
:0.0010〜0.10wt.%、及び、REM:0.
0010〜0.10wt.%を指す。
The hot-worked steel material and the product excellent in free-cutting property according to claim 4 are the same as the formula (1), (2) or (3), wherein the graphitization index CE is calculated as follows: 5) Formula: CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 (5) However, each element symbol: the content (wt.%) Of each element is used, and at least one selected from the group consisting of the following two chemical component compositions is used as the chemical component composition of the steel material and the product. It is characterized by being additionally included. Here, the two kinds of chemical component compositions are Mg
: 0.0010 to 0.10 wt.% And REM: 0.
0010 to 0.10 wt.%.

【0023】請求項5記載の快削性に優れた熱間加工鋼
材及び製品の製造方法は、C:0.80〜1.70wt.
%、Si:0.70〜2.50wt.%、Cu:0.01〜
2.0wt.%、Ni:0.01〜2.0wt.%、Ca:0.
0005〜0.0100wt.%、Al:0.001〜0.
10wt.%、P:0.050wt.%以下、S:0.050w
t.%以下、O:0.0050wt.%以下、及び、N:0.
015wt.%以下を含有し、残部鉄(Fe)および不可避
的不純物からなり、且つ、Ni含有率とCu含有率との
wt.%比Ni/Cuが、下記(1)式:Ni/Cu≧0.
2 ------(1)を満たし、そして、下記(2)式: CE=C+Si/3+Cu/9+Ni/9+Al/6 --------(2) 但し、各元素記号:各元素の含有率(wt.%)で算出され
る黒鉛化指数CEが、下記(3)式: CE≧1.30 ------(3) を満たす化学成分組成を有する鋼片又は鋼材を、上記C
u含有率と上記Ni含有率との比率に等しい組成のCu
とNiとの合金の固相線温度未満の温度であって、且
つ、前記鋼片又は前記鋼材の固相線温度より50℃低い
温度を上限とし、800℃を下限とする温度範囲内に加
熱した後、熱間加工し、そして室温まで冷却し、こうし
て得られた熱間加工鋼材に平均粒径が0.5μm以上の
黒鉛を100個/mm2 以上析出させ、且つ、前記熱間
加工鋼材の金属組織の主体をパーライトとなすことに特
徴を有するものである。
The method for producing a hot-worked steel material and a product excellent in free-cutting property according to claim 5 is as follows: C: 0.80 to 1.70 wt.
%, Si: 0.70 to 2.50 wt.%, Cu: 0.01 to
2.0 wt.%, Ni: 0.01 to 2.0 wt.%, Ca: 0.
0005-0.0100 wt.%, Al: 0.001-0.
10 wt.%, P: 0.050 wt.% Or less, S: 0.050 w
t.% or less, O: 0.0050 wt.% or less, and N: 0.
015 wt.% Or less, the balance consisting of iron (Fe) and unavoidable impurities, and the difference between the Ni content and the Cu content.
When the wt.% ratio Ni / Cu is expressed by the following formula (1): Ni / Cu ≧ 0.
2 ---- Satisfies (1) and the following formula (2): CE = C + Si / 3 + Cu / 9 + Ni / 9 + Al / 6 (2) However, each element symbol: each A slab or a steel material having a chemical component composition having a graphitization index CE calculated from the element content (wt.%) Satisfying the following formula (3): CE ≧ 1.30 And the above C
Cu having a composition equal to the ratio between the u content and the Ni content.
The temperature is lower than the solidus temperature of the alloy of Ni and Ni, and 50 ° C lower than the solidus temperature of the steel slab or the steel material, with the upper limit being 800 ° C. After hot working and cooling to room temperature, the hot-worked steel material thus obtained is precipitated with graphite having an average particle size of 0.5 μm or more in an amount of 100 / mm 2 or more. The main feature of the metal structure is that of pearlite.

【0024】請求項6記載の快削性に優れた熱間加工鋼
材及び製品の製造方法は、請求項5記載の発明におい
て、黒鉛化指数CEの算出式として、下記(4)式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B ------(4) 但し、各元素記号:各元素の含有率(wt.%)を用い、そ
して、上記鋼片又は上記鋼材として、下記4種の化学成
分組成からなる群から選ばれた少なくとも1種を、更に
付加されて含まれているものを用いることに特徴を有す
るものである。ここで、上記4種の化学成分組成とは、
Mn:0.01〜1.0wt.%、Cr:0.01〜1.0
wt.%、Mo:0.01〜0.50wt.%、及び、B :
0.0005〜0.010wt.%を指す。
According to the sixth aspect of the present invention, there is provided a method for producing a hot-worked steel material and a product excellent in free-cutting property, wherein the graphitization index CE is calculated by the following equation (4): CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B (4) However, each element symbol: The content (wt.%) Of each element is used, and The steel slab or the steel material is characterized by using at least one selected from the group consisting of the following four chemical component compositions in addition thereto. Here, the above four chemical component compositions are
Mn: 0.01 to 1.0 wt.%, Cr: 0.01 to 1.0
wt.%, Mo: 0.01 to 0.50 wt.%, and B:
0.0005 to 0.010 wt.%.

【0025】請求項7記載の快削性に優れた熱間加工鋼
材及び製品の製造方法は、請求項5又は請求項6記載の
発明において、黒鉛化指数CEの算出式として、下記
(5)式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B+Al/6+Ti/3+Zr/3−V/3−Nb/3 --------(5) 但し、各元素記号:各元素の含有率(wt.%)を用い、そ
して、上記鋼片又は上記鋼材として、下記4種の化学成
分組成からなる群から選ばれた少なくとも1種を、更に
付加されて含まれているものを用いることに特徴を有す
るものである。ここで、上記4種の化学成分組成とは、
Ti:0.001〜0.10wt.%、Zr:0.001〜
0.10wt.%、V :0.005〜0.30wt.%、及
び、Nb:0.005〜0.30wt.%を指す。
The method for producing a hot-worked steel material and a product excellent in free-cutting property according to claim 7 is a method according to claim 5 or claim 6, wherein the graphitization index CE is calculated by the following formula (5). Formula: CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 (5) However, the symbol of each element: the content (wt.%) Of each element is used, and at least one selected from the group consisting of the following four chemical components is further added as the steel slab or the steel material. It is characterized by using what is included. Here, the above four chemical component compositions are
Ti: 0.001 to 0.10 wt.%, Zr: 0.001 to
0.10 wt.%, V: 0.005 to 0.30 wt.%, And Nb: 0.005 to 0.30 wt.%.

【0026】請求項8記載の快削性に優れた熱間加工鋼
材及び製品の製造方法は、請求項5、請求項6、又は請
求項7記載の発明において、記黒鉛化指数CEの算出式
として、下記(5)式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B+Al/6+Ti/3+Zr/3−V/3−Nb/3 --------------------------------(5) 但し、各元素記号:各元素の含有率(wt.%)を用い、そ
して、上記鋼片又は上記鋼材として、下記2種の化学成
分組成からなる群から選ばれた少なくとも1種を、更に
付加されて含まれているものを用いることに特徴を有す
るものである。ここで、上記2種の化学成分組成とは、
Mg :0.0010〜0.10wt.%、及び、REM:
0.0010〜0.10wt.%を指す。
The method for producing a hot-worked steel material and a product excellent in free-cutting property according to claim 8 is a method for calculating the graphitization index CE according to claim 5, 6, or 7. The following formula (5) is used: CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 --------------------------- (5) However, each element symbol: Use the content rate (wt.%) Of each element, and The steel slab or the steel material is characterized by using at least one selected from the group consisting of the following two chemical components in addition thereto. Here, the two types of chemical component compositions are as follows:
Mg: 0.0010 to 0.10 wt.%, And REM:
0.0010 to 0.10 wt.%.

【0027】[0027]

【発明の実施の形態】次に、この発明における鋼片、鋼
材及びこの鋼材から製造された部品類等製品の、化学成
分組成、黒鉛の析出状態及び金属組織、並びに、鋼片及
び鋼材の加熱条件を上記の通り限定した理由について説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the chemical composition, the graphite precipitation state and the metal structure of the billet, steel material and products manufactured from the steel material according to the present invention, and the heating of the billet and the steel material The reason why the conditions are limited as described above will be described.

【0028】(1)炭素(C) 炭素は、黒鉛を析出させ、強度を確保するのに重要な元
素である。熱間加工ままで黒鉛を析出させるためには
0.80wt.%以上を必要とする。しかしながら炭素含有
量が1.70wt.%を超えると熱間延性の低下が大きく、
棒圧延に際して表面疵の発生が増大する。また熱間加工
後に析出する黒鉛粒が粗大になり、靱性を低下させる。
従って、炭素含有率は0.80〜1.70wt.%の間とす
る。
(1) Carbon (C) Carbon is an important element for precipitating graphite and ensuring strength. In order to deposit graphite while hot working, 0.80 wt.% Or more is required. However, if the carbon content exceeds 1.70 wt.%, The decrease in hot ductility is large,
The occurrence of surface flaws increases during bar rolling. In addition, graphite grains precipitated after hot working become coarse, and the toughness is reduced.
Therefore, the carbon content is between 0.80 and 1.70 wt.%.

【0029】(2)シリコン(Si) Siは本発明において重要な役目を果たす元素である。
即ちSiはセメンタイトの黒鉛化を促進する元素であ
り、0.70wt.%未満ではその効果は小さい。しかし、
Siが2.50wt.%を超えると非金属介在物が増大して
靱性の低下を招くのみならず、熱間加工時の加熱におい
て脱炭を大きくする。従って、Si含有率は、0.70
〜2.50wt.%の間とする。
(2) Silicon (Si) Si is an element that plays an important role in the present invention.
That is, Si is an element which promotes the graphitization of cementite, and its effect is small when it is less than 0.70 wt.%. But,
If Si exceeds 2.50 wt.%, Nonmetallic inclusions increase and not only decrease in toughness, but also increase decarburization during heating during hot working. Therefore, the Si content is 0.70
2.52.50 wt.%.

【0030】(3)銅(Cu) Cuの含有量は今日、スクラップ中に徐々に増加しつつ
ある。一方、鋼の高温加熱に際して、はじめにFeが選
択的に酸化され、鋼中Cuは材料表面に濃化する。Cu
は融点が低いので溶融して、Cuの融体が隙間の多い結
晶粒界に侵入する。これが熱間延性を低下させ、表面
疵、割れ発生の原因となるため、自動車や産業機械用部
品等には、Cuが積極的に利用されることは少なかっ
た。しかし、Cuの融点は約1083℃であるため、こ
の融点未満で熱間加工すれば、Cuが粒界に侵入して熱
間延性を低下させることは防止できる。
(3) Copper (Cu) The Cu content is gradually increasing today during scrap. On the other hand, when the steel is heated at a high temperature, Fe is first selectively oxidized, and Cu in the steel is concentrated on the material surface. Cu
Has a low melting point and thus melts, and a melt of Cu penetrates into crystal grain boundaries with many gaps. This lowers hot ductility and causes surface flaws and cracks. Therefore, Cu is rarely used positively in automobiles, industrial machine parts and the like. However, since the melting point of Cu is about 1083 ° C., if hot working is performed at a temperature lower than this melting point, it is possible to prevent Cu from penetrating into grain boundaries and reducing hot ductility.

【0031】しかし、1083℃未満という低温での熱
間加工では、材料の変形抵抗の増大を伴い、圧延機や工
具に過大な負荷がかかるため、従来の鋼では実用化され
るに至っておらず、変形抵抗の小さい鋼を開発する必要
がある。
However, hot working at a low temperature of less than 1083 ° C. involves an increase in the deformation resistance of the material, and an excessive load is applied to the rolling mill and tools. Therefore, the conventional steel has not been put to practical use. It is necessary to develop steel with low deformation resistance.

【0032】さて一方、CuはCu2 S、CuSを形成
してSの悪影響を無害化するため、Mnの代替になる有
用な元素であるとともに、黒鉛の析出を促進し、且つ焼
入れ性を向上させる元素である。従って、この目的でC
uを利用するするときには0.01wt.%以上の添加を必
要とする。しかしCuは2.0wt.%を超えると、鋼中へ
の固溶限を超えてしまうため、未溶解Cuが残存して熱
間延性を低下させ、表面疵の発生を助長するので、Cu
含有率は0.01〜2.0wt.%の間とする。
On the other hand, Cu forms Cu 2 S and CuS and renders the harmful effect of S harmless. Therefore, Cu is a useful element that can substitute for Mn, promotes the precipitation of graphite, and improves the hardenability. Element that causes Therefore, for this purpose C
When using u, it is necessary to add 0.01 wt.% or more. However, if Cu exceeds 2.0 wt.%, The solid solubility limit in steel will be exceeded, and undissolved Cu will remain, reducing hot ductility and promoting the generation of surface flaws.
The content is between 0.01 and 2.0 wt.%.

【0033】(4)ニッケル(Ni) Niもスクラップ中に少なからず混入しているが、Ni
はCuと全率固溶体をつくるため、よく混じり合う。N
iの融点は約1453℃であり、Cu(融点:1083
℃)に混じることによって、その溶けはじめる温度(固
相線温度)を上昇させる。即ち、Cu中のNi濃度が高
くなるにつれてCuとNiとの合金(Cu−Ni合金)
の固相線温度TS は高くなる。従って、Ni添加により
鋼材表層部のCuはCuとNiとの合金になり、溶融し
にくくなるので、結晶粒界への侵入が抑止され、表面疵
の発生が抑制される。
(4) Nickel (Ni) Ni is mixed in the scrap to some extent.
Forms a solid solution with Cu, so that it is well mixed. N
The melting point of i is about 1453 ° C. and Cu (melting point: 1083)
° C) to raise the temperature at which it begins to melt (solidus temperature). That is, as the Ni concentration in Cu increases, an alloy of Cu and Ni (Cu-Ni alloy)
Has a higher solidus temperature T S. Therefore, Cu in the surface layer of the steel material becomes an alloy of Cu and Ni due to the addition of Ni, and hardly melts. Therefore, penetration into crystal grain boundaries is suppressed, and generation of surface defects is suppressed.

【0034】更にまた、NiもCuと同様に黒鉛の析出
を促進させるとともに、焼入れ性を向上させる有用な元
素である。これらの目的で添加するときにはNiは0.
01wt.%以上の添加を必要とする。しかし、Niを2.
0wt.%を超えて添加してもその効果は飽和するのみなら
ず、変形抵抗を増大させることになる。従って、Ni含
有率は0.01〜2.0wt.%の間とする。
Further, Ni is a useful element that promotes the precipitation of graphite as well as Cu and improves the hardenability. When added for these purposes, Ni is added in an amount of 0.1.
Requires addition of more than 01 wt.%. However, Ni was added to 2.
Addition of more than 0 wt.% Not only saturates the effect, but also increases the deformation resistance. Therefore, the Ni content is between 0.01 and 2.0 wt.%.

【0035】ここで、CuとNiを併用する場合、Ni
/Cuの重量wt.%比は0.2以上とする理由は次の通り
である。上述した通り、CuがNiと合金化すると、固
相線温度が上昇する。鋼材の加熱温度が、このCu−N
i合金の固相線温度よりも高いと、熱間延性が低下し、
表面疵や割れが発生するので、加熱温度の上限は、Cu
−Ni合金の固相線温度未満にする必要がある。一方、
本発明の鋼材の加熱温度は、後で説明するように、最適
加工温度を、鋼材の固相線温度から定める約1165℃
までさげることができ、従来の機械構造用鋼の加工温度
より約200℃低下することができる。そこで、鋼材加
熱中のCu融体の生成を防止して、上記最適加工温度の
低下を実施することができるようにするために、Cu
(融点:1083℃)をCu−Ni合金化してこの固相
線温度を高める必要がある。
Here, when Cu and Ni are used together, Ni
The reason why the weight wt.% Ratio of / Cu is 0.2 or more is as follows. As described above, when Cu is alloyed with Ni, the solidus temperature increases. The heating temperature of the steel material is
If the temperature is higher than the solidus temperature of the i-alloy, hot ductility decreases,
Since surface flaws and cracks occur, the upper limit of the heating temperature is Cu
-It must be lower than the solidus temperature of the Ni alloy. on the other hand,
The heating temperature of the steel material of the present invention is, as described later, about 1165 ° C., which determines the optimum processing temperature from the solidus temperature of the steel material.
And can be lowered by about 200 ° C. from the processing temperature of the conventional steel for machine structural use. Therefore, in order to prevent generation of a Cu melt during heating of the steel material and to be able to carry out the reduction of the above-mentioned optimum processing temperature, Cu
(Melting point: 1083 ° C.) must be alloyed with Cu—Ni to increase the solidus temperature.

【0036】本発明者等は実験を重ねた結果、表面疵発
生を防止するためには、Ni/Cuのwt.%比を、0.2
以上にすることが必要であると判断した。Ni/Cuの
wt.%比が0.2のとき、この合金の融点は約1145℃
となり、Cuの融点を約60℃高めることができること
がわかった。
As a result of repeated experiments, the present inventors have found that in order to prevent the occurrence of surface flaws, the Ni / Cu wt.
It was determined that this was necessary. Ni / Cu
When the wt.% ratio is 0.2, the melting point of this alloy is about 1145 ° C.
It was found that the melting point of Cu could be increased by about 60 ° C.

【0037】(5)燐(P) Pは黒鉛化を促進する元素であるが、粒界に偏析して熱
間延性を低下させ、表面疵の発生を助長する。従って、
P含有率は0.050wt.%以下に限定する。
(5) Phosphorus (P) P is an element that promotes graphitization, but segregates at the grain boundaries to reduce hot ductility and promotes surface flaws. Therefore,
The P content is limited to 0.050 wt.% Or less.

【0038】(6)硫黄(S) Sは黒鉛化を大きく阻害する元素であり、Sの含有率が
0.050wt.%を超えると、Si等の黒鉛化促進元素を
多量に添加する必要があり、熱間延性の低下を招く。従
って、S含有率は上記弊害を抑えるために0.050w
t.%以下に限定する。望ましくは0.030wt.%以下と
する。
(6) Sulfur (S) S is an element that greatly inhibits graphitization. If the S content exceeds 0.050 wt.%, It is necessary to add a large amount of a graphitization promoting element such as Si. And causes a reduction in hot ductility. Therefore, the S content is 0.050 W to suppress the above-mentioned adverse effects.
Limited to t.% or less. Desirably, the content is 0.030 wt.% Or less.

【0039】(7)カルシウム(Ca) Caは、Si−Al−O系介在物に混じって、Ca−S
i−Al−O系の融点約1200℃の低融点介在物を形
成する。この低融点介在物は高速切削時の温度上昇に伴
って溶融し、工具の逃げ面、すくい面に薄く付着する、
いわゆるベラーグを形成して、工具の摩耗の進行を抑
え、工具寿命を延長する。
(7) Calcium (Ca) Ca is mixed with Si—Al—O-based inclusions to form Ca—S
A low melting point inclusion having a melting point of about 1200 ° C. of i-Al—O system is formed. This low-melting inclusions melt with the temperature rise during high-speed cutting, and thinly adhere to the flank and rake surfaces of the tool.
A so-called bellag is formed to suppress the progress of tool wear and extend tool life.

【0040】またCaは鋳鉄において接種材として使用
され黒鉛化を促進させる。これはCaの蒸気圧が高く鋳
造中にCaの蒸気が鉄内に微小な空洞を形成し、これが
黒鉛析出の核となって、球状黒鉛を析出と考えられる
が、鋳鉄と同様に鋼においても熱間加工後の黒鉛析出を
容易にする。こうした目的のためにはCaは0.000
5%以上添加する必要があるが、0.010%を超えて
添加しても効果は飽和する。従って、Ca含有率の範囲
は0.0005〜0.010wt.%の間とする。
Ca is used as an inoculant in cast iron and promotes graphitization. This is because the vapor pressure of Ca is high and the vapor of Ca forms small cavities in the iron during casting, which is considered to be the nucleus of graphite precipitation and precipitate spheroidal graphite. Facilitates graphite deposition after hot working. For this purpose, Ca is 0.000
It is necessary to add 5% or more, but if it exceeds 0.010%, the effect is saturated. Therefore, the range of the Ca content is between 0.0005 and 0.010 wt.%.

【0041】(8)アルミニウム(Al) Alは、Ca、SiともとにCa−Si−Al−O系の
介在物を形成する。またSiと同様に黒鉛化を促進する
元素である。これらの目的のためにはAlは少なくとも
0.001%以上添加する必要がある。しかし0.10
%を超えると、Ca−Si−Al−O系介在物中のAl
の割合が高くなって融点が上昇し、ベラーグを形成する
のが困難になる。従って、Al含有率の範囲は0.00
1〜0.10wt.%の間とする。
(8) Aluminum (Al) Al forms Ca-Si-Al-O-based inclusions together with Ca and Si. It is an element that promotes graphitization like Si. For these purposes, it is necessary to add Al at least 0.001% or more. But 0.10
%, The Al in the Ca-Si-Al-O-based inclusions
And the melting point rises, making it difficult to form belag. Therefore, the range of the Al content is 0.00
It should be between 1 and 0.10 wt.%.

【0042】(9)酸素(O) Oは、鋼中のSi、Al、Caとの間にCa−Si−O
系の酸化物系介在物を生成する。しかし、Oは黒鉛化を
阻害する元素であり、その含有量が0.0050wt.%を
超えると、黒鉛化を促進する元素を多量に添加する必要
がある。従って、O含有率は0.0050wt.%以下に限
定する。
(9) Oxygen (O) O is Ca—Si—O between Si, Al and Ca in steel.
Form oxide-based inclusions. However, O is an element that inhibits graphitization, and if its content exceeds 0.0050 wt.%, It is necessary to add a large amount of an element that promotes graphitization. Therefore, the O content is limited to 0.0050 wt.% Or less.

【0043】(10)窒素(N) Nは単独で鋼中に存在すると黒鉛化を阻害する。N含有
率が0.015wt.%を超えると、黒鉛の析出が困難にな
るほか、窒素ガスによるブローホ─ルが多数形成され
て、圧延後の表面疵の原因になる。従って、N含有率は
0.015wt.%以下に限定する。
(10) Nitrogen (N) When N alone exists in steel, it inhibits graphitization. If the N content exceeds 0.015 wt.%, Precipitation of graphite becomes difficult, and a large number of blowholes are formed by nitrogen gas, which causes surface defects after rolling. Therefore, the N content is limited to 0.015 wt.% Or less.

【0044】(11)マンガン(Mn) Mnは、焼入れ性を高め、パーライトを微細にして、鋼
を強靱化する元素である。この目的で用いる場合には
0.01wt.%以上の添加を必要とするが、Mnは黒鉛の
析出を大きく阻害する元素でもある。従って、Mnを
1.0wt.%以下の範囲で含有させることが望ましい。
(11) Manganese (Mn) Mn is an element that enhances hardenability, refines pearlite, and strengthens steel. When used for this purpose, 0.01 wt.% Or more of Mn is required, but Mn is also an element that greatly inhibits the precipitation of graphite. Therefore, it is desirable to contain Mn in a range of 1.0 wt.% Or less.

【0045】(12)クロム(Cr) Crは、Mnと同様に焼入れ性を大きく向上させ、パー
ライトを微細にする元素である。Crをこの目的で用い
る場合には0.01wt.%以上の添加を必要とする。しか
しCrもMnと同様に黒鉛化を阻害する作用が強いの
で、1.0wt.%を超えると、黒鉛化促進元素を多量に必
要とし、コスト高になる。従って、Crを0.01〜
1.0wt.%の間で含有させることが望ましい。
(12) Chromium (Cr) Like Cr, Cr is an element which greatly improves the hardenability and makes pearlite fine. When Cr is used for this purpose, it must be added in an amount of 0.01 wt.% Or more. However, since Cr also has a strong effect of inhibiting graphitization like Mn, if it exceeds 1.0 wt.%, A large amount of graphitization promoting element is required, resulting in an increase in cost. Therefore, if Cr is 0.01 to
It is desirable that the content be between 1.0 wt.%.

【0046】(13)モリブデン(Mo) Moも鋼の焼入れ性を高め、パーライトを微細にする元
素である。この目的で用いる場合には0.01wt.%以上
の添加を必要とする。しかしMoもMn、Crと同様に
黒鉛化を阻害する元素であり、0.50wt.%を超える
と、黒鉛化促進元素を多量に必要とする。従って、Mo
を0.01〜0.50wt.%の間で含有させることが望ま
しい。
(13) Molybdenum (Mo) Mo is also an element that enhances the hardenability of steel and makes pearlite fine. When used for this purpose, 0.01 wt.% Or more must be added. However, Mo is also an element that inhibits graphitization like Mn and Cr. If it exceeds 0.50 wt.%, A large amount of graphitization promoting element is required. Therefore, Mo
Is desirably contained between 0.01 and 0.50 wt.%.

【0047】(14)ボロン(B) Bは、微量で焼入れ性を高める元素である。また鋼中の
NをBNとして固定し、Nの黒鉛化阻害作用を軽減す
る。Bをこの目的で用いる場合には0.0005wt.%以
上の添加を必要とする。しかし、Bを0.010wt.%を
超えて添加してもその効果は飽和するのみならず、熱間
延性を低下させる。従って、B含有率を0.0005〜
0.010wt.%の間で含有させることが望ましい。
(14) Boron (B) B is an element that enhances hardenability in a trace amount. Further, N in the steel is fixed as BN, and the graphitization inhibiting effect of N is reduced. When B is used for this purpose, 0.0005 wt.% Or more must be added. However, if B is added in excess of 0.010 wt.%, The effect is not only saturated, but also the hot ductility is reduced. Therefore, the B content is 0.0005 to
It is desirable that the content be between 0.010 wt.%.

【0048】(15)チタン(Ti) Tiは、TiN、TiCを析出させ、結晶粒を微細化す
る。またこれら析出物は黒鉛析出の核として作用し、黒
鉛の析出を促進する。Ti添加量が0.001wt.%未満
ではその効果は小さく、一方、0.10wt.%を超えて添
加すると、硬いTiN、TiCが多量に生成して、工具
の摩耗を促進する。従って、Tiを0.001〜0.1
0wt.%の間で含有させることが望ましい。
(15) Titanium (Ti) Ti precipitates TiN and TiC and refines crystal grains. In addition, these precipitates act as nuclei for graphite deposition and promote graphite deposition. If the amount of Ti is less than 0.001 wt.%, The effect is small. On the other hand, if the amount of Ti exceeds 0.10 wt.%, Hard TiN and TiC are generated in a large amount to promote wear of the tool. Therefore, Ti is set to 0.001 to 0.1.
It is desirable to contain it between 0 wt.%.

【0049】(16)ジルコニウム(Zr) ZrもTiと同様に窒化物、炭化物を析出させ、結晶粒
を微細化すると共に、黒鉛の析出を促進させる。Zr添
加量が0.001wt.%未満ではその効果は小さく、一方
0.10wt.%を超えて添加すると、工具の摩耗を促進す
る。従って、Zrを0.001〜0.10wt.%の間で含
有させることが望ましい。
(16) Zirconium (Zr) Like Zr, Zr also precipitates nitrides and carbides, refines crystal grains, and promotes precipitation of graphite. If the Zr content is less than 0.001 wt.%, The effect is small, while if it exceeds 0.10 wt.%, Tool wear is accelerated. Therefore, it is desirable that Zr be contained between 0.001 and 0.10 wt.%.

【0050】(17)バナジウム(V) Vも窒化物、炭化物を析出させ、結晶粒を微細化する。
また、Vの析出物は微細であるので鋼の降伏応力を高
め、疲労限応力を向上させる。しかし、V添加量が0.
005wt.%未満ではその効果は小さい。一方、Vは黒鉛
の析出を阻害する元素であり、0.30wt.%を超えて添
加すると、黒鉛化促進元素を多量に必要とする。従っ
て、Vを0.005〜0.30wt.%の間で含有させるこ
とが望ましい。
(17) Vanadium (V) V also precipitates nitrides and carbides and refines crystal grains.
Further, since V precipitates are fine, they increase the yield stress of the steel and improve the fatigue limit stress. However, when the amount of V added is 0.1.
If it is less than 005 wt.%, The effect is small. On the other hand, V is an element that inhibits the precipitation of graphite, and if added in excess of 0.30 wt.%, A large amount of the graphitization promoting element is required. Therefore, it is desirable that V be contained between 0.005 and 0.30 wt.%.

【0051】(18)ニオブ(Nb) Nbも窒化物、炭化物を析出させ、結晶粒を微細化する
とともに、降伏応力を高める。Nbの炭窒化物は115
0℃の高温でも鋼中に固溶せず、オーステナイト粒の粗
大化を阻止し、鍛造後の粒を微細にして、靱性を向上さ
せる。Nb添加量が0.005wt.%未満ではその効果は
小さく、一方、0.30wt.%を超えて添加すると、黒鉛
の析出を阻害して、黒鉛化促進元素を多量に必要とす
る。従って、Nbを0.005〜0.30wt.%の間で含
有させることが望ましい。
(18) Niobium (Nb) Nb also precipitates nitrides and carbides, refines crystal grains, and increases the yield stress. Nb carbonitride is 115
Even at a high temperature of 0 ° C., it does not form a solid solution in the steel, prevents coarsening of austenite grains, refines grains after forging, and improves toughness. When the amount of Nb is less than 0.005 wt.%, The effect is small. On the other hand, when the amount exceeds 0.30 wt.%, The precipitation of graphite is inhibited, and a large amount of the graphitization promoting element is required. Therefore, it is desirable to contain Nb between 0.005 and 0.30 wt.%.

【0052】(19)マグネシウム(Mg) MgもCaと同じく鋳鉄において接種材として使用され
黒鉛化を促進させ、鋼においても加工後の黒鉛析出を容
易にする。その添加量が0.0010wt.%未満では効果
は小さく、一方、0.10wt.%を超えて添加しても効果
は飽和する。従って、Mgを0.0010〜0.10w
t.%の間で含有させることが望ましい。 (20)REM(希土類元素) Ce、La等のREMも鍛造後の黒鉛析出を促進する。
その添加量が0.0010wt.%未満では効果は小さく、
一方、0.10wt.%を超えて添加しても効果は飽和す
る。従って、REMを0.0010〜0.10wt.%の間
で含有させることが望ましい。
(19) Magnesium (Mg) Mg, like Ca, is used as an inoculant in cast iron and promotes graphitization, and also facilitates precipitation of graphite after working in steel. If the amount is less than 0.0010 wt.%, The effect is small, while if it exceeds 0.10 wt.%, The effect is saturated. Therefore, 0.0010 to 0.10w of Mg
%. (20) REM (Rare Earth Element) REM such as Ce and La also promotes graphite precipitation after forging.
If the added amount is less than 0.0010 wt.%, The effect is small,
On the other hand, the effect is saturated even if it exceeds 0.10 wt.%. Therefore, it is desirable to contain REM between 0.0010 and 0.10 wt.%.

【0053】鋼には通常以上の他に、Sn、As等の不
可避的に混入する元素を含む。また環境への問題が小さ
い場合には、補足的にBi、Se、Te等の快削元素を
少量添加することも可能である。
[0053] Steel contains elements inevitably mixed, such as Sn and As, in addition to the usual elements. If the environmental problem is small, it is also possible to supplementarily add a small amount of free-cutting elements such as Bi, Se, and Te.

【0054】(21)黒鉛化指数 黒鉛の析出を促進するには黒鉛化指数CEが重要であ
る。このCEは主要元素については下記(5)式で表わ
される。即ち、 CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B+Al/6+Ti/3+Zr/3−V/3−Nb/3 --------------------------------(5) 但し、各元素記号は各元素の含有率(wt.%)を表わす。
そして、他の条件が一定の場合には、黒鉛化指数CEが
大きいほど黒鉛の析出は促進される。黒鉛の析出は加熱
温度、加工度、冷却速度により左右されるので、CEに
よって一義的に決定されるものではないが、CEは1.
30以上でないと、焼鈍等の黒鉛を析出させる熱処理を
行なわない限り、実用的な条件で黒鉛を析出させること
が困難になる。従って、CEは1.30以上とする。
(21) Graphitization Index Graphitization index CE is important for accelerating the precipitation of graphite. This CE is represented by the following formula (5) for the main element. That is, CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 --------------------- (5) However, each element symbol represents the content (wt.%) Of each element.
Then, when other conditions are constant, the precipitation of graphite is promoted as the graphitization index CE increases. The precipitation of graphite depends on the heating temperature, the working degree and the cooling rate, and is not uniquely determined by CE.
If it is not more than 30, it is difficult to deposit graphite under practical conditions unless heat treatment for depositing graphite such as annealing is performed. Therefore, CE is set to 1.30 or more.

【0055】(22)加工品の組織 熱間圧延した棒鋼、熱間鍛造したクランクシャフト等の
製品には快削性を確保するために、微細な黒鉛を含むほ
か、金属組織の主体は、靱性を確保するためパーライト
であることが必要である。パーライトの他には一部、粒
界フェライト、黒鉛粒のまわりに発生するフェライト、
ベイナイトが単独で又は複合で存在していても差し支え
ない。
(22) Structure of Worked Products Products such as hot-rolled steel bars and hot-forged crankshafts contain fine graphite to ensure free-cutting properties, and the main metal structure is toughness. Must be pearlite in order to ensure In addition to pearlite, partly grain boundary ferrite, ferrite generated around graphite grains,
Bainite may be present alone or in combination.

【0056】(23)加熱温度 黒鉛の析出を促進するために熱間加工温度は重要な因子
である。これは加工時の加熱温度が適正ならば、鋼が高
温に保持されている間に微細な黒鉛を析出する。また加
工によって導入された格子欠陥を多量残存させることに
よってその後の冷却中における黒鉛の析出を容易ならし
める。しかし過度の高温に長時間保持すると、高温保持
中に一旦析出した黒鉛は再固溶して、加工後に得られる
黒鉛粒の数が少なくなる。
(23) Heating temperature The hot working temperature is an important factor for promoting the precipitation of graphite. This results in the precipitation of fine graphite while the steel is held at a high temperature, if the heating temperature during processing is appropriate. Further, by leaving a large amount of lattice defects introduced by processing, precipitation of graphite during subsequent cooling is facilitated. However, if it is held at an excessively high temperature for a long time, the graphite once precipitated during the high-temperature holding will again form a solid solution, and the number of graphite particles obtained after processing will decrease.

【0057】この発明においては、鋼材の加熱温度の上
限を、当該鋼材中のCuとNiとの含有率(wt.%)の比
率に等しい組成のCuとNiとの合金(「Cu−Ni合
金」)の固相線温度と、当該鋼材の固相線温度より50
℃だけ低い温度とを比較し、低い方の温度を採用する。
但し、前者のCu−Ni合金の固相線温度の方が低い場
合には、加熱温度の上限としては、Cu−Ni合金の固
相線温度未満の温度としている。上記限定理由は、次の
通りである。
In the present invention, the upper limit of the heating temperature of the steel material is set to an alloy of Cu and Ni having a composition equal to the ratio of the content ratio (wt.%) Of Cu and Ni in the steel material (“Cu-Ni alloy”). 50) from the solidus temperature of the steel material
Compare with the temperature lower by only ° C and adopt the lower temperature.
However, when the solidus temperature of the former Cu—Ni alloy is lower, the upper limit of the heating temperature is lower than the solidus temperature of the Cu—Ni alloy. The reasons for the above limitation are as follows.

【0058】先ず、鋼材の加熱温度が、鋼材の固相線温
度TS より50℃だけ低い温度、即ち、(TS −50)
℃を超えると、鋼材の熱間延性が急激に低下して、熱間
圧延棒鋼には表面疵が発生したり、また、熱間鍛造品に
は割れが発生したりする。よって、加熱温度は、(TS
−50)℃以下でなければならない。
First, the heating temperature of the steel material is lower than the solidus temperature T S of the steel material by 50 ° C., that is, (T S -50)
When the temperature exceeds ℃, the hot ductility of the steel material is sharply reduced, and a surface flaw is generated in a hot-rolled steel bar, and a crack is generated in a hot forged product. Therefore, the heating temperature is (T S
-50) It must be below ℃.

【0059】他方、鋼材の加熱温度が上記(TS −5
0)℃以下であっても、表層部のFeが選択的に酸化さ
れ、残存して濃化したCuとNiとが合金化し、こうし
て生成したCu−Ni合金の融体がオーステナイト粒界
に侵入して、熱間延性を低下させたり、表面疵や割れを
発生させるのを防止しなければならない。よって、鋼材
加熱温度は、当該鋼材中のCuとNiとの含有率(wt.
%)の比率に等しい組成のCu−Ni合金の固相線温度
よりも、低くしなければならない。
[0059] On the other hand, the heating temperature of the steel material described above (T S -5
0) Even when the temperature is lower than 0 ° C., Fe in the surface layer portion is selectively oxidized, and the remaining and concentrated Cu and Ni are alloyed, and the melt of the Cu—Ni alloy thus generated enters the austenite grain boundary. Therefore, it is necessary to prevent the hot ductility from being lowered and to prevent surface flaws and cracks from being generated. Therefore, the steel material heating temperature is determined by the content of Cu and Ni (wt.
%) Must be lower than the solidus temperature of a Cu-Ni alloy having a composition equal to the ratio of (%).

【0060】以上より、鋼材加熱温度の上限値は、鋼材
中の(Cu含有率(wt.%))/(Ni含有率(wt.%))
の比率に等しい組成のCu−Ni合金の固相線温度未満
であって、且つ、鋼材の固相線温度より50℃低い温度
とすべきである。なお、鋼片の加熱温度の上限値も、鋼
材の場合と全く同じ理由により、鋼材の加熱温度の上限
値と同じである。
From the above, the upper limit of the steel material heating temperature is (Cu content (wt.%)) / (Ni content (wt.%)) In the steel material.
Should be lower than the solidus temperature of the Cu-Ni alloy having a composition equal to the ratio of and below the solidus temperature of the steel material by 50 ° C. The upper limit of the heating temperature of the steel slab is the same as the upper limit of the heating temperature of the steel for exactly the same reason as in the case of the steel.

【0061】上記において、鋼材の加熱温度の上限が、
当該鋼材の固相線温度(鋼を加熱したときに、液相が生
成し始める温度)より50℃だけ低い温度(TS −5
0)℃まで許容された場合の作用・効果について説明す
る。例えば1.2wt.%C−1.5wt.%Si鋼について、
加熱温度の上限値を考えると、次の通りである。まず、
固相線温度(加熱したときに液相が出始める温度)TS
は、鋼材の成分組成に依存し、例えば下記近似式: TS (℃) =1420−250(C−0.5)−20Si 但し、C、Si:炭素、シリコン含有率(wt.%)を表わ
す、により、1215℃と算出される。よって、加熱上
限温度は、(固相線温度TS−50)℃=1215−5
0=1165℃となる。なお、この鋼材の共晶温度は約
1140℃であり、固相線温度TS が共晶温度を下回る
ことはない。一般に、固相線温度TS が共晶温度を下回
ることはないので、上記式でTS の計算値が1140℃
を下回った場合でも、現実の固相線温度は1140℃以
上となる。
In the above, the upper limit of the heating temperature of the steel material is
A temperature (T S -5) lower by 50 ° C. than the solidus temperature of the steel material (the temperature at which the liquid phase starts to form when the steel is heated).
The operation and effect when 0) ° C. is permitted will be described. For example, for 1.2 wt.% C-1.5 wt.% Si steel,
Considering the upper limit of the heating temperature, it is as follows. First,
Solidus temperature (temperature at which liquid phase starts to appear when heated) T S
Depends on the composition of the steel material, for example, the following approximate formula: T S (° C.) = 1420-250 (C-0.5) -20Si, where C, Si: carbon and silicon contents (wt.%) Is calculated to be 1215 ° C. Therefore, the heating upper limit temperature is (solidus temperature T S -50) ° C. = 1215-5.
0 = 1165 ° C. The eutectic temperature of this steel material is about 1140 ° C., and the solidus temperature T S does not fall below the eutectic temperature. In general, since the solidus temperature T S does not fall below the eutectic temperature, the calculated value of T S in the above equation is 1140 ° C.
, The actual solidus temperature is 1140 ° C. or higher.

【0062】ここで、本発明にかかる鋼材の成分例とし
て、例えば上記1.2wt.%C−1.5wt.%Si鋼につい
てみると、固相線温度TS は1215℃であるから、従
来の通常の機械構造用鋼である0.5wt.%Cの中炭素鋼
の固相線温度(TS =1420℃程度)よりも、約20
0℃低いことになる。このことは、本発明鋼材を用いれ
ば、従来鋼材よりも200℃程度低い加熱温度で熱間加
工を行なっても、従来鋼材と同等の変形抵抗と変形能を
有することが示唆され、省エネルギーの面からも好まし
い鋼材ということができる。
As an example of the composition of the steel material according to the present invention, for example, the above-mentioned 1.2 wt.% C-1.5 wt.% Si steel, the solidus temperature T S is 1215 ° C. About 20% higher than the solidus temperature (T S = 1420 ° C.) of medium carbon steel of 0.5 wt.
It will be 0 ° C lower. This suggests that if the steel material of the present invention is used, even if hot working is performed at a heating temperature lower by about 200 ° C. than that of the conventional steel material, the steel material has the same deformation resistance and deformability as the conventional steel material. Therefore, it can be said that the steel material is preferable.

【0063】なお、図1に、2wt.%Siを含有する場合
のFe−C系状態図を示す。同図中、S点の温度はA1
温度、E点の温度は共晶温度、HE線は固相線温度を示
す。同図はFe−C二元系状態図であるため、本発明鋼
の、Si含有率2.0wt.%のときの固相線温度を厳密に
推定することはできない。従って、本発明鋼材の固相線
温度を正確に求めることはできないが、鋼材の固相線温
度の低下に及ぼすC含有率の影響、及び、本発明におけ
る鋼片又は鋼材の固相線温度TS より50℃だけ低い温
度((TS −50)℃)を、実用的に推定するために役
立つ。同図中に、C=0.80〜1.70wt.%における
800℃以上、(TS −50)℃以下の温度領域を斜線
部で示した。
FIG. 1 shows an Fe—C phase diagram when 2 wt.% Si is contained. In the figure, the temperature at point S is A 1
The temperature at point E indicates the eutectic temperature, and the HE line indicates the solidus temperature. Since this figure is a Fe-C binary phase diagram, the solidus temperature of the steel of the present invention when the Si content is 2.0 wt.% Cannot be accurately estimated. Therefore, although the solidus temperature of the steel material of the present invention cannot be determined accurately, the effect of the C content on the decrease of the solidus temperature of the steel material, and the solidus temperature T of the slab or steel material in the present invention, A temperature 50 ° C. lower than S ((T S -50) ° C.) is useful for practical estimation. In the figure, the temperature range of 800 ° C. or more and (T S -50) ° C. or less at C = 0.80 to 1.70 wt.% Is indicated by oblique lines.

【0064】例えば、上記1.2wt.%C−1.5wt.%S
i鋼の場合で、(固相線温度TS −50)℃が1165
℃という温度水準は、Cuの融点1083℃にかなり近
く、更に、この発明においては、CuにNiが合金化す
ることにより、Cu−Ni合金の固相線温度は上昇する
ので、鋼材の(TS −50)℃=1165℃は、Cu−
Ni合金の固相線温度に一層近づき、Cu−Ni合金の
固相線温度近傍での低温加工を可能ならしめる。従っ
て、1.2wt.%C−1.5wt.%Si鋼は、低変形抵抗の
鋼であるということができる。
For example, the above 1.2 wt.% C-1.5 wt.% S
(solidus temperature T S -50) ° C. is 1165
The temperature level of 0 ° C. is very close to the melting point of 1083 ° C. of Cu, and in the present invention, the alloying of Ni with Cu raises the solidus temperature of the Cu—Ni alloy. S- 50) C = 1165C is Cu-
The temperature becomes closer to the solidus temperature of the Ni alloy, enabling low-temperature processing near the solidus temperature of the Cu-Ni alloy. Therefore, it can be said that 1.2 wt.% C-1.5 wt.% Si steel is a steel having low deformation resistance.

【0065】図2に、Cu−Ni2元系平衡状態図を例
示し、この発明における鋼材のCuとNiとの含有率
(wt.%)の比率の範囲である、下記(6)、(7)及び
(1)式: Cu:0.01〜2.0wt.% ------------(6) Ni:0.01〜2.0wt.% ------------(7) Ni/Cu≧0.2 ------------(1) を満たす条件下において、Cu−Ni合金中のNiの含
有率(wt.%)(これを、「CNi」で表記する): CNi=〔Ni(wt.%)/{Cu(wt.%)+Ni(wt.
%)}〕×100(wt.%) に換算すると、 16.7wt.%≦CNi≦99.5wt.%--------(8) が得られる。CNiのとり得る範囲を、同図に矢印範囲で
記入した。なお、NiとCuの含有率比率が、Ni/C
u=0.2を満たす限り、Cu、Niの含有率のいかん
にかかわらず常に、Cu−Ni合金中のNiの含有率C
Niは、CNi=16.7wt.%となる。これからわかるよう
に、この発明の鋼材を加熱中に生成するCu−Ni合金
の固相線温度は、おおよそ、1145〜1451℃の範
囲内にある。上記により、当該鋼材の(TS −50)℃
とCu−Ni合金の固相線温度との差が容易に算出さ
れ、Cu−Ni合金の固相線温度の方が低くても、その
差が縮小されることがよくわかる。また、Cu−Ni合
金の固相線温度の方が鋼材の(TS −50)℃よりも高
い場合には、当然ながらCu−Ni合金は加熱保持中に
溶融しないので、オーステナイト粒界に侵入することは
ない。
FIG. 2 exemplifies a Cu—Ni binary equilibrium diagram, in which the steel material according to the present invention has the following ranges (6) and (7), which are the ranges of the ratios of the contents of Cu and Ni (wt.%). ) And formula (1): Cu: 0.01 to 2.0 wt.% ----------- (6) Ni: 0.01 to 2.0 wt.% ------ ------ (7) Ni / Cu ≧ 0.2 ------------ Under the condition of (1), the content of Ni in the Cu-Ni alloy (wt. %) (This is represented by “C Ni ”): C Ni = [Ni (wt.%) / {Cu (wt.%) + Ni (wt.
%)}] × 100 (wt.%), 16.7 wt.% ≦ C Ni ≦ 99.5 wt.% --- (8) is obtained. The range that C Ni can take is indicated by the arrow range in FIG. The content ratio of Ni and Cu is Ni / C
As long as u = 0.2 is satisfied, the Ni content C in the Cu—Ni alloy is always constant regardless of the Cu and Ni content.
Ni becomes C Ni = 16.7 wt.%. As can be seen, the solidus temperature of the Cu-Ni alloy produced during heating the steel of the present invention is approximately in the range of 1145 to 1451C. According to the above, (T S -50) ° C. of the steel material
It is easily understood that the difference between the solidus temperature of the Cu—Ni alloy and the solidus temperature of the Cu—Ni alloy is reduced, and the difference is reduced even if the solidus temperature of the Cu—Ni alloy is lower. When the solidus temperature of the Cu—Ni alloy is higher than the (T S -50) ° C. of the steel material, the Cu—Ni alloy does not melt during the heating and holding, so that it enters the austenite grain boundary. I will not do it.

【0066】次に、鋼材加工時の材料温度は800℃以
上でないと変形抵抗が増大し、鍛造工具の寿命が短くな
る。また変形能が不足して鍛造割れの原因となるので、
800℃以上に確保する必要がある。
Next, if the material temperature during the processing of the steel material is not higher than 800 ° C., the deformation resistance increases and the life of the forging tool is shortened. In addition, since the deformability is insufficient and it causes forging cracks,
It is necessary to maintain the temperature at 800 ° C. or higher.

【0067】以上により、鋼材の加熱温度は、Cu−N
i合金の融点未満であって、且つ鋼材の固相線温度−5
0℃以下、800℃以上の間の温度とする。 (24)黒鉛の粒径 粒状に析出した黒鉛の平均粒径が0.5μm未満では、
切削時に切り屑を小さく破砕する効果が小さく、切削性
への寄与は小さい。したがって黒鉛の平均粒径は0.5
μm以上とする。上限は特に限定しないが、30μmを
超える黒鉛が多数析出すると靱性低下の原因となるの
で、黒鉛の粒径は30μm以下が望ましい。
As described above, the heating temperature of the steel material is Cu-N
The solidus temperature of steel less than the melting point of i-alloy and -5
The temperature is between 0 ° C. or less and 800 ° C. or more. (24) Particle Size of Graphite If the average particle size of graphite precipitated in a granular form is less than 0.5 μm,
The effect of breaking small chips during cutting is small, and the contribution to cutting properties is small. Therefore, the average particle size of graphite is 0.5
μm or more. Although the upper limit is not particularly limited, precipitation of a large amount of graphite exceeding 30 μm causes a decrease in toughness. Therefore, the particle size of graphite is preferably 30 μm or less.

【0068】なお本発明における黒鉛の形状は、一般的
に塊状と表現されるものであるが、球状でも粒状でもよ
く、厚さ/長さ比が5以下ならば特に差し支えはない。 (25)黒鉛の数 単位面積当たりの黒鉛の数を多くすることは、切り屑を
小さく分断させるのに重要である。その数が100個/
mm2 未満では切り屑処理性の改善効果が小さいので、
黒鉛の数は100個/mm2 以上とする。黒鉛の数は黒
鉛の大きさに左右され、粒が大きくなれば少なくなり、
小さくなれば多くなる。本発明では、10〜25μmの
径の黒鉛が析出するとき、その数はおおよそ100〜1
000個の間であるが、0.5〜5μmの径の黒鉛の場
合には、おおよそ3000〜50000個に達する。
The shape of graphite in the present invention is generally expressed as a lump, but it may be spherical or granular, and there is no particular problem if the thickness / length ratio is 5 or less. (25) Number of Graphite Increasing the number of graphite per unit area is important for dividing chips into small pieces. 100 /
If it is less than 2 mm, the effect of improving the chip disposability is small.
The number of graphite is 100 / mm 2 or more. The number of graphite depends on the size of the graphite, the smaller the larger the grain,
The smaller the number, the more. In the present invention, when graphite having a diameter of 10 to 25 μm is precipitated, the number thereof is approximately 100 to 1 μm.
Although it is between 000, in the case of graphite having a diameter of 0.5 to 5 μm, it reaches approximately 3000 to 50,000.

【0069】[0069]

【実施例】次に、この発明を、実施例によって更に詳細
に説明する。ここでは、試験1から試験3を行なった。
Next, the present invention will be described in more detail with reference to examples. Here, Test 1 to Test 3 were performed.

【0070】〔試験1〕表1及び表2に、試験に用いた
供試材の化学成分組成、並びに、後述する黒鉛化指数C
E及び固相線温度TS を示す。また表3及び表4には、
主な製造条件及びその試験結果を示す。
[Test 1] Tables 1 and 2 show the chemical composition of the test materials used in the tests and the graphitization index C described later.
E and the solidus temperature T S are shown. In Tables 3 and 4,
The main manufacturing conditions and test results are shown.

【0071】[0071]

【表1】 [Table 1]

【0072】[0072]

【表2】 [Table 2]

【0073】[0073]

【表3】 [Table 3]

【0074】[0074]

【表4】 [Table 4]

【0075】鋼種No.1〜23は、化学成分組成に関し
ては本発明の範囲にあり、対応する請求項の番号を併記
した。この内、鋼種No.1〜20を用いた試験は、製造
条件も本発明の範囲内にあるから、本発明の範囲内の試
験例である実施例に該当する。そこで、これらをそれぞ
れ実施例No.1〜20とした。しかし、鋼種No.21〜
23を用いた試験は、製造条件の内、後述する鋼片の加
熱温度が本発明の範囲外にあるので、本発明の範囲外の
試験例である比較例に該当する。そこで、それぞれ比較
例No.21〜23とよぶ。
Steel types Nos. 1 to 23 are within the scope of the present invention with respect to the chemical composition, and the corresponding claim numbers are also described. Of these, the test using steel types Nos. 1 to 20 corresponds to the examples which are test examples within the scope of the present invention, since the production conditions are also within the scope of the present invention. Therefore, these were designated as Examples Nos. 1 to 20, respectively. However, steel grade No. 21-
The test using No. 23 corresponds to a comparative example which is a test example out of the scope of the present invention because the heating temperature of the steel slab described later is out of the scope of the present invention among the manufacturing conditions. Therefore, they are referred to as Comparative Examples Nos. 21 to 23, respectively.

【0076】鋼種No.24〜49は、化学成分組成が本
発明の範囲外にあり、この内、鋼種No.24〜45は比
較成分例であり、鋼種No.46は従来の球状黒鉛鋳鉄、
鋼種No.47はS48CにV:0.10wt.%、Pb:
0.22wt.%を添加した従来の非調質鋼、鋼種No.48
は従来のS50Cの硫黄添加鋼、そして鋼種No.49は
従来のSCM822である、従来成分例である。そし
て、鋼種No.24〜49を用いた試験の製造条件は、本
発明の範囲内・外の各種のものを含むが、いずれも試験
としては本発明の範囲外の試験例である比較例に該当す
る。そこで、これらをそれぞれ比較例No.24〜49と
よぶ。
Steel types Nos. 24 to 49 have a chemical composition outside the scope of the present invention. Among them, steel types Nos. 24 to 45 are comparative examples, and steel type No. 46 is a conventional spheroidal graphite cast iron.
For steel type No. 47, V: 0.10 wt.%, Pb:
Conventional non-heat treated steel with 0.22 wt.% Added, steel grade No. 48
Is a conventional S50C sulfur-added steel, and steel type No. 49 is a conventional SCM822, which is a conventional component example. The production conditions of the tests using steel types Nos. 24 to 49 include various types outside and within the scope of the present invention. Applicable. Therefore, these are respectively referred to as Comparative Examples Nos. 24 to 49.

【0077】ここで、鋼材の製造過程で黒鉛の析出を促
進するには、黒鉛化指数CEが重要であり、他の条件が
同じ場合には、CEが大きい方が黒鉛の析出が促進され
る。このCEは、下記(5)式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B+Al/6+Ti/3+Zr/3−V/3−Nb/3 --------------------------------(5) 但し、各元素記号:各元素の含有率(wt.%)で表わされ
る。黒鉛の析出は、加熱温度、加工度、冷却速度により
左右されるので、CEによって一義的に決定されるもの
ではないが、表1の鋼種No.1〜23においてはすべ
て、1.30以上となるように成分を調整した。
Here, the graphitization index CE is important to promote the precipitation of graphite in the process of producing a steel material, and when other conditions are the same, the larger the CE, the more the precipitation of graphite is promoted. . This CE has the following formula (5): CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 ----------------------------- (5) However, each element symbol: expressed by the content of each element (wt.%) It is. The precipitation of graphite is not uniquely determined by CE since it depends on the heating temperature, the working ratio, and the cooling rate. However, in all steel types Nos. 1 to 23 in Table 1, it is 1.30 or more. The components were adjusted to be as follows.

【0078】表1及び表2の化学成分組成の供試材を1
30トン電気炉により溶製後、連続鋳造又は造塊法によ
り鋳片とした。鋳片は160mm角の鋼片に分塊圧延
後、鋼片加熱炉にて820〜1160℃の間の温度に加
熱して、26mm又は93mmの直径の棒鋼に熱間圧延
した。
The test materials having the chemical component compositions shown in Tables 1 and 2
After being melted in a 30-ton electric furnace, it was made into a slab by continuous casting or ingot-making method. The slab was slab-rolled into a 160 mm square steel slab, then heated in a slab heating furnace to a temperature of 820 to 1160 ° C., and hot rolled into a bar having a diameter of 26 mm or 93 mm.

【0079】熱間圧延後棒鋼は放冷、又はカバー徐冷し
て黒鉛を析出させた。26mmφ棒鋼の放冷ままの80
0℃〜600℃までの平均冷却速度は、約1.5℃/s
ec、カバー徐冷におけるそれは0.4℃/sec、9
3mmφ棒鋼の放冷時の冷却速度は0.25℃/se
c、カバー徐冷のそれは0.08℃/secであった。
After the hot rolling, the steel bar was allowed to cool or the cover was gradually cooled to precipitate graphite. 80 of 26mmφ steel bar as it is
The average cooling rate from 0 ° C to 600 ° C is about 1.5 ° C / s
ec, that in the cover slow cooling is 0.4 ° C./sec, 9
Cooling rate of 3mmφ steel bar at the time of cooling is 0.25 ° C / sec.
c, The rate of slow cooling of the cover was 0.08 ° C./sec.

【0080】棒鋼の表面は目視で疵を判定し、黒鉛の状
態、金属組織を光学顕微鏡により調査した。更に、26
mmφの棒鋼はショックアブソーバ─のピストンロッド
に、93mmφの棒鋼は、建設機械のピストンロッドに
切削により機械加工して、切り屑処理性を判定した。
The surface of the steel bar was visually inspected for flaws, and the state of graphite and the metal structure were examined with an optical microscope. In addition, 26
The steel bar of mmφ was machined by cutting into a piston rod of the shock absorber, and the steel bar of 93 mmφ was machined by cutting into the piston rod of a construction machine, and the chip controllability was determined.

【0081】切り屑処理性の判定は、図3に示す如く、
切り屑が巻き以下で分断しているものを良好としてラン
ク1、3〜6巻で分断しているものを普通としてランク
2、8巻以上につながっているものを劣るとしてランク
3と位置づけた。切削は、超硬P20の切削工具を用
い、切削速度200m/minで20min切削した。
As shown in FIG.
If the chips were separated by less than the number of windings, they were ranked as good, and if the chips were separated by 3 to 6 volumes, they were rated as normal. If they were connected to more than 8 volumes, they were ranked as inferior. The cutting was performed for 20 minutes at a cutting speed of 200 m / min using a carbide P20 cutting tool.

【0082】また棒鋼からJIS4号引張試験片を採取
して、引張試験を行い、引張強さ、及び伸びを求めた。
なお、比較例No.46の球状黒鉛鋳鉄のみは、93mm
φの砂型に直接鋳造したインゴットを比較材として用い
た。本発明の実施例である実施例No.1〜20は化学成
分組成、圧延加熱温度とも適正であり、圧延品に割れの
発生はない。また、黒鉛粒の大きさは0.5〜25μm
の間となっており、黒鉛粒の数は100個/mm2 以上
で十分に多い。またCa−Al−Si−O系の低融点酸
化物も適量生成していた。このため、すくい面にはベラ
ーグが付着し、これが摩耗の進行を抑制したため、すく
い面の摩耗深さはいずれも5μm以下であった。また切
り屑は黒鉛の切り屑分断効果により、全て2巻以下に小
さく分断した良好な形状を呈していた。また、金属組織
はパーライト単相、ないしパーライト主体のフェライト
+パーライトの組織になっていた。
Further, a JIS No. 4 tensile test piece was sampled from a steel bar and subjected to a tensile test to determine tensile strength and elongation.
In addition, only the spheroidal graphite cast iron of Comparative Example No. 46 was 93 mm
An ingot directly cast on a φ sand mold was used as a comparison material. In Examples Nos. 1 to 20, which are examples of the present invention, the chemical composition and the rolling heating temperature are appropriate, and the rolled product does not crack. The size of the graphite particles is 0.5 to 25 μm.
And the number of graphite particles is 100 particles / mm 2 or more, which is sufficiently large. In addition, an appropriate amount of Ca-Al-Si-O-based low-melting oxide was also produced. For this reason, Belag adhered to the rake face, which suppressed the progress of wear, so that the wear depth of each rake face was 5 μm or less. In addition, the chips all had a good shape that was cut into small pieces of 2 or less due to the chip cutting effect of graphite. Further, the metal structure was a structure of pearlite single phase or pearlite-based ferrite + pearlite.

【0083】図4には、実施例No.1のナイタールエッ
チングした検鏡面の顕微鏡による金属組織を示す。その
組織は、黒鉛が析出したパーライトである。図5には、
実施例No.5の黒鉛の析出状態を示す。黒鉛は主として
粒界に存在する。その顕微鏡による金属組織を示す。そ
の組織は粒界フェライト+パーライトである。
FIG. 4 shows a metallographic structure of the microscopic surface of the microscopic surface of Example No. 1 after the nital etching. The structure is pearlite on which graphite is precipitated. In FIG.
The precipitation state of graphite of Example No. 5 is shown. Graphite exists mainly at grain boundaries. The metal structure by the microscope is shown. The structure is grain boundary ferrite + pearlite.

【0084】また、実施例では引張強さもすべて800
N/mm2 以上と高く、伸びも15%以上とピストンロ
ッドとして十分な、強度、延性を有していた。以上の実
施例に対して、比較例No.21は加熱温度がCu−Ni
合金の融点よりは低いが、鋼材のTS −50℃より高か
ったために、熱間延性が不足して、棒鋼に割れを生じ
た。
In the examples, the tensile strengths were all 800.
N / mm 2 or more, and elongation was 15% or more, which was sufficient for a piston rod to have sufficient strength and ductility. In contrast to the above example, Comparative Example No. 21 had a heating temperature of Cu-Ni.
Although the melting point was lower than the melting point of the alloy, it was higher than the T S -50 ° C. of the steel material, so that the hot ductility was insufficient and the bar was cracked.

【0085】比較例No.22は、加熱温度がTS −50
℃よりは低いが、Cu−Ni合金の融点よりは高かった
ためCu−Ni合金の融液が粒界に侵入して、熱間延性
を低下させたため、棒鋼に割れを生じた。
In Comparative Example No. 22, the heating temperature was T S -50.
Although it was lower than C, it was higher than the melting point of the Cu-Ni alloy, so that the melt of the Cu-Ni alloy penetrated into the grain boundaries and lowered the hot ductility, so that the steel bar was cracked.

【0086】また比較例No.23、は加熱温度が800
℃未満で低すぎたため、やはり熱間延性が不足して、棒
鋼に割れを生じた。比較例No.24は、C含有率が本発
明を外れて低く、このため黒鉛化指数CEが本発明の範
囲を外れて低くなり、黒鉛の析出は見られず、切り屑が
長くつながってしまった。このため機械を停止して切り
屑を除去する必要があった。
In Comparative Example No. 23, the heating temperature was 800
Since the temperature was too low at less than 0 ° C, the hot ductility was also insufficient, and the steel bar was cracked. In Comparative Example No. 24, the C content was low outside the range of the present invention, and therefore the graphitization index CE was low outside the range of the present invention, no graphite was observed, and the chips were long. Was. For this reason, it was necessary to stop the machine and remove the chips.

【0087】比較例No.25は、逆にC含有率が本発明
の範囲を外れて高く、熱間延性が不足して、棒鋼に割れ
が発生した。比較例No.26は、Si含有率が本発明の
範囲を外れて低く、このため黒鉛化指数CEが小さくな
り、黒鉛の析出は見られず、切り屑処理性が悪かった。
In Comparative Example No. 25, on the contrary, the C content was high outside the range of the present invention, the hot ductility was insufficient, and cracks occurred in the steel bars. Comparative Example No. 26 had a low Si content outside the range of the present invention, and therefore had a low graphitization index CE, no graphite precipitation, and poor chip controllability.

【0088】比較例No.27は、Si含有率が本発明範
囲を外れて高く、このため熱間延性が不足して、棒鋼に
割れが発生した。比較例No.28は、Cu含有率が本発
明の範囲より高く、熱間延性不足して、棒鋼に割れが発
生した。
In Comparative Example No. 27, the Si content was high outside the range of the present invention, and as a result, the hot ductility was insufficient and the steel bar was cracked. In Comparative Example No. 28, the Cu content was higher than the range of the present invention, the hot ductility was insufficient, and the steel bar cracked.

【0089】比較例No.29は、Ni含有率が本発明の
はんいより高く、延性不足で、棒鋼に割れが発生した。
比較例No.30は、Ni/Cu含有率比が本発明の範囲
より低く、加熱温度がCu−Ni合金の固相線温度より
高かったために、加熱中にCu−Ni合金が鋼材の表面
に濃化して融液となり粒界に侵入し、圧延棒鋼に割れが
発生した。
In Comparative Example No. 29, the Ni content was higher than the solder of the present invention, the ductility was insufficient, and cracks occurred in the steel bars.
In Comparative Example No. 30, the Ni / Cu content ratio was lower than the range of the present invention, and the heating temperature was higher than the solidus temperature of the Cu-Ni alloy. It was concentrated to form a melt, penetrated into grain boundaries, and cracked the rolled steel bar.

【0090】比較例No.31は、P含有率が本発明の範
囲より高く、延性不足で割れが発生した。比較例No.3
2は、Mn及びS含有率が本発明の範囲より高く、延性
不足で割れが発生した。
In Comparative Example No. 31, the P content was higher than the range of the present invention, and cracking occurred due to insufficient ductility. Comparative Example No. 3
In No. 2, the Mn and S contents were higher than the range of the present invention, and cracking occurred due to insufficient ductility.

【0091】比較例No.33は、Cr含有率が本発明の
範囲より高く、このため熱間延性が不足して、棒鋼に割
れが発生した。比較例No.34は、Mo含有率が本発明
の範囲より高く、やはり棒鋼に割れが発生した。
In Comparative Example No. 33, the Cr content was higher than the range of the present invention, so that the hot ductility was insufficient and the steel bar cracked. In Comparative Example No. 34, the Mo content was higher than the range of the present invention, and the steel bar also cracked.

【0092】比較例No.35は、B及びN含有率が本発
明の範囲より高く、多量のBNが析出して、延性不足の
ために割れが発生した。比較例No.36はTi及びNb
含有率が、比較例No.37はZr含有率が、比較例No.
38はV含有率が、いずれも本発明の範囲より高く、こ
のため延性不足で棒鋼に割れが発生した。
In Comparative Example No. 35, the B and N contents were higher than the range of the present invention, a large amount of BN was precipitated, and cracks occurred due to insufficient ductility. Comparative Example No. 36 is composed of Ti and Nb.
The content ratio of Comparative Example No. 37 was Zr content, and that of Comparative Example No. 37.
In No. 38, the V content was higher than the range of the present invention, so that the steel bar cracked due to insufficient ductility.

【0093】比較例No.39は、Al含有率が本発明の
範囲より高いため、酸化物系介在物中のAlの含有率が
多くなって、介在物の融点が高くなり、切削時に溶融し
なかったため、すくい面の摩耗深さが88μmと深くな
った。
In Comparative Example No. 39, since the Al content was higher than the range of the present invention, the Al content in the oxide-based inclusions was increased, the melting point of the inclusions was increased, and the inclusions were not melted during cutting. As a result, the wear depth of the rake face was increased to 88 μm.

【0094】比較例No.40は、Ca含有率が本発明の
範囲を外れて低く、このため低融点酸化物を形成するこ
とができず、やはりすくい面の摩耗深さが深くなった。
また比較例No.41は、Ca含有率が本発明の範囲より
高かったために、多量の酸化物に起因する割れが発生し
た。
In Comparative Example No. 40, the Ca content was low outside the range of the present invention, so that a low melting point oxide could not be formed, and the wear depth of the rake face also became deep.
In Comparative Example No. 41, since the Ca content was higher than the range of the present invention, cracks caused by a large amount of oxides occurred.

【0095】比較例No.42はMg含有率が、比較例N
o.43はREM含有率が、それぞれ本発明の範囲より高
く、このため酸化物系介在物を多量に巻き込み、これが
圧延疵の原因となり、棒鋼に割れを発生してしまった。
Comparative Example No. 42 had a Mg content of Comparative Example N.
In the case of O.43, the REM content was higher than the range of the present invention, so that a large amount of oxide-based inclusions was involved, which caused rolling flaws and cracked the steel bar.

【0096】比較例No.44及び比較例No.45は、化
学成分組成の個々の値は本発明の範囲内にあるが、黒鉛
化指数CEが本発明の範囲を外れて低いため、黒鉛の析
出は起こらなかった。そのため、切り屑処理性が悪かっ
た。
In Comparative Example No. 44 and Comparative Example No. 45, although the individual values of the chemical composition were within the range of the present invention, the graphitization index CE was low outside the range of the present invention. No precipitation occurred. For this reason, the chip disposability was poor.

【0097】比較例No.46は、従来の球状黒鉛鋳鉄の
例であり、接種材としてのMgを含んでいる。本鋳造品
の表面には、0.10mm程度の小穴がいくつか存在
し、機械部品としては好ましい状態ではなかった。すく
い面摩耗深さは、本発明の実施例の結果である5μmよ
り大幅に深い。また引張強さは適当であるが、伸びが4
%と延性に劣るものであった。
Comparative Example No. 46 is an example of conventional spheroidal graphite cast iron and contains Mg as an inoculant. Several small holes of about 0.10 mm were present on the surface of the casting, which was not a preferable state as a mechanical part. The rake face wear depth is much deeper than the 5 μm result of the example of the present invention. The tensile strength is appropriate, but the elongation is 4
% And poor ductility.

【0098】比較例No.47は、従来の非調質の例であ
るが、切り屑のカール半径が小さいため、工具刃先が集
中的摩耗を受けて、すくい面摩耗が大きいものであっ
た。また、Pbを含有しているため、切り屑処理性は良
好であった。しかし、環境保護の観点から、今後、この
Pbは使用しない方向で部品を製造することが求められ
る。
Comparative Example No. 47, which is a conventional non-refined example, had a large rake face wear because the tool cutting edge was subjected to intensive wear due to the small curl radius of the chips. In addition, since Pb was contained, the chip controllability was good. However, from the viewpoint of environmental protection, it is required to manufacture components in a direction not using Pb in the future.

【0099】比較例No.48は、従来のS50Cの例で
ある。Pbを含まないため、切り屑処理性は劣るが、す
くい面摩耗深さはPb添加鋼よりは浅い。また引張強さ
が700N/mm2 程度とやや不足しており、焼入れ焼
戻しを施して、引張強さを高める必要があった。比較例
No.49は、歯車用のSCM822の例であり、これに
ついては後述する試験3の比較例No.49Dで説明す
る。
Comparative Example No. 48 is an example of the conventional S50C. Since it does not contain Pb, the chip processing performance is poor, but the rake face wear depth is shallower than that of Pb-added steel. Further, the tensile strength was slightly insufficient at about 700 N / mm 2, and it was necessary to perform quenching and tempering to increase the tensile strength. Comparative Example No. 49 is an example of SCM822 for gears, which will be described in Comparative Example No. 49D of Test 3 described later.

【0100】図7に、切削工具のすくい面摩耗深さを説
明する縦断面図示す。同図において、2が摩耗深さであ
り、1は切削工具、3は切り屑、4は被削材である。図
8に、実施例1、比較例No.40、従来鋼による比較例
No.47及び48のすくい面摩耗深さの進行曲線を示
す。実施例1では、摩耗の進行が遅いことがわかる。
FIG. 7 is a longitudinal sectional view for explaining the rake face wear depth of the cutting tool. In the figure, 2 is a wear depth, 1 is a cutting tool, 3 is a chip, and 4 is a work material. FIG. 8 shows progress curves of the rake face wear depth of Example 1, Comparative Example No. 40, and Comparative Examples No. 47 and 48 using conventional steel. In Example 1, it can be seen that the progress of wear is slow.

【0101】以上述べたように、本発明の範囲内の実施
例によれば、従来の非調質棒鋼に匹敵する強度、延性を
有する無鉛の超快削非調質棒鋼を製造することができ
る。 〔試験2〕表1に示した成分が本発明の範囲内にある鋼
種No.3及び17のAグループ、並びに、本発明の範囲
外にある鋼種No.47、48、及び46のBグループの
鋼について下記の通りの試験を行なった。Aグループの
試験は本発明の範囲内のものであり、それぞれ実施例N
o.3A、17Aとよび、Bグループの試験は本発明の範
囲外のものであり、それぞれ比較例No.47B、48
B、46Bとよぶ。
As described above, according to the embodiments within the scope of the present invention, it is possible to manufacture a lead-free ultra-free-cut non-heat treated steel bar having strength and ductility comparable to conventional non-heat treated steel bars. . [Test 2] Group A of steel types No. 3 and 17 whose components shown in Table 1 are within the scope of the present invention, and Group B of steel types No. 47, 48 and 46 outside the scope of the present invention The steel was tested as follows. Group A tests are within the scope of the present invention, and
Nos. 3A and 17A, the tests of Group B were out of the scope of the present invention, and Comparative Examples 47B and 48, respectively.
B, 46B.

【0102】実施例No.3A及び17Aでは、93mm
φ棒鋼を用いて、1000℃に加熱後、クランクシャフ
トに熱間鍛造し、扇風機により空冷した。また、従来の
非調質鋼である比較例No.47B、及び従来SC材であ
る比較例No.48Bの93mmφ棒鋼を試験1と同じ工
程で製造し、この場合は変形抵抗が大きいので、より高
温の1250℃に加熱して同一形状のクランクシャフト
に熱間鍛造し、同じく扇風機により空冷した。また更
に、比較のために比較例No.46Bの従来球状黒鉛鋳鉄
を同じ形状のクランクシャフトに直接鋳造して、凝固さ
せた。
In Examples Nos. 3A and 17A, 93 mm
After heating to 1000 ° C. using a φ bar, the crankshaft was hot forged and air-cooled with a fan. In addition, a 93 mmφ steel bar of Comparative Example No. 47B, which is a conventional non-heat-treated steel, and Comparative Example No. 48B, which is a conventional SC material, were manufactured in the same process as in Test 1. In this case, deformation resistance was large. It was heated to a high temperature of 1250 ° C., hot forged into a crankshaft having the same shape, and air-cooled by a fan. Further, for comparison, a conventional spheroidal graphite cast iron of Comparative Example No. 46B was directly cast on a crankshaft having the same shape and solidified.

【0103】被削性試験として、これらの鍛造品、ある
いは鋳造品を外周切削したのち、油穴を小径深穴ドリル
により、3mm径の穴を明けた。その時の切り屑の形態
は、実施例No.3A及び17A、並びに比較例No.46
B及び47Bは、2巻き以下の細かく分断した良好な切
り屑であったが、Pbを含有しない比較例No.48Bの
みは切り屑が10巻き以上に長くつながり、ドリル折損
が多発した。また、外周切削時の工具の摩耗は、実施例
No.3A及び17Aでは殆んど見られなかったが、比較
例No.46B、47B及び48Bでは、50〜150μ
m深さの摩耗発生した。
As a machinability test, these forged products or cast products were cut at their outer circumferences, and then oil holes were drilled with a small diameter deep hole drill to a diameter of 3 mm. The form of the chips at that time was determined in Examples Nos. 3A and 17A and Comparative Example No. 46.
B and 47B were fine chips of less than 2 turns, which were finely divided. However, in Comparative Example No. 48B containing no Pb, the chips were extended to 10 turns or more, resulting in frequent drill breakage. Although wear of the tool during outer peripheral cutting was hardly observed in Examples Nos. 3A and 17A, 50 to 150 μm was observed in Comparative Examples Nos. 46B, 47B and 48B.
Wear of m depth occurred.

【0104】疲労試験として、製造されたクランクシャ
フトを曲げ疲労試験に供した。実施例No.3Aの疲労強
度は500N/mm2 、実施例No.17Aの疲労強度は
530N/mm2 、比較例No.47Bの疲労強度は50
0N/mm2 と良好な強度を有していた。これに対して
比較例No.46Bの球状黒鉛鋳鉄は420N/mm2
疲労強度しかなかった。これは鋳鉄ではヤング率が低い
こと、および小さい気泡が疲労の起点となり、疲労限を
低下させたためと考えられる。また比較例No.48Bの
S50Cの疲労強度も430N/mm2 程度しかなかっ
た。そこで870℃焼入れ後580℃焼戻しを施したと
ころ、疲労強度は520N/mm2 まで向上させること
ができた。
As a fatigue test, the manufactured crankshaft was subjected to a bending fatigue test. The fatigue strength of Example No. 3A was 500 N / mm 2 , the fatigue strength of Example No. 17A was 530 N / mm 2 , and the fatigue strength of Comparative Example No. 47B was 50.
It had a good strength of 0 N / mm 2 . On the other hand, the spheroidal graphite cast iron of Comparative Example No. 46B had a fatigue strength of only 420 N / mm 2 . This is presumably because cast iron has a low Young's modulus and small bubbles serve as a starting point of fatigue, thereby lowering the fatigue limit. Further, the fatigue strength of S50C of Comparative Example No. 48B was only about 430 N / mm 2 . Therefore, when quenching was performed at 580 ° C. after quenching at 870 ° C., the fatigue strength could be improved to 520 N / mm 2 .

【0105】なお、実施例No.3A及び17Aのクラン
クシャフトについて、黒鉛の平均粒径及び黒鉛粒の数を
測定した結果、いずれも、本発明の要件を満たしてい
た。以上の通り、実施例3A及び実施例17Aによれ
ば、無鉛で被削性に優れた非調質の超快削鋼部品の製造
が可能であり、被削性は鉛快削鋼や球状黒鉛鋳鉄を凌
ぎ、またその特性は従来の球状黒鉛鋳鉄を上回り、焼入
れ焼戻し材相当の高い疲労強度を有している。
The average particle size of graphite and the number of graphite particles were measured for the crankshafts of Examples Nos. 3A and 17A. As a result, all of them satisfied the requirements of the present invention. As described above, according to Example 3A and Example 17A, it is possible to manufacture a lead-free non-heat-treated ultra-free-cutting steel part excellent in machinability, and the machinability is lead free-cutting steel or spheroidal graphite. It surpasses cast iron and its properties are superior to conventional spheroidal graphite cast iron, and has high fatigue strength equivalent to a quenched and tempered material.

【0106】〔試験3〕表1に示した成分が本発明の範
囲内にある鋼種No.1及び5のCグループ、並びに、本
発明の範囲外にある鋼種No.49及び46のDグループ
の鋼について下記の通りの試験を行なった。Cグループ
の試験は本発明の範囲内のものであり、それぞれ実施例
No.1C、5Cとよび、Dグループの試験は本発明の範
囲外のものであり、それぞれ比較例No.49D、46D
とよぶ。
[Test 3] Group C of steel types Nos. 1 and 5 having the components shown in Table 1 within the scope of the present invention and group D of steel types No. 49 and 46 outside the scope of the present invention The steel was tested as follows. The tests in group C are within the scope of the present invention and are referred to as Examples Nos. 1C and 5C, respectively, and the tests in group D are outside the scope of the present invention and are comparative examples Nos. 49D and 46D, respectively.
Call it.

【0107】実施例No.1C及び5C、並びに、従来S
CM822による比較例49Dでは、鋼片を130mm
棒鋼に圧延し、外径320mmのデファレンシャルドラ
イブギアに熱間鍛造し、そのまま放冷した。また比較例
No.46Dでは、従来球状黒鉛鋳鉄を同一形状のギア砂
型に直接鋳込んだ。
Embodiments Nos. 1C and 5C and the conventional S
In Comparative Example 49D according to CM822, the billet was 130 mm
It was rolled into a steel bar, hot forged into a differential drive gear having an outer diameter of 320 mm, and allowed to cool as it was. In Comparative Example No. 46D, conventional spheroidal graphite cast iron was directly cast into a gear sand mold having the same shape.

【0108】実施例No.1C、5Cのギア素材はそのま
まホブ盤にて歯車に切削加工し、その後570℃、5時
間のガス軟窒化を施して表面を硬化させた。SCM82
2による比較例No.49Dでは、鍛造ままの組織がベイ
ナイトであり、硬いのでそのまま切削加工することは困
難であった。そこで920℃×2.5時間→650℃×
1時間のサイクル焼鈍をして軟化させたのち、切削加工
した。その後表面を硬化せさるため、920℃×5時間
→840℃×40分の浸炭焼入れ処理を行って表面を硬
化させた。
The gear materials of Examples Nos. 1C and 5C were directly cut into gears by a hobbing machine, and then subjected to gas soft nitriding at 570 ° C. for 5 hours to harden the surface. SCM82
In Comparative Example No. 49D according to No. 2, the as-forged structure was bainite, and it was difficult to cut it as it was because it was hard. Then 920 ℃ × 2.5 hours → 650 ℃ ×
After being softened by one-hour cycle annealing, cutting was performed. Thereafter, in order to harden the surface, carburizing and quenching treatment was performed at 920 ° C. × 5 hours → 840 ° C. × 40 minutes to harden the surface.

【0109】また、比較例No.47Dでは、球状黒鉛鋳
鉄を型から取り出して、直接切削加工したのち、900
℃×1時間→240℃×2時間ソルト浴浸漬のオーステ
ンパー処理を施した。
In Comparative Example No. 47D, the spheroidal graphite cast iron was taken out of the mold, directly cut, and then subjected to 900 mm.
An austempering treatment of immersion in a salt bath was performed at 240 ° C. for 2 hours.

【0110】ホブ切り加工においてはいずれも良好な切
り屑処理性を示し、また工具の摩耗も少なく、切削面の
むしれもなく、良好な切削状態であった。また、各熱処
理を施したギアを疲労試験に供した。本発明鋼を使用し
た実施例No.1C及び5Cのガス軟窒化ギアの歯元曲げ
疲労強度は440N/mm2 であり、比較例No.49D
のSCM822の浸炭焼入れギアの疲労強度も440N
/mm2 であった。しかしながら、比較例No.46Dの
球状黒鉛鋳鉄のオーステンパー処理材の疲労強度は32
0N/mm2 と低いものであった。
In the hobbing process, all showed good chip controllability, little wear of the tool, little cutting surface, and good cutting condition. The gears subjected to each heat treatment were subjected to a fatigue test. The root softening fatigue strength of the gas nitrocarburized gears of Examples No. 1C and 5C using the steel of the present invention was 440 N / mm 2 , and Comparative Example No. 49D
Fatigue strength of carburizing and quenching gear of SCM822 is 440N
/ Mm 2 . However, the fatigue strength of the austempered spheroidal graphite cast iron of Comparative Example No. 46D was 32.
It was as low as 0 N / mm 2 .

【0111】熱処理後のギアの変形は、歯車かみ合い時
の騒音の原因となるため、各ギアのドライヴ側のプレッ
シャ−アングルの変形量を測定した。図9に、歯車の歪
みを説明する図を示す。同図において、5はアングルの
角度変位(ずれ)、6は歯車の歯先を示す。浸炭焼入れ
材のアングルのずれは、14分(1分は1°の60分の
1)であったが、軟窒化材は1分と殆ど変形のないもの
であった。また、オーステンパー材は熱処理直後の変形
は3分と比較的変形の小さいものであったが、1000
回の疲労回数を超えると21分と変形の大きいものであ
った。これはオーステンパー処理によって、組織内に留
められた残留オーステナイトがマルテンサイトに変態し
たために、変形量が大きくなったものと考えられる。
Since the deformation of the gears after the heat treatment causes noise at the time of gear engagement, the amount of deformation of the pressure-angle on the drive side of each gear was measured. FIG. 9 is a diagram illustrating the distortion of the gear. In the drawing, reference numeral 5 denotes an angular displacement (shift) of the angle, and reference numeral 6 denotes a tooth tip of the gear. The angle deviation of the carburized and quenched material was 14 minutes (1 minute was 1/60 of 1 °), but the nitrocarburized material was hardly deformed at 1 minute. The deformation of the austempered material immediately after the heat treatment was relatively small, ie, 3 minutes.
When the number of times of fatigue was exceeded, the deformation was as large as 21 minutes. This is presumably because the retained austenite retained in the structure was transformed into martensite by the austempering treatment, so that the deformation amount was increased.

【0112】なお、実施例No.1C及び5Cの上記ギア
素材について、黒鉛の平均粒径及び黒鉛粒の数を測定し
た結果、いずれも、本発明の要件を満たしていた。以上
の通り、実施例1C及び実施例5Cによれば、ギアに軟
化焼鈍を施さなくても、被削性は良好であり、疲労強度
も球状黒鉛鋳鉄より高く、従来SCM鋼の浸炭焼入れギ
アに匹敵する高い強度を有し、且つ歪みが小さく、騒音
の発生の小さいものであることが確認された。
The average particle size of graphite and the number of graphite particles were measured for the gear materials of Examples No. 1C and 5C. As a result, all of them satisfied the requirements of the present invention. As described above, according to Example 1C and Example 5C, even if the gear was not subjected to soft annealing, the machinability was good, the fatigue strength was higher than that of the spheroidal graphite cast iron, and the conventional SCM steel was carburized and quenched. It was confirmed that it had comparable high strength, small distortion, and low noise generation.

【0113】[0113]

【発明の効果】以上述べたように、この発明によれば、
原料として、Cu、Ni等の不純物の多い低級なスクラ
ップを使用し、且つ、有毒なPbを用いることなく、被
削性に優れ、また疲労強度、伸び特性に優れた熱間加工
製品の製造が可能であり、非調質の快削鋼部品や低歪み
で高い疲労強度を有する歯車を製造することが可能とな
る。このような、快削性に優れた熱間加工鋼材及び製品
並びにそれらの製造方法を提供することができ、工業上
有用な効果がもたらされる。
As described above, according to the present invention,
The production of hot-work products with excellent machinability, fatigue strength, and elongation characteristics using low-grade scraps with a lot of impurities such as Cu and Ni as raw materials without using toxic Pb. It is possible to manufacture a non-refined free-cutting steel part and a gear having low strain and high fatigue strength. Such a hot-worked steel material and a product excellent in free-cutting property and a method for producing the same can be provided, and an industrially useful effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】2.0wt.%Siを含有する時のFe−C系状態
図である。
FIG. 1 is an Fe—C phase diagram when 2.0 wt.% Si is contained.

【図2】この発明の鋼材の加熱工程で表層部に生成する
Cu−Ni合金の組成範囲と、当該Cu−Ni合金の固
相線温度範囲を示す図である。
FIG. 2 is a diagram showing a composition range of a Cu—Ni alloy generated in a surface layer portion in a steel material heating step of the present invention and a solidus temperature range of the Cu—Ni alloy.

【図3】切削加工における切り屑の形態分類を示す図で
ある。
FIG. 3 is a diagram showing a form classification of chips in cutting.

【図4】実施例No.1のナイタールエッチングした検鏡
面の顕微鏡による金属組織を示す図である。
FIG. 4 is a diagram showing a metallographic structure of a microscope surface of Example No. 1 which has been subjected to a nital-etching by a microscope.

【図5】実施例No.5のノーエッチングでの検鏡面の黒
鉛の析出状態の顕微鏡観察結果を示す図である。
FIG. 5 is a diagram showing the results of microscopic observation of the state of graphite deposition on the speculum surface after no etching in Example No. 5;

【図6】実施例No.5のナイタールエッチングした検鏡
面の顕微鏡による金属組織を示す図である。
FIG. 6 is a diagram showing a metallographic structure of a microscope surface of Example No. 5 which has been subjected to nital etching and observed by a microscope.

【図7】切削工具のすくい面摩耗深さを説明する概略縦
断面図である。
FIG. 7 is a schematic longitudinal sectional view for explaining the rake face wear depth of the cutting tool.

【図8】実施例及び比較例における切削工具のすくい面
摩耗深さの進行曲線の例を示すグラフである。
FIG. 8 is a graph showing an example of a progress curve of a rake face wear depth of a cutting tool in Examples and Comparative Examples.

【図9】歯車の歪みを説明する概略縦断面図である。FIG. 9 is a schematic longitudinal sectional view illustrating distortion of a gear.

【符号の説明】[Explanation of symbols]

1 切削工具 2 摩耗深さ 3 切り屑 4 被削材 5 プレッシャーアングルの角度変位 6 歯車の歯先 Reference Signs List 1 cutting tool 2 wear depth 3 chip 4 work material 5 angular displacement of pressure angle 6 gear tip

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】C :0.80〜1.70wt.%、 Si:0.70〜2.50wt.%、 Cu:0.01〜2.0wt.%、 Ni:0.01〜2.0wt.%、 Ca:0.0005〜0.0100wt.%、 Al:0.001〜0.10wt.%、 P :0.050wt.%以下、 S :0.050wt.%以下、 O :0.0050wt.%以下、及び、 N :0.015wt.%以下 を含有し、残部鉄(Fe)および不可避的不純物からな
り、且つ、Ni含有率とCu含有率とのwt.%比Ni/C
uが、下記(1)式: Ni/Cu≧0.2 ------------------------------------(1) を満たし、そして、下記(2)式: CE=C+Si/3+Cu/9+Ni/9+Al/6 ------(2) 但し、各元素記号:各元素の含有率(wt.%)で算出され
る黒鉛化指数CEが、下記(3)式: CE≧1.30 ----------------------------------------(3) を満たす化学成分組成を有し、且つ、熱間加工された
後、室温まで冷却された、鋼材及び前記鋼材を素材とし
た製品であって、平均粒径が0.5μm以上の黒鉛が1
00個/mm2 以上析出し、且つ金属組織の主体がパー
ライトであることを特徴とする、快削性に優れた熱間加
工鋼材及び製品。
1. C: 0.80 to 1.70 wt.%, Si: 0.70 to 2.50 wt.%, Cu: 0.01 to 2.0 wt.%, Ni: 0.01 to 2.0 wt.% .%, Ca: 0.0005 to 0.0100 wt.%, Al: 0.001 to 0.10 wt.%, P: 0.050 wt.% Or less, S: 0.050 wt.% Or less, O: 0.0050 wt.% % And N: 0.015 wt.% Or less, and the balance is composed of iron (Fe) and unavoidable impurities, and the Ni / C ratio between the Ni content and the Cu content is Ni / C.
u is the following formula (1): Ni / Cu ≧ 0.2 ---------------------------------- -(1) is satisfied, and the following equation (2) is satisfied: CE = C + Si / 3 + Cu / 9 + Ni / 9 + Al / 6 (2) where each element symbol: the content of each element (wt. %) Is calculated by the following formula (3): CE ≧ 1.30 --------------------------- ------------- (3) A steel material and a product made from the steel material that has a chemical composition that satisfies (3), and that has been hot worked and then cooled to room temperature. There is one graphite having an average particle size of 0.5 μm or more.
A hot-worked steel material and a product excellent in free-cutting properties, characterized in that at least 00 pieces / mm 2 are precipitated and the main metal structure is pearlite.
【請求項2】 請求項1記載の発明において、前記黒鉛
化指数CEの算出式として、下記(4)式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B --------------------------------(4) 但し、各元素記号:各元素の含有率(wt.%)を用い、そ
して、前記鋼材及び前記製品の化学成分組成に、下記4
種の化学成分組成からなる群から選ばれた少なくとも1
種が、更に付加されて含まれていることを特徴とする、
快削性に優れた熱間加工鋼材及び製品。 Mn:0.01〜1.0wt.%、 Cr:0.01〜1.0wt.%、 Mo:0.01〜0.50wt.%、及び、 B :0.0005〜0.010wt.%。
2. The invention according to claim 1, wherein the graphitization index CE is calculated by the following equation (4): CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9 −B -------------------------------- (4) However, each element symbol: content rate of each element (wt % Of the steel material and the product,
At least one selected from the group consisting of species of chemical components
A seed is further included and contained,
Hot-worked steel products and products with excellent free-cutting properties. Mn: 0.01 to 1.0 wt.%, Cr: 0.01 to 1.0 wt.%, Mo: 0.01 to 0.50 wt.%, And B: 0.0005 to 0.010 wt.%.
【請求項3】 請求項1又は請求項2記載の発明におい
て、前記黒鉛化指数CEの算出式として、下記(5)
式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B+Al/6+Ti/3+Zr/3−V/3−Nb/3 --------------------------------(5) 但し、各元素記号:各元素の含有率(wt.%)を用い、そ
して、前記鋼材及び前記製品の化学成分組成に、下記4
種の化学成分組成からなる群から選ばれた少なくとも1
種が、更に付加されて含まれていることを特徴とする、
快削性に優れた熱間加工鋼材及び製品。 Ti:0.001〜0.10wt.%、 Zr:0.001〜0.10wt.%、 V :0.005〜0.30wt.%、及び、 Nb:0.005〜0.30wt.%。
3. The invention according to claim 1, wherein the formula for calculating the graphitization index CE is as follows:
Formula: CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 ----------- --------------------- (5) However, each element symbol: The content (wt.%) Of each element is used, and the steel material and the product are used. The chemical composition of the following 4
At least one selected from the group consisting of species of chemical components
A seed is further included and contained,
Hot-worked steel products and products with excellent free-cutting properties. Ti: 0.001 to 0.10 wt.%, Zr: 0.001 to 0.10 wt.%, V: 0.005 to 0.30 wt.%, And Nb: 0.005 to 0.30 wt.%.
【請求項4】 請求項1、請求項2、又は請求項3記載
の発明において、前記黒鉛化指数CEの算出式として、
下記(5)式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B+Al/6+Ti/3+Zr/3−V/3−Nb/3 --------------------------------(5) 但し、各元素記号:各元素の含有率(wt.%)を用い、そ
して、前記鋼材及び前記製品の化学成分組成に、下記2
種の化学成分組成からなる群から選ばれた少なくとも1
種が、更に付加されて含まれていることを特徴とする、
快削性に優れた熱間加工鋼材及び製品。 Mg:0.0010〜0.10wt.%、及び、 REM:0.0010〜0.10wt.%。
4. The invention according to claim 1, 2 or 3, wherein the graphing index CE is calculated by:
The following formula (5): CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 ------------------------- (5) However, each element symbol: Use the content (wt.%) Of each element, and The chemical composition of steel products and the above products, the following 2
At least one selected from the group consisting of species of chemical components
A seed is further included and contained,
Hot-worked steel products and products with excellent free-cutting properties. Mg: 0.0010 to 0.10 wt.%, And REM: 0.0010 to 0.10 wt.%.
【請求項5】C :0.80〜1.70wt.%、 Si:0.70〜2.50wt.%、 Cu:0.01〜2.0wt.%、 Ni:0.01〜2.0wt.%、 Ca:0.0005〜0.0100wt.%、 Al:0.001〜0.10wt.%、 P :0.050wt.%以下、 S :0.050wt.%以下、 O :0.0050wt.%以下、及び、 N :0.015wt.%以下 を含有し、残部鉄(Fe)および不可避的不純物からな
り、且つ、Ni含有率とCu含有率とのwt.%比Ni/C
uが、下記(1)式: Ni/Cu≧0.2 ------------------------------------(1) を満たし、そして、下記(2)式: CE=C+Si/3+Cu/9+Ni/9+Al/6 ------(2) 但し、各元素記号:各元素の含有率(wt.%)で算出され
る黒鉛化指数CEが、下記(3)式: CE≧1.30 ----------------------------------------(3) を満たす化学成分組成を有する鋼片又は鋼材を、前記C
u含有率と前記Ni含有率との比率に等しい組成のCu
とNiとの合金の固相線温度未満の温度であって、且
つ、前記鋼片又は前記鋼材の固相線温度より50℃低い
温度を上限とし、800℃を下限とする温度範囲内に加
熱した後、熱間加工し、そして室温まで冷却し、こうし
て得られた熱間加工鋼材に平均粒径が0.5μm以上の
黒鉛を100個/mm2 以上析出させ、且つ、前記熱間
加工鋼材の金属組織の主体をパーライトとなすことを特
徴とする、快削性に優れた熱間加工鋼材及び製品の製造
方法。
5. C: 0.80 to 1.70 wt.%, Si: 0.70 to 2.50 wt.%, Cu: 0.01 to 2.0 wt.%, Ni: 0.01 to 2.0 wt.% .%, Ca: 0.0005 to 0.0100 wt.%, Al: 0.001 to 0.10 wt.%, P: 0.050 wt.% Or less, S: 0.050 wt.% Or less, O: 0.0050 wt.% % And N: 0.015 wt.% Or less, and the balance is composed of iron (Fe) and unavoidable impurities, and the Ni / C ratio between the Ni content and the Cu content is Ni / C.
u is the following formula (1): Ni / Cu ≧ 0.2 ---------------------------------- -(1) is satisfied, and the following equation (2) is satisfied: CE = C + Si / 3 + Cu / 9 + Ni / 9 + Al / 6 (2) where each element symbol: the content of each element (wt. %) Is calculated by the following formula (3): CE ≧ 1.30 --------------------------- ------------- A slab or a steel material having a chemical composition satisfying (3)
Cu having a composition equal to the ratio between the u content and the Ni content
The temperature is lower than the solidus temperature of the alloy of Ni and Ni, and 50 ° C lower than the solidus temperature of the steel slab or the steel material, with the upper limit being 800 ° C. After hot working and cooling to room temperature, the hot-worked steel material thus obtained is precipitated with graphite having an average particle size of 0.5 μm or more in an amount of 100 / mm 2 or more. A method for producing a hot-worked steel material and a product excellent in free-cutting property, characterized in that a main component of the metal structure is pearlite.
【請求項6】 請求項5記載の発明において、前記黒鉛
化指数CEの算出式として、下記(4)式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B --------------------------------(4) 但し、各元素記号:各元素の含有率(wt.%)を用い、そ
して、前記鋼片又は前記鋼材として、下記4種の化学成
分組成からなる群から選ばれた少なくとも1種を、更に
付加されて含まれているものを用いることを特徴とす
る、快削性に優れた熱間加工鋼材及び製品の製造方法。 Mn:0.01〜1.0wt.%、 Cr:0.01〜1.0wt.%、 Mo:0.01〜0.50wt.%、及び、 B :0.0005〜0.010wt.%。
6. The invention according to claim 5, wherein the graphing index CE is calculated by the following equation (4): CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9 −B -------------------------------- (4) However, each element symbol: content rate of each element (wt %), And the steel slab or the steel material further contains at least one selected from the group consisting of the following four chemical component compositions. To produce hot-worked steel products and products with excellent free-cutting properties. Mn: 0.01 to 1.0 wt.%, Cr: 0.01 to 1.0 wt.%, Mo: 0.01 to 0.50 wt.%, And B: 0.0005 to 0.010 wt.%.
【請求項7】 請求項5又は請求項6記載の発明におい
て、前記黒鉛化指数CEの算出式として、下記(5)
式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B+Al/6+Ti/3+Zr/3−V/3−Nb/3 --------------------------------(5) 但し、各元素記号:各元素の含有率(wt.%)を用い、そ
して、前記鋼片又は前記鋼材として、下記4種の化学成
分組成からなる群から選ばれた少なくとも1種を、更に
付加されて含まれているものを用いることを特徴とす
る、快削性に優れた熱間加工鋼材及び製品の製造方法。 Ti:0.001〜0.10wt.%、 Zr:0.001〜0.10wt.%、 V :0.005〜0.30wt.%、及び、 Nb:0.005〜0.30wt.%。
7. The invention according to claim 5, wherein the graphing index CE is calculated by the following formula (5).
Formula: CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 --------------------- (5) However, each element symbol: Use the content (wt.%) Of each element, and A hot-working steel excellent in free-cutting property, characterized by using, as the steel, at least one selected from the group consisting of the following four types of chemical components additionally added thereto; Product manufacturing method. Ti: 0.001 to 0.10 wt.%, Zr: 0.001 to 0.10 wt.%, V: 0.005 to 0.30 wt.%, And Nb: 0.005 to 0.30 wt.%.
【請求項8】 請求項5、請求項6、又は請求項7記載
の発明において、前記黒鉛化指数CEの算出式として、
下記(5)式: CE=C+Si/3+Cu/9+Ni/9−Mn/12−Cr/9 −Mo/9−B+Al/6+Ti/3+Zr/3−V/3−Nb/3 --------------------------------(5) 但し、各元素記号:各元素の含有率(wt.%)を用い、そ
して、前記鋼片又は前記鋼材として、下記2種の化学成
分組成からなる群から選ばれた少なくとも1種を、更に
付加されて含まれているものを用いることを特徴とす
る、快削性に優れた熱間加工鋼材及び製品の製造方法。 Mg :0.0010〜0.10wt.%、及び、 REM:0.0010〜0.10wt.%。
8. The invention according to claim 5, 6, or 7, wherein a formula for calculating the graphitization index CE is:
The following formula (5): CE = C + Si / 3 + Cu / 9 + Ni / 9-Mn / 12-Cr / 9-Mo / 9-B + Al / 6 + Ti / 3 + Zr / 3-V / 3-Nb / 3 ------------------------- (5) However, each element symbol: Use the content (wt.%) Of each element, and A heat-excellent free-cutting material characterized in that at least one selected from the group consisting of the following two chemical components is further added and contained as a billet or the steel material. Method of manufacturing cold worked steel products and products. Mg: 0.0010 to 0.10 wt.%, And REM: 0.0010 to 0.10 wt.%.
JP09608098A 1998-04-08 1998-04-08 Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them Expired - Fee Related JP3874533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09608098A JP3874533B2 (en) 1998-04-08 1998-04-08 Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09608098A JP3874533B2 (en) 1998-04-08 1998-04-08 Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them

Publications (2)

Publication Number Publication Date
JPH11293389A true JPH11293389A (en) 1999-10-26
JP3874533B2 JP3874533B2 (en) 2007-01-31

Family

ID=14155425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09608098A Expired - Fee Related JP3874533B2 (en) 1998-04-08 1998-04-08 Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them

Country Status (1)

Country Link
JP (1) JP3874533B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063948A (en) * 1998-08-19 2000-02-29 Toa Steel Co Ltd Manufacture of super machining steel bar stock and wire rod and part and supermachining steel bar stock and wire rod and part thereby
JP2000063989A (en) * 1998-08-19 2000-02-29 Nkk Joko Kk Manufacture of super free cutting steel bar wire rod and super free cutting steel bar wire rod thereby
JP2000063988A (en) * 1998-08-19 2000-02-29 Nkk Joko Kk Free cutting steel bar wire rod excellent in punching workability and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063948A (en) * 1998-08-19 2000-02-29 Toa Steel Co Ltd Manufacture of super machining steel bar stock and wire rod and part and supermachining steel bar stock and wire rod and part thereby
JP2000063989A (en) * 1998-08-19 2000-02-29 Nkk Joko Kk Manufacture of super free cutting steel bar wire rod and super free cutting steel bar wire rod thereby
JP2000063988A (en) * 1998-08-19 2000-02-29 Nkk Joko Kk Free cutting steel bar wire rod excellent in punching workability and its production

Also Published As

Publication number Publication date
JP3874533B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP4193998B1 (en) Machine structural steel excellent in machinability and manufacturing method thereof
JPWO2009057731A1 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
JP5563926B2 (en) Mechanical structural steel suitable for friction welding and friction welding parts with excellent impact and bending fatigue properties
CN108291285B (en) Steel, carburized steel part, and method for producing carburized steel part
JP3764273B2 (en) Manufacturing method of hot forged steel part excellent in machinability, its part, hot rolled steel material used therefor, and manufacturing method of steel material
JP6652019B2 (en) Machine structural steel and induction hardened steel parts for induction hardening
JP5260460B2 (en) Case-hardened steel parts and manufacturing method thereof
JP5368885B2 (en) Machine structural steel with excellent hot workability and machinability
JP4084462B2 (en) Free-cutting hot-worked steel and its manufacturing method
JP6642237B2 (en) Cold forging steel and method for producing the same
JP4938475B2 (en) Gear steel excellent in impact fatigue resistance and gears using the same
JP2007231337A (en) Hot rolled steel sheet and steel component
JP5472063B2 (en) Free-cutting steel for cold forging
JP4938474B2 (en) Steel for gears excellent in impact fatigue resistance and surface fatigue strength and gears using the same
JP3874532B2 (en) Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JP3764274B2 (en) Free-cutting hot-worked steel material and rough profile, manufacturing methods thereof, free-cutting hot-worked product, and manufacturing method thereof
JP3874533B2 (en) Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JP3255612B2 (en) Method of manufacturing super-cuttable steel rod and wire and super-cuttable steel rod and wire thereby
JP5443277B2 (en) High-strength steel with excellent machinability and method for producing the same
JP2008223083A (en) Crankshaft and manufacturing method therefor
JP3842430B2 (en) Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JP6930662B2 (en) Steel materials for steel pistons
JP3255611B2 (en) Free-cutting steel rod and wire excellent in drilling workability and method for producing the same
JP6263390B2 (en) Gear steel and gears with excellent fatigue resistance
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141102

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees