JP4938475B2 - Gear steel excellent in impact fatigue resistance and gears using the same - Google Patents

Gear steel excellent in impact fatigue resistance and gears using the same Download PDF

Info

Publication number
JP4938475B2
JP4938475B2 JP2007013248A JP2007013248A JP4938475B2 JP 4938475 B2 JP4938475 B2 JP 4938475B2 JP 2007013248 A JP2007013248 A JP 2007013248A JP 2007013248 A JP2007013248 A JP 2007013248A JP 4938475 B2 JP4938475 B2 JP 4938475B2
Authority
JP
Japan
Prior art keywords
less
impact
steel
gear
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007013248A
Other languages
Japanese (ja)
Other versions
JP2008179849A (en
Inventor
和明 福岡
邦和 冨田
哲夫 白神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Bars and Shapes Corp
Original Assignee
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Bars and Shapes Corp filed Critical JFE Bars and Shapes Corp
Priority to JP2007013248A priority Critical patent/JP4938475B2/en
Publication of JP2008179849A publication Critical patent/JP2008179849A/en
Application granted granted Critical
Publication of JP4938475B2 publication Critical patent/JP4938475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gears, Cams (AREA)

Description

本発明は、浸炭歯車用鋼およびそれを用いた浸炭歯車に関し、JIS SCM822 肌焼鋼と同等の回転曲げ疲労強度を備え、特に高い衝撃疲労強度が要求される自動車および各種産業機械用として好適なものに関する。   TECHNICAL FIELD The present invention relates to a carburized gear steel and a carburized gear using the same, and has a rotational bending fatigue strength equivalent to that of JIS SCM822 case-hardened steel, and is suitable for automobiles and various industrial machines that require particularly high impact fatigue strength. About things.

自動車等に用いられている歯車は、近年、省エネルギー化による車体重量の軽量化に伴い小型化が要求されているが、一方ではエンジンの高出力化により負荷が増大しているため、耐久性の向上が課題とされている。   In recent years, gears used in automobiles and the like have been required to be downsized with the reduction of the weight of the vehicle body due to energy saving, but on the other hand, the load has increased due to the high output of the engine. Improvement is an issue.

一般的に歯車の耐久性は、歯の耐衝撃破壊、歯元の曲げ疲労破壊ならびに歯面の面圧疲労破壊によって決定される。   In general, the durability of a gear is determined by impact resistance fracture of a tooth, bending fatigue fracture of a tooth root, and surface pressure fatigue fracture of a tooth surface.

衝撃的な応力がかかる部分、例えば自動車のデファレンシャル等で使用される歯車では、高い衝撃荷重により破壊が早期に起こる場合があるため、衝撃特性の向上が種々検討されている(特許文献1〜5)。   In gears used in impact stresses such as automobile differentials, destruction may occur early due to high impact loads, and various improvements in impact characteristics have been studied (Patent Documents 1 to 5). ).

すなわち、特許文献1には、浸炭層の靭性を向上するためにMoを添加し、浸炭層の粒界強度を低下させるMn、Cr、Pを少なくすることおよびMo/(10Si+100P+Mn+Cr)により求まる値の下限を規定することと、浸炭硬化層深さの範囲を規定することにより衝撃特性を向上させることが提案されている。   That is, in Patent Document 1, Mo is added in order to improve the toughness of the carburized layer, Mn, Cr, and P are decreased to reduce the grain boundary strength of the carburized layer, and Mo / (10Si + 100P + Mn + Cr) is obtained. It has been proposed to improve impact properties by defining a lower limit and by defining a range of carburized hardened layer depth.

特許文献2には焼入れの冷却速度範囲を成分組成に応じた適正範囲に制御することにより、歯車の内部をマルテンサイトとベイナイトの混合組織として靭性を向上させることが提案されている。   Patent Document 2 proposes that the toughness is improved by controlling the quenching cooling rate range to an appropriate range according to the component composition so that the inside of the gear is a mixed structure of martensite and bainite.

特許文献3には、特許文献2と同様にミクロ組織を規定するもので、ミクロ組織をマルテンサイトと、内部の靭性を向上させるトルースタイトの混合組織とし、MnとCrの添加量の範囲を規定し、Mo添加量を規制してトルースタイトの量を制限することで内部硬度の低下を抑える方法が提案されている。   In Patent Document 3, the microstructure is defined in the same manner as Patent Document 2, and the microstructure is a mixed structure of martensite and troostite that improves internal toughness, and the range of addition amounts of Mn and Cr is defined. And the method of suppressing the fall of internal hardness by restrict | limiting Mo addition amount and restrict | limiting the amount of troostite is proposed.

さらに、特許文献4には特許文献3記載の成分組成にMoを添加した鋼が提案されている。特許文献5には成分組成においてMn、Cr、Moの複合添加量を制限して鋼材の硬さを抑え、冷間鍛造性を損なうこと無く衝撃特性を向上させた傘歯車用鋼材が提案されている。
特公平7−100840号公報 特許3094856号公報 特許第3329177号公報 特許第3733504号公報 特許第3319684号公報
Further, Patent Document 4 proposes a steel in which Mo is added to the component composition described in Patent Document 3. Patent Document 5 proposes a steel material for bevel gears in which the composite additive amount of Mn, Cr and Mo is limited in the component composition to suppress the hardness of the steel material and the impact characteristics are improved without impairing the cold forgeability. Yes.
Japanese Examined Patent Publication No. 7-100840 Japanese Patent No. 3094856 Japanese Patent No. 3329177 Japanese Patent No. 3733504 Japanese Patent No. 3319684

しかしながら、特許文献1記載の方法では、衝撃特性を向上出来たとしても、高価な合金であるMoを多量に添加させるか、Moを多く入れない場合には浸炭時間を大幅に延長させることが必要で、製品コストまたは製造コストの大幅な増加を招いてしまう。   However, in the method described in Patent Document 1, even if the impact characteristics can be improved, it is necessary to add a large amount of Mo, which is an expensive alloy, or to significantly extend the carburizing time if a large amount of Mo is not added. As a result, the product cost or the manufacturing cost is greatly increased.

特許文献2記載の方法では、ミクロ組織中にベイナイト組織を含むので靭性を向上させて衝撃値を高めることは可能である。   In the method described in Patent Document 2, since the bainite structure is included in the microstructure, it is possible to improve the toughness and increase the impact value.

しかし、内部にベイナイト組織が含まれると、内部硬さは低下するために歯車が衝撃で変形しやすくなり、衝撃力が繰り返されると破損することが懸念される。   However, if a bainite structure is contained inside, the internal hardness is reduced, so that the gears are easily deformed by impact, and there is a concern that the gear may be damaged when the impact force is repeated.

特許文献3記載の方法では、MnとCrの複合添加量を指定し、Mo添加量を規制するので、表層付近で発生する粒界酸化が多くなり、Mn,Crの酸化物が形成されるために焼入れ性が低下し、表層に不完全焼入れ層が形成される。   In the method described in Patent Document 3, since the composite addition amount of Mn and Cr is specified and the addition amount of Mo is regulated, the grain boundary oxidation generated near the surface layer increases, and oxides of Mn and Cr are formed. Therefore, the hardenability is lowered and an incompletely hardened layer is formed on the surface layer.

そのため、内部硬度が確保出来たとしても表層の硬さ低下による表層からの破壊が発生しやすくなり、結果的に衝撃疲労を含むすべての疲労強度が低下してしまう。   Therefore, even if the internal hardness can be ensured, the surface layer is likely to be broken due to a decrease in the surface layer hardness, and as a result, all fatigue strengths including impact fatigue are reduced.

特許文献4記載の方法の場合、Moを添加してもトルースタイトにより歯車内部の硬度低下が発生するため、衝撃特性が向上したとしても内部起因の曲げ疲労などの疲労強度が低下する。特許文献5記載の方法の場合、歯車を熱間鍛造で整形する場合は硬度が低く、衝撃以外の疲労強度が低下する。   In the case of the method described in Patent Document 4, even if Mo is added, the hardness inside the gear is reduced due to the true tooth. Therefore, even if the impact characteristics are improved, the fatigue strength such as internal bending fatigue is reduced. In the case of the method described in Patent Document 5, when the gear is shaped by hot forging, the hardness is low and the fatigue strength other than impact is reduced.

そこで、本発明は、歯車としての特性を劣化させずに、優れた衝撃疲労強度が得られる低コストな歯車用鋼およびそれを用いた歯車を提供することを目的とする。   Therefore, an object of the present invention is to provide a low-cost steel for gears that can provide excellent impact fatigue strength without deteriorating the characteristics as a gear and a gear using the steel.

本発明者等は上記課題を解決するため、生産コストとして安価な、従来から用いられている浸炭工法により、優れた耐衝撃疲労強度が得られる低コストな成分組成の歯車用鋼について鋭意検討を行った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on a gear steel having a low-cost component composition that provides an excellent impact fatigue strength by a conventionally used carburizing method, which is inexpensive as a production cost. went.

その結果、歯車の場合、繰返される衝撃応力に対して衝撃力による変形を起こさないことが必要で、そのためには適切な硬度分布およびそれに影響を及ぼす粒界酸化層深さと内部硬度を得る事が重要であることを知見し、以下の成分設計指針を得た。
1.衝撃疲労特性の向上には旧オーステナイト粒界の強化が最も重要であり、Pを低減して旧オーステナイト粒界の脆化を抑制する。
2.さらに鋼中にBを固溶させて旧オーステナイト粒界に優先的に偏析させ、Pの粒界偏析を抑制する。
3.固溶Bを鋼中に存在させるには、Bとの結合力の強いNをTiまたはAlで結合させるが、Tiを用いた場合に溶製時に析出するTiNは比較的大きく、鋭利で硬質な介在物のため、疲労の起点となり易く、面疲労強度および曲げ疲労強度が低下する。
4.Alを添加してB,Nとの平衡関係を利用してN固定をした場合、BN,AlNが鋼中に析出する。AlNは微細なため、結晶粒は微細化し、衝撃疲労強度が向上する。また、AlNは微細なために疲労の起点にはならずTi添加よりも疲労強度向上が図られる。
5.衝撃疲労強度には粒界酸化層深さと内部の硬さおよび浸炭硬度分布(硬化層深さ)のバランスが大切であり、最適な範囲が存在する。
As a result, in the case of gears, it is necessary not to cause deformation due to impact force with respect to repeated impact stress. To that end, it is possible to obtain an appropriate hardness distribution, and an intergranular oxide layer depth and internal hardness that affect the hardness distribution. We found out that it was important and obtained the following component design guidelines.
1. Strengthening of prior austenite grain boundaries is most important for improving impact fatigue properties, and P is reduced to suppress embrittlement of prior austenite grain boundaries.
2. Further, B is dissolved in the steel to preferentially segregate at the prior austenite grain boundaries, thereby suppressing P grain boundary segregation.
3. In order to make solute B exist in steel, N having a strong bonding force with B is bonded with Ti or Al. However, when Ti is used, TiN precipitated during melting is relatively large, sharp and hard. Due to the inclusion, it tends to be a starting point of fatigue, and the surface fatigue strength and bending fatigue strength are reduced.
4). When Al is added and N is fixed using the equilibrium relationship with B and N, BN and AlN precipitate in the steel. Since AlN is fine, crystal grains are refined and impact fatigue strength is improved. Further, since AlN is fine, it does not become a starting point of fatigue, and the fatigue strength can be improved as compared with the addition of Ti.
5. For the impact fatigue strength, the balance between the grain boundary oxide layer depth, the internal hardness, and the carburized hardness distribution (hardened layer depth) is important, and there is an optimum range.

本発明は得られた知見に更に検討を加えてなされたもので、すなわち本発明は、
1.mass%で、C:0.16〜0.30%、Si:0.40%未満、Mn:0.50%以上、P:0.015%以下、Cu:0.30%以下、Cr:2.00%未満、Mo:0.16〜0.50%、Al:0.060〜0.110%、B:0.0004%以上、N:0.0065%以下を含有し、(1)式を満足する残部がFeおよび不可避的不純物からなる成分組成を有し、浸炭焼入れ・焼戻し後に得られる有効硬化層深さE、内部硬度D、粒界酸化層深さPについて(2)式のS値を満足する耐衝撃疲労特性に優れた歯車用鋼。
I(=14/27×Al+14/10.8×B−N)≧0.03・・・(1)
但し、(1)式中のAl、B、Nは含有量(mass%)を示す。
170≦S(=E/2×D-P/2)≦250 ・・・(2)
但し、E:有効硬化層深さ(mm)、D:内部硬度(HV)、P:粒界酸化層深さ(μm)を示す。
2.更に、mass%で、Ti:0.020%未満、Nb:0.050%以下,V:0.030〜0.200%のいずれか1種以上を添加する1記載の耐衝撃疲労特性に優れた歯車用鋼。
3.1または2に記載の鋼材を用いて、機械加工、あるいは鍛造後に機械加工を行い歯車形状とした後、浸炭焼入れ処理を施す事により得られる、耐衝撃疲労特性に優れた歯車。
4.3の工程により歯車形状とした後、さらに歯面にショットピーニングあるいは研磨加工を施した、耐衝撃疲労特性に優れた歯車。
The present invention has been made by further studying the obtained knowledge, that is, the present invention,
1. In mass%, C: 0.16 to 0.30%, Si: less than 0.40%, Mn: 0.50% or more, P: 0.015% or less, Cu: 0.30% or less, Cr: 2 Less than 0.000%, Mo: 0.16-0.50%, Al: 0.060-0.110%, B: 0.0004% or more, N: 0.0065% or less, (1) formula The effective content of the hardened layer depth E, internal hardness D, and grain boundary oxide layer depth P obtained after carburizing and tempering is as follows. Steel for gears with excellent impact fatigue resistance that satisfies the requirements.
I (= 14/27 × Al + 14 / 10.8 × B−N) ≧ 0.03 (1)
However, Al, B, and N in the formula (1) indicate the content (mass%).
170 ≦ S (= E / 2 × DP / 2) ≦ 250 (2)
However, E: Effective hardened layer depth (mm), D: Internal hardness (HV), P: Grain boundary oxide layer depth (micrometer) is shown.
2. Furthermore, it is excellent in impact fatigue resistance according to 1, wherein at least one of Ti: less than 0.020%, Nb: 0.050% or less, and V: 0.030-0.200% is added. Steel for gears.
3. A gear excellent in impact fatigue resistance obtained by machining or carving after forging using the steel material described in 3.1 or 2 and then carburizing and quenching.
A gear excellent in impact fatigue resistance, which is formed into a gear shape by the process of 4.3 and further subjected to shot peening or polishing on the tooth surface.

本発明によれば、従来鋼に対し同等以上の曲げ疲労強度を備えた歯車で、優れた衝撃疲労強度を備えるものが得られ産業上極めて有用である。   According to the present invention, a gear having a bending fatigue strength equal to or higher than that of conventional steel and having an excellent impact fatigue strength is obtained, which is extremely useful industrially.

以下に本発明の成分元素の限定理由について述べる。説明において%はmass%とする。
C:0.16〜0.30%
Cは強度確保のために必要であり、その量は内部硬さを決定する。その量が0.16%に満たないと表面硬さが300HV以下にまで低下し、歯車としての強度を確保できない。また、0.30%を超えると素材硬さが上昇しすぎるために加工性が低下し、生産コストが上昇するので、0.16〜0.30%とする。
The reasons for limiting the constituent elements of the present invention will be described below. In the explanation,% is mass%.
C: 0.16-0.30%
C is necessary for securing the strength, and its amount determines the internal hardness. If the amount is less than 0.16%, the surface hardness decreases to 300 HV or less, and the strength as a gear cannot be secured. On the other hand, if it exceeds 0.30%, the hardness of the material is excessively increased, so that the workability is reduced and the production cost is increased.

Si:0.40%未満
Siは酸化されやすい元素であり、浸炭表面での粒界酸化を助長させ、不完全焼入層を生成する。含有量が0.40%以上で顕著となるため、0.40%未満とする。
Si: Less than 0.40% Si is an element that is easily oxidized, promotes grain boundary oxidation on the carburized surface, and generates an incompletely hardened layer. Since the content becomes significant when the content is 0.40% or more, the content is made less than 0.40%.

Mn:0.50%以上
Mnは焼き入れ性を高める元素であるが添加量が0.50%未満では焼入れ性が確保できない。よってMn添加量は0.50%以上とする。
Mn: 0.50% or more Mn is an element that enhances hardenability, but if the added amount is less than 0.50%, hardenability cannot be ensured. Therefore, the Mn addition amount is 0.50% or more.

P:0.015%以下
Pは粒界に偏析して粒界を脆化させ粒界強度を低下させる。添加量が増えるほど疲労の亀裂の発生・伝播が起こりやすくなるため0.015%以下とする。
P: 0.015% or less P segregates at the grain boundary, embrittles the grain boundary, and lowers the grain boundary strength. As the added amount increases, the generation and propagation of fatigue cracks are more likely to occur, so 0.015% or less.

Cu:0.30%以下
Cuは圧延や鍛造等の熱間加工性を低下させ、歯車等に加工した場合に加工精度が悪くなり疲労特性が低下するので0.30%以下とする。
Cu: 0.30% or less Cu decreases the hot workability such as rolling and forging, and when processed into a gear or the like, the processing accuracy deteriorates and the fatigue characteristics deteriorate, so the content is made 0.30% or less.

Cr:2.00%未満
Crは焼入れ性向上元素であるとともに、焼戻し軟化抵抗を高める元素である。しかしその添加量が2.00%以上の場合は軟化抵抗を高める効果は飽和し、焼入れ性が高くなりすぎるため歯車内部の靭性が劣化し、衝撃値が低くなるばかりでなく曲げ疲労強度が低下する。よって、Cr添加量は2.00%未満に限定した。
Cr: less than 2.00% Cr is an element that enhances hardenability and increases temper softening resistance. However, when the added amount is 2.00% or more, the effect of increasing the softening resistance is saturated and the hardenability becomes too high, so that the toughness inside the gear is deteriorated and not only the impact value is lowered but also the bending fatigue strength is lowered. To do. Therefore, the Cr addition amount is limited to less than 2.00%.

Mo:0.16〜0.50%
Moは焼入れ性を向上させるのに有効な元素であるが0.16%未満では焼入れ性が確保できないため、0.16%以上とする。Moは高価な元素でもあるため、0.50%を上限とし、0.16〜0.50%とする。
Mo: 0.16-0.50%
Mo is an element effective for improving the hardenability, but if it is less than 0.16%, the hardenability cannot be secured, so the content is made 0.16% or more. Since Mo is also an expensive element, the upper limit is 0.50% and the content is 0.16 to 0.50%.

Al:0.060〜0.110%
AlはNとBとの平衡において固溶Bを確するために必要な元素である。その添加量が0.060%未満ではその効果が得られず、0.110%を超えて添加すると溶製時において鋳造異常等の恐れがあるため、0.060〜0.110%とする。
Al: 0.060 to 0.110%
Al is an element necessary for ensuring solid solution B in the equilibrium between N and B. If the added amount is less than 0.060%, the effect cannot be obtained, and if added over 0.110%, there is a risk of casting abnormalities during melting, so 0.060 to 0.110%.

B:0.0004%以上
Bは鋼中に固溶して粒界偏析し焼入れ性を向上させ、低Si化による焼入れ性の低下を補う。また、Pの粒界偏析を妨げ、粒界強度を向上させて疲労特性を改善するため0.0004%以上とする。
B: 0.0004% or more B dissolves in the steel and segregates at the grain boundaries to improve the hardenability and compensate for the decrease in hardenability due to low Si content. Moreover, in order to prevent grain boundary segregation of P, improve grain boundary strength, and improve fatigue characteristics, the content is made 0.0004% or more.

N:0.0065%以下
NはBと結合してBNを生成するので固溶Bの確保のためにはNは低いほど良い。しかし、AlとNとBの平衡関係においてNが0.0065%以下であれば固溶Bの確保は可能となるため、0.0065%以下とする。
N: 0.0065% or less Since N combines with B to form BN, the lower N is better for securing solid solution B. However, if N is 0.0065% or less in the equilibrium relationship of Al, N, and B, solid solution B can be secured, so the content is made 0.0065% or less.

I(=14/27×Al+14/10.8×B−N) :0.03以上
本パラメータIは、衝撃疲労強度を向上させる固溶Bの確保のためにAl,B,Nのバランスを決める指標で、本パラメータIの値が0.03未満の場合は鋼中に固溶するBの確保が出来なくなるため0.03以上とする。式中のAl、B、Nは含有量(mass%)を示す。
I (= 14/27 × Al + 14 / 10.8 × B−N): 0.03 or more This parameter I determines the balance of Al, B, and N in order to secure a solid solution B that improves impact fatigue strength. As an index, when the value of this parameter I is less than 0.03, B cannot be secured in the steel, so 0.03 or more. Al, B, and N in the formula indicate the content (mass%).

以上が本発明の基本成分組成であるが、更に特性を向上させる場合、Ti、Nb、Vの一種または二種以上を添加する。   The above is the basic component composition of the present invention. When further improving the characteristics, one or more of Ti, Nb, and V are added.

Ti:0.020%未満
TiはNと最も結合しやすく固溶Bの確保には有効な元素である。しかし、過剰に添加されると硬くて鋭利な形状の粗大なTiNが多く形成され、曲げ疲労や衝撃疲労の破壊の起点となり、強度を低下させる。その影響は0.020%以上の添加で顕著である。よってTiを添加する場合は、0.020%未満とする。
Ti: Less than 0.020% Ti is an element that is most easily bonded to N and is effective in securing solid solution B. However, if it is added excessively, a large amount of coarse TiN having a hard and sharp shape is formed, which becomes a starting point of fracture of bending fatigue and impact fatigue, and lowers the strength. The effect is significant when 0.020% or more is added. Therefore, when adding Ti, it is less than 0.020%.

Nb:0.050%以下
Nbは結晶粒を微細化させて粒界を強化して疲労強度を向上させるが、その効果は0.050%で飽和する。よってNbを添加する場合は0.050%以下とする。
Nb: 0.050% or less Nb refines crystal grains and strengthens grain boundaries to improve fatigue strength, but the effect is saturated at 0.050%. Therefore, when adding Nb, it is made into 0.050% or less.

V:0.030〜0.200%
Vには、浸炭後の内部強度を上昇させて全体の疲労強度を向上させる。その効果は0.030%以上で現れるが0.200%を超えると飽和するのでVを添加する場合は0.030〜0.200%とする。
V: 0.030-0.200%
V increases the internal fatigue strength after carburizing to improve the overall fatigue strength. The effect appears at 0.030% or more, but when it exceeds 0.200%, it becomes saturated. Therefore, when V is added, the content is made 0.030 to 0.200%.

尚、不可避不純物としてのSおよび酸素含有量は、コストが許す範囲内で出来るだけ低いほうが望ましい。また、被削性を向上させるために必要に応じて、S、Pb、Se、Ca等の快削元素を含有させてもよい。   The S and oxygen contents as unavoidable impurities are desirably as low as possible within the range allowed by the cost. Moreover, you may contain free-cutting elements, such as S, Pb, Se, and Ca, as needed in order to improve machinability.

170≦S(=E/2×D-P/2)≦250
(但し、E:有効硬化層深さ(mm)、D:内部硬度(HV)、P:粒界酸化層深さ(μm))
本パラメータSは、優れた耐衝撃疲労特性を付与するためのもので、170以上、250以下とする。表1のNo.1〜3の丸棒鋼を用いて衝撃疲労試験片を作成し、種々の条件で浸炭焼入れ・焼戻しを行い、粒界酸化層深さ,内部硬度,有効硬化層深さの異なる衝撃疲労試験片を作成し、衝撃疲労試験を実施した。表2と図4に結果を示す。
170 ≦ S (= E / 2 × DP / 2) ≦ 250
(However, E: Effective hardened layer depth (mm), D: Internal hardness (HV), P: Grain boundary oxide layer depth (μm))
This parameter S is for imparting excellent impact fatigue resistance, and is set to 170 or more and 250 or less. No. in Table 1 Create impact fatigue test specimens using 1 to 3 round steel bars, carburize and temper under various conditions, and create impact fatigue test specimens with different grain boundary oxide depth, internal hardness, and effective hardened layer depth. Prepared and conducted an impact fatigue test. The results are shown in Table 2 and FIG.

Figure 0004938475
Figure 0004938475

Figure 0004938475
Figure 0004938475

衝撃疲労試験結果は、E:有効硬化層深さ(mm)、D:内部硬度(HV)、P:粒界酸化層深さ(μm)によるパラメータS(=E/2×D-P/2)で整理され、パラメータSの値が170以上、250以下で衝撃疲労強度が2.5N・m以上の優れた衝撃疲労試験結果が得られる。   The impact fatigue test results are as follows: E: effective hardened layer depth (mm), D: internal hardness (HV), P: grain boundary oxide layer depth (μm) S (= E / 2 × DP / 2) ), An excellent impact fatigue test result with a parameter S value of 170 or more and 250 or less and an impact fatigue strength of 2.5 N · m or more is obtained.

有効硬化層深さを0.98mm以上、粒界酸化層を12μm以上、内部硬度を417Hv以上とすると、回転曲げ疲労強度650MPa以上の優れた回転曲げ疲労特性が得られ、自動車および各種産業機械用として、より好適である。   When the effective hardened layer depth is 0.98 mm or more, the grain boundary oxide layer is 12 μm or more, and the internal hardness is 417 Hv or more, excellent rotational bending fatigue characteristics with a rotational bending fatigue strength of 650 MPa or more can be obtained. For automobiles and various industrial machines As such, it is more preferable.

尚、パラメータSを算出する際のE、D、Pにはそれぞれの単位系における数値自体を用いる。   In addition, the numerical value itself in each unit system is used for E, D, and P when calculating the parameter S.

本発明に係る歯車用鋼から歯車を作成する場合は、常法により溶解鋳造してビレットとし、熱間圧延後、歯車としての予備成形を行う。   When producing a gear from the steel for gear according to the present invention, it is melt cast by a conventional method to form a billet, and after hot rolling, preforming as a gear is performed.

次に、機械加工、あるいは鍛造後に機械加工を行い歯車形状とした後、浸炭焼入れ処理を施し、必要に応じて更に歯面にショットピーニングあるいは研磨加工を施して最終製品とする。浸炭焼入れ処理は、浸炭温度900〜1050℃、焼入れ温度800〜900℃とし、焼戻しは120〜250℃の範囲とする。   Next, it is machined or machined after forging to form a gear shape, and then carburized and quenched, and if necessary, the tooth surface is further subjected to shot peening or polishing to obtain a final product. The carburizing and quenching treatment is performed at a carburizing temperature of 900 to 1050 ° C, a quenching temperature of 800 to 900 ° C, and tempering within a range of 120 to 250 ° C.

表3に示す化学成分を有する鋼を溶解し供試鋼とした。表中、No.1〜15は、本発明範囲内の組成の本発明鋼であり、No.16〜28は本発明範囲外の比較鋼である。No.29はJISSCM822肌焼鋼の従来鋼である。   Steels having chemical components shown in Table 3 were melted and used as test steels. In the table, No. Nos. 1 to 15 are steels of the present invention having compositions within the scope of the present invention. 16 to 28 are comparative steels outside the scope of the present invention. No. 29 is a conventional steel of JIS SCM 822 case hardening steel.

溶製された上記の本発明鋼,比較鋼,従来鋼のインゴットを熱間圧延により直径32mmの丸棒鋼に調製し、得られた丸棒鋼に対し焼準処理を実施した。   The ingots of the present invention steel, the comparative steel, and the conventional steel prepared as above were prepared by hot rolling into a round bar steel having a diameter of 32 mm, and the obtained round bar steel was subjected to a normalization treatment.

焼準処理後の丸棒から20mmφの丸棒、小野式回転曲げ疲労試験片,衝撃疲労試験片を採取した。丸棒および各疲労試験片に対して、図1に示す条件の、浸炭焼入れ・焼戻しを施した後、表面硬度,内部硬度,有効硬化層深さの調査、および衝撃疲労試験と回転曲げ疲労試験を実施した。以下にそれぞれの調査内容について詳細に説明する。   A 20 mmφ round bar, an Ono-type rotary bending fatigue test piece, and an impact fatigue test piece were collected from the round bar after the normalizing treatment. After carburizing and tempering the round bar and each fatigue test piece under the conditions shown in Fig. 1, investigation of surface hardness, internal hardness, effective hardened layer depth, impact fatigue test and rotating bending fatigue test Carried out. The details of each survey are described below.

粒界酸化層深さ、有効硬化層深さ、表面硬度、内部硬度調査
発明鋼、比較鋼および従来鋼の20φ丸棒を用いて、浸炭焼入れ焼戻し処理後、切断し、最大となる粒界酸化層深さを光学顕微鏡にて測定した。また断面の硬度分布を測定し、ビッカース硬さで550HVの得られる深さを調査し「有効硬化層深さ」とした。さらに表層より5mm深さ位置の硬度を「内部硬度」と規定してビッカース硬度計を用いて測定した。
Intergranular oxidation layer depth, effective hardened layer depth, surface hardness, internal hardness investigation Invented steel, comparative steel and conventional steel 20φ round bar, carburizing quenching and tempering, cutting, maximum grain boundary oxidation The layer depth was measured with an optical microscope. Further, the hardness distribution of the cross section was measured, and the depth at which 550 HV was obtained in terms of Vickers hardness was investigated and set as the “effective hardened layer depth”. Further, the hardness at a depth of 5 mm from the surface layer was defined as “internal hardness” and measured using a Vickers hardness tester.

衝撃疲労特性調査
直径32mm径の丸棒鋼より図2に示す試験片を作製し、図1に示す条件の浸炭焼入れ焼き戻しをした後、落錘型衝撃疲労試験機により、繰返し数200回で破壊する衝撃エネルギーを調査した。
Impact Fatigue Properties Investigation Test specimens shown in FIG. 2 were prepared from round steel bars with a diameter of 32 mm, carburized and tempered under the conditions shown in FIG. 1, and then fractured by a falling weight type impact fatigue tester at 200 repetitions. The impact energy to investigate was investigated.

回転曲げ疲労特性
直径32mm径の丸棒鋼から、図3に示す寸法、形状の平行部直径8mmの試験片を採取し、平行部にこれと直角方向の深さ2mmの切欠き(切欠き係数:1.34)を全周に付与した回転曲げ疲労試験片を調製した。
Rotating Bending Fatigue Properties From a round steel bar having a diameter of 32 mm, a test piece having a diameter and a parallel part diameter of 8 mm as shown in FIG. 3 was taken, and a notch with a depth of 2 mm perpendicular to the parallel part was obtained (notch coefficient: A rotating bending fatigue test piece having 1.34) applied to the entire circumference was prepared.

得られた試験片の全数(本発明鋼、比較鋼および従来鋼)に図1に示す条件の浸炭焼入れ・焼戻し処理を行い、その後、小野式回転曲げ疲労試験機を使用して10回を疲労限度として回転曲げ疲労試験を行い、回転曲げ疲労強度を測定した。 Carburizing quenching and tempering treatment under the conditions shown in FIG. 1 is performed on the total number of the test pieces obtained (invention steel, comparative steel, and conventional steel), and then 10 7 times using an Ono rotary bending fatigue tester. A rotating bending fatigue test was performed as the fatigue limit, and the rotating bending fatigue strength was measured.

表4に上記調査の結果を示す。本発明鋼は有効硬化層深さが0.98mm以上、粒界酸化層が12μm以上、内部硬度は417Hv以上で、回転曲げ疲労強度は654MPa以上、衝撃疲労強度は2.7N・m以上が得られ、比較鋼No.16〜No.28と従来鋼(JISSCM822肌焼鋼)より優れていた(No.29の従来鋼(JISSCM822肌焼鋼)は回転曲げ疲労強度650MPa、衝撃疲労強度は2.0N・m)。   Table 4 shows the results of the above investigation. The steel according to the present invention has an effective hardened layer depth of 0.98 mm or more, a grain boundary oxide layer of 12 μm or more, an internal hardness of 417 Hv or more, a rotational bending fatigue strength of 654 MPa or more, and an impact fatigue strength of 2.7 N · m or more. Comparative steel No. 16-No. No. 28 and the conventional steel (JISSCM822 case-hardened steel) (No. 29 conventional steel (JISSCM822 case-hardened steel) had a rotational bending fatigue strength of 650 MPa and an impact fatigue strength of 2.0 N · m).

すなわち、比較鋼No.16はC含有量が本発明範囲より低いために、内部硬度が低くなりすぎ、そのために衝撃疲労強度は良好であったが、回転曲げ疲労強度が低下した。   That is, comparative steel No. No. 16 had a C content lower than the range of the present invention, so the internal hardness was too low, and the impact fatigue strength was good, but the rotational bending fatigue strength was reduced.

比較鋼No.17はSi含有量が本発明の範囲よりも高いために粒界酸化層が深く表面硬度が低い。そのため衝撃疲労強度、回転曲げ疲労強度および面疲労強度が低下した。   Comparative steel No. In No. 17, since the Si content is higher than the range of the present invention, the grain boundary oxide layer is deep and the surface hardness is low. Therefore, impact fatigue strength, rotational bending fatigue strength, and surface fatigue strength decreased.

比較鋼No.18はMn含有量が本発明の範囲より低いために焼入れ性が低すぎる。よって有効硬化層深さが浅く、内部硬度が低いため、衝撃疲労強度および回転曲げ疲労強度が低下した。   Comparative steel No. No. 18 has too low hardenability because the Mn content is lower than the range of the present invention. Therefore, since the effective hardened layer depth was shallow and the internal hardness was low, impact fatigue strength and rotational bending fatigue strength were reduced.

比較鋼No.19はP含有量が本発明範囲より高いために粒界強度が不足し、衝撃疲労強度が低下した。   Comparative steel No. In No. 19, since the P content was higher than the range of the present invention, the grain boundary strength was insufficient and the impact fatigue strength was lowered.

比較鋼No.20はCu含有量が本発明範囲よりも高いために、試験片の加工精度が悪く、回転曲げ疲労強度と衝撃疲労強度が低下した。   Comparative steel No. In No. 20, since the Cu content was higher than the range of the present invention, the processing accuracy of the test piece was poor, and the rotary bending fatigue strength and the impact fatigue strength were reduced.

比較鋼No.21はCr含有量が本発明の範囲より高いために焼入れ性が高くなりすぎている。そのため、衝撃疲労強度が低下した。   Comparative steel No. No. 21 has too high hardenability because the Cr content is higher than the range of the present invention. As a result, the impact fatigue strength decreased.

比較鋼No.22はMo含有量が本発明の範囲より低いために焼入性が不足し、有効硬化層深さおよび内部硬さが低下した。その結果回転曲げ疲労強度、衝撃疲労強度が低下した。   Comparative steel No. Since No. 22 had Mo content lower than the range of the present invention, hardenability became insufficient, and the effective hardened layer depth and internal hardness fell. As a result, the rotational bending fatigue strength and impact fatigue strength decreased.

比較鋼No.23はV含有量が本発明範囲よりも低いために内部の硬さが低下した。その結果回転曲げ疲労強度が低下した。   Comparative steel No. In No. 23, since the V content was lower than the range of the present invention, the internal hardness decreased. As a result, the rotating bending fatigue strength decreased.

比較鋼No.24はB含有量が本発明範囲よりも低いために、粒界強化作用が得られず、有効硬化層深さも浅くなり、回転曲げ疲労強度および衝撃疲労強度が低下した。   Comparative steel No. In No. 24, since the B content was lower than the range of the present invention, the grain boundary strengthening effect could not be obtained, the effective hardened layer depth became shallow, and the rotary bending fatigue strength and the impact fatigue strength decreased.

比較鋼No25はAl添加量が本発明範囲よりも低いその結果固溶Bによる粒界強化作用が得られず、有効硬化層深さも浅く、内部硬度も低くなった。そのため、回転曲げ疲労強度および衝撃疲労強度が低下した。   In Comparative Steel No. 25, the amount of Al added was lower than the range of the present invention. As a result, the grain boundary strengthening effect due to solute B was not obtained, the effective hardened layer depth was shallow, and the internal hardness was low. Therefore, the rotational bending fatigue strength and the impact fatigue strength were reduced.

比較鋼No.26はN添加量が本発明範囲よりも高い。その結果、固溶Bが確保できず、有効硬化層深さも浅く、内部硬度も低くなった。そのため、回転曲げ疲労強度および衝撃疲労強度が低下した。   Comparative steel No. No. 26 has an N addition amount higher than the range of the present invention. As a result, the solid solution B could not be secured, the effective hardened layer depth was shallow, and the internal hardness was low. Therefore, the rotational bending fatigue strength and the impact fatigue strength were reduced.

比較鋼No.27はTi添加量が本発明範囲よりも高い。そのため、TiN起点による疲労破壊が起こりやすくなり、回転曲げ疲労特性および衝撃疲労特性が低下した。   Comparative steel No. No. 27 has a Ti addition amount higher than the range of the present invention. Therefore, fatigue failure due to the TiN starting point is likely to occur, and the rotational bending fatigue characteristics and the impact fatigue characteristics are deteriorated.

比較鋼No28はAl添加量及びI値が本発明範囲よりも低い。その結果、固溶Bによる粒界強化作用が得られず、焼入れ性も低くなったために有効硬化層深さが浅くなった。そのため、回転曲げ疲労強度および衝撃疲労強度が低下した。   Comparative steel No. 28 has an Al addition amount and an I value lower than the scope of the present invention. As a result, the grain boundary strengthening effect due to the solid solution B was not obtained and the hardenability was lowered, so that the effective hardened layer depth became shallow. Therefore, the rotational bending fatigue strength and the impact fatigue strength were reduced.

Figure 0004938475
Figure 0004938475

Figure 0004938475
Figure 0004938475

浸炭焼入れ・焼戻し処理条件を示す図。The figure which shows the carburizing quenching and tempering process conditions. 衝撃疲労試験片の形状を示す図。The figure which shows the shape of an impact fatigue test piece. 小野式回転曲げ疲労試験片の形状を示す図。The figure which shows the shape of an Ono type | formula rotation bending fatigue test piece. 衝撃疲労試験結果に及ぼすS(=E/2×D-P/2)値の影響を示す図。The figure which shows the influence of S (= E / 2xDP / 2) value which gives to an impact fatigue test result.

Claims (4)

mass%で、C:0.16〜0.30%、Si:0.40%未満、Mn:0.50%以上、P:0.015%以下、Cu:0.30%以下、Cr:2.00%未満、Mo:0.16〜0.50%、Al:0.060〜0.110%、B:0.0004%以上、N:0.0065%以下を含有し、(1)式を満足する残部がFeおよび不可避的不純物からなる成分組成を有し、浸炭焼入れ・焼戻し後に得られる有効硬化層深さE、内部硬度D、粒界酸化層深さPについて(2)式のS値を満足する耐衝撃疲労特性に優れた歯車用鋼。
I(=14/27×Al+14/10.8×B−N)≧0.03・・・(1)
但し、(1)式中のAl、B、Nは含有量(mass%)を示す。
170≦S(=E/2×D-P/2)≦250 ・・・(2)
但し、E:有効硬化層深さ(mm)、D:内部硬度(HV)、P:粒界酸化層深さ(μm)を示す。
In mass%, C: 0.16 to 0.30%, Si: less than 0.40%, Mn: 0.50% or more, P: 0.015% or less, Cu: 0.30% or less, Cr: 2 Less than 0.000%, Mo: 0.16-0.50%, Al: 0.060-0.110%, B: 0.0004% or more, N: 0.0065% or less, (1) formula The effective content of the hardened layer depth E, internal hardness D, and grain boundary oxide layer depth P obtained after carburizing and tempering is as follows. Steel for gears with excellent impact fatigue resistance that satisfies the requirements.
I (= 14/27 × Al + 14 / 10.8 × B−N) ≧ 0.03 (1)
However, Al, B, and N in the formula (1) indicate the content (mass%).
170 ≦ S (= E / 2 × DP / 2) ≦ 250 (2)
However, E: Effective hardened layer depth (mm), D: Internal hardness (HV), P: Grain boundary oxide layer depth (micrometer) is shown.
更に、mass%で、Ti:0.020%未満、Nb:0.050%以下,V:0.030〜0.200%のいずれか1種以上を添加する請求項1記載の耐衝撃疲労特性に優れた歯車用鋼。   The impact fatigue resistance according to claim 1, further comprising adding at least one of mass%, Ti: less than 0.020%, Nb: 0.050% or less, and V: 0.030 to 0.200%. Excellent gear steel. 請求項1または2に記載の鋼材を用いて、機械加工、あるいは鍛造後に機械加工を行い歯車形状とした後、浸炭焼入れ処理を施す事により得られる、耐衝撃疲労特性に優れた歯車。   A gear excellent in impact fatigue resistance, obtained by subjecting the steel material according to claim 1 or 2 to a gear shape by machining or forging after machining or carburizing and quenching. 請求項3の工程により歯車形状とした後、さらに歯面にショットピーニングあるいは研磨加工を施した、耐衝撃疲労特性に優れた歯車。   A gear excellent in impact fatigue resistance, which is formed into a gear shape by the process of claim 3 and further subjected to shot peening or polishing on the tooth surface.
JP2007013248A 2007-01-24 2007-01-24 Gear steel excellent in impact fatigue resistance and gears using the same Active JP4938475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013248A JP4938475B2 (en) 2007-01-24 2007-01-24 Gear steel excellent in impact fatigue resistance and gears using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013248A JP4938475B2 (en) 2007-01-24 2007-01-24 Gear steel excellent in impact fatigue resistance and gears using the same

Publications (2)

Publication Number Publication Date
JP2008179849A JP2008179849A (en) 2008-08-07
JP4938475B2 true JP4938475B2 (en) 2012-05-23

Family

ID=39723967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013248A Active JP4938475B2 (en) 2007-01-24 2007-01-24 Gear steel excellent in impact fatigue resistance and gears using the same

Country Status (1)

Country Link
JP (1) JP4938475B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480399B (en) * 2010-01-27 2019-03-08 杰富意钢铁株式会社 Case-hardened steel and carburized material
JP6078008B2 (en) * 2014-01-17 2017-02-08 Jfe条鋼株式会社 Case-hardening steel and method for manufacturing machine structural parts
JP6263390B2 (en) * 2014-01-17 2018-01-17 Jfeスチール株式会社 Gear steel and gears with excellent fatigue resistance
JP6825605B2 (en) * 2018-06-29 2021-02-03 Jfeスチール株式会社 Carburizing member
JP6939835B2 (en) * 2019-03-28 2021-09-22 Jfeスチール株式会社 Carburizing member
CN113637915B (en) * 2021-08-18 2022-10-11 马鞍山钢铁股份有限公司 Nb-Ti-B microalloyed carburized gear steel and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172867A (en) * 1992-12-02 1994-06-21 Sumitomo Metal Ind Ltd Production of gear excellent in impact fatigue life
JPH08260039A (en) * 1995-03-24 1996-10-08 Sumitomo Metal Ind Ltd Production of carburized and case hardened steel
JP3543557B2 (en) * 1997-08-28 2004-07-14 住友金属工業株式会社 Carburized gear
JP3733504B2 (en) * 1997-09-02 2006-01-11 住友金属工業株式会社 Carburized parts with excellent bending strength and impact properties
JP4136656B2 (en) * 2000-12-01 2008-08-20 愛知製鋼株式会社 Carburizing steel and carburizing gear
JP4102266B2 (en) * 2003-07-31 2008-06-18 株式会社神戸製鋼所 Method for manufacturing surface hardened component and surface hardened component

Also Published As

Publication number Publication date
JP2008179849A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5635316B2 (en) Gear having excellent fatigue strength and method for manufacturing the same
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
JP5669339B2 (en) Manufacturing method of high strength carburized parts
CN112292471B (en) Mechanical component
JP5655366B2 (en) Bainite steel
JP4938475B2 (en) Gear steel excellent in impact fatigue resistance and gears using the same
JP5018995B1 (en) Bearing steel with excellent workability after spheroidizing annealing and excellent hydrogen fatigue resistance after quenching and tempering
EP3190199A1 (en) Non-tempered soft-nitrided component
JP6620490B2 (en) Age-hardening steel
JP4938474B2 (en) Steel for gears excellent in impact fatigue resistance and surface fatigue strength and gears using the same
JP3915710B2 (en) Carburized differential gear with excellent low cycle impact fatigue resistance
JP2002212672A (en) Steel member
US9956950B2 (en) Non-thermal refined soft-nitrided component
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP5445345B2 (en) Steel bar for steering rack bar and manufacturing method thereof
JP6825605B2 (en) Carburizing member
JP2008223083A (en) Crankshaft and manufacturing method therefor
JP2011208262A (en) Method for producing case hardening steel having high fatigue strength
KR101984041B1 (en) Case hardening steel
JP6939835B2 (en) Carburizing member
JP4723338B2 (en) Steel for induction-hardened gears excellent in impact characteristics, bending fatigue characteristics, and surface fatigue characteristics, and a manufacturing method of gears
JP3842430B2 (en) Hot-worked steel materials and products excellent in free-cutting properties and methods for producing them
JP2013112826A (en) Induction hardening gear excellent in wear resistance and surface fatigue characteristic, and manufacturing method therefor
JPH11293387A (en) Hot worked steel excellent in machinability, and product, and their production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4938475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250