JP5379511B2 - Machine structural steel and cold work steel parts with excellent cold workability - Google Patents

Machine structural steel and cold work steel parts with excellent cold workability Download PDF

Info

Publication number
JP5379511B2
JP5379511B2 JP2009033048A JP2009033048A JP5379511B2 JP 5379511 B2 JP5379511 B2 JP 5379511B2 JP 2009033048 A JP2009033048 A JP 2009033048A JP 2009033048 A JP2009033048 A JP 2009033048A JP 5379511 B2 JP5379511 B2 JP 5379511B2
Authority
JP
Japan
Prior art keywords
less
steel
cold
content
deformation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009033048A
Other languages
Japanese (ja)
Other versions
JP2010189677A (en
Inventor
亮廣 松ヶ迫
智一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009033048A priority Critical patent/JP5379511B2/en
Publication of JP2010189677A publication Critical patent/JP2010189677A/en
Application granted granted Critical
Publication of JP5379511B2 publication Critical patent/JP5379511B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for machine structures which not only has excellent cold workability but also can secure prescribed hardness and strength after working, and to provide a steel component for cold working obtained by using the steel for machine structures. <P>SOLUTION: In this steel, a chemical component composition in which, while controlling the content of N as a solid-soluted state to 0.007 to 0.018%, the relations in equalities (1) and (2) are satisfied is suitably regulated, and the steel has a structure where the area ratio of pearlite and cementite is &le;3%: (1) 0.5&ge;(10[C]+[N]), where [C] and [N] denote the contents (mass%) of C and N, respectively; and(2) 0&ge;126[C]+3[Mn]+84[S]-10 where [C], [Mn] and [S] denote the contents (mass%) of C, Mn and S, respectively. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、加工中は良好な冷間加工性を示すと共に、加工後は所定の硬度、強度を示すような機械構造用鋼材、およびこうした機械構造用鋼材から得られる冷間加工鋼部品に関するものである。   The present invention relates to a steel material for machine structure that exhibits good cold workability during processing and also exhibits a predetermined hardness and strength after processing, and a cold-worked steel part obtained from such steel material for machine structure. It is.

近年、環境保護の観点から、自動車などの車両の燃費向上を目的として、自動車用の各種部品の軽量化に対する要求が高まっている、例えば、ボルト、ナット、ピニオンギヤ、ステアリングシャフト、バルブリフター、コモンレール等を製造するための冷間加工用鋼材(機械構造用鋼材)について、軽量化、即ち高強度化に対する要求が益々高まっている。この種の軽量化に応えるために、一般に、母材鉄に添加される各種合金元素の含有量を調整することにより、所定強度を確保する方法が採用されている。一方、部品製造工程におけるCO2の排出量削減のため、これまで熱間鍛造によって加工されていたクランクシャフト、コンロッド、トランスミッションギヤ等の部品の冷間鍛造化に関する要求も高まっている。 In recent years, from the viewpoint of environmental protection, there has been an increasing demand for weight reduction of various parts for automobiles for the purpose of improving the fuel efficiency of vehicles such as automobiles, such as bolts, nuts, pinion gears, steering shafts, valve lifters, common rails, etc. With respect to steel materials for cold working (steel materials for machine structures) for manufacturing steel, there is an increasing demand for weight reduction, that is, higher strength. In order to respond to this kind of weight reduction, a method of ensuring a predetermined strength is generally adopted by adjusting the content of various alloy elements added to the base metal. On the other hand, in order to reduce CO 2 emissions in the component manufacturing process, there is an increasing demand for cold forging of components such as crankshafts, connecting rods and transmission gears that have been processed by hot forging.

冷間加工(冷間鍛造)とは、通常、200℃以下の雰囲気における加工であり、この冷間加工は、熱間加工や温間加工と比較して生産性が高く、しかも寸法精度および鋼材の歩留がともに良好であるといった利点がある。   Cold work (cold forging) is usually work in an atmosphere of 200 ° C. or less, and this cold work is more productive than hot work or warm work, and also has dimensional accuracy and steel material. There is an advantage that both yields are good.

しかしながら、このような冷間加工によって部品を製造する場合に問題となるのは、冷間加工された部品の強度を期待される所定値以上に確保するためには、必然的に、変形抵抗の高い鋼材を用いる必要があることである。ところが、使用する鋼材の変形抵抗が高いほど、冷間加工用金型の寿命低下を招くばかりか、冷間加工時に割れが発生しやすいという難点がある。   However, a problem in manufacturing parts by such cold working is that in order to ensure the strength of the cold-worked parts to be higher than the expected value, it is inevitably necessary to have deformation resistance. It is necessary to use high steel materials. However, the higher the deformation resistance of the steel material used, there is a drawback that not only the life of the cold working mold is reduced, but also cracking is likely to occur during cold working.

そこで、従来では、鋼材を所定形状に冷間加工した後、焼入れ・焼き戻しなどの熱処理を行うことによって、所定強度(若しくは硬さ)が確保された高強度部品を製造する方法が実施されることもあった。しかしながら、冷間加工後に熱処理を施すことは、部品寸法を必然的に変化させるため、二次的に切削などの機械加工により修正する必要があり、熱処理やその後の加工が省略できるような解決策が望まれているのが実情である。   Therefore, conventionally, a method of manufacturing a high-strength part having a predetermined strength (or hardness) is performed by performing a heat treatment such as quenching and tempering after cold working a steel material into a predetermined shape. There was also. However, applying heat treatment after cold working inevitably changes the component dimensions, so it is necessary to make secondary corrections by machining such as cutting, so that the heat treatment and subsequent processing can be omitted. It is the actual situation that is desired.

こうしたことから、冷間加工中における鋼材の変形抵抗を低減すると同時に、所定の強度を確保し、しかも生産性の向上および省エネルギー化を図るために、いくつかの対策が提案されている。例えば、特許文献1には、歪時効特性に優れた冷間鍛造用線材・棒鋼およびその製造方法について、低炭素鋼で固溶Cを利用して常温時効の進行を抑制し、時効熱処理によって所定の時効硬化量を確保することが開示されている。また特許文献2には、冷間加工性に優れた高強度鋼線または棒鋼、高強度成形品並びにそれらの製造方法について、平均粒径:500nm以下でセメンタイトフリーのフェライト組織とすることが提案されている。   For this reason, several measures have been proposed in order to reduce the deformation resistance of the steel material during cold working, and at the same time to secure a predetermined strength, and to improve productivity and save energy. For example, Patent Document 1 discloses a cold forging wire rod and bar steel excellent in strain aging characteristics and a method for producing the same for a low carbon steel by using solute C to suppress the progress of normal temperature aging and predetermined by aging heat treatment. It is disclosed that the age-hardening amount of is secured. Patent Document 2 proposes a cementite-free ferrite structure with an average particle size of 500 nm or less for a high-strength steel wire or bar steel excellent in cold workability, a high-strength molded product, and a production method thereof. ing.

しかしながら、上記特許文献1の技術は、固溶C量によって常温歪時効を抑制するものであり、また特許文献2の技術は、セメンタイトフリーのフェライト組織とすることによって、高強度の鋼線を得ることを目的とするものであるので、要求される冷間加工性や加工後の所定の強度確保の両特性を同時に満足するような鋼材を得ることは困難であった。   However, the technique of Patent Document 1 suppresses normal temperature strain aging by the amount of solute C, and the technique of Patent Document 2 obtains a high-strength steel wire by using a cementite-free ferrite structure. Therefore, it has been difficult to obtain a steel material that satisfies both the required cold workability and the required properties of securing a predetermined strength after processing.

特開平10−306345号公報JP-A-10-306345 特開2005−320630号公報Japanese Patent Laying-Open No. 2005-320630

本発明はこの様な事情に鑑みてなされたものであって、その目的は、冷間加工性に優れる(特に、冷間加工鋼部品に割れが生じず、かつ、部品硬さに対する加工時の変形抵抗が低く抑えられて、金型の長寿命化を図り得ることをいう)と共に、加工後は所定の硬度・強度を確保することのできる機械構造用鋼材、およびこうした機械構造用鋼材を用いて得られる冷間加工鋼部品を提供することにある。   The present invention has been made in view of such circumstances, and the object thereof is excellent in cold workability (particularly, the cold-worked steel part is not cracked, and at the time of working on the part hardness. This means that the deformation resistance can be kept low, and that the life of the mold can be extended, and at the same time, the machine structural steel that can secure the specified hardness and strength after processing, and such mechanical structural steel It is to provide a cold-worked steel part obtained.

本発明に係る機械構造用鋼材とは、質量%で、C:0.045%以下(0%を含まない)、Si:0.05%以下(0%を含まない)、Mn:0.30〜1.5%、P:0.05%以下(0%を含まない)、S:0.05超〜0.12%、Al:0.06%以下(0%を含まない)およびN:0.008〜0.025%を夫々含有し、下記(1)式および(2)式の関係を満足し、残部は鉄および不可避的不純物からなり、且つ固溶状態としてのN:0.007〜0.018%であると共に、パーライトおよびセメンタイトの面積率が3%以下の鋼組織である点に要旨を有する。
0.5≧(10[C]+[N]) …(1)
但し、[C]および[N]は、夫々CおよびNの含有量(質量%)を示す。
0≧126[C]+3[Mn]+84[S]−10 …(2)
但し、[C],[Mn]、」および[S]は、夫々C,MnおよびSの含有量(質量%)を示す。
The steel for machine structure according to the present invention is mass%, C: 0.045% or less (not including 0%), Si: 0.05% or less (not including 0%), Mn: 0.30 -1.5%, P: 0.05% or less (not including 0%), S: more than 0.05 to 0.12%, Al: 0.06% or less (not including 0%), and N: Each containing 0.008 to 0.025%, satisfying the relationship of the following formulas (1) and (2), the balance being composed of iron and unavoidable impurities, and N in the solid solution state: 0.007 It has a gist in that it is a steel structure in which the area ratio of pearlite and cementite is 3% or less.
0.5 ≧ (10 [C] + [N]) (1)
However, [C] and [N] indicate the contents (% by mass) of C and N, respectively.
0 ≧ 126 [C] +3 [Mn] +84 [S] −10 (2)
However, [C], [Mn], and “S” indicate the contents (mass%) of C, Mn, and S, respectively.

本発明の機械構造用鋼材には、必要によって更に、(a)Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.05%以下(0%を含まない)およびTe:0.1%以下(0%を含まない)よりなる群から選ばれる少なくとも1種、(b)B:0.005%以下(0%を含まない)、(c)Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)およびV:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種、(d)Cr:2%以下(0%を含まない)および/またはMo:2%以下(0%を含まない)、(e)Cu:5%以下(0%を含まない)、Ni:5%以下(0%を含まない)およびCo:5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種、(f)Pb:0.5%以下(0%を含まない)および/またはBi:0.5%以下(0%を含まない)、等を含有させることも有用であり、含有される成分の種類に応じて、機械構造用鋼材の特性が更に改善される。   In the steel for machine structure of the present invention, if necessary, (a) Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0 0.05% or less (excluding 0%) and Te: at least one selected from the group consisting of 0.1% or less (excluding 0%), (b) B: 0.005% or less (0% (C) Ti: 0.2% or less (not including 0%), Nb: 0.2% or less (not including 0%), and V: 0.2% or less (not including 0%) ) At least one selected from the group consisting of: (d) Cr: 2% or less (not including 0%) and / or Mo: 2% or less (not including 0%), (e) Cu: 5% or less (Not including 0%), Ni: not more than 5% (not including 0%) and Co: not more than 5% (not including 0%) It is also useful to contain at least one selected from the group consisting of (f) Pb: 0.5% or less (excluding 0%) and / or Bi: 0.5% or less (excluding 0%), etc. Depending on the type of component contained, the properties of the steel for machine structural use are further improved.

一方、上記目的を達成することのできた冷間加工鋼部品とは、上記のような本発明の機械構造用鋼材を加工温度:100℃未満で冷間加工することにより製造される冷間加工鋼部品であって、冷間加工後の部品硬さ(H)と冷間加工中の変形抵抗の最大値(DR)が、下記(3)式の関係を満足する点に要旨を有するものである。
H≧(DR+200)/2.5 …(3)
[(3)式中、H:冷間加工後の部品硬さ(Hv)、DR:冷間加工中の変形抵抗の最大値(MPa)を示す。]
On the other hand, the cold-worked steel part that has achieved the above object is a cold-worked steel produced by cold-working the steel for machine structural use according to the present invention as described above at a working temperature of less than 100 ° C. It is a component and has a gist in that the component hardness (H) after cold working and the maximum value (DR) of deformation resistance during cold working satisfy the relationship of the following expression (3). .
H ≧ (DR + 200) /2.5 (3)
[In formula (3), H: component hardness after cold working (Hv), DR: maximum deformation resistance (MPa) during cold working. ]

本発明の機械構造用鋼材は、冷間加工中における鋼材の変形抵抗が低減されるため、冷間加工用金型の寿命が長くなると共に、割れが発生し難くなり、且つ加工後の得られる部品は所定の強度および硬度を確保することができるものとなるため、生産性向上および省エネルギーに寄与するものとなる。   The steel for machine structural use according to the present invention reduces the deformation resistance of the steel during cold working, so that the life of the cold working mold is prolonged, cracking is less likely to occur, and it is obtained after working. Since the parts can ensure predetermined strength and hardness, they contribute to productivity improvement and energy saving.

割れ個数(n/10)と(2)式の右辺の値との関係を示すグラフである。It is a graph which shows the relationship between the number of cracks (n / 10) and the value of the right side of (2) Formula. 固溶N量が変形抵抗の最大値DRや加工後硬さHに与える影響を示すグラフである。It is a graph which shows the influence which the amount of solid solution N has on the maximum value DR of deformation resistance, and the hardness H after a process. 冷間加工後の部品硬さHと変形抵抗の最大値DRとの関係を示すグラフである。It is a graph which shows the relationship between the component hardness H after cold processing, and the maximum value DR of a deformation resistance. (2)式の右辺の値とMnS面積の関係を示すグラフである。It is a graph which shows the relationship between the value of the right side of (2) Formula, and a MnS area.

本発明者らは、冷間加工中は良好な加工性を示し、加工後に所定の硬度・強度を確保することのできる機械構造用鋼材を実現するべく様々な角度から検討した。その結果、C含有量とN含有量の関係を適正化すると共に、固溶N量を所定量確保して化学成分組成を適切に制御し、しかもパーライトおよびセメンタイトの面積率を適切に制御した鋼組織とすれば、上記目的を達成し得る機械構造用鋼材が実現できることを見出し、本発明を完成した。まず本発明の機械構造用鋼材において、化学成分を規定した理由は次の通りである。   The present inventors have studied from various angles in order to realize a steel material for machine structure that exhibits good workability during cold working and can ensure a predetermined hardness and strength after working. As a result, the steel which optimized the relationship between C content and N content, secured a predetermined amount of solute N, appropriately controlled chemical composition, and appropriately controlled the area ratio of pearlite and cementite. The present inventors have found that a mechanical structural steel material that can achieve the above-described object can be realized if the structure is used. First, in the steel for machine structure of the present invention, the reason why chemical components are specified is as follows.

[C:0.045%以下(0%を含まない)]
Cは、溶製中の脱酸元素として有用な元素である。C含有量が0.045%までは実質的にフェライト単相組織でその粒界に微細セメンタイトがわずかに存在する組織となる。しかしながら、C含有量が過剰になると、微細セメンタイトがパーライトを形成するようになり、パーライト面積率が増加する。パーライトは、鋼材を加工硬化させることによって変形抵抗を増加させ、加工性も劣化させる恐れがある。こうしたことから、C含有量は0.045%以下(0%を含まない)とする必要があり、好ましくは0.04%以下、より好ましくは0.035%以下である。また、上記の効果を有効に発揮させるためには、Cは0.0005%以上含有させることが好ましく、より好ましくは0.01%以上である。
[C: 0.045% or less (excluding 0%)]
C is an element useful as a deoxidizing element during melting. When the C content is 0.045%, the structure is substantially a ferrite single phase structure with a slight amount of fine cementite at the grain boundaries. However, when the C content is excessive, fine cementite forms pearlite, and the pearlite area ratio increases. Pearlite increases the deformation resistance by work hardening of steel, and there is a possibility that the workability may deteriorate. For these reasons, the C content needs to be 0.045% or less (not including 0%), preferably 0.04% or less, more preferably 0.035% or less. Moreover, in order to exhibit said effect effectively, it is preferable to contain C 0.0005% or more, More preferably, it is 0.01% or more.

[Si:0.05%以下(0%を含まない)]
Siは、溶製中の脱酸元素として有効である。しかしながら、Si含有量が過剰になって0.05%を超えると、Siの固溶強化による変形抵抗の増大を招くため好ましくない。尚、Si含有量は好ましくは0.0005%以上であり、より好ましくは0.001%以上である。
[Si: 0.05% or less (excluding 0%)]
Si is effective as a deoxidizing element during melting. However, if the Si content is excessive and exceeds 0.05%, the deformation resistance is increased due to the solid solution strengthening of Si, which is not preferable. Note that the Si content is preferably 0.0005% or more, and more preferably 0.001% or more.

[Mn:0.30〜1.5%]
鋼材中の固溶N量を高めた場合、加工中の発熱による動的歪み時効によって割れが発生しやすくなるが、Mnはそのときの加工性を向上させ、割れを抑制する効果がある。またMnは、溶製中の脱酸元素としても有用な元素である。これらの効果を有効に発揮させるには、0.30%以上含有させることが必要であり、好ましくは0.32%以上、より好ましくは0.35%以上である。一方、Mnが過剰に含まれると変形抵抗が過大となり、偏析による組織の不均一性が生じるので、1.5%以下とする必要があり、好ましくは1.2%以下、より好ましくは1.0%以下である。
[Mn: 0.30 to 1.5%]
When the amount of solute N in the steel material is increased, cracks are likely to occur due to dynamic strain aging due to heat generation during processing, but Mn has the effect of improving the workability at that time and suppressing cracks. Mn is also an element useful as a deoxidizing element during melting. In order to exhibit these effects effectively, it is necessary to contain 0.30% or more, preferably 0.32% or more, more preferably 0.35% or more. On the other hand, if Mn is excessively contained, deformation resistance becomes excessive and nonuniformity of the structure due to segregation occurs. Therefore, it is necessary to make it 1.5% or less, preferably 1.2% or less, more preferably 1. 0% or less.

[P:0.05%以下(0%を含まない)]
リン(P)は、不可避的不純物であるが、これがフェライトに含有すると、フェライト粒界に偏析し、粒界が脆化することによって冷間加工性を劣化させる。よって、冷間加工性向上の観点から、P含有量は0.05%以下とする必要がある。好ましくは0.03%以下であるが、P含有量を0%にすることは、工業上困難である。
[P: 0.05% or less (excluding 0%)]
Phosphorus (P) is an unavoidable impurity, but if it is contained in ferrite, it segregates at the ferrite grain boundaries, and the grain boundaries become brittle, thereby deteriorating cold workability. Therefore, from the viewpoint of improving cold workability, the P content needs to be 0.05% or less. Although it is preferably 0.03% or less, it is industrially difficult to make the P content 0%.

[S:0.05超〜0.12%]
硫黄(S)は、被削性を向上させる効果を有するため、被削性向上の観点からは、0.05%を超えて含有させる必要がある。好ましくは0.055%以上である。しかしながら、Sは基本的にPと同様に不可避的不純物であり、FeSとして結晶粒界に析出し、加工性を劣化させる元素でもある。変形能を確保するという観点から、S含有量を、0.12%以下とする必要があり、好ましくは0.1%以下(より好ましくは0.08%以下)である。
[S: more than 0.05 to 0.12%]
Since sulfur (S) has an effect of improving machinability, it is necessary to contain more than 0.05% from the viewpoint of improving machinability. Preferably it is 0.055% or more. However, S is basically an unavoidable impurity like P, and is an element that precipitates as FeS at the grain boundaries and degrades workability. From the viewpoint of securing the deformability, the S content needs to be 0.12% or less, preferably 0.1% or less (more preferably 0.08% or less).

[Al:0.06%以下(0%を含まない)]
Alは、溶製中の脱酸元素として有効である。しかしながら、Al含有量が過剰になって0.06%を超えると、鋼中の固溶N量の確保が困難になり、所定の部品強度が得られなくなる。Al含有量は好ましくは0.055%以下であり、より好ましくは0.05%以下である。また、上記効果を発揮させるためには、0.005%以上含有させることが好ましく、より好ましくは0.01%以上である。
[Al: 0.06% or less (excluding 0%)]
Al is effective as a deoxidizing element during melting. However, if the Al content becomes excessive and exceeds 0.06%, it becomes difficult to secure the amount of solute N in the steel, and a predetermined component strength cannot be obtained. The Al content is preferably 0.055% or less, more preferably 0.05% or less. Moreover, in order to exhibit the said effect, it is preferable to make it contain 0.005% or more, More preferably, it is 0.01% or more.

[N:0.008〜0.025%]
窒素(N)は、加工後の静的歪み時効によって所定の強度を確保するために重要な元素である。こうした効果を発揮させるためには、N含有量を0.008%以上とする必要がある。しかしながら、N含有量が過剰になって0.025%を超えると、静的歪み時効の他、加工中の動的歪み時効の影響が顕著になり、変形抵抗が増大することになる。尚、N含有量の好ましい下限は0.0085%(より好ましくは0.009%以上)であり、好ましい上限は0.023%(より好ましくは0.02%以下)である。
[N: 0.008 to 0.025%]
Nitrogen (N) is an important element for securing a predetermined strength by static strain aging after processing. In order to exert such effects, the N content needs to be 0.008% or more. However, if the N content becomes excessive and exceeds 0.025%, in addition to static strain aging, the influence of dynamic strain aging during processing becomes significant, and the deformation resistance increases. In addition, the minimum with preferable N content is 0.0085% (more preferably 0.009% or more), and a preferable upper limit is 0.023% (more preferably 0.02% or less).

本発明の機械構造用鋼材では、固溶状態のN(固溶N)を所定量確保することによって、変形抵抗をあまり増加させずに、静的歪み時効を促進させることも特徴としている。冷間加工後に所定の強度(硬さ)を確保するためには、固溶Nの量を0.007%以上とする必要がある。しかしながら、固溶Nの量が過剰になると、冷間加工性が劣化するので、0.018%以下とする必要がある。   The steel for machine structure of the present invention is characterized by promoting static strain aging without increasing the deformation resistance by securing a predetermined amount of N in the solid solution state (solid solution N). In order to ensure a predetermined strength (hardness) after cold working, the amount of solute N needs to be 0.007% or more. However, if the amount of solute N becomes excessive, cold workability deteriorates, so it is necessary to make it 0.018% or less.

尚、本発明における固溶Nの含有量は、JIS G 1228に準拠して、鋼材中の全N量から全N化合物中のN量を差し引いて求められる値である。この固溶Nの含有量の実用的な測定法を以下に例示する。   In addition, content of the solid solution N in this invention is a value calculated | required by subtracting N amount in all N compounds from total N amount in steel materials based on JISG1228. A practical method for measuring the content of this solute N is exemplified below.

(a)不活性ガス融解法−熱伝導度法(全N量測定)
供試材から切り出したサンプルをルツボに入れ、不活性ガス気流中で融解してNを抽出し、抽出物を熱伝導度セルに搬送して熱伝導度の変化を測定して全N量を求める。
(b)アンモニア蒸留分離インドフェノール青吸光光度法(全N化合物量の測定)
供試材から切り出したサンプルを、10%AA系電解液に溶解し、定電流電解を行って、鋼中の全N化合物量を測定する。用いる10%AA系電解液は、10%アセトン、10%塩化テトラメチルアンモニウム、残部メタノールからなる非水溶媒系の電解液であり、鋼表面に不働態皮膜を生成させない溶液である。
(A) Inert gas melting method-thermal conductivity method (total N content measurement)
A sample cut from the test material is put in a crucible, extracted in an inert gas stream to extract N, the extract is transported to a thermal conductivity cell, and the change in thermal conductivity is measured to determine the total N amount. Ask.
(B) Ammonia distillation separation indophenol blue spectrophotometry (measurement of total N compound amount)
A sample cut out from the test material is dissolved in a 10% AA-based electrolytic solution, subjected to constant current electrolysis, and the total N compound amount in the steel is measured. The 10% AA electrolyte used is a non-aqueous solvent electrolyte consisting of 10% acetone, 10% tetramethylammonium chloride, and the remainder methanol, and does not generate a passive film on the steel surface.

供試材のサンプル約0.5gを、この10%AA系電解液に溶解させ、生成する不溶解残渣(N化合物)を穴サイズが0.1μmのポリカーボネート製のフィルタでろ過する。得られた不溶解残渣を、硫酸、硫酸カリウムおよび純銅製チップ中で加熱して分解し、分解物を濾液に合わせる。この溶液を、水酸化ナトリウムでアルカリ性にした後、水蒸気蒸留を行い、留出したアンモニアを希硫酸に吸収させる。更に、フェノール、次亜塩素酸ナトリウムおよびペンタシアノニトロシル鉄(III)酸ナトリウムを加えて青色錯体を生成させ、吸光光度計を用いて吸光度を測定して全N化合物量を求める。
(a)の方法によって求められた全N量から、(b)の方法によって求められた全N化合物量を差し引いて固溶N量を求めることができる。
About 0.5 g of a sample of the test material is dissolved in this 10% AA-based electrolytic solution, and the resulting insoluble residue (N compound) is filtered through a polycarbonate filter having a hole size of 0.1 μm. The obtained insoluble residue is decomposed by heating in a chip made of sulfuric acid, potassium sulfate and pure copper, and the decomposition product is combined with the filtrate. After making this solution alkaline with sodium hydroxide, steam distillation is performed, and the distilled ammonia is absorbed in dilute sulfuric acid. Further, phenol, sodium hypochlorite and sodium pentacyanonitrosyl iron (III) are added to form a blue complex, and the absorbance is measured using an absorptiometer to determine the total N compound amount.
The total amount of N compounds determined by the method (b) can be subtracted from the total N amount determined by the method (a) to determine the solid solution N amount.

本発明の鋼材において、固溶Cは変形抵抗を大きく増加させ、静的歪み時効にあまり寄与せず、一方、固溶Nは変形抵抗をあまり上げず、静的歪み時効を促進させることができるため加工後の硬度を増加させることができる作用を有する。そのため、本発明の鋼材においては、Cの含有量[C]とNの含有量[N]とは、下記(1)式の関係を満足する必要がある。(1)式の右辺の値(=10[C]+[N])が、0.5(質量%)を超えると、CおよびNの含有量が過剰となって、変形抵抗が過大となる。尚、(10[C]+[N])の値は、0.42以下であることが好ましく、より好ましくは0.36以下とするのが良い。
0.5≧(10[C]+[N]) …(1)
但し、[C]および[N]は、夫々CおよびNの含有量(質量%)を示す。
In the steel material of the present invention, solid solution C greatly increases deformation resistance and does not contribute much to static strain aging, while solid solution N does not increase deformation resistance and can promote static strain aging. Therefore, it has the effect | action which can increase the hardness after a process. Therefore, in the steel material of the present invention, the C content [C] and the N content [N] need to satisfy the relationship of the following formula (1). When the value on the right side of the formula (1) (= 10 [C] + [N]) exceeds 0.5 (mass%), the contents of C and N become excessive and the deformation resistance becomes excessive. . Note that the value of (10 [C] + [N]) is preferably 0.42 or less, and more preferably 0.36 or less.
0.5 ≧ (10 [C] + [N]) (1)
However, [C] and [N] indicate the contents (% by mass) of C and N, respectively.

また本発明の鋼材においては、C,MnおよびSの夫々の含有量[C],[Mn]および[S]が下記(2)式の関係を満足させる必要がある。この(2)式は割れに影響を及ぼす上記各元素の関係から求められたものであり、この右辺の値(126[C]+3[Mn]+84[S]−10)を0以下とすることによって、鋼材中のMnSが微細分散するようになり(後記図4参照)、冷間鍛造時に割れの起点となる粗大なMnSの低減が図れるものである。
0≧126[C]+3[Mn]+84[S]−10 …(2)
但し、[C],[Mn]、」および[S]は、夫々C,MnおよびSの含有量(質量%)を示す。
Further, in the steel material of the present invention, the contents [C], [Mn] and [S] of C, Mn and S must satisfy the relationship of the following formula (2). This equation (2) is obtained from the relationship between the above-mentioned elements that affect cracking, and the value (126 [C] +3 [Mn] +84 [S] −10) on the right side is set to 0 or less. As a result, MnS in the steel material is finely dispersed (see FIG. 4 described later), and coarse MnS that becomes a starting point of cracking during cold forging can be reduced.
0 ≧ 126 [C] +3 [Mn] +84 [S] −10 (2)
However, [C], [Mn], and “S” indicate the contents (mass%) of C, Mn, and S, respectively.

上記(2)式を求めた経緯は次の通りである。まず、後記表5に成分組成を示した鋼材(鋼種2A〜2Q:化学成分が本発明で規定する範囲を外れるもの)を準備し、これから各種試験片を切り出し(製造条件については、後記実施例参照)、得られた鋼材の冷間加工中の割れ個数(n/10)等を測定した。そしてこの結果に基づき、[C],[Mn]および[S]と、割れ個数との関係を回帰分析し、上記(2)式の結果が得られたのである。回帰分析のために、商品名「マイクロソフト(登録商標)・オフィス・エクセル・2003」(マイクロソフト社製)にアドインされているソフトウエア「分析ツール」の中の項目「回帰分析」を実行した。下記表1〜3は、回帰分析の実行結果である。   The process of obtaining the above equation (2) is as follows. First, steel materials (steel types 2A to 2Q: those whose chemical components deviate from the range specified in the present invention) whose component compositions are shown in Table 5 below are prepared, and various test pieces are cut out therefrom (for the production conditions, the examples described later) The number of cracks (n / 10) during cold working of the obtained steel material was measured. Based on this result, the relationship between [C], [Mn] and [S] and the number of cracks was subjected to regression analysis, and the result of the above equation (2) was obtained. For the regression analysis, the item “regression analysis” in the software “analysis tool” added to the product name “Microsoft (registered trademark) Office Excel 2003” (manufactured by Microsoft Corporation) was executed. Tables 1 to 3 below show the results of regression analysis.

Figure 0005379511
Figure 0005379511

Figure 0005379511
Figure 0005379511

Figure 0005379511
Figure 0005379511

尚、回帰分析において、元素としてC,MnおよびSを選択したのは、これらの元素は鋼材の凝固過程におけるMnSの成長に影響を及ぼすためである。C含有量が多いほど、相図におけるδ+Lの二相域が低温になって、液相状態が長く続く結果、MnSが成長しやすくなる。また、Mn含有量やS含有量が多くなるほど、液相状態でMnSが析出し易くなるため、MnSが成長しやすくなる。従って、これらC,MnおよびSの夫々の含有量[C],[Mn]および[S]を低減するほど、MnSを微細にでき、冷間鍛造後の割れを防止できると推察される。(2)式の[C],[Mn]および[S]の係数の符号が全て正であることは、[C],[Mn]および[S]を低減すれば良いことを示しており、(2)式の導出根拠と整合する。また、後記図4に示す様に、(2)式の計算結果とMnSの大きさとは相関があり、このことも(2)式の導出根拠の正しさを示している。   The reason why C, Mn, and S are selected as elements in the regression analysis is that these elements affect the growth of MnS in the solidification process of the steel material. The higher the C content, the lower the temperature of the two-phase region of δ + L in the phase diagram, and the longer the liquid phase state, the easier MnS grows. Moreover, since MnS precipitates easily in a liquid phase state as Mn content and S content increase, MnS becomes easy to grow. Therefore, it is presumed that MnS can be made finer and cracks after cold forging can be prevented as the respective contents [C], [Mn] and [S] of C, Mn and S are reduced. (2) The fact that the signs of the coefficients [C], [Mn], and [S] are all positive indicates that [C], [Mn], and [S] should be reduced. (2) Consistent with the derivation basis of the equation. Further, as shown in FIG. 4 to be described later, there is a correlation between the calculation result of the equation (2) and the magnitude of MnS, which also indicates the correctness of the basis for deriving the equation (2).

本発明で規定する含有元素は上記の通りであり、残部は鉄および不可避的不純物である。該不可避的不純物としては、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、O,Sn,As等)の混入が許容され得る。また、必要に応じて、以下の元素(選択元素)を更に含有させても良い。   The contained elements specified in the present invention are as described above, and the balance is iron and inevitable impurities. As this unavoidable impurity, the mixing of elements (for example, O, Sn, As, etc.) brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. can be allowed. Moreover, you may further contain the following elements (selective element) as needed.

[Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.05%以下(0%を含まない)、Te:0.1%以下(0%を含まない)よりなる群から選ばれる少なくとも1種]
Caは、MnS等の硫化物系介在物を球状化させ、鋼の変形能を高めると共に、被削性の向上に寄与する元素である。この様な効果を有効に発現させるには、好ましくは0.0005%以上、より好ましくは0.001%以上のCaを含有させるのが良い。しかし、Caの含有量が過剰になっても、その効果が飽和するので、0.05%以下とすることが好ましく、より好ましくは0.03%以下、更に好ましくは0.01%以下である。
[Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.05% or less (not including 0%), Te: 0.0. At least one selected from the group consisting of 1% or less (excluding 0%)]
Ca is an element that spheroidizes sulfide inclusions such as MnS, improves the deformability of steel, and contributes to improvement of machinability. In order to effectively exhibit such an effect, it is preferable to contain 0.0005% or more, more preferably 0.001% or more of Ca. However, even if the Ca content is excessive, the effect is saturated. Therefore, the content is preferably 0.05% or less, more preferably 0.03% or less, and still more preferably 0.01% or less. .

REM(希土類元素)は、Caと同様にMnS等の硫化物系介在物を球状化させ、鋼の変形能を高めると共に、被削性の向上に寄与する元素である。この様な効果を有効に発現させるには、好ましくは0.0005%以上、より好ましくは0.001%以上のREMを含有させるのが良い。しかしながら、REMの含有量が過剰になっても、その効果が飽和し、含有量に見合う効果が期待できないので、0.05%以下とすることが好ましく、より好ましくは0.03%以下、更に好ましくは0.01%以下である。   REM (rare earth element) is an element that contributes to improvement of machinability while increasing the deformability of steel by spheroidizing sulfide inclusions such as MnS as in the case of Ca. In order to effectively exhibit such an effect, 0.0005% or more, more preferably 0.001% or more of REM is preferably contained. However, even if the content of REM becomes excessive, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, the content is preferably 0.05% or less, more preferably 0.03% or less. Preferably it is 0.01% or less.

Mgは、Caと同様にMnS等の硫化物系介在物を球状化させ、鋼の変形能を高めると共に、被削性の向上に寄与する元素である。この様な効果を有効に発現させるには、好ましくは0.0005%以上、より好ましくは0.001%以上のMgを含有させるのが良い。しかしながら、Mgの含有量が過剰になっても、その効果が飽和し、含有量に見合う効果が期待できないので、0.05%以下とすることが好ましく、より好ましくは0.03%以下、更に好ましくは0.01%以下である。   Mg, like Ca, is an element that spheroidizes sulfide inclusions such as MnS to enhance the deformability of steel and contribute to the improvement of machinability. In order to effectively exhibit such an effect, it is preferable to contain 0.0005% or more, more preferably 0.001% or more of Mg. However, even if the Mg content becomes excessive, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, the content is preferably 0.05% or less, more preferably 0.03% or less, and further Preferably it is 0.01% or less.

Teは、Caと同様にMnS等の硫化物系介在物を球状化させ、鋼の変形能を高めることができ、またAl系酸化物を低融点化して無害化し、被削性の向上に寄与する元素である。この様な効果を有効に発現させるには、好ましくは0.0001%以上、より好ましくは0.001%以上のTeを含有させるのが良い。しかしながら、Teの含有量が過剰になっても、その効果が飽和し、含有量に見合う効果が期待できないので、0.1%以下とすることが好ましく、より好ましくは0.05%以下、更に好ましくは0.03%以下である。   Te, like Ca, can spheroidize sulfide inclusions such as MnS to increase the deformability of steel, and lower the melting point of Al-based oxides to make them harmless, contributing to improved machinability. Element. In order to effectively exhibit such an effect, it is preferable to contain 0.0001% or more, more preferably 0.001% or more of Te. However, even if the Te content is excessive, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, the content is preferably 0.1% or less, more preferably 0.05% or less, and further Preferably it is 0.03% or less.

[B:0.005%以下(0%を含まない)]
Bは、下記Ti,Nb,Vと同様に、Nとの親和力が強く、Nと共存してN化合物を形成し、鋼の結晶粒を微細化し、冷間加工後に得られる加工品の靭性を向上させ、また、耐割れ性を向上させるために有効な元素である。Bの含有量は0.005%以下とすることが好ましく、より好ましくは0.0035%以下、更に好ましくは0.002%以下とするのが良い。尚、これらの効果を有効に発揮させるために、Bは0.0001%以上含有させることが好ましく、より好ましくは0.0002%以上含有させることが推奨される。
[B: 0.005% or less (excluding 0%)]
B, like Ti, Nb, and V below, has a strong affinity with N, forms an N compound in coexistence with N, refines the crystal grains of steel, and enhances the toughness of the processed product obtained after cold working. It is an effective element for improving the crack resistance. The B content is preferably 0.005% or less, more preferably 0.0035% or less, and still more preferably 0.002% or less. In order to effectively exhibit these effects, B is preferably contained in an amount of 0.0001% or more, and more preferably 0.0002% or more.

[Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)およびV:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種]
本発明の鋼材が、Ti,NbおよびVよりなる群から選ばれる少なくとも1種を含有する場合は、Ti,NbおよびVは、1種単独でまたは2種以上を同時に含有していても良い。これらTi,NbおよびVは、Nとの親和力が強く、Nと共存してN化合物を形成し、鋼の結晶粒を微細化し、冷間加工後に得られる加工品の靭性を向上させ、また、耐割れ性を向上させるために有効な元素である。これらの元素を含有させる場合には、いずれも0.2%以下(0%を含まない)とすることが好ましい。より好ましくは、いずれも0.15%以下(更に好ましくは0.1%以下)である。尚、これらの効果を有効に発揮させるために、いずれも0.001%以上含有させることが好ましく、より好ましくは0.002%以上含有させることが推奨される。
[Ti: 0.2% or less (not including 0%), Nb: 0.2% or less (not including 0%) and V: 0.2% or less (not including 0%) At least one selected]
When the steel material of this invention contains at least 1 sort (s) chosen from the group which consists of Ti, Nb, and V, Ti, Nb, and V may contain 1 type individually or 2 types or more simultaneously. These Ti, Nb and V have a strong affinity for N, coexist with N to form an N compound, refine the steel crystal grains, improve the toughness of the processed product obtained after cold working, It is an effective element for improving crack resistance. In the case where these elements are contained, it is preferable that both be 0.2% or less (excluding 0%). More preferably, both are 0.15% or less (more preferably 0.1% or less). In order to effectively exhibit these effects, it is preferable to contain 0.001% or more, and it is recommended to contain 0.002% or more.

[Cr:2%以下(0%を含まない)および/またはMo:2%以下(0%を含まない)]
Crは、結晶粒界の強度を高めることにより鋼の変形能を向上させる作用を有する元素であり、必要に応じて、好ましくは0.1%以上、より好ましくは0.2%以上含有させることができる。しかしながら、Crを過剰に含有させると、変形抵抗が増大し、冷間加工性が低下する恐れがあるため、その含有量は2%以下(0%を含まない)とすることが好ましく、より好ましくは1.5%以下、更に好ましくは1%以下とするのが良い。
[Cr: 2% or less (not including 0%) and / or Mo: 2% or less (not including 0%)]
Cr is an element that has the effect of improving the deformability of steel by increasing the strength of the grain boundaries, and if necessary, it is preferably 0.1% or more, more preferably 0.2% or more. Can do. However, if Cr is excessively contained, deformation resistance increases and cold workability may be lowered. Therefore, the content is preferably 2% or less (excluding 0%), more preferably. Is 1.5% or less, more preferably 1% or less.

Moは、加工後の鋼材の硬さおよび変形能を増大させる作用を有する元素であり、必要に応じて0.04%以上、より好ましくは0.08%以上含有させることができる。しかし、Moを過剰に含有させると、冷間加工性が劣化するおそれがあるため、2%以下(0%を含まない)とすることが好ましく、より好ましくは1.5%以下、更に好ましくは1%以下である。   Mo is an element having an action of increasing the hardness and deformability of the steel material after processing, and can be contained by 0.04% or more, more preferably 0.08% or more, if necessary. However, if Mo is excessively contained, the cold workability may be deteriorated. Therefore, it is preferably 2% or less (excluding 0%), more preferably 1.5% or less, and still more preferably. 1% or less.

[Cu:5%以下(0%を含まない)、Ni:5%以下(0%を含まない)およびCo:5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種]
Cu,NiおよびCoは、1種または2種以上を同時に含有していても良い。これらCu,NiおよびCoは、いずれも歪み時効によって鋼材を硬化させる作用があり、加工後強度を向上させるのに有効な元素である。こうした効果を発揮させるためには、Cuで0.1%以上(より好ましくは0.3%以上)、NiおよびCoで0.01%以上(より好ましくは0.05%以上)含有させることが好ましい。しかしながら、これらの含有量が過剰になると、割れを誘発させる恐れがあるため、いずれも5%以下(0%を含まない)とすることが好ましく、より好ましくは4%以下(更に好ましくは3%以下)とするのが良い。
[Cu: 5% or less (not including 0%), Ni: 5% or less (not including 0%) and Co: 5% or less (not including 0%)]
Cu, Ni and Co may contain 1 type (s) or 2 or more types simultaneously. These Cu, Ni and Co all have an effect of hardening the steel material by strain aging, and are effective elements for improving the strength after processing. In order to exert such an effect, 0.1% or more (more preferably 0.3% or more) of Cu and 0.01% or more (more preferably 0.05% or more) of Ni and Co are contained. preferable. However, if these contents are excessive, there is a risk of inducing cracking. Therefore, it is preferable that both be 5% or less (not including 0%), more preferably 4% or less (more preferably 3%). The following is recommended.

[Pb:0.5%以下(0%を含まない)および/またはBi:0.5%以下(0%を含まない)]
Pbは、被削性を向上させるのに有効な元素である。この様な効果を発揮させるには、Pbは好ましくは0.005%以上、より好ましくは0.01%以上含有させるのが良い。しかしながら、Pbの含有量が過剰になると、圧延疵の発生等の製造上の問題を生じさせるため、その上限を0.5%以下とすることが好ましく、より好ましくは0.4%以下、更に好ましくは0.3%以下である。
[Pb: 0.5% or less (not including 0%) and / or Bi: 0.5% or less (not including 0%)]
Pb is an element effective for improving machinability. In order to exhibit such an effect, Pb is preferably contained in an amount of 0.005% or more, more preferably 0.01% or more. However, if the Pb content is excessive, problems in production such as the occurrence of rolling defects occur, so the upper limit is preferably 0.5% or less, more preferably 0.4% or less, Preferably it is 0.3% or less.

Biは、Pbと同様に被削性を向上させるのに有効な元素である。この様な効果を発揮させるには、Biは好ましくは0.005%以上、より好ましくは0.01%以上含有させるのが良い。しかしながら、Biの含有量が過剰になっても、その効果が飽和し、含有量に見合う効果が期待できないので、その上限を0.5%以下とすることが好ましく、より好ましくは0.4%以下、更に好ましくは0.3%以下である。   Bi is an element effective for improving machinability like Pb. In order to exert such an effect, Bi is preferably contained in an amount of 0.005% or more, more preferably 0.01% or more. However, even if the Bi content is excessive, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, the upper limit is preferably 0.5% or less, more preferably 0.4%. Hereinafter, it is more preferably 0.3% or less.

本発明の鋼材の鋼組織は、基本的にパーライトおよびセメンタイト+フェライトの組織で構成されるが、パーライトおよびセメンタイトは、フェライトと比べて加工硬化率が異なるため、フェライトとセメンタイトの界面でボイド等の欠陥の起点となりやすく、パーライトおよびセメンタイトが多くなると加工性を劣化させる可能性がある。本発明の鋼材では、耐割れ性を確保するという観点から、組織中のパーライトおよびセメンタイト面積率は3%以下とする必要がある。好ましくは2.5%以下、より好ましくは2%以下である。   The steel structure of the steel material of the present invention is basically composed of a structure of pearlite and cementite + ferrite, but pearlite and cementite have different work hardening rates compared to ferrite, so that voids and the like are formed at the interface between ferrite and cementite. It tends to be a starting point of defects, and if pearlite and cementite increase, workability may be deteriorated. In the steel material of the present invention, the pearlite and cementite area ratio in the structure needs to be 3% or less from the viewpoint of ensuring crack resistance. Preferably it is 2.5% or less, More preferably, it is 2% or less.

本発明の機械構造用鋼材は、その後、冷間加工され、鋼部品(ボルト、ナット、ピニオンギヤ、ステアリングシャフト、バルブリフター、コモンレール等の冷間加工部品、これまで熱間鍛造によって加工されていたクランクシャフト、コンロッド、トランスミッションギヤ等の自動車用部品、その他の機械部品)となる。ここでの冷間加工方法には、冷間鍛造、冷間圧造、冷間転造、冷間打抜き等の冷間加工が含まれる。また、部品の加工に必要であれば、伸線、圧延等の加工を行ってもよい。   The steel for machine structural use according to the present invention is then cold-worked and steel parts (cold-worked parts such as bolts, nuts, pinion gears, steering shafts, valve lifters, and common rails, and cranks that have been machined by hot forging so far. Automotive parts such as shafts, connecting rods, transmission gears, and other mechanical parts). The cold working method here includes cold working such as cold forging, cold forging, cold rolling, cold punching and the like. Further, if necessary for the processing of the parts, processing such as wire drawing and rolling may be performed.

上記のような本発明の鋼材を加工温度:100℃未満で冷間加工することによって、本発明の冷間加工鋼部品が得られるが、この冷間加工鋼部品は、冷間加工後の部品硬さ(H)と冷間加工中の変形抵抗の最大値(DR)が、下記(3)式の関係を満足するものとなる。
H≧(DR+200)/2.5 …(3)
[(3)式中、H:冷間加工後の部品硬さ(Hv)、DR:冷間加工中の変形抵抗の最大値(MPa)を示す。]
By cold working the steel material of the present invention as described above at a processing temperature of less than 100 ° C., the cold worked steel part of the present invention is obtained. Hardness (H) and the maximum value (DR) of deformation resistance during cold working satisfy the relationship of the following formula (3).
H ≧ (DR + 200) /2.5 (3)
[In formula (3), H: component hardness after cold working (Hv), DR: maximum deformation resistance (MPa) during cold working. ]

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. Of course, any of these is also included in the technical scope of the present invention.

[実施例1]
下記表4,5に示す化学成分組成からなる鋼種(1A〜2X)の供試鋼を調整し、これらの夫々をビレット溶製した後、1150〜1250℃に加熱し、熱間鍛造により155mm角の鋼片とした。この鋼片を1000〜1200℃に加熱して、φ80mmの丸棒に圧延した(その後、冷却速度1℃/秒で200℃まで冷却)。次いで、この丸棒のD/4位置(Dは直径)よりφ10mm×長さ15mmの試験片を切り出した。表4、5中、「固溶N」は、前記のJIS G 1228に準拠した方法によって測定された固溶状態のN含有量を示す値である。尚、鋼種1Pの供試材を用いて製造した丸棒については、表4に示す熱処理(付加熱処理:各温度に加熱して室温RT(20℃)まで冷却速度3℃/秒で冷却)を施すことによって、固溶N量を調整した後にD/4位置より試験片を切り出した。
[Example 1]
Sample steels (1A to 2X) having the chemical composition shown in Tables 4 and 5 below were prepared, each of which was billet-melted, heated to 1150 to 1250 ° C., and hot-forged to obtain a 155 mm square. It was made of steel pieces. The steel slab was heated to 1000 to 1200 ° C. and rolled into a round bar of φ80 mm (then cooled to 200 ° C. at a cooling rate of 1 ° C./second). Next, a test piece of φ10 mm × length 15 mm was cut out from the D / 4 position (D is a diameter) of the round bar. In Tables 4 and 5, “solid solution N” is a value indicating the N content in a solid solution state measured by a method based on the above-mentioned JIS G 1228. In addition, about the round bar manufactured using the test material of steel type 1P, the heat treatment shown in Table 4 (additional heat treatment: heated to each temperature and cooled to room temperature RT (20 ° C) at a cooling rate of 3 ° C / second). By applying, after adjusting the amount of solute N, a test piece was cut out from the D / 4 position.

Figure 0005379511
Figure 0005379511

Figure 0005379511
Figure 0005379511

各試験片を、容量1600トンのプレス装置を用いて冷間鍛造により試験片の端面を拘束した状態から圧縮加工し、冷間加工中の変形抵抗の最大値DR(以下:「変形抵抗DR」と呼ぶことがある)を測定した。このときの冷間鍛造の条件は、加工歪み速度:10/秒、加工温度:20℃、圧縮率:80%とした。尚、加工歪み速度は、加工中(塑性変形中)の歪み速度の平均値とした。また、上記圧縮率は、[(1−L/L0)×100(%)](L0:加工前の試験片の長さ、L:加工後の試験片の長さを示す)によって求められるものである。 Each test piece is compressed from a state in which the end face of the test piece is constrained by cold forging using a press machine having a capacity of 1600 tons, and the maximum value DR (hereinafter referred to as “deformation resistance DR”) of deformation resistance during cold working. May be called). The cold forging conditions at this time were as follows: processing strain rate: 10 / second, processing temperature: 20 ° C., compression rate: 80%. The processing strain rate was an average value of strain rates during processing (plastic deformation). The compression ratio is obtained by [(1-L / L 0 ) × 100 (%)] (L 0 : length of the test piece before processing, L: length of the test piece after processing). It is what

各鋼材における前記(2)式の値(および判定)を、冷間加工温度(加工温度)と共に、下記表6、7に示す。また表6、7には、セメンタイト(パーライト)の面積率も示したが、これは下記の方法によって測定したものである。   The values (and determinations) of the formula (2) for each steel material are shown in Tables 6 and 7 below together with the cold working temperature (working temperature). Tables 6 and 7 also show the area ratio of cementite (pearlite), which was measured by the following method.

[セメンタイトの面積率の測定方法]
(i)試験片を、横断方向に中心で切断した。
(ii)上記断面(観察面)を観察できるように樹脂に埋め込み、エメリー紙による研磨、ダイヤモンドバフによる研磨および電解研磨を順次行って観察面を鏡面に仕上げた。
(iii)ナイタール(3%硝酸エタノール溶液)で腐食した。
(iv)D/4位置を光学顕微鏡の倍率100倍で観察し、5箇所写真撮影した。
(v)画像解析ソフト(Media Cybernetics製:Image−Pro Plus)を用いて、フェライト相を白色、セメンタイト(パーライト)を黒色とし、夫々の面積率を求め、5視野の平均値をセメンタイト(パーライト)の面積率として算出した。
[Measurement method of cementite area ratio]
(I) The test piece was cut at the center in the transverse direction.
(Ii) The cross section (observation surface) was embedded in a resin so that it could be observed, and polishing with emery paper, polishing with a diamond buff and electrolytic polishing were sequentially performed to finish the observation surface as a mirror surface.
(Iii) Corroded with nital (3% nitric acid ethanol solution).
(Iv) The D / 4 position was observed at a magnification of 100 with an optical microscope, and five photographs were taken.
(V) Using image analysis software (Media Cybernetics: Image-Pro Plus), the ferrite phase is white and cementite (pearlite) is black, and the area ratio of each is obtained. The area ratio was calculated.

Figure 0005379511
Figure 0005379511

Figure 0005379511
Figure 0005379511

得られた各加工品について、実体顕微鏡により、倍率:20倍で表面を観察して割れの個数(10個の試験片に対する割れ個数n)を確認した。また、ビッカース硬さ試験機を用いて、荷重:1000g、測定位置:各加工品断面のD/4位置(D:直径)の中央部および測定回数:5回の条件で、各加工品のビッカース硬さ(Hv)を測定した。その結果[変形抵抗(DR)、加工後硬さH、割れの個数(割れが発生した場合を×、割れが発生しなかった場合を○とする)、(3)式の右辺の値((DR+200)/2.5)、および変形抵抗評価[(3)式の関係]および加工後の硬さを下記表8、9に示す。   For each processed product obtained, the surface was observed with a stereomicroscope at a magnification of 20 times to confirm the number of cracks (number of cracks n for 10 test pieces). Also, using a Vickers hardness tester, the load: 1000 g, measurement position: Vickers of each workpiece under the conditions of the center of D / 4 position (D: diameter) of each workpiece cross section and the number of measurements: 5 times Hardness (Hv) was measured. As a result, [deformation resistance (DR), hardness H after processing, the number of cracks (when cracking occurs, x, when cracking does not occur), the value on the right side of (3) (( DR + 200) /2.5), deformation resistance evaluation [relationship of equation (3)] and hardness after processing are shown in Tables 8 and 9 below.

尚、これらの測定結果において、得られた加工品について、割れがなく、しかもビッカース硬さに対して変形抵抗が低い場合[具体的には、前記(3)式に示す条件を満足する場合]を、冷間加工性に優れたものと判断して、総合判定を「○」と表示した。また、前記(3)式の条件を満足しない加工品について、割れが発生したものの総合判定を「×」で表示した。   In these measurement results, the obtained processed product has no cracks and its deformation resistance is low with respect to the Vickers hardness [specifically, when the condition shown in the above formula (3) is satisfied]. Was judged to be excellent in cold workability, and the overall judgment was displayed as “◯”. Moreover, about the processed goods which do not satisfy the conditions of said (3) Formula, comprehensive determination of what a crack generate | occur | produced was displayed by "x".

Figure 0005379511
Figure 0005379511

Figure 0005379511
この結果から、次のように考察できる(尚、下記記号は、表8、9の鋼種記号を示す)。表8に示した1A〜1Z(但し、(3)式の関係を満足しない1P−1〜3、7、組成および当該組成に基づく条件を充足しない1D、1Q、1T、1U、1V、1Yを除く)は、本発明で規定する要件を満足する実施例であり、部品に割れが無く、且つ加工後硬さHに対して鋼の変形抵抗DRが低い鋼材が得られている。これに対し、本発明の要件を満たさない比較例は(表9に示した2A〜2X)、割れが発生しているか、加工後硬さHに対する加工時の変形抵抗DRが高くなっている。尚、表8に示した1D、1Q、1T、1U、1V、1Yは、本発明で規定する組成および当該組成に基づく条件を充足しないが、良好な特性が発揮されている参考例である。
Figure 0005379511
From this result, it can be considered as follows (note that the following symbols indicate steel type symbols in Tables 8 and 9). 1A to 1Z shown in Table 8 (however, 1P-1 to 3 and 7 which do not satisfy the relationship of the formula (3), 1D, 1Q, 1T, 1U, 1V and 1Y which do not satisfy the composition and the conditions based on the composition) Ex ) is an example that satisfies the requirements defined in the present invention, and a steel material having no cracks in parts and having a low deformation resistance DR of steel with respect to post-working hardness H is obtained. On the other hand, in the comparative examples not satisfying the requirements of the present invention (2A to 2X shown in Table 9), cracks are generated or the deformation resistance DR during processing with respect to the post-processing hardness H is high. In addition, 1D, 1Q, 1T, 1U, 1V, and 1Y shown in Table 8 are reference examples in which good characteristics are exhibited, although the composition defined in the present invention and the conditions based on the composition are not satisfied.

2A〜2Qのものは、(2)式の関係を満足しないものであり(判定:「×」)、いずれも変形抵抗が増大して部品に割れが生じた。このうち、2Mおよび2Nのものは、Mn含有量が本発明で規定する上・下限を外れるもの、2O,2Pのものは、夫々Pの含有量およびSの含有が過剰になっており、2QはN含有量が過剰になっているものである。いずれも割れに悪影響を及ぼしていると思われる。   The samples of 2A to 2Q do not satisfy the relationship of the expression (2) (determination: “x”), and in all cases, the deformation resistance increased and the parts were cracked. Among these, those of 2M and 2N are those in which the Mn content is outside the upper and lower limits specified in the present invention, and those of 2O and 2P are excessive in P content and S content, respectively. Are those in which the N content is excessive. All seem to have an adverse effect on cracking.

2Rは、Si含有量が過剰であるため、変形抵抗が増大して部品に割れが生じている。2Sは、C量が過剰であり、しかも(1)式および(2)式の関係を満足しないものとなっており、変形抵抗DRが増大して部品に割れが生じた。2Tは、Al含有量が過剰となっているので、(2)式の関係を満足していない。そのため、固溶N量が不十分であり、冷間加工後の所定の強度(加工後硬さH)が得られていない。   In 2R, since the Si content is excessive, deformation resistance increases and cracks occur in parts. 2S has an excessive amount of C and does not satisfy the relationship of the formulas (1) and (2), and the deformation resistance DR is increased to cause cracks in the parts. 2T does not satisfy the relationship of formula (2) because the Al content is excessive. Therefore, the amount of solute N is insufficient, and a predetermined strength (hardness H after processing) after cold working is not obtained.

2Uは、N含有量が不足しており、それに伴って固溶N量も不足しており、冷間加工後の所定の強度(加工後硬さH)が得られていない。   2U lacks the N content, and accordingly, the solid solution N amount is also insufficient, and a predetermined strength after cold working (hardness H after working) is not obtained.

2Vは、Mn含有量が不足しており(S含有量も不足)、またN含有量が不足しており、それに伴って固溶N量も不足しており、加工後硬さHに対する加工時の変形抵抗DRが高くなっている。2Wは、C含有量およびSi含有量が過剰になっており(S含有量は不足)、N含有量が不足しており、それに伴って固溶N量も不足しているため、(2)式の関係を満足しないものとなっており、加工後硬さHに対する加工時の変形抵抗DRが高くなっている。   2V has insufficient Mn content (S content is also insufficient), N content is also insufficient, and accordingly, solute N content is also insufficient. The deformation resistance DR of is high. 2W has an excess of C content and Si content (S content is insufficient), N content is insufficient, and accordingly, solute N content is also insufficient (2) The relationship of the formula is not satisfied, and the deformation resistance DR during processing with respect to the post-processing hardness H is high.

2Xは、加工温度を200℃としたものであり、加工後硬さHに対する加工時の変形抵抗DRが高くなっている。   In 2X, the processing temperature is 200 ° C., and the deformation resistance DR during processing with respect to the post-processing hardness H is high.

上記表9(比較例)の結果に基づき(鋼種2A〜2Q)、割れ個数(n/10)と(2)式の右辺の値との関係を図1に示すが、(2)式の右辺の値は、割れ個数(n/10)と相関関係があることが分かる。尚、この結果に基づいて、回帰分析によって前記(2)式の関係を求めたものである。   Based on the results of Table 9 (Comparative Example) (steel types 2A to 2Q), the relationship between the number of cracks (n / 10) and the value of the right side of equation (2) is shown in FIG. It can be seen that the value of is correlated with the number of cracks (n / 10). In addition, based on this result, the relationship of said Formula (2) was calculated | required by regression analysis.

表8に示した上記1P−1〜7の結果に基づき、固溶N量が変形抵抗DRおよび加工後硬さHに与える影響を図2に示すが、固溶N量を適切に調整することによって、変形抵抗DRおよび加工後硬さHを適正な範囲に制御できることが分かる。   FIG. 2 shows the effect of the solid solution N amount on the deformation resistance DR and the post-working hardness H based on the results of the above 1P-1 to 7 shown in Table 8, but appropriately adjusting the solid solution N amount. Thus, it can be seen that the deformation resistance DR and the post-processing hardness H can be controlled within appropriate ranges.

上記表8の1A〜1F(実施例)および表9の2R〜2X(比較例)の結果に基づき、加工後硬さHと変形抵抗DRの関係を図3に示すが、実施例は比較例に比べて加工後硬さHと変形抵抗DRのバランスが改善されていることが分かる。   Based on the results of 1A to 1F (Example) in Table 8 and 2R to 2X (Comparative Example) in Table 9, the relationship between post-processing hardness H and deformation resistance DR is shown in FIG. It can be seen that the balance between the post-processing hardness H and the deformation resistance DR is improved as compared with FIG.

[実施例2]
下記表10に示す化学成分組成からなる鋼種(3A〜3D)の供試鋼を調整し、実施例1と同様にして、試験片を切り出した。各試験片を用いて、鋼材中に含まれるMnSの大きさ(面積:μm2)を、下記の方法によって測定した。その結果を、加工温度、(2)式の右辺の値、セメンタイトの面積率と共に、下記表11に示す。
[Example 2]
Test steels of steel types (3A to 3D) having chemical composition shown in Table 10 below were prepared, and test pieces were cut out in the same manner as in Example 1. Using each test piece, the size (area: μm 2 ) of MnS contained in the steel material was measured by the following method. The results are shown in Table 11 below together with the processing temperature, the value on the right side of equation (2), and the area ratio of cementite.

[MnSの大きさの測定方法]
(i)試験片を、横断方向に中心で切断した。
(ii)上記断面(観察面)を観察できるように樹脂に埋め込み、エメリー紙による研磨、ダイヤモンドバフによる研磨および電解研磨を順次行って観察面を鏡面に仕上げた。
(iii)ナイタール(3%硝酸エタノール溶液)で腐食した。
(iv)D/4位置を光学顕微鏡の倍率100倍で観察し、5箇所写真撮影した。
(v)画像解析ソフト(住友金属テクノロジー株式会社製:「粒子解析Ver.3.0」)を用いて、MnS面積を求め、5視野の平均値をMnSの大きさ(面積:μm2)として算出した。
[Measurement method of MnS size]
(I) The test piece was cut at the center in the transverse direction.
(Ii) The cross section (observation surface) was embedded in a resin so that it could be observed, and polishing with emery paper, polishing with a diamond buff and electrolytic polishing were sequentially performed to finish the observation surface as a mirror surface.
(Iii) Corroded with nital (3% nitric acid ethanol solution).
(Iv) The D / 4 position was observed at a magnification of 100 with an optical microscope, and five photographs were taken.
(V) Using an image analysis software (manufactured by Sumitomo Metal Technology Co., Ltd .: “Particle Analysis Ver. 3.0”), the MnS area is obtained and the average value of the five fields of view is defined as the size of MnS (area: μm 2 ). Calculated.

Figure 0005379511
Figure 0005379511

Figure 0005379511
Figure 0005379511

そして、得られた鋼材の変形抵抗DR、加工後硬さH、割れ個数、上記実施例1と同様にして求めた。その結果を、下記表12に示す。また、この結果に基づいて、(2)式の右辺の値とMnSの大きさ(MnS面積)との関係を図4に示すが、(2)式の関係満足させることによって、MnSが微細分散されていることが分かる。

Figure 0005379511
Then, the deformation resistance DR, the post-processing hardness H, the number of cracks, and the number of cracks of the obtained steel were determined in the same manner as in Example 1. The results are shown in Table 12 below. Further, based on this result, the relationship between the value of the right side of the equation (2) and the size of MnS (MnS area) is shown in FIG. 4, but by satisfying the relationship of the equation (2), the MnS is fine. It can be seen that they are distributed.
Figure 0005379511

Claims (8)

質量%で、C:0.045%以下(0%を含まない)、Si:0.05%以下(0%を含まない)、Mn:0.30〜1.5%、P:0.05%以下(0%を含まない)、S:0.05超〜0.12%、Al:0.06%以下(0%を含まない)およびN:0.008〜0.025%を夫々含有し、下記(1)式および(2)式の関係を満足し、残部は鉄および不可避的不純物からなり、且つ固溶状態としてのN:0.007〜0.018%であると共に、パーライトおよびセメンタイトの面積率が3%以下の鋼組織であることを特徴とする冷間加工性に優れた機械構造用鋼材。
0.5≧(10[C]+[N]) …(1)
但し、[C]および[N]は、夫々CおよびNの含有量(質量%)を示す。
0≧126[C]+3[Mn]+84[S]−10 …(2)
但し、[C],[Mn]、」および[S]は、夫々C,MnおよびSの含有量(質量%)を示す。
In mass%, C: 0.045% or less (not including 0%), Si: 0.05% or less (not including 0%), Mn: 0.30 to 1.5%, P: 0.05 % Or less (excluding 0%), S: more than 0.05 to 0.12%, Al: 0.06% or less (not including 0%) and N: 0.008 to 0.025%, respectively. And the following formulas (1) and (2) are satisfied, the balance is made of iron and inevitable impurities, and N as a solid solution state is 0.007 to 0.018%. A steel material for machine structural use having excellent cold workability, characterized by having a steel structure having a cementite area ratio of 3% or less.
0.5 ≧ (10 [C] + [N]) (1)
However, [C] and [N] indicate the contents (% by mass) of C and N, respectively.
0 ≧ 126 [C] +3 [Mn] +84 [S] −10 (2)
However, [C], [Mn], and “S” indicate the contents (mass%) of C, Mn, and S, respectively.
更に、Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.05%以下(0%を含まない)およびTe:0.1%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有する請求項1に記載の機械構造用鋼材。   Furthermore, Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.05% or less (not including 0%), and Te: 0 The steel material for machine structure of Claim 1 containing at least 1 sort (s) chosen from the group which consists of 0.1% or less (excluding 0%). 更に、B:0.005%以下(0%を含まない)を含有する請求項1または2に記載の機械構造用鋼材。   The steel for machine structure according to claim 1 or 2, further comprising B: 0.005% or less (not including 0%). 更に、Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)およびV:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有する請求項1〜3のいずれかに記載の機械構造用鋼材。   Furthermore, Ti: 0.2% or less (not including 0%), Nb: 0.2% or less (not including 0%) and V: 0.2% or less (not including 0%) The steel material for machine structure in any one of Claims 1-3 containing the at least 1 sort (s) chosen. 更に、Cr:2%以下(0%を含まない)および/またはMo:2%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の機械構造用鋼材。   Furthermore, the steel for machine structures in any one of Claims 1-4 containing Cr: 2% or less (excluding 0%) and / or Mo: 2% or less (excluding 0%). 更に、Cu:5%以下(0%を含まない)、Ni:5%以下(0%を含まない)およびCo:5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有する請求項1〜5のいずれかに記載の機械構造用鋼材。   Further, at least one selected from the group consisting of Cu: 5% or less (not including 0%), Ni: 5% or less (not including 0%), and Co: 5% or less (not including 0%) The steel material for machine structures in any one of Claims 1-5 to contain. 更に、Pb:0.5%以下(0%を含まない)および/またはBi:0.5%以下(0%を含まない)を含有する請求項1〜6のいずれかに記載の機械構造用鋼材。   Furthermore, Pb: 0.5% or less (0% is not included) and / or Bi: 0.5% or less (0% is not included) Steel material. 請求項1〜7のいずれかに記載の機械構造用鋼材を加工温度:100℃未満で冷間加工することにより製造される冷間加工鋼部品であって、冷間加工後の部品硬さ(H)と冷間加工中の変形抵抗の最大値(DR)が、下記(3)式の関係を満足するものであることを特徴とする冷間加工鋼部品。
H≧(DR+200)/2.5 …(3)
[(3)式中、H:冷間加工後の部品硬さ(Hv)、DR:冷間加工中の変形抵抗の最大値(MPa)を示す。]
A cold-worked steel part manufactured by cold-working the steel for machine structural use according to any one of claims 1 to 7 at a working temperature of less than 100 ° C, wherein the hardness of the part after cold work ( H) and the maximum value (DR) of deformation resistance during cold working satisfy the relationship of the following formula (3).
H ≧ (DR + 200) /2.5 (3)
[In formula (3), H: component hardness after cold working (Hv), DR: maximum deformation resistance (MPa) during cold working. ]
JP2009033048A 2009-02-16 2009-02-16 Machine structural steel and cold work steel parts with excellent cold workability Expired - Fee Related JP5379511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033048A JP5379511B2 (en) 2009-02-16 2009-02-16 Machine structural steel and cold work steel parts with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033048A JP5379511B2 (en) 2009-02-16 2009-02-16 Machine structural steel and cold work steel parts with excellent cold workability

Publications (2)

Publication Number Publication Date
JP2010189677A JP2010189677A (en) 2010-09-02
JP5379511B2 true JP5379511B2 (en) 2013-12-25

Family

ID=42816025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033048A Expired - Fee Related JP5379511B2 (en) 2009-02-16 2009-02-16 Machine structural steel and cold work steel parts with excellent cold workability

Country Status (1)

Country Link
JP (1) JP5379511B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474847A (en) * 1990-07-18 1992-03-10 Nkk Corp Steel for cold forging excellent in crushability of chip
JP3493153B2 (en) * 1999-01-12 2004-02-03 株式会社神戸製鋼所 Wire or steel bars and machine parts with excellent cold workability
JP4266336B2 (en) * 2003-10-08 2009-05-20 株式会社神戸製鋼所 Soft magnetic steel material excellent in hot forgeability, magnetic properties and machinability, soft magnetic steel parts excellent in magnetic properties and manufacturing method thereof
JP4936639B2 (en) * 2004-02-13 2012-05-23 山陽特殊製鋼株式会社 Free-cutting steel for machine structure
JP4464889B2 (en) * 2005-08-11 2010-05-19 株式会社神戸製鋼所 Soft magnetic steel materials with excellent cold forgeability, machinability and magnetic properties, and soft magnetic steel parts with excellent magnetic properties
JP4818880B2 (en) * 2006-10-31 2011-11-16 新日本製鐵株式会社 Method for producing bake hardenable cold rolled steel sheet with excellent ductility and room temperature aging resistance

Also Published As

Publication number Publication date
JP2010189677A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP4295314B2 (en) Steel for high-speed cold work, method for producing the same, and method for producing high-speed cold-worked parts
JP6058439B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after processing
JP5121282B2 (en) Steel for high-speed cold working and its manufacturing method, and high-speed cold-worked component and its manufacturing method
JP4775505B1 (en) Bearing ingot material with excellent rolling fatigue life and method for producing bearing steel
JP5297145B2 (en) Steel for machine structure and cold forged parts with excellent cold forgeability
KR20170070129A (en) Rolled steel bar or rolled wire material for cold-forged component
JP6427272B2 (en) bolt
JP6284813B2 (en) Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing
JP5114189B2 (en) Cold-working steel, its manufacturing method and cold-worked steel parts
JP6058508B2 (en) Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing
JP2021017623A (en) Tool steel for hot work, excellent in thermal conductivity
JP5050515B2 (en) Non-tempered steel containing V for crankshaft
JP4909247B2 (en) Steel and cold-worked parts with excellent cold workability
JP5379511B2 (en) Machine structural steel and cold work steel parts with excellent cold workability
JP5385574B2 (en) Machine structural steels and cold forged steel parts with excellent cold forgeability
JP4032915B2 (en) Wire for machine structure or steel bar for machine structure and manufacturing method thereof
JP5363882B2 (en) Cold-working steel, cold-working steel manufacturing method, machine structural component manufacturing method, and machine structural component
JP5297146B2 (en) Steel for machine structure and cold forged parts with excellent cold forgeability
JP5363827B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP2018062692A (en) Hot rolled steel sheet
JP2017197816A (en) Hot rolled steel sheet excellent in cold workability and hardness after being cold-worked
JP4934481B2 (en) Steel for high-speed cold working, high-speed cold-worked parts, and manufacturing method thereof
JP5302704B2 (en) Machine structural steel for cold working, its manufacturing method and machine structural parts
JP5286217B2 (en) Machine structural steel with excellent hot workability, cold workability, and hardness after cold work
JP2017210645A (en) High strength steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130927

R150 Certificate of patent or registration of utility model

Ref document number: 5379511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees