JP5114189B2 - Cold-working steel, its manufacturing method and cold-worked steel parts - Google Patents

Cold-working steel, its manufacturing method and cold-worked steel parts Download PDF

Info

Publication number
JP5114189B2
JP5114189B2 JP2007334598A JP2007334598A JP5114189B2 JP 5114189 B2 JP5114189 B2 JP 5114189B2 JP 2007334598 A JP2007334598 A JP 2007334598A JP 2007334598 A JP2007334598 A JP 2007334598A JP 5114189 B2 JP5114189 B2 JP 5114189B2
Authority
JP
Japan
Prior art keywords
less
steel
cold
working
excluding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007334598A
Other languages
Japanese (ja)
Other versions
JP2009155687A (en
Inventor
智一 増田
武広 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007334598A priority Critical patent/JP5114189B2/en
Publication of JP2009155687A publication Critical patent/JP2009155687A/en
Application granted granted Critical
Publication of JP5114189B2 publication Critical patent/JP5114189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、冷間加工用鋼およびその製造方法ならびに冷間加工鋼部品に関するものである。   The present invention relates to cold work steel, a method for producing the same, and a cold work steel part.

冷間加工(例えば200℃以下の雰囲気における鋼の加工)は、熱間加工や温間加工と比較して、生産性が高く、寸法精度が良く、しかも鋼材の歩留が良好であるといった利点を有するため、各種部品の製造に幅広く用いられている。   Cold processing (for example, processing of steel in an atmosphere of 200 ° C. or lower) has advantages such as higher productivity, better dimensional accuracy, and better steel yield than hot processing and warm processing. Therefore, it is widely used for manufacturing various parts.

このような背景下、冷間加工に使用される鋼は、冷間加工時の変形抵抗が低いことが必要とされる。鋼の変形抵抗が高いと、冷間加工に使用する金型の寿命低下を招くからである。   Under such a background, steel used for cold working is required to have low deformation resistance during cold working. This is because when the deformation resistance of steel is high, the life of the mold used for cold working is reduced.

鋼の変形抵抗を低下させるには、C(炭素)、Si、Mnなどの添加元素を低下させればよいことが知られている。しかしながら、単純に添加元素を低減し、変形抵抗を低下させると、金型の寿命は改善できるものの、加工後に必要な部品強度が得られないという問題が生じる。そのため、従来、鋼を所定形状に冷間加工した後は、所定の硬度を確保するため、焼入れ焼戻しが施されていた。しかし部品加工後に焼入れ焼戻しを行うと、部品寸法が変化し易いため、更に部品加工を行わなければならないといった問題がある。   In order to reduce the deformation resistance of steel, it is known that additive elements such as C (carbon), Si, and Mn may be reduced. However, if the additive element is simply reduced and the deformation resistance is lowered, the life of the mold can be improved, but there is a problem that the required component strength cannot be obtained after processing. Therefore, conventionally, after cold-working steel into a predetermined shape, quenching and tempering has been performed to ensure a predetermined hardness. However, when quenching and tempering is performed after the parts are processed, the dimensions of the parts are likely to change, and there is a problem that the parts must be further processed.

また特許文献1には、冷間鍛造用棒鋼の製造方法として、Ac1〜(Ac1−50℃)の範囲で5時間以上保持することで、セメンタイトを凝集させて、変形抵抗を下げることが開示されている。また介在物を利用して、フェライト粒の粗大化を抑制することで鍛造時の割れ発生を防止している。該方法では、セメンタイトを球状化することで安定的に存在させているため、部品強度は変形抵抗に応じた強度レベルとなるが、変形抵抗に比してより高い部品強度を達成するには、更に検討が必要と思われる。また、通常の球状化焼鈍より生産性が良くなるものの、5時間以上の保持時間を要するため、生産性向上や省エネルギーの観点からは改善が必要と思われる。   Patent Document 1 discloses a method for producing a steel bar for cold forging by holding cement in the range of Ac1 to (Ac1-50 ° C.) for 5 hours or more to agglomerate cementite and lower deformation resistance. ing. In addition, cracks during forging are prevented by using inclusions to suppress the coarsening of ferrite grains. In this method, since the cementite is stably present by spheroidizing, the component strength is a strength level corresponding to the deformation resistance, but in order to achieve a higher component strength compared to the deformation resistance, Further study is necessary. Moreover, although productivity becomes better than normal spheroidizing annealing, since a holding time of 5 hours or more is required, it is considered necessary to improve from the viewpoint of productivity improvement and energy saving.

特許文献2には、フェライト組織中に、窒化物および炭化物が混合若しくは複合された状態で、平均で25個以上/25μm存在させることが示されている。この技術は、変形抵抗に悪影響を及ぼす固溶Nおよび固溶Cを固定化し、所定個数以上の窒化物および炭化物をフェライト組織中に析出させることにより、動的ひずみ時効を抑制し、変形抵抗を低減するものである。該技術は、固溶Cおよび固溶Nを安定的に存在させているため、部品強度は変形抵抗に応じた強度レベルになるが、変形抵抗に比してより高い部品強度を達成するには、更に検討が必要と思われる。
特開昭57−63635号公報 特開2000−8139号公報
Patent Document 2 shows that an average of 25 or more / 25 μm 2 exists in a ferrite structure in a state where nitrides and carbides are mixed or compounded. In this technology, solid solution N and solid solution C that adversely affect deformation resistance are fixed, and a predetermined number or more of nitrides and carbides are precipitated in the ferrite structure, thereby suppressing dynamic strain aging and reducing deformation resistance. It is to reduce. In this technique, since solid solution C and solid solution N exist stably, the component strength is at a strength level corresponding to the deformation resistance, but in order to achieve higher component strength than the deformation resistance. Further consideration is necessary.
JP-A-57-63635 JP 2000-8139 A

本発明はこの様な事情に鑑みてなされたものであって、その目的は、冷間加工性に優れる(特に、冷間加工鋼部品に割れが生じず、かつ、部品硬さに対する加工時の変形抵抗が低く抑えられて、金型の長寿命化を図り得ることをいう)と共に、加工後は所定の硬度・強度を確保することのできる冷間加工用鋼、およびその製造方法、ならびに該冷間加工用鋼を用いて得られる冷間加工鋼部品を提供することにある。   The present invention has been made in view of such circumstances, and the object thereof is excellent in cold workability (particularly, the cold-worked steel part is not cracked, and at the time of working on the part hardness. The deformation resistance is kept low, and the life of the mold can be extended), and the steel for cold working capable of ensuring a predetermined hardness and strength after processing, the manufacturing method thereof, and the An object of the present invention is to provide a cold-worked steel part obtained by using cold-working steel.

本発明に係る冷間加工用鋼とは、
C:0.20〜0.40%(質量%、以下同じ)、
Si:0.01〜0.30%、
Mn:0.2〜1.0%、
P:0.05%以下(0%を含まない)、
S:0.05%以下(0%を含まない)、
Al:0.010〜0.1%、および
N:0.0070%以下(0%を含まない)を満たし、残部は鉄及び不可避的不純物からなると共に、
透過型電子顕微鏡を用いて倍率15万倍で鋼組織を観察したときに、
粒径50nm以下のセメンタイトの密度が5〜25個/0.25μmで、かつ
粒径50nm超のセメンタイトの密度が1個以下/0.25μmである
ところに特徴を有する。
With the steel for cold working according to the present invention,
C: 0.20 to 0.40% (mass%, the same shall apply hereinafter)
Si: 0.01-0.30%,
Mn: 0.2 to 1.0%,
P: 0.05% or less (excluding 0%),
S: 0.05% or less (excluding 0%),
Al: 0.010 to 0.1%, and N: 0.0070% or less (not including 0%) are satisfied, and the balance is composed of iron and inevitable impurities,
When the steel structure was observed at a magnification of 150,000 times using a transmission electron microscope,
It is characterized in that the density of cementite having a particle size of 50 nm or less is 5-25 pieces / 0.25 μm 2 and the density of cementite having a particle size of more than 50 nm is 1 piece / 0.25 μm 2 .

尚、上記「粒径50nm以下のセメンタイト」「粒径50nm超のセメンタイト」とは、後述する実施例に示す方法で測定したものをいう(以下同じ)。   The above “cementite having a particle size of 50 nm or less” and “cementite having a particle size of more than 50 nm” are those measured by the method shown in Examples described later (the same applies hereinafter).

上記冷間加工用鋼は、更に他の元素として、
(a)Cr:2%以下(0%を含まない)、および/またはMo:2%以下(0%を含まない)
(b)Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)、およびV:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種
(c)B:0.005%以下(0%を含まない)
(d)Cu:5%以下(0%を含まない)、Ni:5%以下(0%を含まない)、および
Co:5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種
(e)Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)、Pb:0.5%以下(0%を含まない)、およびBi:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種
を含んでいてもよい。
The cold work steel is still another element,
(A) Cr: 2% or less (not including 0%) and / or Mo: 2% or less (not including 0%)
(B) Ti: 0.2% or less (not including 0%), Nb: 0.2% or less (not including 0%), and V: 0.2% or less (not including 0%) At least one selected from the group (c) B: 0.005% or less (excluding 0%)
(D) at least 1 selected from the group consisting of Cu: 5% or less (not including 0%), Ni: 5% or less (not including 0%), and Co: 5% or less (not including 0%) Species (e) Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li : Selected from the group consisting of 0.02% or less (not including 0%), Pb: 0.5% or less (not including 0%), and Bi: 0.2% or less (not including 0%) At least one kind may be included.

本発明は、上記冷間加工用鋼を製造する方法も規定するものであって、該方法は、上記化学組成を有する鋼を用いて、(Ac1−50℃)〜(Ac1+20℃)の温度範囲で10〜60分保持し、その後、8℃/sec以上の冷却速度で室温まで冷却するところに特徴を有する。   The present invention also defines a method for producing the steel for cold working, and the method uses a steel having the above chemical composition and is in a temperature range of (Ac1-50 ° C.) to (Ac1 + 20 ° C.). At 60 to 60 minutes, and then cooled to room temperature at a cooling rate of 8 ° C./sec or more.

また本発明は、上記冷間加工用鋼を加工温度200℃以下で冷間加工することにより製造される冷間加工鋼部品であって、冷間加工後の部品強度(H)と冷間加工中の変形抵抗の最大値(DR)が、下記式(1)を満たすところに特徴を有する冷間加工鋼部品も含む。
H≧(DR+1000)/6 …(1)
[式(1)中、Hは冷間加工後の部品強度(Hv)、DRは冷間加工中の変形抵抗の最大値(MPa)を示す]
Further, the present invention is a cold-worked steel part manufactured by cold-working the cold-working steel at a working temperature of 200 ° C. or less, and the cold-worked part strength (H) and cold-working It also includes cold-worked steel parts that are characterized in that the maximum value (DR) of deformation resistance therein satisfies the following formula (1).
H ≧ (DR + 1000) / 6 (1)
[In formula (1), H indicates the strength of the part after cold working (Hv), and DR indicates the maximum value (MPa) of deformation resistance during cold working]

本発明によれば、冷間加工後に焼入れ焼戻しを行ったり煩雑な熱処理を施すことなく、従来よりも、冷間加工鋼部品の硬さを向上できる。また、割れを生じさせることなく、ひずみの大きな冷間加工を良好に行うことができる(例えば、真ひずみが150%の冷間加工も良好に行うことができる)。更には、冷間加工に用いられる金型の長寿命化を図ることができる。   According to the present invention, the hardness of a cold-worked steel part can be improved as compared with the prior art without performing quenching and tempering or complicated heat treatment after cold working. Further, cold working with a large strain can be performed satisfactorily without causing cracks (for example, cold working with a true strain of 150% can be performed well). Furthermore, it is possible to extend the life of a mold used for cold working.

本発明者らは、冷間加工中は良好な加工性を示し、ひずみの大きな加工を良好に行い得ると共に、該加工に用いる金型の長寿命化を図ることができ、更には、加工後に所定の硬度・強度を確保することのできる冷間加工用鋼を得るべく鋭意研究を行った。その結果、特に、規定サイズの微細なセメンタイトを規定の密度で鋼中に存在させればよいことを見出した。また、上記サイズ・量のセメンタイトを存在させるための鋼材の化学成分や製造条件についても検討を行い、その最適範囲を見出した。以下、本発明について詳述する。   The inventors of the present invention show good workability during cold working, can perform processing with large strain, and can extend the life of the mold used for the processing. Intensive research was conducted to obtain a steel for cold working that can ensure the prescribed hardness and strength. As a result, it has been found that fine cementite having a specified size should be present in steel with a specified density. In addition, the chemical composition and production conditions of the steel material for causing the cementite of the above size and amount to exist were examined, and the optimum range was found. Hereinafter, the present invention will be described in detail.

本発明では、粒径が50nm以下のセメンタイトを鋼中に存在させる。この粒径が50nm以下の微細なセメンタイトは、冷間加工中(変形中)に分解されて、材料中にCが拡散され(固溶Cが鋼中に供給され)、該固溶Cが鋼中の可動転位に固着されることにより、所定の部品強度を達成できると考えられる。   In the present invention, cementite having a particle size of 50 nm or less is present in the steel. The fine cementite having a particle size of 50 nm or less is decomposed during cold working (deforming), C is diffused in the material (solid solution C is supplied into the steel), and the solid solution C is converted into steel. It is considered that a predetermined part strength can be achieved by being fixed to the movable dislocation inside.

上記セメンタイトの粒径が50nmを超えると、安定性が高くなり分解し難くなるので好ましくない。上記セメンタイトの粒径は、好ましくは45nm以下であり、より好ましくは40nm以下である。   When the particle size of the cementite exceeds 50 nm, it is not preferable because the stability becomes high and the decomposition becomes difficult. The particle size of the cementite is preferably 45 nm or less, more preferably 40 nm or less.

尚、冷間加工中に、固溶Cが供給される鋼部位は変形抵抗が高くなるが、本発明では上記セメンタイト量の上限を規定することで、該セメンタイト以外の組織が変形を担うため、変形抵抗を著しく高めることなく加工を行うことができる。   In addition, during cold working, the steel part to which solute C is supplied has high deformation resistance, but in the present invention, by defining the upper limit of the cementite amount, the structure other than the cementite bears deformation, Processing can be performed without significantly increasing deformation resistance.

この様な作用効果を十分に発揮させるには、上記粒径が50nm以下の微細なセメンタイトを0.25μmあたり5個以上存在させる必要がある。0.25μmあたり5個未満だと、固溶Cが多く存在することとなり変形抵抗が高くなるからである。上記サイズのセメンタイトは0.25μmあたり好ましくは8個以上、より好ましくは10個以上であるのがよい。一方、上記サイズのセメンタイトが0.25μmあたり25個を超えて存在すると、析出強化による変形抵抗の増加が顕著となるので好ましくない。よって、本発明では、上記サイズのセメンタイトの密度を0.25μmあたり25個以下とする。好ましくは23個以下/0.25μmであり、より好ましくは20個以下/0.25μmである。 In order to sufficiently exhibit such an effect, it is necessary that five or more fine cementites having a particle diameter of 50 nm or less are present per 0.25 μm 2 . This is because when the number is less than 5 per 0.25 μm 2, a large amount of solid solution C exists and deformation resistance increases. The number of cementite of the above size is preferably 8 or more, more preferably 10 or more per 0.25 μm 2 . On the other hand, if there is more than 25 cementites of the above size per 0.25 μm 2 , an increase in deformation resistance due to precipitation strengthening becomes remarkable, which is not preferable. Therefore, in the present invention, the density of the cementite of the above size is 25 or less per 0.25 μm 2 . Preferably it is 23 or less / 0.25 μm 2 , more preferably 20 or less / 0.25 μm 2 .

また粒径50nm超のセメンタイトの密度は、0.25μmあたり1個以下に抑える必要がある。粒径50nm超のセメンタイトの密度が1個超/0.25μmであると、微細セメンタイトが析出しにくくなり、所定の部品強度が得られ難くなる(後述する式(1)を満たさなくなる)からである。粒径50nm超のセメンタイトの密度は、好ましくは0.8個以下/0.25μm、より好ましくは0.5個以下/0.25μmに抑える。 Further, the density of cementite having a particle diameter of more than 50 nm needs to be suppressed to 1 or less per 0.25 μm 2 . When the density of cementite having a particle size of more than 50 nm is more than 1 / 0.25 μm 2, it is difficult for fine cementite to precipitate, and it becomes difficult to obtain a predetermined component strength (the expression (1) described later is not satisfied). It is. The density of cementite having a particle diameter of more than 50 nm is preferably 0.8 or less / 0.25 μm 2 , more preferably 0.5 or less / 0.25 μm 2 .

本発明では、この様な作用機構により、変形抵抗を上昇させずに部品強度を向上させることができるため、特許文献1や特許文献2の技術と比べて、同じ変形抵抗量で部品強度をより高めることができる。また、従来と同じ強度の部品を製造する場合には、冷間加工に用いる金型の長寿命化を図ることができる。尚、特許文献2の実施例では、炭化物の平均粒径が小さく変形抵抗が高い例があるが、これは、析出させる炭化物数が少なく、動的ひずみ時効に寄与する固溶Cが多く残存しているため、加工時に変形抵抗が増大したものと思われる。   In the present invention, such an action mechanism can improve the component strength without increasing the deformation resistance. Therefore, compared with the techniques of Patent Document 1 and Patent Document 2, the component strength can be further increased with the same amount of deformation resistance. Can be increased. In addition, when a part having the same strength as the conventional one is manufactured, it is possible to extend the life of a die used for cold working. In the example of Patent Document 2, there is an example in which the average particle size of carbide is small and the deformation resistance is high, but this is because the number of precipitated carbide is small and a large amount of solute C that contributes to dynamic strain aging remains. Therefore, it seems that deformation resistance increased during processing.

本発明は、上記の通り、特に鋼中における上記セメンタイトのサイズおよび量を制御する点に特徴があるが、この様にセメンタイトの析出形態を制御して良好な冷間加工性を容易に確保すると共に、鋼部品の強度やその他必要な特性を確保するには、化学成分を下記範囲内とする必要がある。   As described above, the present invention is particularly characterized in that the size and amount of the cementite in the steel is controlled. In this way, the precipitation form of the cementite is controlled to easily ensure good cold workability. At the same time, in order to ensure the strength and other necessary characteristics of the steel part, the chemical composition must be within the following range.

〔C:0.20〜0.40%〕
Cは、強度を高めると共に規定のセメンタイトを確保するのに必要な元素である。よって、C量は0.20%以上とする。好ましくは0.21%以上、より好ましくは0.22%以上である。しかしC量が0.40%を超えると、変形抵抗が増大するので好ましくない。よって本発明では、C量の上限を0.40%とした。好ましくは0.39%以下であり、より好ましくは0.38%以下である。
[C: 0.20 to 0.40%]
C is an element necessary for increasing the strength and securing the prescribed cementite. Therefore, the C amount is 0.20% or more. Preferably it is 0.21% or more, more preferably 0.22% or more. However, if the amount of C exceeds 0.40%, deformation resistance increases, which is not preferable. Therefore, in the present invention, the upper limit of the C amount is set to 0.40%. Preferably it is 0.39% or less, More preferably, it is 0.38% or less.

〔Si:0.01〜0.30%〕
Siは、製鋼過程において脱酸剤として使用される元素である。Si量が少なすぎると、凝固過程でガスが発生し、これらが欠陥として作用しやすくなるため、冷間加工中に割れが発生し得る。そこでSi量の下限を0.01%と定めた。好ましくは0.015%以上であり、より好ましくは0.02%以上である。一方、Si量が過剰になると、変形抵抗の増大を招くと共に、圧延中の脱炭を進行させて製品の表面品質が劣化するため好ましくない。よってSi量の上限を0.30%とする。好ましくは0.28%以下であり、より好ましくは0.25%以下である。
[Si: 0.01-0.30%]
Si is an element used as a deoxidizer in the steelmaking process. If the amount of Si is too small, gas is generated during the solidification process, which tends to act as defects, and thus cracks may occur during cold working. Therefore, the lower limit of Si content is set to 0.01%. Preferably it is 0.015% or more, More preferably, it is 0.02% or more. On the other hand, when the amount of Si is excessive, deformation resistance is increased, and decarburization during rolling is advanced to deteriorate the surface quality of the product. Therefore, the upper limit of Si content is set to 0.30%. Preferably it is 0.28% or less, More preferably, it is 0.25% or less.

〔Mn:0.2〜1.0%〕
Mnは、製鋼過程において脱酸剤や脱硫剤として有効な元素であり、また焼入性の向上にも有効な元素である。更に、SをMnSとして固定させ、Sによる悪影響の抑制にも有効な元素である。よって、Mnは0.2%以上含有させる。好ましくは0.22%以上、より好ましくは0.25%以上である。一方、Mn量が過剰になると変形抵抗が増大するため、Mn量は1.0%以下、好ましくは0.98%以下、より好ましくは0.95%以下とする。
[Mn: 0.2 to 1.0%]
Mn is an element that is effective as a deoxidizer or desulfurizer in the steelmaking process, and is also an element that is effective for improving hardenability. Furthermore, it is an element effective for fixing S as MnS and suppressing the adverse effects of S. Therefore, Mn is contained by 0.2% or more. Preferably it is 0.22% or more, more preferably 0.25% or more. On the other hand, when the amount of Mn is excessive, deformation resistance increases, so the amount of Mn is 1.0% or less, preferably 0.98% or less, more preferably 0.95% or less.

〔P:0.05%以下(0%を含まない)〕
リン(P)は、不可避的不純物であり、フェライト粒界に偏析して冷間加工性を劣化させる元素である。また、フェライトを固溶強化させて変形抵抗の増大をもたらす元素でもある。よって、冷間加工性向上の観点から、P量を0.05%以下とする。好ましくは0.03%以下であるが、P量を0にすることは、工業上困難である。
[P: 0.05% or less (excluding 0%)]
Phosphorus (P) is an unavoidable impurity and is an element that segregates at the ferrite grain boundaries and degrades the cold workability. It is also an element that causes solid solution strengthening of ferrite to increase deformation resistance. Therefore, from the viewpoint of improving cold workability, the P content is set to 0.05% or less. Although it is preferably 0.03% or less, it is industrially difficult to reduce the P content to zero.

〔S:0.05%以下(0%を含まない)〕
硫黄(S)も、Pと同様に不可避的不純物であり、FeSとして結晶粒界に膜状に析出し、加工性を劣化させる元素である。また、熱間脆性を引き起こす作用も有する。そこで変形能を向上させる観点から、本発明ではS量を、0.05%以下(好ましくは0.03%以下)とする。但しS量を0にすることは、工業上困難である。尚、Sは被削性を向上させる効果を有するため、被削性向上の観点からは、0.002%以上含有させることが好ましく、より好ましくは0.006%以上含有させることが推奨される。
[S: 0.05% or less (excluding 0%)]
Sulfur (S) is also an unavoidable impurity like P and is an element that precipitates in the form of a film at the grain boundary as FeS and degrades workability. It also has the effect of causing hot brittleness. Therefore, from the viewpoint of improving the deformability, in the present invention, the S amount is 0.05% or less (preferably 0.03% or less). However, it is industrially difficult to reduce the amount of S to 0. In addition, since S has an effect of improving machinability, it is preferable to contain 0.002% or more, more preferably 0.006% or more from the viewpoint of improving machinability. .

〔Al:0.010〜0.1%〕
Alは、製鋼過程における脱酸元素として有効な元素であり、また、固溶Nと窒化物(AlN)を形成させて、固溶Nによる動的ひずみ時効を抑制するのにも有効な元素である。該効果を十分に発現させるには、Alを、0.010%以上、好ましくは0.015%以上、より好ましくは0.02%以上含有させる。しかしAl量が0.1%を超えると、靭性が低下し、割れが生じやすくなるので好ましくない。そこでAl量を0.1%以下とする。好ましくは0.09%以下であり、より好ましくは0.08%以下である。
[Al: 0.010 to 0.1%]
Al is an element that is effective as a deoxidizing element in the steelmaking process, and is also an element that is effective in suppressing dynamic strain aging due to solute N by forming solute N and nitride (AlN). is there. In order to fully exhibit the effect, Al is contained in an amount of 0.010% or more, preferably 0.015% or more, more preferably 0.02% or more. However, if the Al content exceeds 0.1%, the toughness is lowered and cracking tends to occur, which is not preferable. Therefore, the Al content is set to 0.1% or less. Preferably it is 0.09% or less, More preferably, it is 0.08% or less.

〔N:0.0070%以下(0%を含まない)〕
窒素(N)は、不可避的不純物であり、変形抵抗を増大させる元素である。よってN量を0.0070%以下とする。好ましくは0.006%以下であり、より好ましくは0.005%以下である。
[N: 0.0070% or less (excluding 0%)]
Nitrogen (N) is an unavoidable impurity and is an element that increases deformation resistance. Therefore, the N amount is 0.0070% or less. Preferably it is 0.006% or less, More preferably, it is 0.005% or less.

本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避的不純物である。該不可避的不純物としては、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。尚、必要に応じて、以下の元素を更に含有させても良い。   The contained elements specified in the present invention are as described above, and the balance is iron and inevitable impurities. As this unavoidable impurity, mixing of the element brought in by conditions, such as a raw material, material, a manufacturing facility, can be accept | permitted. In addition, you may further contain the following elements as needed.

〔Cr:2%以下(0%を含まない)および/またはMo:2%以下(0%を含まない)〕
Cr、Moは、冷間加工後の部品の硬さおよび靱性を向上させる作用を有する元素である。この様な効果を有効に発現させるには、Crを含有させる場合、好ましくは0.1%以上、より好ましくは0.2%以上含有させることが有効である。またMoを含有させる場合には、好ましくは0.04%以上、より好ましくは0.1%以上含有させることが推奨される。
[Cr: 2% or less (not including 0%) and / or Mo: 2% or less (not including 0%)]
Cr and Mo are elements having an effect of improving the hardness and toughness of the parts after cold working. In order to effectively exhibit such an effect, when Cr is contained, it is effective to contain 0.1% or more, more preferably 0.2% or more. Moreover, when Mo is contained, it is recommended that the content be 0.04% or more, more preferably 0.1% or more.

しかし、Crの過剰添加は変形抵抗を増大し、冷間加工性が低下するので、Cr量は2%以下とすることが好ましく、より好ましくは1.5%以下である。また、Moが過剰に含まれると冷間加工性が劣化するので、Mo量は、2%以下とすることが好ましく、より好ましくは1.5%以下、更に好ましくは1%以下である。   However, excessive addition of Cr increases deformation resistance and decreases cold workability, so the Cr content is preferably 2% or less, and more preferably 1.5% or less. Moreover, since cold workability will deteriorate when Mo is contained excessively, it is preferable to make Mo amount into 2% or less, More preferably, it is 1.5% or less, More preferably, it is 1% or less.

〔Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)、およびV:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種〕
Ti、Nb、Vは、窒素と共に窒化物を形成して結晶粒を微細化し、冷間加工後に得られる部品の靱性を高めるために有効な元素である。この様な効果を有効に発現させるには、Tiを含有させる場合、好ましくは0.001%以上、より好ましくは0.002%以上のTiを含有させるのがよく、Nbを含有させる場合には、好ましくは0.001%以上、より好ましくは0.002%以上のNbを含有させるのがよい。また、Vを含有させる場合には、好ましくは0.001%以上、より好ましくは0.002%以上のVを含有させることが推奨される。
[From the group consisting of Ti: 0.2% or less (not including 0%), Nb: 0.2% or less (not including 0%), and V: 0.2% or less (not including 0%) At least one selected]
Ti, Nb, and V are effective elements for forming nitrides together with nitrogen to refine crystal grains and increasing the toughness of parts obtained after cold working. In order to effectively express such an effect, when Ti is contained, 0.001% or more, more preferably 0.002% or more of Ti is preferably contained. When Nb is contained, The Nb content is preferably 0.001% or more, more preferably 0.002% or more. In addition, when V is contained, it is recommended that 0.001% or more, more preferably 0.002% or more of V be contained.

一方、これらの元素は、窒素との親和力が強く、窒化物を形成して、冷間加工後の硬化上昇に有効な固溶窒素を低減させてしまうため、上限量を次のように定めた。Ti量は、好ましくは0.2%以下、より好ましくは0.1%以下であり、Nb量は、好ましくは0.2%以下、より好ましくは0.1%以下であり、V量は、好ましくは0.2%以下、より好ましくは0.1%以下である。   On the other hand, these elements have a strong affinity with nitrogen and form nitrides, reducing the amount of solid solution nitrogen effective for increasing the hardening after cold working. Therefore, the upper limit amount is determined as follows: . The Ti amount is preferably 0.2% or less, more preferably 0.1% or less, the Nb amount is preferably 0.2% or less, more preferably 0.1% or less, and the V amount is Preferably it is 0.2% or less, More preferably, it is 0.1% or less.

〔B:0.005%以下(0%を含まない)〕
Bは、結晶粒界の強度を高めることにより鋼の変形能を向上させる元素である。そこで必要に応じて、B量を好ましくは0.0001%以上、より好ましくは0.0002%以上含有させることが推奨される。しかしBは、窒素との親和力が強く、B窒化物を形成するが、このB窒化物が過剰になると冷間加工性が低下し易くなる。よってB量は、好ましくは0.005%以下、より好ましくは0.003%以下とする。
[B: 0.005% or less (excluding 0%)]
B is an element that improves the deformability of steel by increasing the strength of grain boundaries. Therefore, it is recommended that the amount of B is preferably 0.0001% or more, more preferably 0.0002% or more as required. However, B has a strong affinity for nitrogen and forms B nitride. However, when this B nitride is excessive, cold workability tends to decrease. Therefore, the B amount is preferably 0.005% or less, more preferably 0.003% or less.

〔Cu:5%以下(0%を含まない)、Ni:5%以下(0%を含まない)、および
Co:5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種類〕
Cu、Ni、Coは、いずれも鋼材をひずみ時効させて硬化させる作用を有する元素であり、加工後の強度を向上させるのに有効な元素である。これらの効果を発揮させるには、いずれの元素を含有させる場合にも、0.1%以上含有させることが好ましく、より好ましくは0.3%以上である。しかし、いずれの元素を含有させる場合も、5%を超えると効果が飽和し、かえって割れを促進させるので好ましくない。そこで含有させる場合の上限を、それぞれ5%(好ましくは4%、より好ましくは3%)とする。
[Cu: 5% or less (not including 0%), Ni: 5% or less (not including 0%), and Co: 5% or less (not including 0%)]
Cu, Ni, and Co are all elements that have the effect of hardening and hardening a steel material, and are effective elements for improving the strength after processing. In order to exert these effects, it is preferable to contain 0.1% or more, and more preferably 0.3% or more, when any element is contained. However, in the case of containing any element, if it exceeds 5%, the effect is saturated, and on the contrary, cracking is promoted, which is not preferable. Therefore, the upper limit in the case of inclusion is 5% (preferably 4%, more preferably 3%).

〔Ca:0.05%以下(0%を含まない)、REM:0.05%以下(0%を含まない)、Mg:0.02%以下(0%を含まない)、Li:0.02%以下(0%を含まない)、Pb:0.5%以下(0%を含まない)、およびBi:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種〕
Ca、REM(希土類元素)、Mg、Li、PbおよびBiは、鋼の被削性向上に寄与する元素である。またCa、REM、MgおよびLiは、MnS等の硫化物系介在物を球状化させ、鋼の靱性を高める作用も有する。この様な効果を有効に発現させるには、Caを含有させる場合、好ましくは0.0005%以上、より好ましくは0.001%以上のCaを含有させるのがよく、REMを含有させる場合、好ましくは0.0005%以上、より好ましくは0.001%以上のREMを含有させるのがよい。また、Mgを含有させる場合には、好ましくは0.0005%以上、より好ましくは0.0008%以上のMgを含有させるのがよく、Liを含有させる場合には、好ましくは0.0001%以上、より好ましくは0.0005%以上のLiを含有させるのがよく、Pbを含有させる場合には、好ましくは0.005%以上、より好ましくは0.01%以上のPbを含有させるのがよい。また、Biを含有させる場合には、好ましくは0.005%以上、より好ましくは0.01%以上のBiを含有させることが推奨される。
[Ca: 0.05% or less (not including 0%), REM: 0.05% or less (not including 0%), Mg: 0.02% or less (not including 0%), Li: 0.0. At least one selected from the group consisting of 02% or less (excluding 0%), Pb: 0.5% or less (not including 0%), and Bi: 0.2% or less (not including 0%) ]
Ca, REM (rare earth element), Mg, Li, Pb and Bi are elements that contribute to improving the machinability of steel. Ca, REM, Mg, and Li also have the effect of increasing the toughness of steel by spheroidizing sulfide inclusions such as MnS. In order to effectively express such an effect, when Ca is contained, 0.0005% or more, more preferably 0.001% or more Ca is preferably contained, and when REM is contained, preferably Is preferably 0.0005% or more, more preferably 0.001% or more of REM. Further, when Mg is contained, it is preferable to contain 0.0005% or more, more preferably 0.0008% or more of Mg, and when Li is contained, preferably 0.0001% or more. More preferably, 0.0005% or more of Li is contained. When Pb is contained, 0.005% or more, more preferably 0.01% or more of Pb is preferably contained. . Further, when Bi is contained, it is recommended that 0.005% or more, more preferably 0.01% or more of Bi is contained.

しかしこれらの元素量が過剰でも、その効果が飽和する。そこで含有させる場合の上限量を、それぞれ次のように定めた。Ca量は、好ましくは0.05%以下、より好ましくは0.01%以下、REM量は、好ましくは0.05%以下、より好ましくは0.01%以下、Mg量は、好ましくは0.02%以下、より好ましくは0.01%以下、Li量は、好ましくは0.02%以下、より好ましくは0.01%以下、Pb量は、好ましくは0.5%以下、より好ましくは0.3%以下、およびBi量は、好ましくは0.2%以下、より好ましくは0.1%以下である。   However, even if the amount of these elements is excessive, the effect is saturated. Then, the upper limit amount in the case of making it contain was defined as follows, respectively. The Ca amount is preferably 0.05% or less, more preferably 0.01% or less, the REM amount is preferably 0.05% or less, more preferably 0.01% or less, and the Mg amount is preferably 0.00. 02% or less, more preferably 0.01% or less, the Li amount is preferably 0.02% or less, more preferably 0.01% or less, and the Pb amount is preferably 0.5% or less, more preferably 0. .3% or less, and the Bi amount is preferably 0.2% or less, more preferably 0.1% or less.

次に、本発明の製造方法について説明する。本発明の鋼は、上述の通り、特にセメンタイトのサイズ・量を規定したところに特徴を有する。この様にセメンタイトの析出形態を制御するには、一般的な方法で溶解・圧延し、熱間加工(熱間圧延や熱間鍛造等)を施した後に、特に、焼ならし温度:(Ac1−50℃)〜(Ac1+20℃)の温度範囲で10〜60分保持し、その後、8℃/sec以上の冷却速度で室温まで冷却することが大変有効であることを見出した。   Next, the manufacturing method of this invention is demonstrated. As described above, the steel of the present invention is particularly characterized in that the size and amount of cementite are defined. In this way, in order to control the precipitation form of cementite, it is melted and rolled by a general method, and after hot working (hot rolling, hot forging, etc.), the normalizing temperature: (Ac1) It was found that it was very effective to hold at a temperature range of −50 ° C. to (Ac1 + 20 ° C.) for 10 to 60 minutes and then cool to room temperature at a cooling rate of 8 ° C./sec or more.

上記焼ならし温度が(Ac1−50℃)未満であると、微細なセメンタイトが析出しないので好ましくない。好ましくは(Ac1−40℃)以上とするのがよく、より好ましくは(Ac1−30℃)以上である。   If the normalizing temperature is lower than (Ac1-50 ° C.), fine cementite does not precipitate, which is not preferable. Preferably it is (Ac1-40 ° C) or higher, more preferably (Ac1-30 ° C) or higher.

一方、焼ならし温度が(Ac1+20℃)を超えると、セメンタイトからオーステナイトへの変態が促進して、規定のセメンタイトが得られないので好ましくない。   On the other hand, when the normalizing temperature exceeds (Ac1 + 20 ° C.), the transformation from cementite to austenite is promoted, and the prescribed cementite cannot be obtained.

よって、焼ならし温度は、(Ac1+20℃)以下、好ましくは(Ac1+15℃)以下、より好ましくは(Ac1+10℃)以下とする。尚、(Ac1−50℃)〜(Ac1+20℃)の温度範囲内の一定温度で保持するのみならず、上記温度範囲内で焼ならし温度が変動してもよい。   Therefore, the normalizing temperature is (Ac1 + 20 ° C.) or less, preferably (Ac1 + 15 ° C.) or less, more preferably (Ac1 + 10 ° C.) or less. In addition, the normalizing temperature may fluctuate within the temperature range as well as being held at a constant temperature within the temperature range of (Ac1-50 ° C) to (Ac1 + 20 ° C).

また上記温度範囲での保持時間が短いと、上記サイズのセメンタイトの数が不十分となる。よって保持時間を10分以上(好ましくは15分以上、より好ましくは20分以上)とする。一方、保持時間が長すぎると、微細セメンタイトが凝集して粗大化し始めるので好ましくない。よって、保持時間は60分以下とする。好ましくは55分以下、より好ましくは50分以下である。   Moreover, when the holding time in the said temperature range is short, the number of the cementite of the said size will become inadequate. Accordingly, the holding time is 10 minutes or longer (preferably 15 minutes or longer, more preferably 20 minutes or longer). On the other hand, if the holding time is too long, fine cementite aggregates and begins to coarsen, such being undesirable. Therefore, the holding time is 60 minutes or less. Preferably it is 55 minutes or less, More preferably, it is 50 minutes or less.

上記温度・時間で保持した後は、8℃/sec以上の冷却速度で室温まで冷却する。該冷却速度が遅いと、セメンタイトが凝集してサイズが大きくなり、規定サイズのセメンタイトを十分確保できないからである。好ましくは8.5℃/sec以上、より好ましくは9℃/sec以上の冷却速度で室温まで冷却するのがよい。冷却手段としては、放冷、風冷等が挙げられる。   After holding at the above temperature and time, it is cooled to room temperature at a cooling rate of 8 ° C./sec or more. This is because when the cooling rate is slow, the cementite aggregates to increase the size, and a sufficient size of cementite cannot be secured. It is preferable to cool to room temperature at a cooling rate of 8.5 ° C./sec or more, more preferably 9 ° C./sec or more. Examples of the cooling means include natural cooling and air cooling.

尚、冷間加工用鋼として線材を製造する場合、上記冷却速度を達成させる一手段として、上記熱間加工で細径化(例えば直径10〜12mm)したものを用いて、上記手段で冷却することが挙げられる。   In addition, when manufacturing a wire as steel for cold work, as one means for achieving the cooling rate, the steel is thinned by the hot work (for example, 10 to 12 mm in diameter) and cooled by the above means. Can be mentioned.

以上のようにして製造される冷間加工用鋼(例えば線材や棒鋼)は、その後、冷間加工され、鋼部品(ボルトやナット等の部品、自動車用部品、その他の機械部品)となる。ここでの冷間加工方法には、冷間鍛造、冷間圧造、冷間転造、冷間打抜き等の冷間加工が含まれる。また、部品の加工に必要であれば、伸線、圧延等の加工を行ってもよい。   The steel for cold work (for example, wire rods and steel bars) manufactured as described above is then cold worked to become steel parts (parts such as bolts and nuts, parts for automobiles, and other machine parts). The cold working method here includes cold working such as cold forging, cold forging, cold rolling, cold punching and the like. Further, if necessary for the processing of the parts, processing such as wire drawing and rolling may be performed.

加工の際の温度も冷間加工性に影響するため、加工温度の上限値は、好ましくは200℃、より好ましくは180℃、さらに好ましくは160℃に設定することが推奨される。加工温度が高すぎると変形中に動的歪み時効が発生し、変形抵抗が上昇してしまうからである。一方、冷間加工は通常、室温で実施されるが、0℃を下回ると温度依存性により変形抵抗が逆に高くなってしまうため、加工温度の好ましい下限は0℃とする。なお加工温度は、加工の際の雰囲気温度を指す。   Since the temperature at the time of processing also affects the cold workability, it is recommended that the upper limit value of the processing temperature is preferably set to 200 ° C, more preferably 180 ° C, and even more preferably 160 ° C. This is because if the processing temperature is too high, dynamic strain aging occurs during deformation and the deformation resistance increases. On the other hand, cold working is usually performed at room temperature. However, if the temperature is lower than 0 ° C., the deformation resistance becomes higher due to temperature dependence. The processing temperature refers to the atmospheric temperature during processing.

この様な条件下で得られる本発明の鋼部品は、その強度が、冷間加工時の変形抵抗の最大値との関係において、下記式(1)を満たすところに特徴を有する。
H≧(DR+1000)/6 …(1)
[式(1)中、Hは冷間加工後の部品強度(Hv)、DRは冷間加工中の変形抵抗の最大値(MPa)を示す]
The steel part of the present invention obtained under such conditions is characterized in that its strength satisfies the following formula (1) in relation to the maximum value of deformation resistance during cold working.
H ≧ (DR + 1000) / 6 (1)
[In formula (1), H indicates the strength of the part after cold working (Hv), and DR indicates the maximum value (MPa) of deformation resistance during cold working]

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. Of course, any of these is also included in the technical scope of the present invention.

まず、下記(I)(II)の条件で順次製造し、次いで下記(III)に示す通り、表2に示す条件(焼ならし温度T、保持時間t)で加熱し、その後、表2に示す冷却速度で室温まで冷却し、表1に示す化学成分組成の線材を得た。   First, it manufactures sequentially on condition of the following (I) (II), and then it heats on condition (normalization temperature T, holding time t) shown in Table 2 as shown in (III) below, It cooled to room temperature with the cooling rate shown, and obtained the wire of the chemical component composition shown in Table 1.

尚、表1中のAc1は、下記K.W.Andrewsの式(「レスリー鉄鋼材料学」丸善(1985)p.273)によって計算した。
Ac1(℃)=723−10.7(%Mn)−16.9(%Ni)+29.1(%Si)+16.9(%Cr)+290(%As)+6.38(%W)
(上記%は、鋼中各成分の質量%を示す)
(I)溶解・圧延:ビレット溶製 → 溶製材を1150〜1250℃に加熱 → 155mm角に圧延
(II)棒鋼圧延:1100〜1250℃に加熱 → 直径12mmに圧延 → 放冷
(III)焼ならし:表2に示す焼ならし温度T×保持時間t →室温まで表2に示す冷却速度で冷却(風冷以上の冷却速度で冷却)
上記の様にして得られた直径12mmの線材を用いて、鋼組織の観察(セメンタイトのサイズ・量の測定)、加工試験および変形抵抗の測定、および鋼部品のビッカース硬さ(Hv)の測定を、それぞれ下記の要領で行った。
In Table 1, Ac1 is the following K.I. W. The calculation was performed according to the Andrews equation (“Leslie Steel Material Science” Maruzen (1985) p. 273).
Ac1 (° C.) = 723-10.7 (% Mn) −16.9 (% Ni) +29.1 (% Si) +16.9 (% Cr) +290 (% As) +6.38 (% W)
(The above% indicates mass% of each component in steel)
(I) Melting / Rolling: Billet melting → Heating the melted material to 1150 to 1250 ° C. → Rolling to 155 mm square (II) Bar rolling: Heating to 1100 to 1250 ° C. → Rolling to a diameter of 12 mm → If allowed to cool (III) No: Normalizing temperature T × holding time t shown in Table 2 → cooling to room temperature at the cooling rate shown in Table 2 (cooling at a cooling rate higher than air cooling)
Observation of steel structure (measurement of cementite size and quantity), processing test and measurement of deformation resistance, and measurement of Vickers hardness (Hv) of steel parts using the wire rod having a diameter of 12 mm obtained as described above. Each was performed as follows.

〔鋼組織の観察〕
粒径50nm以下のセメンタイトの密度と、粒径50nm超のセメンタイトの密度は、以下(i)〜(v)の手順により求めた。
(i)上記線材のD/4位置から、圧延方向に平行な面を観察できるように薄片を採取する。
(ii)Struers社製Tenupol−2を用い、電解薄膜法(ツインジェット法)でサンプルを調整する。
(iii)日立製作所製H−800透過電子顕微鏡を用い、加速電圧200kV、観察倍率15万倍で観察・写真撮影する。
(iv)上記写真をスキャナーで取り込み、Media Cybernetic社製のImage Pro PLUSを用いて、任意の位置について白黒の2値化処理を実行する。
(v)ラメラセメンタイトを除いた上記黒色部分の各面積について、オブジェクトの外周の2点を結び、かつ重心を通る径を2°きざみで測定した平均値を、セメンタイトの粒径とした(粒径の判定限界は1nm)。この様にして、視野サイズ0.5μm×0.5μmに存在する上記セメンタイトの粒径と個数を測定し、粒径50nm以下のセメンタイトの0.25μmあたりの個数と、粒径50nm超のセメンタイトの0.25μmあたりの個数をそれぞれ求めた。これらの測定結果を表2に示す。
[Observation of steel structure]
The density of cementite having a particle size of 50 nm or less and the density of cementite having a particle size of more than 50 nm were determined by the following procedures (i) to (v).
(I) From the D / 4 position of the wire, slices are collected so that a plane parallel to the rolling direction can be observed.
(Ii) A sample is prepared by an electrolytic thin film method (twin jet method) using Tenupol-2 manufactured by Struers.
(Iii) Using an H-800 transmission electron microscope manufactured by Hitachi, Ltd., observation and photography are performed at an acceleration voltage of 200 kV and an observation magnification of 150,000 times.
(Iv) The above photograph is captured by a scanner, and black and white binarization processing is executed at an arbitrary position using Image Pro PLUS manufactured by Media Cybernetic.
(V) For each area of the black part excluding lamellar cementite, the average value obtained by connecting the two points on the outer periphery of the object and measuring the diameter passing through the center of gravity in increments of 2 ° was defined as the particle size of cementite (particle size Is 1 nm). In this way, the particle size and number of the cementite present in a visual field size of 0.5 μm × 0.5 μm were measured, and the number of cementite particles having a particle size of 50 nm or less per 0.25 μm 2 and cementite having a particle size exceeding 50 nm The number per 0.25 μm 2 was determined. These measurement results are shown in Table 2.

次に、上記鋼材の中心部から、φ6mm×長さ9mmの試験片を切り出した。該試験片を用いて、加工試験を行い、変形抵抗の測定、割れの有無確認、および加工後(鋼部品)のビッカース硬さ(Hv)を測定した。尚、一般に変形抵抗が下がると金型寿命が向上し、変形抵抗が20%下がると金型寿命が5〜10倍延びることから、ここでは金型寿命の評価を変形抵抗の値で行った。   Next, a test piece of φ6 mm × length 9 mm was cut out from the center of the steel material. Using the test piece, a processing test was performed to measure deformation resistance, check for cracks, and measure the Vickers hardness (Hv) after processing (steel part). In general, when the deformation resistance is lowered, the mold life is improved, and when the deformation resistance is lowered by 20%, the mold life is extended by 5 to 10 times. Therefore, the evaluation of the mold life is performed with the value of the deformation resistance.

〔加工試験および変形抵抗の測定〕
上記試験片を、歪み速度:1/秒、加工温度:20〜200℃、圧縮率:20〜80%の加工条件で、容量200kNの加工フォーマスター試験装置を用いて鍛造し、鋼部品に加工した。歪み速度は、加工中(塑性変形中)の歪み速度の平均値を用いた。得られた部品について、観察倍率20倍での実態顕微鏡で表面を観察して、割れの有無を確認した。各部品の冷間加工条件(加工温度、圧縮率)、各部品の割れの有無(割れが発生した場合を×、割れが発生しなかった場合を○とする)、および変形抵抗の最大値を表3に示す。
[Processing test and measurement of deformation resistance]
The above test piece is forged using a processing for master test apparatus having a capacity of 200 kN under processing conditions of strain rate: 1 / second, processing temperature: 20 to 200 ° C., and compression ratio: 20 to 80%, and processed into a steel part. did. As the strain rate, an average value of strain rates during processing (plastic deformation) was used. About the obtained component, the surface was observed with the actual condition microscope with an observation magnification of 20 times, and the presence or absence of the crack was confirmed. The cold working conditions of each part (working temperature, compressibility), the presence or absence of cracks in each part (when cracking occurs, ×, when cracking does not occur), and the maximum deformation resistance Table 3 shows.

尚、表3の圧縮率は、[(1−L/L0)×100(%)](L0:加工前の試験片長さ、L:加工後の試験片長さ)をいう。 The compression rate in Table 3 refers to [(1-L / L 0 ) × 100 (%)] (L 0 : test piece length before processing, L: test piece length after processing).

〔鋼部品のビッカース硬さ(Hv)の測定〕
加工試験後の試験片を用い、荷重:1000g、測定位置:試験片断面のD/4中央部(D:部品直径)、および測定回数:5回の条件で、ビッカース硬さ試験機を用いて、鋼部品のビッカース硬さ(Hv)を測定した。測定結果を表3に併記する。
[Measurement of Vickers hardness (Hv) of steel parts]
Using the test piece after the processing test, using a Vickers hardness tester under the conditions of load: 1000 g, measurement position: D / 4 central part (D: part diameter) of the cross section of the test piece, and number of measurements: 5 times The Vickers hardness (Hv) of the steel parts was measured. The measurement results are also shown in Table 3.

〔式(1)による判定〕
表3には、各試験片が下記式(1)を満たすか否かを示しており、式(1)を満たす場合には「○」、式(1)を満たさない場合には「×」を付している。
H≧(DR+1000)/6 …(1)
但し、H:冷間加工後の部品強度(Hv)、DR:冷間加工時の最大変形抵抗(MPa)
[Judgment by Formula (1)]
Table 3 shows whether or not each test piece satisfies the following formula (1): “◯” when the formula (1) is satisfied, and “×” when the formula (1) is not satisfied. Is attached.
H ≧ (DR + 1000) / 6 (1)
However, H: Strength of parts after cold working (Hv), DR: Maximum deformation resistance during cold working (MPa)

本実施例では、部品に割れが無く、かつ部品硬さに対して鋼の変形抵抗が低い鋼[具体的には上記式(1)を満たすもの]を、冷間加工性に優れると判定した。   In this example, it was determined that a steel [particularly satisfying the above formula (1)] having excellent crack workability without cracking in the component and having low deformation resistance of the steel with respect to the component hardness. .

Figure 0005114189
Figure 0005114189

Figure 0005114189
Figure 0005114189

Figure 0005114189
Figure 0005114189

表1〜3から次のように考察できる(尚、下記記号は、表1〜3の鋼記号を示す)。
1B、1C、1H、1L、1M、1O、1R、1S、1U、1W、1Y、2Aおよび2D〜2Nは、本発明で規定する要件を満足する例であり、部品に割れが無く、かつ部品硬さに対する加工時の変形抵抗が低い鋼材が得られている。これに対し、本発明の要件を満たさないものは、割れが発生しているか、部品硬さに対する加工時の変形抵抗が高くなっており(即ち、式(1)を満たさず)、金型の長寿命化が望めないものとなっている。
It can be considered as follows from Tables 1 to 3 (in addition, the following symbols indicate steel symbols in Tables 1 to 3).
1B, 1C, 1H, 1L, 1M, 1O, 1R, 1S, 1U, 1W, 1Y, 2A, and 2D to 2N are examples that satisfy the requirements defined in the present invention, and there are no cracks in the parts. A steel material having low deformation resistance during processing with respect to hardness has been obtained. On the other hand, those that do not satisfy the requirements of the present invention are cracked or have high deformation resistance during processing with respect to the component hardness (that is, the equation (1) is not satisfied). Longer life cannot be expected.

詳細には、1Aは、C量が不足し、規定のセメンタイトを十分確保できていないので式(1)を満たさないものとなった。1Dは、C量が過剰であるため、セメンタイトが必要以上に析出し、部品に割れが生じた。   Specifically, 1A does not satisfy the formula (1) because the amount of C is insufficient and the prescribed cementite is not sufficiently secured. In 1D, since the amount of C was excessive, cementite precipitated more than necessary, and the parts were cracked.

1Eは、Si量が不足しているため、冷間加工中に割れが発生した。   In 1E, since the amount of Si was insufficient, cracks occurred during cold working.

1Fは、Mn量が過剰であるため、部品に割れが生じた。1G、1Kは、Mn量が不足(1KではAl量も不足)しているため、SがMnによって固定されず、FeSとして結晶粒界に膜状に析出して部品に割れが生じた。   In 1F, since the amount of Mn was excessive, cracks occurred in the parts. In 1G and 1K, the amount of Mn was insufficient (the amount of Al was insufficient in 1K), so S was not fixed by Mn, but was deposited as a film at the grain boundary as FeS, resulting in cracks in the parts.

1Iは、フェライト粒界に偏析して冷間加工性を劣化させるPが過剰に存在するため、部品に割れが生じた。1Jは、S量が過剰であるため、結晶粒界の脆化が促進され、部品に割れが生じた。   Since 1I excessively contains P that segregates at the ferrite grain boundaries and degrades the cold workability, cracks occurred in the parts. In 1J, since the amount of S was excessive, embrittlement of the crystal grain boundary was promoted, and the part was cracked.

1Nは、Al量が不足し、かつN量が過剰であるため、固溶Nによる動的ひずみ時効が生じて、部品に割れが生じた。   In 1N, since the Al amount was insufficient and the N amount was excessive, dynamic strain aging due to solute N occurred, and the parts were cracked.

1Pは、焼ならし時の保持時間tが短いため、規定のセメンタイトを十分確保できず、式(1)を満たさないものとなった。   Since 1P has a short holding time t during normalization, the prescribed cementite cannot be sufficiently secured, and the formula (1) is not satisfied.

1Q、2Bは、焼ならし温度Tが(Ac1+20℃)を上回っているため、規定のセメンタイトを析出させることができず、動的ひずみ時効に寄与する固溶Cを十分低減できなかったため、変形抵抗が増大して加工性の低下(割れ)が生じた。   In 1Q and 2B, since the normalizing temperature T exceeds (Ac1 + 20 ° C.), the prescribed cementite could not be precipitated, and the solid solution C contributing to dynamic strain aging could not be sufficiently reduced. The resistance increased and the workability decreased (cracked).

1Tは、焼ならし温度Tで保持した後の冷却をゆるやかに行ったため、規定サイズのセメンタイトを十分確保できず、式(1)を満たさないものとなった。   1T was cooled slowly after being held at the normalizing temperature T, so that sufficient cementite of the prescribed size could not be secured, and the formula (1) was not satisfied.

1V、1Zは、焼ならし温度が(Ac1−50℃)を下回っているため、規定サイズのセメンタイトを十分確保できず、式(1)を満たさないものとなった。   In 1V and 1Z, the normalizing temperature was lower than (Ac1-50 ° C.), so that sufficient cementite of the prescribed size could not be secured, and the formula (1) was not satisfied.

1Xは、焼ならし時の保持時間tが長すぎるため、粗大な炭化物が形成され、式(1)を満たさないものとなった。   In 1X, since the holding time t during normalization was too long, coarse carbides were formed and the formula (1) was not satisfied.

2Cは、焼ならしを行っていないため、規定サイズのセメンタイトを確保できず、部品に割れが生じると共に式(1)を満たさないものとなった。   In 2C, since normalization was not performed, cementite having a specified size could not be secured, and cracks were generated in the parts and the formula (1) was not satisfied.

Claims (8)

C:0.20〜0.40%(質量%、以下同じ)、
Si:0.01〜0.30%、
Mn:0.2〜1.0%、
P:0.05%以下(0%を含まない)、
S:0.05%以下(0%を含まない)、
Al:0.010〜0.1%、および
N:0.0070%以下(0%を含まない)を満たし、残部は鉄及び不可避的不純物からなると共に、
透過型電子顕微鏡を用いて倍率15万倍で鋼組織を観察したときに、
粒径50nm以下のセメンタイトの密度が5〜25個/0.25μmで、かつ
粒径50nm超のセメンタイトの密度が1個以下/0.25μmである
ことを特徴とする冷間加工用鋼。
C: 0.20 to 0.40% (mass%, the same shall apply hereinafter)
Si: 0.01-0.30%,
Mn: 0.2 to 1.0%,
P: 0.05% or less (excluding 0%),
S: 0.05% or less (excluding 0%),
Al: 0.010 to 0.1%, and N: 0.0070% or less (not including 0%) are satisfied, and the balance is composed of iron and inevitable impurities,
When the steel structure was observed at a magnification of 150,000 times using a transmission electron microscope,
Cold-working steel characterized in that the density of cementite having a particle size of 50 nm or less is 5 to 25 pieces / 0.25 μm 2 and the density of cementite having a particle size of more than 50 nm is 1 piece or less / 0.25 μm 2 .
更に他の元素として、
Cr:2%以下(0%を含まない)、および/または
Mo:2%以下(0%を含まない)
を含有する請求項1に記載の冷間加工用鋼。
As other elements,
Cr: 2% or less (not including 0%) and / or Mo: 2% or less (not including 0%)
The steel for cold work according to claim 1, comprising:
更に他の元素として、
Ti:0.2%以下(0%を含まない)、
Nb:0.2%以下(0%を含まない)、および
V:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有する請求項1または2に記載の冷間加工用鋼。
As other elements,
Ti: 0.2% or less (excluding 0%),
The Nb: at least one selected from the group consisting of 0.2% or less (not including 0%) and V: 0.2% or less (not including 0%). Steel for cold working.
更に他の元素として、B:0.005%以下(0%を含まない)を含有する請求項1〜3のいずれかに記載の冷間加工用鋼。   The steel for cold work according to any one of claims 1 to 3, further comprising B: 0.005% or less (not including 0%) as another element. 更に他の元素として、
Cu:5%以下(0%を含まない)、
Ni:5%以下(0%を含まない)、および
Co:5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有する請求項1〜4のいずれかに記載の冷間加工用鋼。
As other elements,
Cu: 5% or less (excluding 0%),
The cold according to any one of claims 1 to 4, comprising at least one selected from the group consisting of Ni: 5% or less (not including 0%) and Co: 5% or less (not including 0%). Inter-working steel.
更に他の元素として、
Ca:0.05%以下(0%を含まない)、
REM:0.05%以下(0%を含まない)、
Mg:0.02%以下(0%を含まない)、
Li:0.02%以下(0%を含まない)、
Pb:0.5%以下(0%を含まない)、および
Bi:0.2%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有する請求項1〜5のいずれかに記載の冷間加工用鋼。
As other elements,
Ca: 0.05% or less (excluding 0%),
REM: 0.05% or less (excluding 0%),
Mg: 0.02% or less (excluding 0%),
Li: 0.02% or less (excluding 0%),
6. The composition according to claim 1, comprising at least one selected from the group consisting of Pb: 0.5% or less (not including 0%) and Bi: 0.2% or less (not including 0%). Steel for cold work as described in 1.
請求項1〜6のいずれかに記載の冷間加工用鋼を製造する方法であって、
請求項1〜6のいずれかに記載の化学組成を有する鋼を用いて、(Ac1−50℃)〜(Ac1+20℃)の温度範囲で10〜60分保持し、その後、8℃/sec以上の冷却速度で室温まで冷却することを特徴とする冷間加工用鋼の製造方法。
[但し、上記Ac1は、下記式によって計算される値である。
Ac1(℃)=723−10.7(%Mn)−16.9(%Ni)+29.1(%Si)+16.9(%Cr)+290(%As)+6.38(%W)
(上記%は、鋼中各成分の質量%を示す)]
A method for producing the cold work steel according to any one of claims 1 to 6,
Using the steel having the chemical composition according to claim 1, the steel is held for 10 to 60 minutes in a temperature range of (Ac1-50 ° C.) to (Ac1 + 20 ° C.), and then at least 8 ° C./sec. A method for producing cold-working steel, characterized by cooling to room temperature at a cooling rate.
[However, Ac1 is a value calculated by the following equation.
Ac1 (° C.) = 723-10.7 (% Mn) −16.9 (% Ni) +29.1 (% Si) +16.9 (% Cr) +290 (% As) +6.38 (% W)
(The above% indicates the mass% of each component in the steel)]
請求項1〜6のいずれかに記載の冷間加工用鋼を加工温度200℃以下で冷間加工することにより製造される冷間加工鋼部品であって、冷間加工後の部品強度(H)と冷間加工中の変形抵抗の最大値(DR)が、下記式(1)を満たすことを特徴とする冷間加工鋼部品。
H≧(DR+1000)/6 …(1)
[式(1)中、Hは冷間加工後の部品強度(Hv)、DRは冷間加工中の変形抵抗の最大値(MPa)を示す]
A cold-worked steel part manufactured by cold-working the cold-working steel according to any one of claims 1 to 6 at a working temperature of 200 ° C or less, wherein the strength of the part after cold working (H ) And the maximum value (DR) of deformation resistance during cold working satisfy the following formula (1).
H ≧ (DR + 1000) / 6 (1)
[In formula (1), H indicates the strength of the part after cold working (Hv), and DR indicates the maximum value (MPa) of deformation resistance during cold working]
JP2007334598A 2007-12-26 2007-12-26 Cold-working steel, its manufacturing method and cold-worked steel parts Expired - Fee Related JP5114189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007334598A JP5114189B2 (en) 2007-12-26 2007-12-26 Cold-working steel, its manufacturing method and cold-worked steel parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007334598A JP5114189B2 (en) 2007-12-26 2007-12-26 Cold-working steel, its manufacturing method and cold-worked steel parts

Publications (2)

Publication Number Publication Date
JP2009155687A JP2009155687A (en) 2009-07-16
JP5114189B2 true JP5114189B2 (en) 2013-01-09

Family

ID=40960004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007334598A Expired - Fee Related JP5114189B2 (en) 2007-12-26 2007-12-26 Cold-working steel, its manufacturing method and cold-worked steel parts

Country Status (1)

Country Link
JP (1) JP5114189B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5482342B2 (en) * 2010-03-18 2014-05-07 新日鐵住金株式会社 Hot rolled steel for direct cutting and method for producing the same
JP5949287B2 (en) * 2012-08-01 2016-07-06 新日鐵住金株式会社 Steel for cold forging
CN104313502A (en) * 2014-09-25 2015-01-28 昆山伯建精密模具有限公司 Insulator mold and preparation method thereof
CN107699821A (en) * 2017-10-31 2018-02-16 桂林加宏汽车修理有限公司 A kind of corrosion resisting steel alloy
CN107937827B (en) * 2017-11-24 2019-05-28 攀钢集团攀枝花钢铁研究院有限公司 Improve the production method of steel polishing performance
CN110541124B (en) * 2019-09-10 2021-05-25 成都先进金属材料产业技术研究院有限公司 Nitrogenous plastic die steel slab and process method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426716A (en) * 1990-05-23 1992-01-29 Nippon Steel Corp Short-time spheroidization annealing method for steel bar and wire
JPH08269619A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp High carbon hot rolled steel sheet excellent in hardenability and cold workability
JP2000008140A (en) * 1998-04-21 2000-01-11 Kobe Steel Ltd Linear or bar-shaped steel and machine parts
JP3742232B2 (en) * 1998-10-13 2006-02-01 株式会社神戸製鋼所 Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
JP4696853B2 (en) * 2005-10-31 2011-06-08 Jfeスチール株式会社 Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP5121282B2 (en) * 2007-04-03 2013-01-16 株式会社神戸製鋼所 Steel for high-speed cold working and its manufacturing method, and high-speed cold-worked component and its manufacturing method

Also Published As

Publication number Publication date
JP2009155687A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
KR101599163B1 (en) Wire material for non-refined machine component steel wire for non-refined machine component non-refined machine component and method for manufacturing wire material for non-refined machine component steel wire for non-refined machine component and non-refined machine component
JP5026626B2 (en) Steel wire excellent in cold forgeability and manufacturing method thereof
WO2011062012A1 (en) Steel wire for low-temperature annealing and method for producing the same
WO2013046678A1 (en) Ingot for bearing and production process
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
JP5400089B2 (en) Bearing steel excellent in rolling fatigue life characteristics, ingot material for bearing, and production method thereof
JP5114189B2 (en) Cold-working steel, its manufacturing method and cold-worked steel parts
JP5576785B2 (en) Steel material excellent in cold forgeability and manufacturing method thereof
KR20190028781A (en) High frequency quenching steel
JP5368830B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
CN113348256A (en) Steel for cold working machine structural use and method for producing same
JP2011117010A (en) Bearing steel having excellent cold workability
JP6284813B2 (en) Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing
JP4299744B2 (en) Hot rolled wire rod for cold forging and method for producing the same
JP6058508B2 (en) Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing
JP2011017051A (en) Rolled steel for hot forging and method for producing the same
JP5363882B2 (en) Cold-working steel, cold-working steel manufacturing method, machine structural component manufacturing method, and machine structural component
JP5159296B2 (en) Steel wire rod or bar for cold working, method for producing the same, and cold worked steel parts
JP2009132949A (en) Steel material with excellent cold workability, and cold worked parts
JP5030695B2 (en) High carbon steel excellent in break separation and production method thereof
TWI806526B (en) Steel wire for mechanical structural parts and manufacturing method thereof
KR101527337B1 (en) Bearing steel material having superior cold-workability and method for producing same
JP5385574B2 (en) Machine structural steels and cold forged steel parts with excellent cold forgeability
JP5379511B2 (en) Machine structural steel and cold work steel parts with excellent cold workability
JP5286217B2 (en) Machine structural steel with excellent hot workability, cold workability, and hardness after cold work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5114189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees