JP3742232B2 - Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same - Google Patents

Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same Download PDF

Info

Publication number
JP3742232B2
JP3742232B2 JP29107998A JP29107998A JP3742232B2 JP 3742232 B2 JP3742232 B2 JP 3742232B2 JP 29107998 A JP29107998 A JP 29107998A JP 29107998 A JP29107998 A JP 29107998A JP 3742232 B2 JP3742232 B2 JP 3742232B2
Authority
JP
Japan
Prior art keywords
steel wire
less
vpf
pro
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29107998A
Other languages
Japanese (ja)
Other versions
JP2000119809A (en
Inventor
浩 家口
英雄 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29107998A priority Critical patent/JP3742232B2/en
Publication of JP2000119809A publication Critical patent/JP2000119809A/en
Application granted granted Critical
Publication of JP3742232B2 publication Critical patent/JP3742232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、中炭素鋼や低合金鋼を球状化焼鈍後に冷間鍛造により部品に加工される様な鋼線材およびその製造方法に関し、殊に球状化焼鈍の際に迅速球状化が可能で冷間鍛造性にも優れた鋼線材、およびその様な鋼線材を製造する為の有用な方法に関するものである。尚本発明で対象とする鋼線材は、主に熱間圧延によって作られ、通常9.0mmφ以下の断面の丸い鋼材をコイル状にしたものを意味するが、直径9.5mmφ以上の棒鋼をコイル状に巻き取った「バーインコイル」をも含むものである。また熱間圧延した後に冷間伸線した鋼線材も含む趣旨である。
【0002】
【従来の技術】
鋼材を冷間で加工する冷間鍛造は、生産性が高いことから幅広い分野で利用されている。冷間鍛造に供される素材は、局部的に激しい変形を受けるために、材料割れによる不良の発生や、工具ダイスの破損などの事故が起こりやすい。こうしたことから、比較的高硬度で成形性の悪い中炭素鋼や低合金鋼を素材として冷間鍛造する場合には、冷間加工性を向上させるために鋼中の炭化物を球状化するための球状化焼鈍が行なわれるのが一般的である。
【0003】
上記の様な球状化焼鈍を施すことによって、鋼材の変形能の向上が図れると共に、ダイス寿命の延伸に効果がある変形抵抗低減が達成されるのであるが、球状化焼鈍は10〜50時間と長時間を要する処理であることが知られており、迅速に球状化が可能な素材が求められているのが実状である。またこうした迅速球状化を行なう際には、球状化焼鈍処理における基本的な機能である優れた冷間鍛造性を得ること、特に変形能を劣化させないことが重要な要件である。
【0004】
鋼材の迅速球状化に関する技術はこれまでにも様々開発されており、例えば特公昭56−37288号や同59−35410号等には、球状化処理前の組織を硬質相のマルテンサイトやベイナイトにする方法が提案されている。これらの方法によれば、比較的短時間に球状化が達成されるのであるが、球状化焼鈍後も鋼材の硬度が低くならずに変形抵抗が高く、工具ダイスの寿命低下という問題は依然として解消されない。
【0005】
またフェライト・パーライト組織で微細化を図り迅速球状化を狙う手段がいくつか開示されているが、十分な効果が得られているとは言い難い。例えば特公昭63−45441号、特公平2−6809号、特開昭60−255922等には、熱間圧延時の塑性歪を残したまま変態させて、迅速球状化させる技術が開示されている。しかしながらこれらの技術では、迅速球状化は達成できても、変態後の組織は圧延方向に展伸されているので、変形能はむしろ劣化している。
【0006】
更に、特開昭62−139817号や同63−20419号では、フェライト粒径を5〜6μm以下とすることで迅速球状化を図っているが、このように前組織を超微細化すると、硬さを十分に低下させるのに却って長時間の球状化時間が必要となり、本発明が想定する迅速球状化条件(処理時間5〜15時間程度)では、むしろ変形抵抗が高く工具寿命が低下する問題がある。
【0007】
一方、特開昭47−8503号においては、最終圧延後の冷却において、初析フェライトの生成を抑制するに足る速さで冷却することで迅速球状化を図っている。しかしながら、初析フェライトを極端に抑制すると、硬質相であるパーライトやベイナイトの量が増大し、圧延後の硬さ上昇が問題となるだけでなく、球状化焼鈍後も硬さ低下が不十分となる。従って、本発明が想定している迅速球状化条件では、変形抵抗が高く工具寿命の低下の問題がある。
【0008】
また、例えば特公平2−6809号で開示されている一般的な圧延終了後の冷却速度である0.15〜10℃/秒では、初析フェライトとパーライトを主体とする組織となるが、必要な初析フェライト量を規定した技術はこれまで提案されていない。即ち、これまでの技術では、同一コイル内または異なったコイル間で初析セメンタイト量を一定とすることを想定したものではなく、その結果として鋼線材中の球状化程度が異なることが多かった。そして冷間鍛造時の変形能が最も悪い場所で全体の変形能が律速されるので、組織のばらつきは、冷間鍛造時の変形能の低下を意味する。
【0009】
【発明が解決しようとする課題】
本発明はこうした状況の下でなされたものであって、その目的は、冷間鍛造前の迅速球状化と、変形能を向上して優れた冷間鍛造性を併せて実現することができる鋼線材、およびその為の有用な方法を提供するものである。
【0010】
【課題を解決するための手段】
上記目的を達成し得た本発明の鋼線材とは、C:0.2〜0.6%、Si:0.3%以下、Mn:0.2〜1.5%およびAl:0.01〜0.06%を夫々含有すると共に、P:0.02%以下(0%を含む)、S:0.02%以下(0%を含む)およびN:0.01%以下(0%を含む)に夫々抑制し、残部Feおよび不可避不純物からなる熱間圧延鋼線材または冷間伸線された鋼線材において、初析フェライトとパーライトが合計で90体積%以上である組織を有すると共に、平均結晶粒径が6〜15μmであり、且つ下記(1)式で表される平均初析フェライト体積率(Vpf)に対する初析フェライト体積率(Vf)の比(Vf/Vpf)が0.05〜0.75である点に要旨を有するものである。
Vpf=(0.8−Ceq1)×129 …(1)
但し、Ceq1(%)=[C%]+0.10[Si%]+0.06[Mn%]であり、[C%]、[Si%]および[Mn%]は、夫々C,SiおよびMnの含有量(質量%)を示す。
【0011】
上記本発明では、C,Si,MnおよびAlを含有し、P,SおよびNを夫々抑制し、残部がFeおよび不可避不純物からなる熱間圧延鋼線材または冷間伸線された鋼線材を対象とするものであるが、これらの成分の他、Cr:2%以下(0%を含まない)、Mo:1%以下(0%を含まない)およびNi:3%以下(0%を含まない)よりなる群から選ばれる1種以上の元素を含む熱間圧延鋼線材または冷間伸線された鋼線材において、初析フェライトとパーライトが合計で90体積%以上である組織を有すると共に、平均結晶粒径が6〜15μmであり、且つ下記(2)式で表される平均初析フェライト体積率(Vpf)に対する初析フェライト体積率(Vf)の比(Vf/Vpf)が0.05〜0.75である様な鋼線材においても上記目的を達成することができる。
【0012】
Vpf=(0.8−Ceq2)×129 …(2)
但し、Ceq2(%)=[C%]+0.10[Si%]+0.06[Mn%]+0.11[Cr%]−0.16[Mo%]+0.04[Ni%]であり、[C%]、[Si%]、[Mn%]、[Cr%]、[Mo%]および[Ni%]は、夫々C、Si、Mn、Cr、MoおよびNiの含有量(質量%)を示す。
【0013】
一方、本発明の鋼線材を製造するに当たっては、上記各化学成分組成を満足する鋼材を用い、(1)750〜950℃の温度で熱間仕上げ圧延した後、5℃/秒以上の冷却速度で600〜650℃まで冷却し、引き続き1℃/秒以下の冷却速度で徐冷するか、または(2)750〜950℃の温度で熱間仕上げ圧延した後、50℃/秒以上の冷却速度で700〜800℃まで冷却し、その後5℃/秒以上の冷却速度で600〜650℃まで冷却し、引き続き1℃/秒以下の冷却速度で徐冷する様にすれば良い。
【0014】
【発明の実施の形態】
本発明者らは、球状化時間を短縮させても変形抵抗の低減と変形能向上の両方を満足させることのできる最適な前組織を検討した。その結果、フェライトとパーライトを主体とする組織において、その平均結晶粒径を調整すると共に、パーライト体積率を増大して初析フェライト体積率を低減させることが有効であることが判明した。即ち、平均結晶粒径を6〜15μmに調整し、且つ化学成分に応じた上記(1)式または(2)式で表される平衡初析フェライト体積率(Vpf1 またはVpf2 )に対する初析フェライト体積率Vfの比(Vf/Vpf1 またはVf/Vpf2 )が0.05〜0.75である様な鋼線材においては、上記目的が見事に達成されることを見出し、本発明を完成した。
【0015】
上記比(Vf/Vpf1 またはVf/Vpf2 )の値が0.05未満となると、初析フェライトの体積割合が小さくなり、圧延後の硬さ上昇が問題となるだけでなく、球状化焼鈍後も硬さ低下が不十分であるので、変形抵抗が高く工具寿命の低下の問題が生じる。一方、上記比(Vf/Vpf1 またはVf/Vpf2 )の値が0.75よりも大きくなると、球状化時間も長くかかると同時に、迅速球状化条件では変形能が低下する。尚上記比の値の好ましい範囲は、0.15〜0.60程度であり、この範囲内では本発明の効果が最も有効に達成される。また本発明の鋼線材は、前述の如く初析フェライトとパーライトを主体とするものであるが、その他微量であればベイナイトやマルテンサイト等の組織が混在していても良い。但し、これらマルテンサイトやベイナイトの組織が多量に生成すると、球状化焼鈍後も硬さが低下せず、冷間鍛造時の工具寿命が低下するので、その量は10%以下にすべきである。
【0016】
本発明の鋼線材においては、その平均結晶粒径を6〜15μmに調整する必要がある。この平均結晶粒径が15μmを超えて粗い組織となると、球状化時間が長くかかると共に、線材の変形能も十分でなくなる。逆に、平均結晶粒径が6μm未満となって微細になると変形能は向上するが、硬さの低下に時間がかかり、迅速球状化に適しない。この平均結晶粒径の好ましい範囲は、7〜12μmである。尚通常の熱間圧延材のフェライト・パーライト組織の平均結晶粒径は15〜25μm程度である。
【0017】
本発明の鋼線材において、その平均結晶粒径が6〜15μm(好ましくは7〜12μm)である(フェライト+パーライト)組織にする為には、熱間圧延条件の制御、特に最終圧延温度の制御が重要な要件となる。こうした観点からして、熱間仕上げ圧延温度を750〜950℃とする必要がある。熱間仕上げ圧延温度が750〜950℃の温度範囲となる様にすれば、線材断面内の全てで平均結晶粒径が6〜15μmとなる(フェライト+パーライト)組織を生成し得る。
【0018】
熱間仕上げ圧延温度が950℃を超えると、組織の粗大化が起こる。またこの温度が750℃未満となると、平均結晶粒径が6μm未満となる可能性がある。この場合、前述した様に硬さの低下が不十分で、冷間鍛造時の工具寿命低下の問題が生ずる。また圧延時の塑性歪を有したまま変態し、圧延方向に展伸された結晶粒が生成する可能性も高くなり、このときには変態後の組織は圧延方向に展伸されているので、変形能が低下する。尚本発明における熱間仕上げ圧延温度とは、最終仕上圧延機出側での線材表面温度を意味する。
【0019】
初析フェライト体積率Vpfを調整するには、550〜650℃程度の温度で恒温変態して、硬質相であるベイナイトやマルテンサイトの生成を抑制することによって可能となる。また、圧延後に前記比(Vf/Vpf1 またはVf/Vpf2 )の値を0.05〜0.75にする為には、圧延後の冷却条件の制御が必要である。特に、微細な(フェライト+パーライト)結晶粒を得るために上記のように圧延条件を制御してオーステナイト結晶粒を微細化すると、変態が促進されるので、初析フェライト分率が増加する傾向がある。従って、微細結晶粒を得るときには特に、ベイナイトやマルテンサイトが生成しない程度の急冷が必要となる。
【0020】
線材圧延においては、最適冷却条件は成分によって異なるが、熱間仕上げ圧延した後、600〜650℃まで冷却速度5℃/秒以上の冷却速度で冷却し、引き続き1℃/秒以下の冷却速度で徐冷することにより、フェライト分率を低下させながらベイナイトやマルテンサイトの生成を抑制することが可能となる。このときの徐冷終了温度は、(フェライト+パーライト)変態がほぼ終了するまで行なう。尚この冷却工程において、650℃を超える温度で徐冷を開始すると、初析フェライトが多量に生成するので迅速球状化に適しない。また600℃未満の温度で徐冷を開始すると、ベイナイトやマルテンサイトが生成する恐れがある。更に、600〜650℃までを5℃/秒未満の冷却速度で冷却すると、初析フェライトが多量に生成する恐れがある。それ以降の温度を1℃/秒を超える冷却速度で冷却するとベイナイトやマルテンサイトが生成する恐れがある。
【0021】
上記製造工程において、上記熱間仕上げ圧延後、一旦700〜800℃まで冷却速度50℃/秒以上で冷却し、その後600〜650℃まで冷却速度5℃/秒以上で冷却し、それに引き続き1℃/秒以下で徐冷する様にしても良い。この方法によって、仕上圧延後の結晶粒粗大化を防止できると同時に、初析フェライトの生成を抑制することが出来る。この方法を採用するときには、600〜650℃までを冷却速度50℃/秒以上で急冷すると、温度バラツキによって部分的にはベイナイトやマルテンサイトが生成する可能性があることと、断面内の温度分布が付いたまま変態して、断面内で組織が大きく異なる可能性が生じるので、700〜800℃で冷却速度を変更することが望ましい。
【0022】
本発明の鋼線材は、C,SiおよびMnを基本成分として含む熱間圧延鋼線材または冷間伸線された鋼線材を対象とするのであるが、これらの成分の他、Cr:2%以下(0%を含まない)、Mo:1%以下(0%を含まない)およびNi:3%以下(0%を含まない)よりなる群から選ばれる1種以上の元素を含む含む熱間圧延鋼線材または冷間伸線された鋼線材を対象とする。これらの元素の範囲限定理由は下記の通りである。尚、前述した如く、鋼線材の化学成分組成に応じて、前記(1)式または(2)式で表される平衡初析フェライト体積率(Vpf1 )または(Vpf2 )を採用する必要がある。
【0023】
C:0.2〜0.6%
Cは、強度付与元素であり、0.2%未満では必要な強度が得られない。一方、0.6%を超えると冷間加工性の低下、靱性の低下があるので、これを上限とする。尚C含有量の好ましい下限は、0.3%であり、好ましい上限は0.5%である。
【0024】
Si:0.3%以下
Siは、脱酸剤として添加されるが、多量に添加すると強度上昇が著しく、冷間加工性が低下するので、上限を0.3%にする。尚Si含有量の好ましい上限は0.25%である。
【0025】
Mn:0.2〜1.5%
Mnは、脱酸・脱硫剤および焼入れ性向上元素として添加されるが、その効果を発揮させるためには0.2%以上含有させる必要がある。しかしながら、その含有量が過剰になると、偏析による組織の不均一性が生じ、冷間加工性や靱性の低下を招くので、上限を1.5%とする必要がある。尚Mn含有量の好ましい下限は、0.4%であり、好ましい上限は1.0%である。
【0026】
Cr:2%以下(0%を含まない)、Mo:1%以下(0%を含まない)およびNi:3%以下(0%を含まない)よりなる群から選ばれる1種以上の元素
Cr、MoおよびNiは、焼入れ性確保に有効であるが、過剰に含有させると冷間鍛造性や靱性を劣化させるので、上限をそれぞれ2%、1%、3%とする必要がある。尚これらの元素による上記効果は、上記範囲内ではその含有量を増加させるにつれておおきくなるが、上記効果を発揮させる為には、Crで0.10%以上、Moで0.05%以上、Niで0.20%以上含有させることが好ましい。
【0027】
本発明の鋼線材においては、Al:0.01〜0.06%を含有すると共に、P:0.02%以下(0%を含む)、S:0.02以下(0%を含む)およびN:0.01%以下(0%を含む)に夫々抑制することも有効であり、これによって鋼線材の特性を更に向上させることができる。また本発明の鋼線材における上記の基本的な化学成分組成の他は、Feおよび不可避不純物からなるものであるが、必要によってV,Ti,B,Ca等を含有させることも有効である。これらの元素の範囲限定理由は、下記の通りである。尚これらの成分以外にも、本発明の鋼線材には、その特性を阻害しない程度の微量成分を含み得るものであり、こうした鋼線材も本発明の範囲に含まれるものである。
【0028】
Al:0.01〜0.06%
Alは脱酸剤であると同時に、窒素の固定による冷間鍛造中の動的歪時効を抑制して、変形抵抗の低減を図る働きがある。こうした効果を発揮させる為には、少なくとも0.01%含有させる必要があるが、過剰になると却って靱性を低下させるので、上限を0.06%とした。尚Al含有量の好ましい下限は0.02%であり、好ましい上限は0.04%である。
【0029】
P:0.02%以下(0%を含む)、S:0.02%以下(0%を含む)
PとSは、冷間加工性、特に変形能を低下させるので、いずれも0.02%以下に抑制する必要がある。尚これらの元素は、いずれも0.01%以下に抑制することが好ましい。
【0030】
N:0.01%以下(0%を含む)
Nは、冷間鍛造中の動的歪時効を起こし、変形抵抗上昇と変形能の低下を招くので、上限を0.01%とする。尚N含有量は、0.006%以下に抑制することが好ましい
V:0.5%以下(0%を含まない)
Vは析出強化を目的として添加しても良いが、多量に添加すると冷間鍛造性や靱性を劣化させるので、その上限を0.5%とする。
【0031】
Ti:0.1%以下(0%を含まない)
Tiは固溶Nの固定による動的歪時効抑制効果によって、冷間鍛造時の変形抵抗低減に有効な元素であるので添加して良い。特にBを添加した場合は、冷鍛後の調質時の焼入れ性を安定させるためにN添加が不可欠であり、Ti添加がN固定に効果を発揮する。但し、過剰に含有させると、粗大なTiNが析出して機械的性質を損なうので、上限を0.1%とする。
【0032】
B:0.01%以下(0%を含まない)
Bは少量でも焼入れ性を上昇させるのに有効な元素であるので、必要により添加しても良い。但し、過剰に含有させると靱性を劣化させるので、上限を0.01%とする。
【0033】
Ca:0.01%以下(0%を含まない)
Caは、MnSの形態を球状化して、横方向の靱性を向上させる効果があるので添加しても良いが、過剰に含有させると大型介在物を生成して、機械的性質を損なうので、上限を0.01%とする。
【0034】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0035】
【実施例】
実施例1
S45C相当鋼(C:0.45%、Si:0.17%、Mn:0.75%)を用い、熱間加工シミュレーターで800℃と1000℃で加工後、500℃、600℃、700℃まで急冷して、その温度で恒温保持した。組織はすべてフェライト+パーライト組織となっていたが、初析フェライト体積率Vf、および初析フェライト体積率Vfと平衡初析フェライト体積率Vpf1 との比(Vf/Vpf1 )は、下記表1に示すような値となった。このとき球状化焼鈍は、180℃/hで740℃まで昇温し、この温度で4時間保持した後、680℃まで12℃/hで徐冷し、その後放冷する方法で球状化処理を標準条件とした。迅速球状化条件としては、680℃までの冷却を24℃/hで行った。
【0036】
変形能は、冷間鍛造性との相関が確認されている微小サンプルを変形し、割れが発生するまでの変形量で評価した。変形量値が大きいほど変形能は良好となる。硬さは、荷重5kgでビッカース硬さを測定した。
【0037】
その結果を、下記表1に併記するが、この結果から明らかな様に、前記比(Vf/Vpf1 )の値を適切な範囲に調整することによって、短時間の球状化条件でも十分に低い硬さと良好な変形能が得られていることが分かる。
【0038】
【表1】

Figure 0003742232
【0039】
実施例2
供試材の成分を表2に示す。これらを下記表3に示す種々の条件で、線径8〜16mmの線材に熱間圧延した。尚このときの圧延温度は最表層で評価している。熱間圧延後の組織観察は、最表層より0.3mm内部に入った表層部で評価した。
【0040】
上記圧延材を、180℃/hで(Ac1 +20℃)まで昇温し、その温度で4時間保持した。その後、680℃まで迅速化条件である18℃/hで徐冷し、その後放冷する方法で球状化処理を行った。
【0041】
球状化程度は、夫々の試料の表面とD/4の位置で、球状化した炭化物の割合と、硬さで評価した。球状化した炭化物の観察では、25μm四方の領域を2000倍の走査型電子顕微鏡(SEM)で観察し、個々の炭化物の個数とアスペクト比を求めた。アスペクト比が3以下の物を球状化した炭化物とし、全数に占める割合を求め、10視野での平均を計算した。硬さは、荷重5kgのビッカース硬さを5点測定して平均を求めた。冷間鍛造性は、切り欠き付きの据え込み試験で評価した。その結果を、下記表4に示す。
【0042】
【表2】
Figure 0003742232
【0043】
【表3】
Figure 0003742232
【0044】
【表4】
Figure 0003742232
【0045】
これらの結果から、次の様に考察できる。まずNo.2,3,5,13,15,21〜25のものは、本発明で規定する要件を外れるものである。No.2は、低めの温度で圧延した後、600℃より低い温度まで冷却したため、上記比(Vf/Vpf1 またはVf/Vpf2 )の値が0.05よりも小さくなり、球状化度は良いが、硬さが高くなっている。No.3のものは、圧延後の徐冷を650℃よりも高い温度から徐冷を始めたので、上記比(Vf/Vpf1 またはVf/Vpf2 )の値が0.75よりも大きくなっており、硬さは低いが、据え込み限界が低くなっている。
【0046】
No.5のものは、圧延温度が950℃よりも高くなっており、平均結晶粒径が15μmよりも大きくなって、球状化率と据え込み率の両方とも悪くなっている。No.13のものは、圧延温度が750℃よりも低くなっており、粒径が5μm以下になり、圧延方向に伸びた結晶粒になっており、硬さが高く、据え込み限界も低くなっている。No.15のものは、1℃/s以下での徐冷開始温度が低くなっており、ベイナイト組織となり、球状化後も硬さが高くなっている。
【0047】
No.21のものは、Mnが多くベイナイトが生成しており、特性が劣化している。No.22のものは、Siが多く硬さが高い。No.23はAlが多いために据え込み限界が低くなっている。No.24のものは、Alを無添加のため、また、No.25はN量が多いため、Nによる歪時効を抑制できず、据え込み限界が低くなっている。
【0048】
これに対して、上記以外のNo.1,4,6〜12,14,16〜20のものでは、迅速球状化が達成され、球状化率と据え込み率の両方とも良好な値を示していることが分かる。
【0049】
【発明の効果】
本発明は以上の様に構成されており、鋼線材における冷間鍛造前の迅速球状化と、変形抵抗を向上して優れた冷間鍛造性を併せて実現することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel wire material and a manufacturing method thereof, in which medium carbon steel and low alloy steel are processed into parts by cold forging after spheroidizing annealing, and in particular, rapid spheroidizing is possible during spheroidizing annealing. The present invention relates to a steel wire excellent in inter-forgeability and a useful method for producing such a steel wire. The steel wire material to be used in the present invention means a steel wire made mainly by hot rolling and usually having a round cross section of 9.0 mmφ or less in a coil shape. However, a steel bar having a diameter of 9.5 mmφ or more is coiled. It also includes a “burn-in coil” wound into a shape. Moreover, it is the meaning also including the steel wire which cold-drawn after hot rolling.
[0002]
[Prior art]
Cold forging, in which steel is processed cold, is used in a wide range of fields because of its high productivity. Since the material used for cold forging is subjected to severe deformation locally, accidents such as generation of defects due to material cracking and breakage of tool dies are likely to occur. For this reason, when cold forging with relatively high hardness and low formability medium carbon steel or low alloy steel, the carbide in the steel is spheroidized to improve cold workability. Spheroidizing annealing is generally performed.
[0003]
By performing the spheroidizing annealing as described above, the deformability of the steel material can be improved and a reduction in deformation resistance effective for extending the die life can be achieved, but the spheroidizing annealing takes 10 to 50 hours. It is known that this is a process that requires a long time, and the fact is that a material that can be quickly spheroidized is required. Moreover, when performing such rapid spheroidization, it is an important requirement to obtain excellent cold forgeability, which is a basic function in the spheroidizing annealing treatment, and in particular not to deteriorate the deformability.
[0004]
Various technologies relating to rapid spheroidization of steel materials have been developed so far. For example, in Japanese Patent Publication Nos. 56-37288 and 59-35410, the structure before spheroidizing treatment is changed to martensite or bainite in a hard phase. A method has been proposed. According to these methods, spheroidization can be achieved in a relatively short time, but the problem of reduced tool die life is still solved even after spheroidizing annealing because the hardness of the steel material is not lowered and the deformation resistance is high. Not.
[0005]
Although several means for miniaturizing the ferrite / pearlite structure and aiming for quick spheroidization have been disclosed, it is difficult to say that sufficient effects have been obtained. For example, Japanese Patent Publication No. 63-45441, Japanese Patent Publication No. 2-6809, Japanese Patent Application Laid-Open No. 60-255922, etc. disclose a technique for transforming while leaving the plastic strain during hot rolling and rapidly spheroidizing. . However, in these techniques, even when rapid spheroidization can be achieved, the deformability is rather deteriorated because the structure after transformation is stretched in the rolling direction.
[0006]
Furthermore, in Japanese Patent Application Laid-Open Nos. 62-139817 and 63-20419, rapid spheroidization is achieved by setting the ferrite particle size to 5 to 6 μm or less. On the contrary, a long spheroidizing time is required to sufficiently reduce the thickness. Under the rapid spheronizing conditions assumed by the present invention (processing time of about 5 to 15 hours), the deformation resistance is rather high and the tool life is reduced. There is.
[0007]
On the other hand, in Japanese Patent Application Laid-Open No. 47-8503, rapid spheroidization is achieved by cooling at a speed sufficient to suppress the formation of pro-eutectoid ferrite in cooling after final rolling. However, if the pro-eutectoid ferrite is extremely suppressed, the amount of pearlite and bainite that are hard phases increases, and not only the increase in hardness after rolling becomes a problem, but also the decrease in hardness is insufficient after spheroidizing annealing. Become. Therefore, under the rapid spheroidizing condition assumed by the present invention, there is a problem that the deformation resistance is high and the tool life is reduced.
[0008]
In addition, for example, at a cooling rate of 0.15 to 10 ° C./second, which is a general cooling rate after completion of rolling disclosed in Japanese Patent Publication No. 2-6809, a structure mainly composed of proeutectoid ferrite and pearlite is necessary. No technology that defines the amount of proeutectoid ferrite has been proposed. That is, the conventional technology does not assume that the amount of pro-eutectoid cementite is constant in the same coil or between different coils, and as a result, the degree of spheroidization in the steel wire often differs. And since the whole deformability is rate-limited in the place where the deformability at the time of cold forging is the worst, the dispersion | variation in a structure | tissue means the fall of the deformability at the time of cold forging.
[0009]
[Problems to be solved by the invention]
The present invention has been made under such circumstances, and its purpose is to achieve rapid spheroidization before cold forging and steel that can improve deformability and achieve excellent cold forgeability. A wire and a useful method therefor are provided.
[0010]
[Means for Solving the Problems]
The steel wire rod of the present invention that can achieve the above-mentioned object is: C: 0.2 to 0.6%, Si: 0.3% or less, Mn: 0.2 to 1.5%, and Al: 0.01 0.06% or less (including 0%), S: 0.02% or less (including 0%), and N: 0.01% or less (0%) In the hot-rolled steel wire or the cold-drawn steel wire consisting of the balance Fe and inevitable impurities, each of which has a structure in which the pro-eutectoid ferrite and pearlite are 90% by volume or more in total, and the average The ratio (Vf / Vpf 1 ) of the pro-eutectoid ferrite volume fraction (Vf) to the average pro-eutectoid ferrite volume fraction (Vpf 1 ) expressed by the following formula (1) is 0 to 15 μm. It has a gist in that it is 05 to 0.75.
Vpf 1 = (0.8−Ceq1) × 129 (1)
However, Ceq1 (%) = [C%] + 0.10 [Si%] + 0.06 [Mn%], where [C%], [Si%] and [Mn%] are C, Si and Mn, respectively. Content (mass%).
[0011]
In the present invention, a hot-rolled steel wire or a cold-drawn steel wire containing C, Si, Mn and Al, suppressing P, S and N, respectively, the balance being Fe and unavoidable impurities is an object. In addition to these components, Cr: 2% or less (not including 0%), Mo: 1% or less (not including 0%), and Ni: 3% or less (not including 0%) ) In a hot-rolled steel wire or a cold-drawn steel wire containing one or more elements selected from the group consisting of: a proeutectoid ferrite and a pearlite having a structure of 90% by volume or more in total; The ratio (Vf / Vpf 2 ) of the pro-eutectoid ferrite volume fraction (Vf) to the average pro-eutectoid ferrite volume fraction (Vpf 2 ) expressed by the following formula (2) is 0 to 15 μm. A steel wire smell such as 05-0.75 You can also achieve the above object.
[0012]
Vpf 2 = (0.8−Ceq2) × 129 (2)
However, Ceq2 (%) = [C%] + 0.10 [Si%] + 0.06 [Mn%] + 0.11 [Cr%] − 0.16 [Mo%] + 0.04 [Ni%] [C%], [Si%], [Mn%], [Cr%], [Mo%] and [Ni%] are the contents (mass%) of C, Si, Mn, Cr, Mo and Ni, respectively. Indicates.
[0013]
On the other hand, in manufacturing the steel wire of the present invention, a steel material satisfying the above chemical composition is used, and (1) after hot finish rolling at a temperature of 750 to 950 ° C., a cooling rate of 5 ° C./second or more. At 600 to 650 ° C. and then gradually cooled at a cooling rate of 1 ° C./second or (2) after hot finish rolling at a temperature of 750 to 950 ° C. and then at a cooling rate of 50 ° C./second or more. And then cooled to 700 to 800 ° C., then cooled to 600 to 650 ° C. at a cooling rate of 5 ° C./second or more, and then gradually cooled at a cooling rate of 1 ° C./second or less.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have studied an optimal pre-structure that can satisfy both the reduction of deformation resistance and the improvement of deformability even when the spheroidizing time is shortened. As a result, it was found that, in a structure mainly composed of ferrite and pearlite, it is effective to adjust the average crystal grain size and increase the pearlite volume fraction to reduce the pro-eutectoid ferrite volume fraction. In other words, the average crystal grain size is adjusted to 6 to 15 μm, and the proeutectoid for the equilibrium proeutectoid ferrite volume ratio (Vpf 1 or Vpf 2 ) represented by the above formula (1) or (2) according to the chemical composition The steel wire material having a ferrite volume fraction Vf ratio (Vf / Vpf 1 or Vf / Vpf 2 ) of 0.05 to 0.75 has been found to achieve the above object, and the present invention has been completed. did.
[0015]
When the value of the ratio (Vf / Vpf 1 or Vf / Vpf 2 ) is less than 0.05, the volume ratio of pro-eutectoid ferrite becomes small, and not only the increase in hardness after rolling becomes a problem, but also spheroidizing annealing. After that, since the hardness is not sufficiently lowered, there is a problem that the deformation resistance is high and the tool life is reduced. On the other hand, if the value of the ratio (Vf / Vpf 1 or Vf / Vpf 2 ) is larger than 0.75, the spheroidizing time takes longer, and at the same time, the deformability decreases under the rapid spheroidizing condition. The preferred range of the ratio is about 0.15 to 0.60, and the effect of the present invention is most effectively achieved within this range. The steel wire of the present invention is mainly composed of pro-eutectoid ferrite and pearlite as described above, but may contain a mixture of bainite, martensite, and the like as long as the amount is small. However, if these martensite and bainite structures are produced in large quantities, the hardness does not decrease even after spheroidizing annealing, and the tool life during cold forging decreases, so the amount should be 10% or less. .
[0016]
In the steel wire of the present invention, it is necessary to adjust the average crystal grain size to 6 to 15 μm. When the average crystal grain size exceeds 15 μm and becomes a rough structure, it takes a long time to spheroidize and the deformability of the wire becomes insufficient. On the contrary, when the average crystal grain size becomes less than 6 μm and becomes finer, the deformability is improved, but it takes time to reduce the hardness and is not suitable for rapid spheroidization. A preferable range of this average crystal grain size is 7 to 12 μm. The average crystal grain size of the ferrite / pearlite structure of a normal hot-rolled material is about 15 to 25 μm.
[0017]
In the steel wire of the present invention, in order to obtain a (ferrite + pearlite) structure having an average crystal grain size of 6 to 15 μm (preferably 7 to 12 μm), control of hot rolling conditions, particularly control of final rolling temperature. Is an important requirement. From this point of view, the hot finish rolling temperature needs to be 750 to 950 ° C. When the hot finish rolling temperature is set to a temperature range of 750 to 950 ° C., a structure (ferrite + pearlite) having an average crystal grain size of 6 to 15 μm can be generated in the entire wire cross section.
[0018]
When the hot finish rolling temperature exceeds 950 ° C., the structure becomes coarse. When this temperature is less than 750 ° C., the average crystal grain size may be less than 6 μm. In this case, as described above, the hardness is not sufficiently lowered, which causes a problem that the tool life is reduced during cold forging. In addition, there is a high possibility that crystal grains transformed with the plastic strain at the time of rolling and stretched in the rolling direction are formed, and at this time, the structure after the transformation is stretched in the rolling direction. Decreases. In addition, the hot finish rolling temperature in this invention means the wire surface temperature in the final finish rolling mill delivery side.
[0019]
In order to adjust the pro-eutectoid ferrite volume fraction Vpf, it is possible to perform isothermal transformation at a temperature of about 550 to 650 ° C. to suppress the formation of bainite and martensite which are hard phases. In order to set the value of the ratio (Vf / Vpf 1 or Vf / Vpf 2 ) to 0.05 to 0.75 after rolling, it is necessary to control the cooling conditions after rolling. In particular, if the austenite crystal grains are refined by controlling the rolling conditions as described above in order to obtain fine (ferrite + pearlite) crystal grains, the transformation is promoted, so that the pro-eutectoid ferrite fraction tends to increase. is there. Therefore, particularly when obtaining fine crystal grains, rapid cooling to the extent that bainite and martensite are not generated is necessary.
[0020]
In wire rod rolling, the optimum cooling conditions differ depending on the components, but after hot finish rolling, the steel is cooled to 600 to 650 ° C. at a cooling rate of 5 ° C./second or more, and subsequently at a cooling rate of 1 ° C./second or less. By slow cooling, it becomes possible to suppress the formation of bainite and martensite while reducing the ferrite fraction. The annealing end temperature at this time is continued until the (ferrite + pearlite) transformation is almost completed. In this cooling step, if slow cooling is started at a temperature exceeding 650 ° C., a large amount of pro-eutectoid ferrite is generated, which is not suitable for rapid spheroidization. Moreover, when slow cooling is started at a temperature lower than 600 ° C., bainite and martensite may be generated. Furthermore, when 600 to 650 ° C. is cooled at a cooling rate of less than 5 ° C./second, a large amount of pro-eutectoid ferrite may be generated. If the subsequent temperature is cooled at a cooling rate exceeding 1 ° C./second, bainite and martensite may be generated.
[0021]
In the manufacturing process, after the hot finish rolling, the steel sheet is once cooled to 700 to 800 ° C. at a cooling rate of 50 ° C./second or more, then cooled to 600 to 650 ° C. at a cooling rate of 5 ° C./second or more, and subsequently 1 ° C. May be gradually cooled at a rate of less than 1 second. By this method, coarsening of crystal grains after finish rolling can be prevented, and at the same time, generation of proeutectoid ferrite can be suppressed. When this method is adopted, when quenching from 600 to 650 ° C. at a cooling rate of 50 ° C./second or more, bainite and martensite may be partially generated due to temperature variation, and temperature distribution in the cross section It is desirable to change the cooling rate at 700 to 800 ° C. because there is a possibility that the structure is greatly changed in the cross section while being transformed.
[0022]
The steel wire of the present invention is intended for a hot rolled steel wire or a cold-drawn steel wire containing C, Si and Mn as basic components. In addition to these components, Cr: 2% or less (Not including 0%), Mo: not more than 1% (not including 0%) and Ni: not more than 3% (not including 0%), hot rolling including one or more elements selected from the group consisting of For steel wire or cold-drawn steel wire. The reasons for limiting the ranges of these elements are as follows. As described above, it is necessary to employ the equilibrium pro-eutectoid ferrite volume fraction (Vpf 1 ) or (Vpf 2 ) represented by the formula (1) or (2) according to the chemical composition of the steel wire. is there.
[0023]
C: 0.2 to 0.6%
C is a strength imparting element, and if it is less than 0.2%, the required strength cannot be obtained. On the other hand, if it exceeds 0.6%, there is a decrease in cold workability and a decrease in toughness, so this is the upper limit. In addition, the minimum with preferable C content is 0.3%, and a preferable upper limit is 0.5%.
[0024]
Si: 0.3% or less Si is added as a deoxidizing agent, but if added in a large amount, the strength rises remarkably and the cold workability decreases, so the upper limit is made 0.3%. In addition, the preferable upper limit of Si content is 0.25%.
[0025]
Mn: 0.2 to 1.5%
Mn is added as a deoxidizing / desulfurizing agent and a hardenability improving element, but in order to exert its effect, it is necessary to contain 0.2% or more. However, if the content is excessive, non-uniformity of the structure due to segregation occurs and cold workability and toughness are reduced, so the upper limit needs to be 1.5%. In addition, the minimum with preferable Mn content is 0.4%, and a preferable upper limit is 1.0%.
[0026]
One or more elements Cr selected from the group consisting of Cr: 2% or less (not including 0%), Mo: 1% or less (not including 0%), and Ni: 3% or less (not including 0%) , Mo and Ni are effective for ensuring hardenability, but if they are contained excessively, cold forgeability and toughness deteriorate, so the upper limits need to be 2%, 1% and 3%, respectively. The above effect by these elements increases as the content increases within the above range. However, in order to exert the above effect, 0.10% or more of Cr, 0.05% or more of Mo, Ni The content is preferably 0.20% or more.
[0027]
In the steel wire rod of the present invention, Al: 0.01 to 0.06%, P: 0.02% or less (including 0%), S: 0.02 or less (including 0%) and N: It is also effective to suppress each to 0.01% or less (including 0%), whereby the properties of the steel wire can be further improved. In addition to the above basic chemical component composition in the steel wire of the present invention, it is composed of Fe and inevitable impurities, but it is also effective to contain V, Ti, B, Ca or the like as necessary. The reasons for limiting the ranges of these elements are as follows. In addition to these components, the steel wire rod of the present invention can contain a trace amount component that does not impair the properties thereof, and such a steel wire rod is also included in the scope of the present invention.
[0028]
Al: 0.01 to 0.06%
At the same time as Al is a deoxidizer, it has a function of suppressing deformation strain by suppressing dynamic strain aging during cold forging due to fixation of nitrogen. In order to exert such an effect, it is necessary to contain at least 0.01%, but if it is excessive, the toughness is reduced instead, so the upper limit was made 0.06%. In addition, the minimum with preferable Al content is 0.02%, and a preferable upper limit is 0.04%.
[0029]
P: 0.02% or less (including 0%), S: 0.02% or less (including 0%)
P and S lower the cold workability, particularly the deformability, so both must be suppressed to 0.02% or less. In addition, it is preferable to suppress these elements to 0.01% or less.
[0030]
N: 0.01% or less (including 0%)
N causes dynamic strain aging during cold forging and causes an increase in deformation resistance and a decrease in deformability, so the upper limit is made 0.01%. The N content is preferably suppressed to 0.006% or less.
V: 0.5% or less (excluding 0%)
V may be added for the purpose of precipitation strengthening, but if added in a large amount, cold forgeability and toughness deteriorate, so the upper limit is made 0.5%.
[0031]
Ti: 0.1% or less (excluding 0%)
Ti is an element effective for reducing deformation resistance during cold forging due to the effect of suppressing the dynamic strain aging by fixing solute N, so Ti may be added. In particular, when B is added, N addition is indispensable in order to stabilize the hardenability during tempering after cold forging, and Ti addition exerts an effect on N fixation. However, if excessively contained, coarse TiN precipitates and impairs mechanical properties, so the upper limit is made 0.1%.
[0032]
B: 0.01% or less (excluding 0%)
Since B is an element effective for increasing the hardenability even in a small amount, B may be added if necessary. However, since an excessive content deteriorates toughness, the upper limit is made 0.01%.
[0033]
Ca: 0.01% or less (excluding 0%)
Ca may be added because it has the effect of improving the toughness in the transverse direction by spheroidizing the form of MnS, but if it is excessively contained, large inclusions are formed and the mechanical properties are impaired. Is 0.01%.
[0034]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
[0035]
【Example】
Example 1
S45C equivalent steel (C: 0.45%, Si: 0.17%, Mn: 0.75%) was processed at 800 ° C and 1000 ° C by a hot processing simulator, then 500 ° C, 600 ° C, 700 ° C The solution was rapidly cooled to a constant temperature. Although all the structures were ferrite + pearlite structures, the pro-eutectoid ferrite volume fraction Vf and the ratio (Vf / Vpf 1 ) between the pro-eutectoid ferrite volume fraction Vf and the equilibrium pro-eutectoid ferrite volume fraction Vpf 1 are shown in Table 1 below. The value was as shown in. At this time, the spheroidizing annealing is performed at a temperature of 180 ° C./h up to 740 ° C., held at this temperature for 4 hours, then gradually cooled down to 680 ° C. at 12 ° C./h, and then allowed to cool to perform spheroidizing treatment. Standard conditions were used. As rapid spheroidization conditions, cooling to 680 ° C. was performed at 24 ° C./h.
[0036]
Deformability was evaluated by the amount of deformation until a crack was generated by deforming a micro sample that was confirmed to have a correlation with cold forgeability. The larger the amount of deformation, the better the deformability. As for the hardness, the Vickers hardness was measured at a load of 5 kg.
[0037]
The results are also shown in Table 1 below. As is clear from these results, the value of the ratio (Vf / Vpf 1 ) is adjusted to an appropriate range, which is sufficiently low even under short-time spheroidizing conditions. It can be seen that hardness and good deformability are obtained.
[0038]
[Table 1]
Figure 0003742232
[0039]
Example 2
Table 2 shows the components of the test material. These were hot-rolled into wire rods having a wire diameter of 8 to 16 mm under various conditions shown in Table 3 below. The rolling temperature at this time is evaluated on the outermost layer. The structure observation after hot rolling was evaluated at the surface layer portion which entered 0.3 mm from the outermost layer.
[0040]
The rolled material was heated up to (Ac 1 + 20 ° C.) at 180 ° C./h and held at that temperature for 4 hours. Thereafter, spheronization was performed by a method of gradually cooling to 680 ° C. at 18 ° C./h, which is a speeding condition, and then allowing to cool.
[0041]
The degree of spheroidization was evaluated by the ratio of the spheroidized carbide and the hardness at the D / 4 position and the surface of each sample. In observing the spheroidized carbides, a 25 μm square region was observed with a 2000 × scanning electron microscope (SEM) to determine the number and aspect ratio of each carbide. A product having an aspect ratio of 3 or less was made into a spheroidized carbide, and the ratio of the total number was calculated. The hardness was determined by measuring five points of Vickers hardness with a load of 5 kg and obtaining an average. Cold forgeability was evaluated by an upsetting test with a notch. The results are shown in Table 4 below.
[0042]
[Table 2]
Figure 0003742232
[0043]
[Table 3]
Figure 0003742232
[0044]
[Table 4]
Figure 0003742232
[0045]
From these results, it can be considered as follows. First, no. Those of 2, 3, 5, 13, 15, 21 to 25 are outside the requirements defined in the present invention. No. No. 2 was rolled at a lower temperature and then cooled to a temperature lower than 600 ° C., so the value of the above ratio (Vf / Vpf 1 or Vf / Vpf 2 ) was smaller than 0.05 and the degree of spheroidization was good , The hardness is high. No. In the case of No. 3, since the slow cooling after rolling started from a temperature higher than 650 ° C., the value of the above ratio (Vf / Vpf 1 or Vf / Vpf 2 ) is larger than 0.75. The hardness is low, but the upsetting limit is low.
[0046]
No. In No. 5, the rolling temperature is higher than 950 ° C., the average crystal grain size is larger than 15 μm, and both the spheroidization rate and the upsetting rate are deteriorated. No. In No. 13, the rolling temperature is lower than 750 ° C., the grain size is 5 μm or less, the crystal grains are elongated in the rolling direction, the hardness is high, and the upsetting limit is also low. . No. No. 15 has a low annealing start temperature at 1 ° C./s or less, has a bainite structure, and has a high hardness even after spheroidization.
[0047]
No. No. 21 has a large amount of Mn and bainite is produced, and the characteristics are deteriorated. No. No. 22 has a lot of Si and high hardness. No. No. 23 has a low upsetting limit due to the large amount of Al. No. In No. 24, Al was not added. Since No. 25 has a large amount of N, strain aging due to N cannot be suppressed, and the upsetting limit is low.
[0048]
On the other hand, No. other than the above. In the cases of 1, 4, 6 to 12, 14, and 16 to 20, it can be seen that rapid spheroidization is achieved, and both the spheroidization rate and the upsetting rate show good values.
[0049]
【The invention's effect】
The present invention is configured as described above, and was able to realize both rapid spheroidization before cold forging in a steel wire and excellent cold forgeability by improving deformation resistance.

Claims (4)

C:0.2〜0.6%(質量%の意味、以下同じ)、Si:0.3%以下、Mn:0.2〜1.5%およびAl:0.01〜0.06%を夫々含有すると共に、P:0.02%以下(0%を含む)、S:0.02%以下(0%を含む)およびN:0.01%以下(0%を含む)に夫々抑制し、残部Feおよび不可避不純物からなる熱間圧延鋼線材または冷間伸線された鋼線材において、初析フェライトとパーライトが合計で90体積%以上である組織を有すると共に、平均結晶粒径が6〜15μmであり、且つ下記(1)式で表される平均初析フェライト体積率(Vpf)に対する初析フェライト体積率(Vf)の比(Vf/Vpf)が0.05〜0.75であることを特徴とする迅速球状化可能で冷間鍛造性の優れた鋼線材。
Vpf=(0.8−Ceq1)×129 …(1)
但し、Ceq1(%)=[C%]+0.10[Si%]+0.06[Mn%]であり、[C%]、[Si%]および[Mn%]は、夫々C,SiおよびMnの含有量(質量%)を示す。
C: 0.2-0.6% (meaning of mass%, the same shall apply hereinafter), Si: 0.3% or less, Mn: 0.2-1.5% and Al: 0.01-0.06% In addition to being contained, P: 0.02% or less (including 0%), S: 0.02% or less (including 0%) and N: 0.01% or less (including 0%), respectively. In addition, a hot-rolled steel wire consisting of the remaining Fe and inevitable impurities or a cold-drawn steel wire has a structure in which proeutectoid ferrite and pearlite are 90% by volume or more in total, and an average crystal grain size of 6 to The ratio (Vf / Vpf 1 ) of the pro-eutectoid ferrite volume fraction (Vf) to the average pro-eutectoid ferrite volume fraction (Vpf 1 ) expressed by the following formula ( 1 ) is 0.05 to 0.75. A steel wire rod that can be rapidly spheroidized and has excellent cold forgeability.
Vpf 1 = (0.8−Ceq1) × 129 (1)
However, Ceq1 (%) = [C%] + 0.10 [Si%] + 0.06 [Mn%], where [C%], [Si%] and [Mn%] are C, Si and Mn, respectively. Content (mass%).
C:0.2〜0.6%、Si:0.3%以下、Mn:0.2〜1.5%およびAl:0.01〜0.06%を夫々含む他、Cr:2%以下(0%を含まない)、Mo:1%以下(0%を含まない)およびNi:3%以下(0%を含まない)よりなる群から選ばれる1種以上の元素を含み、P:0.02%以下(0%を含む)、S:0.02%以下(0%を含む)およびN:0.01%以下(0%を含む)に夫々抑制し、残部Feおよび不可避不純物からなる熱間圧延鋼線材または冷間伸線された鋼線材において、初析フェライトとパーライトが合計で90体積%以上である組織を有すると共に、平均結晶粒径が6〜15μmであり、且つ下記(2)式で表される平均初析フェライト体積率(Vpf)に対する初析フェライト体積率(Vf)の比(Vf/Vpf)が0.05〜0.75であることを特徴とする迅速球状化可能で冷間鍛造性の優れた鋼線材。
Vpf=(0.8−Ceq2)×129 …(2)
但し、Ceq2(%)=[C%]+0.10[Si%]+0.06[Mn%]+0.11[Cr%]−0.16[Mo%]+0.04[Ni%]であり、[C%]、[Si%]、[Mn%]、[Cr%]、[Mo%]および[Ni%]は、夫々C、Si、Mn、Cr、MoおよびNiの含有量(質量%)を示す。
C: 0.2-0.6%, Si: 0.3% or less, Mn: 0.2-1.5% and Al: 0.01-0.06% , Cr: 2% or less (Not including 0%), Mo: not more than 1% (not including 0%), and Ni: not more than 3% (not including 0%), including one or more elements selected from the group consisting of P: 0 0.02% or less (including 0%), S: 0.02% or less (including 0%) and N: 0.01% or less (including 0%), respectively, and remaining Fe and inevitable impurities The hot-rolled steel wire or cold-drawn steel wire has a structure in which pro-eutectoid ferrite and pearlite are 90% by volume or more in total , the average crystal grain size is 6 to 15 μm, and the following (2 ) The pro-eutectoid ferrite volume fraction (Vf) relative to the average pro-eutectoid ferrite volume fraction (Vpf 2 ) represented by the formula A steel wire rod having a ratio of (Vf / Vpf 2 ) of 0.05 to 0.75 and capable of rapid spheroidization and excellent cold forgeability.
Vpf 2 = (0.8−Ceq2) × 129 (2)
However, Ceq2 (%) = [C%] + 0.10 [Si%] + 0.06 [Mn%] + 0.11 [Cr%] − 0.16 [Mo%] + 0.04 [Ni%] [C%], [Si%], [Mn%], [Cr%], [Mo%] and [Ni%] are the contents (mass%) of C, Si, Mn, Cr, Mo and Ni, respectively. Indicates.
請求項1または2に記載の鋼線材を製造するに当たり、750〜950℃の温度で熱間圧延仕上げ圧延をした後、5℃/秒以上の冷却速度で600〜650℃まで冷却し、引き続き1℃/秒以下の冷却速度で徐冷することを特徴とする迅速球状化可能で冷間鍛造性の優れた鋼線材の製造方法。In producing the steel wire rod according to claim 1 or 2, after hot rolling finish rolling at a temperature of 750 to 950 ° C., the steel wire is cooled to 600 to 650 ° C. at a cooling rate of 5 ° C./second or more. A method for producing a steel wire material capable of rapid spheroidization and excellent in cold forgeability, characterized by being gradually cooled at a cooling rate of ° C / second or less. 請求項1または2に記載の鋼線材を製造するに当たり、750〜950℃の温度で熱間圧延仕上げ圧延をした後、5℃/秒以上の冷却速度で700〜800℃まで冷却し、その後5℃/秒以上の冷却速度で600〜650まで冷却し、引き続き1℃/秒以下の冷却速度で徐冷ことを特徴とする迅速球状化可能で冷間鍛造性の優れた鋼線材の製造方法。In producing the steel wire rod according to claim 1 or 2, after hot rolling finish rolling at a temperature of 750 to 950 ° C., the steel wire is cooled to 700 to 800 ° C. at a cooling rate of 5 ° C./second or more. A method for producing a steel wire material capable of rapid spheroidization and excellent cold forgeability, characterized by cooling to 600 to 650 at a cooling rate of at least ° C / second and then gradually cooling at a cooling rate of at most 1 ° C / second.
JP29107998A 1998-10-13 1998-10-13 Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same Expired - Lifetime JP3742232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29107998A JP3742232B2 (en) 1998-10-13 1998-10-13 Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29107998A JP3742232B2 (en) 1998-10-13 1998-10-13 Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000119809A JP2000119809A (en) 2000-04-25
JP3742232B2 true JP3742232B2 (en) 2006-02-01

Family

ID=17764172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29107998A Expired - Lifetime JP3742232B2 (en) 1998-10-13 1998-10-13 Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3742232B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170007406A (en) 2014-06-16 2017-01-18 가부시키가이샤 고베 세이코쇼 Steel for mechanical structure for cold working, and method for producing same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669300B2 (en) * 2005-02-16 2011-04-13 新日本製鐵株式会社 Steel wire rod excellent in cold forgeability after spheroidizing treatment and method for producing the same
WO2006088019A1 (en) * 2005-02-16 2006-08-24 Nippon Steel Corporation Hot rolled wire material excellent in cold forging property after spheroidizing treatment, spheroidizing-annealed steel wire having excellent cold forging property, and method for production thereof
JP4669317B2 (en) * 2005-05-10 2011-04-13 新日本製鐵株式会社 Steel wire excellent in cold forgeability and manufacturing method thereof
JP5114189B2 (en) * 2007-12-26 2013-01-09 株式会社神戸製鋼所 Cold-working steel, its manufacturing method and cold-worked steel parts
JP5204593B2 (en) * 2008-08-29 2013-06-05 株式会社神戸製鋼所 Manufacturing method of high strength non-tempered hot forged steel
JP5492393B2 (en) * 2008-08-29 2014-05-14 独立行政法人物質・材料研究機構 Hot rolled steel bar wire and its manufacturing method
JP2011256456A (en) * 2010-06-11 2011-12-22 Sanyo Special Steel Co Ltd Method for manufacturing steel for cold forging
JP5704716B2 (en) * 2011-06-23 2015-04-22 株式会社神戸製鋼所 Machine structural steel for cold working and method for producing the same
JP5357994B2 (en) 2011-12-19 2013-12-04 株式会社神戸製鋼所 Machine structural steel for cold working and method for producing the same
JP5486634B2 (en) 2012-04-24 2014-05-07 株式会社神戸製鋼所 Steel for machine structure for cold working and method for producing the same
WO2014030327A1 (en) * 2012-08-20 2014-02-27 新日鐵住金株式会社 Round steel material for cold forging
KR101657795B1 (en) * 2014-12-12 2016-09-20 주식회사 포스코 Method for manufacturing wire rod having excellent cold deformation characteristics and a wire rod manufactured by using the same
JP6497156B2 (en) * 2015-03-24 2019-04-10 新日鐵住金株式会社 Steel wire with excellent conductivity
JP6838873B2 (en) * 2016-07-04 2021-03-03 株式会社神戸製鋼所 Machine structural steel for cold working and its manufacturing method
KR101977502B1 (en) * 2017-12-07 2019-05-10 주식회사 포스코 Steel wire rod for cold heading having excellent deformation characteristics and tensile strength after cold heading and method of manufacturing the same
KR102065265B1 (en) * 2018-08-08 2020-01-10 주식회사 포스코 Wire rod for chq capable of reducing softening treatment time, and method for manufaturing the same
KR102109278B1 (en) * 2018-10-31 2020-05-11 주식회사 포스코 Steel wire rod enabling omission of softening heat treatment and method of manufacturing the same
KR102209568B1 (en) * 2018-12-07 2021-01-28 주식회사 포스코 Wire rod for chq and method for manufaturing the same
KR102153195B1 (en) * 2018-12-18 2020-09-07 주식회사 포스코 Steel wire rod enabling omission of softening heat treatment and method of manufacturing the same
JP7247078B2 (en) * 2019-01-31 2023-03-28 株式会社神戸製鋼所 Mechanical structural steel for cold working and its manufacturing method
TWI711708B (en) * 2019-11-27 2020-12-01 中國鋼鐵股份有限公司 Method for increasing spheroidization rate of chrome molybdenum steel material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170007406A (en) 2014-06-16 2017-01-18 가부시키가이샤 고베 세이코쇼 Steel for mechanical structure for cold working, and method for producing same
US10570478B2 (en) 2014-06-16 2020-02-25 Kobe Steel, Ltd. Steel for mechanical structure for cold working, and method for producing same

Also Published As

Publication number Publication date
JP2000119809A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP3742232B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
JP5292698B2 (en) Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP5257082B2 (en) Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
WO2011062012A1 (en) Steel wire for low-temperature annealing and method for producing the same
JP5195009B2 (en) Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof
JP3386726B2 (en) Hot-rolled steel sheet for processing having ultrafine grains, method for producing the same, and method for producing cold-rolled steel sheet
WO2001048258A1 (en) Bar or wire product for use in cold forging and method for producing the same
JP2007277696A (en) Dead soft high-carbon hot-rolled steel sheet and its manufacturing method
US6673171B2 (en) Medium carbon steel sheet and strip having enhanced uniform elongation and method for production thereof
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP6566168B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6244701B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP3527641B2 (en) Steel wire with excellent cold workability
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
EP3901310A1 (en) Wire rod of which softening heat treatment can be omitted, and manufacturing method therefor
JP3755301B2 (en) High-strength, high-workability hot-rolled steel sheet excellent in impact resistance, strength-elongation balance, fatigue resistance and hole expansibility, and method for producing the same
JP3737323B2 (en) Steel wire rod and bar steel excellent in cold forgeability after spheronization and manufacturing method thereof
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP3715802B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
JP4267375B2 (en) Wire material for high-strength steel wire, high-strength steel wire, and production method thereof
JP2006097109A (en) High-carbon hot-rolled steel sheet and manufacturing method therefor
JP2022537538A (en) Untempered wire rod with excellent wire drawability and impact toughness, and method for producing the same
JP2001081528A (en) High carbon steel strip excellent in cold workability and hardenability, and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

EXPY Cancellation because of completion of term