JP7247078B2 - Mechanical structural steel for cold working and its manufacturing method - Google Patents

Mechanical structural steel for cold working and its manufacturing method Download PDF

Info

Publication number
JP7247078B2
JP7247078B2 JP2019211181A JP2019211181A JP7247078B2 JP 7247078 B2 JP7247078 B2 JP 7247078B2 JP 2019211181 A JP2019211181 A JP 2019211181A JP 2019211181 A JP2019211181 A JP 2019211181A JP 7247078 B2 JP7247078 B2 JP 7247078B2
Authority
JP
Japan
Prior art keywords
mass
less
steel
cold working
machine structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019211181A
Other languages
Japanese (ja)
Other versions
JP2020125538A (en
Inventor
浩司 山下
昌吾 村上
昌之 坂田
政道 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to US17/426,412 priority Critical patent/US20220106670A1/en
Priority to PCT/JP2020/000840 priority patent/WO2020158368A1/en
Priority to CA3126378A priority patent/CA3126378C/en
Priority to KR1020217025731A priority patent/KR102629833B1/en
Priority to CN202080010594.8A priority patent/CN113348256A/en
Priority to TW109101966A priority patent/TWI727621B/en
Publication of JP2020125538A publication Critical patent/JP2020125538A/en
Application granted granted Critical
Publication of JP7247078B2 publication Critical patent/JP7247078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、冷間加工用機械構造用鋼およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to steel for machine structural use for cold working and a method for producing the same.

自動車用部品、建設機械用部品等の各種部品を製造するにあたっては、通常、炭素鋼または合金鋼などの熱間圧延材に、冷間加工性を付与する目的で球状化焼鈍が施される。そして、球状化焼鈍後の圧延材に対して冷間加工を行い、その後切削加工などの機械加工を施すことによって所定の形状に成形し、焼入れ焼戻し処理を行って最終的な強度調整が行われる。 BACKGROUND ART In manufacturing various parts such as automobile parts and construction machine parts, hot-rolled materials such as carbon steel or alloy steel are usually subjected to spheroidizing annealing for the purpose of imparting cold workability. After the spheroidizing annealing, the rolled material is cold-worked, then machined into a desired shape by machining such as cutting, and then quenched and tempered for final strength adjustment. .

近年は、省エネルギー化の観点により、球状化焼鈍の条件が見直しされ、特に球状化焼鈍の短時間化が要求されている。球状化焼鈍の処理時間を2~3割削減することができれば、それに応じてエネルギー消費量、CO排出量の削減が期待できる。 In recent years, the conditions for spheroidizing annealing have been reviewed from the viewpoint of energy saving, and in particular, shortening of the spheroidizing annealing time is required. If the treatment time for spheroidizing annealing can be reduced by 20% to 30%, a corresponding reduction in energy consumption and CO 2 emissions can be expected.

しかしながら、通常よりも処理時間を短縮した球状化焼鈍処理(以下、「短時間焼鈍」と呼ぶことがある)を施した場合、セメンタイトの球状化程度の指標である球状化度が悪化し、鋼を十分に軟質化させることが難しく、冷間加工性が劣化することが知られており、球状化焼鈍時間の短時間化は容易ではない。そのため、短時間焼鈍を施した場合であっても、球状化度を悪化させず、鋼を十分に軟質化させるための技術が検討されている。 However, when spheroidizing annealing treatment (hereinafter sometimes referred to as “short-time annealing”) is performed with the treatment time shortened than usual, the degree of spheroidization, which is an index of the degree of spheroidization of cementite, deteriorates, and steel It is known that it is difficult to soften sufficiently, and cold workability deteriorates, and it is not easy to shorten the spheroidizing annealing time. Therefore, techniques for sufficiently softening the steel without deteriorating the degree of spheroidization even when the steel is annealed for a short period of time have been studied.

例えば特許文献1では、化学組成が、質量比で、C:0.3~0.6%、Mn:0.2~1.5%、Si:0.05~2.0%、Cr:0.04~2.0%、残部:鉄および不可避不純物から成り、金属組織において旧オーステナイトの平均粒径が100μm以上であり、かつフェライト分率が20%以下であることを特徴とする球状化焼鈍後の冷間鍛造性に優れた機械構造用鋼が開示されている。当該機械構造用鋼は、比較的短時間の球状化焼鈍でも、冷間鍛造性を十分確保できるとしている。 For example, in Patent Document 1, the chemical composition is, by mass ratio, C: 0.3 to 0.6%, Mn: 0.2 to 1.5%, Si: 0.05 to 2.0%, Cr: 0 .04 to 2.0%, the balance being composed of iron and unavoidable impurities, and having an average grain size of prior austenite of 100 μm or more and a ferrite fraction of 20% or less in the metal structure . A machine structural steel having excellent cold forgeability after annealing is disclosed. It is said that the steel for machine structural use can sufficiently ensure cold forgeability even with spheroidizing annealing for a relatively short time.

特許第3783666号Patent No. 3783666

しかし、特許文献1に記載の機械構造用鋼には、Crは含まれるもののMoは必須成分として含まれていない。CrおよびMoを共に含むことで鋼の強度が顕著に増加し得るところ、特許文献1の鋼ではそのような強度増加が期待できない。さらに、CrおよびMoを共に含む鋼では球状化焼鈍後に軟質化しにくい場合があるが、特許文献1では、CrおよびMoを共に含む鋼に対して短時間焼鈍を施した場合に十分に軟質化させることは開示していない。 However, although the steel for machine structural use described in Patent Document 1 contains Cr, it does not contain Mo as an essential component. Although the strength of steel can be significantly increased by containing both Cr and Mo, such a strength increase cannot be expected in the steel of Patent Document 1. Furthermore, steel containing both Cr and Mo may be difficult to soften after spheroidizing annealing, but in Patent Document 1, steel containing both Cr and Mo is sufficiently softened when short-time annealing did not disclose that.

本発明は、このような状況を鑑みてなされたものであり、その目的の1つは、CrおよびMoを含み、且つ比較的短時間の球状化焼鈍を施した場合であっても、球状化度に優れ、且つ十分に軟質化することができる冷間加工用機械構造用鋼を提供することであり、別の1つの目的は、CrおよびMoを含み、且つ球状化焼鈍の処理時間を短縮しても十分に軟質化することができる冷間加工用機械構造用鋼の製造方法を提供することである。 The present invention has been made in view of such circumstances, and one of its objects is to provide a spheroidizing method that contains Cr and Mo and is spheroidized even when spheroidizing annealing is performed for a relatively short time. Another object of the present invention is to provide a machine structural steel for cold working which has excellent hardness and can be sufficiently softened, and which contains Cr and Mo and has a shortened treatment time for spheroidizing annealing. It is an object of the present invention to provide a method for producing a steel for machine structural use for cold working, which can be sufficiently softened even when the steel is used for cold working.

本発明の態様1は、
C :0.32~0.44質量%、
Si:0.15~0.35質量%、
Mn:0.55~0.95質量%、
P :0.030質量%以下、
S :0.030質量%以下、
Cr:0.85~1.25質量%、
Mo:0.15~0.35質量%、
Al:0.01~0.1質量%、
残部:鉄および不可避不純物からなり、
初析フェライトの面積率が30%以上70%以下であり、
フェライト結晶粒の平均粒径が5~15μmである冷間加工用機械構造用鋼である。
Aspect 1 of the present invention is
C: 0.32 to 0.44% by mass,
Si: 0.15 to 0.35% by mass,
Mn: 0.55 to 0.95% by mass,
P: 0.030% by mass or less,
S: 0.030% by mass or less,
Cr: 0.85 to 1.25% by mass,
Mo: 0.15 to 0.35% by mass,
Al: 0.01 to 0.1% by mass,
balance: consisting of iron and unavoidable impurities,
The area ratio of proeutectoid ferrite is 30% or more and 70% or less,
It is a machine structural steel for cold working in which the average grain size of ferrite crystal grains is 5 to 15 μm.

本発明の態様2は、前記初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合が80%以下である、態様1に記載の冷間加工用機械構造用鋼である。 A second aspect of the present invention is the steel for cold working machine structural use according to the first aspect, wherein the ratio of the area ratio of pearlite to the total area ratio of the structures other than the pro-eutectoid ferrite is 80% or less.

本発明の態様3は、硬さがHV300以下である、態様1または2に記載の冷間加工用機械構造用鋼である。 Aspect 3 of the present invention is the steel for cold working machine structural use according to aspect 1 or 2, which has a hardness of HV300 or less.

本発明の態様4は、
Cu:0.25質量%以下(0質量%を含まない)、および
Ni:0.25質量%以下(0質量%を含まない)よりなる群から選択される一種以上を更に含有する態様1~3のいずれか1つに記載の冷間加工用機械構造用鋼である。
Aspect 4 of the present invention is
Cu: 0.25% by mass or less (not including 0% by mass), and Ni: 0.25% by mass or less (not including 0% by mass). 4. Steel for machine structural use for cold working according to any one of 3.

本発明の態様5は、
Ti:0.2質量%以下(0質量%を含まない)、
Nb:0.2質量%以下(0質量%を含まない)、および
V :1.5質量%以下(0質量%を含まない)よりなる群から選択される一種以上を更に含有する態様1~4のいずれか1つに記載の冷間加工用機械構造用鋼である。
Aspect 5 of the present invention is
Ti: 0.2% by mass or less (not including 0% by mass),
Nb: 0.2% by mass or less (not including 0% by mass), and V: 1.5% by mass or less (not including 0% by mass). 5. Steel for machine structural use for cold working according to any one of 4.

本発明の態様6は、
N :0.01質量%以下(0質量%を含まない)、
Mg :0.02質量%以下(0質量%を含まない)、
Ca :0.05質量%以下(0質量%を含まない)、
Li :0.02質量%以下(0質量%を含まない)、および
REM:0.05質量%以下(0質量%を含まない)よりなる群から選択される一種以上を更に含有する態様1~5のいずれか1つに記載の冷間加工用機械構造用鋼である。
Aspect 6 of the present invention is
N: 0.01% by mass or less (not including 0% by mass),
Mg: 0.02% by mass or less (excluding 0% by mass),
Ca: 0.05% by mass or less (not including 0% by mass),
Li: 0.02% by mass or less (not including 0% by mass), and REM: 0.05% by mass or less (not including 0% by mass). 6. The steel for machine structural use for cold working according to any one of 5.

本発明の態様7は、態様1~6のいずれか1つに記載の化学成分組成の鋼を用意し、
(a)圧縮率20%以上、保持時間10秒以下で前加工を行う工程と、
(b)前記工程(a)後、800℃超1050℃以下、圧縮率20%以上で仕上げ加工を行う工程と、
(c)前記工程(b)後、750℃以上840℃以下まで10秒以下で冷却する工程と、
(d)前記工程(c)後、500℃以下まで0.1℃/秒以上10℃/秒未満の平均冷却速度で冷却する工程とを含む冷間加工用機械構造用鋼の製造方法である。
Aspect 7 of the present invention prepares steel having the chemical composition according to any one of aspects 1 to 6,
(a) a step of pre-processing at a compression ratio of 20% or more and a holding time of 10 seconds or less;
(b) After the step (a), a step of finishing at a compression ratio of 20% or more at a compression ratio of 20% or more, and 800° C. or more and 1050° C. or less;
(c) a step of cooling to 750° C. or higher and 840° C. or lower in 10 seconds or less after the step (b);
(d) cooling to 500° C. or lower at an average cooling rate of 0.1° C./sec or more and less than 10° C./sec after the step (c); .

本発明の態様8は、態様7の方法で製造した冷間加工用機械構造用鋼に、焼鈍、球状化焼鈍、伸線加工、圧造および焼入れ焼戻しのうち1つ以上の工程を行う鋼線の製造方法である。 Aspect 8 of the present invention is a steel wire in which one or more steps of annealing, spheroidizing annealing, wire drawing, heading, and quenching and tempering are performed on the steel for cold working machine structural use manufactured by the method of aspect 7. manufacturing method.

本発明の1つの実施形態では、CrおよびMoを含み、且つ通常よりも球状化焼鈍時間を短縮しても、球状化度に優れ、且つ十分に軟質化することができる冷間加工用機械構造用鋼を提供することが可能であり、別の1つの実施形態では、CrおよびMoを含み、且つ球状化焼鈍の処理時間を短縮しても十分に軟質化することができる冷間加工用機械構造用鋼の製造方法を提供することが可能である。 In one embodiment of the present invention, a machine structure for cold working that contains Cr and Mo and is excellent in the degree of spheroidization and can be sufficiently softened even if the spheroidization annealing time is shortened than usual. A machine for cold working, which in another embodiment contains Cr and Mo, and which can be sufficiently softened even with a shortened treatment time for spheroidizing annealing. It is possible to provide a method of manufacturing structural steel.

本願発明者らは、CrおよびMoを含み、且つ通常よりも球状化焼鈍時間を短縮しても、球状化度に優れ、且つ十分に軟質化することができる冷間加工用機械構造用鋼を実現するべく、様々な角度から検討した。 The inventors of the present invention have developed a steel for machine structural use for cold working, which contains Cr and Mo, has an excellent degree of spheroidization, and can be sufficiently softened even when the spheroidization annealing time is shortened. In order to realize this, we examined it from various angles.

その結果、CrおよびMoを含めた化学成分組成を適切に調整すると共に、初析フェライトを含み、且つ初析フェライトの面積率、およびフェライト結晶粒の平均粒径が所定値になるように制御することにより、球状化焼鈍の処理時間を短縮しても、球状化度に優れ、十分に軟質化することができる冷間加工用機械構造用鋼を実現できることを見出した。 As a result, the chemical component composition including Cr and Mo is appropriately adjusted, the pro-eutectoid ferrite is included, and the area ratio of the pro-eutectoid ferrite and the average grain size of the ferrite crystal grains are controlled to be predetermined values. As a result, the inventors have found that it is possible to realize a steel for machine structural use for cold working that is excellent in the degree of spheroidization and can be sufficiently softened even if the treatment time for spheroidizing annealing is shortened.

さらに、初析フェライトの面積率およびフェライト結晶粒の平均粒径の制御により、球状化焼鈍時の温度にばらつきが生じたとしても十分に軟質化することができる冷間加工用機械構造用鋼を実現できることも同時に見出した。このことは、球状化焼鈍を大型の炉で処理する際には非常に有益となる。すなわち、大型の炉内では、設定温度よりも温度が低い場所や昇温速度が遅れる場所の存在により、かなり温度がばらつくが、本発明の実施形態に係る冷間加工用機械構造用鋼は、そのような炉で球状化焼鈍が施されても、十分に軟質化することができることを見出した。 Furthermore, by controlling the area ratio of pro-eutectoid ferrite and the average grain size of ferrite crystal grains, steel for machine structural use for cold working can be sufficiently softened even if the temperature during spheroidizing annealing varies. At the same time, I found that it is possible. This is very beneficial when the spheroidizing anneal is processed in a large furnace. That is, in a large furnace, the temperature varies considerably due to the presence of locations where the temperature is lower than the set temperature and locations where the temperature rise rate is delayed. It has been found that even if spheroidizing annealing is performed in such a furnace, the material can be sufficiently softened.

以下に、本発明の実施形態が規定する各要件の詳細を示す。
なお、本明細書において、「線材」とは、圧延線材の意味で用い、熱間圧延後、室温まで冷却した線状の鋼材を指す。また「鋼線」とは、上記圧延線材に焼鈍等を施して特性を調整した線状の鋼材を指す。
Details of each requirement defined by the embodiments of the present invention are shown below.
In this specification, the term “wire rod” is used to mean a rolled wire rod, and refers to a linear steel material that has been cooled to room temperature after hot rolling. The term "steel wire" refers to a linear steel material obtained by subjecting the rolled wire material to annealing or the like to adjust its properties.

<1.化学成分組成>
本発明の実施形態に係る冷間加工用機械構造用鋼は、C:0.32~0.44質量%、Si:0.15~0.35質量%、Mn:0.55~0.95質量%、P:0.030%質量%以下、S:0.030質量%以下、Cr:0.85~1.25質量%、Mo:0.15~0.35質量%、Al:0.01~0.1質量%、および残部:鉄及び不可避不純物からなる。
以下、各元素について詳述する。
<1. Chemical composition>
The cold working machine structural steel according to the embodiment of the present invention has C: 0.32 to 0.44% by mass, Si: 0.15 to 0.35% by mass, and Mn: 0.55 to 0.95. mass %, P: 0.030 mass % or less, S: 0.030 mass % or less, Cr: 0.85 to 1.25 mass %, Mo: 0.15 to 0.35 mass %, Al: 0. 01 to 0.1% by mass, and the remainder: iron and unavoidable impurities.
Each element will be described in detail below.

(C:0.32~0.44質量%)
Cは、強度付与元素であり、0.32質量%未満では必要な最終製品の強度が得られない。一方、0.44質量%を超えると鋼の冷間加工性および靱性が低下する。そのため、Cの含有量は、0.32~0.44質量%とする。また、Cの含有量を0.40質量%未満にすることで、初析フェライトをより多く析出させることができるため好ましい。
(C: 0.32 to 0.44% by mass)
C is a strength imparting element, and if it is less than 0.32% by mass, the required strength of the final product cannot be obtained. On the other hand, if it exceeds 0.44% by mass, the cold workability and toughness of the steel deteriorate. Therefore, the content of C is set to 0.32 to 0.44% by mass. In addition, it is preferable to set the C content to less than 0.40% by mass because a larger amount of pro-eutectoid ferrite can be precipitated.

(Si:0.15~0.35質量%)
Siは、脱酸元素として、および固溶体硬化による最終製品の強度を増加させることを目的として含有させる向上元素として有用である。このような効果を有効に発揮させるため、Si含有量を0.15質量%以上とする。一方、Siが過剰に含有されると硬度が過度に上昇して鋼の冷間加工性が劣化する。そのため、Si含有量を0.35質量%以下とする。
(Si: 0.15 to 0.35% by mass)
Si is useful as a deoxidizing element and as an enhancing element that is included for the purpose of increasing the strength of the final product by solid solution hardening. In order to effectively exhibit such effects, the Si content is set to 0.15% by mass or more. On the other hand, if Si is contained excessively, the hardness of the steel excessively increases and the cold workability of the steel deteriorates. Therefore, the Si content is set to 0.35% by mass or less.

(Mn:0.55~0.95質量%)
Mnは、焼入れ性の向上を通じて、最終製品の強度を増加させるのに有効な元素である。このような効果を有効に発揮させるため、Mn含有量を0.55質量%以上とする。一方、Mnが過剰に含有されると硬度が上昇して鋼の冷間加工性が劣化する。そのため、Mn含有量を0.95質量%以下とする。
(Mn: 0.55 to 0.95% by mass)
Mn is an effective element for increasing the strength of the final product through improving hardenability. In order to effectively exhibit such effects, the Mn content is set to 0.55% by mass or more. On the other hand, if Mn is contained excessively, the hardness increases and the cold workability of the steel deteriorates. Therefore, the Mn content is set to 0.95% by mass or less.

(P:0.030質量%以下)
Pは、鋼中に不可避的に含まれる元素であり、鋼中で粒界偏析を起こし、鋼の延性の劣化の原因となる。そのため、P含有量を0.030質量%以下とする。
(P: 0.030% by mass or less)
P is an element that is inevitably contained in steel, causes grain boundary segregation in steel, and causes deterioration of ductility of steel. Therefore, the P content is made 0.030% by mass or less.

(S:0.030質量%以下)
Sは、鋼中に不可避的に含まれる元素であり、鋼中でMnSとして存在して鋼の延性を劣化させるので、鋼の冷間加工性を劣化させる有害な元素である。そのため、S含有量を0.030質量%以下とする。
(S: 0.030% by mass or less)
S is an element that is unavoidably contained in steel, and since it exists as MnS in steel and deteriorates the ductility of steel, it is a harmful element that deteriorates the cold workability of steel. Therefore, the S content is set to 0.030% by mass or less.

(Cr:0.85質量%以上1.25質量%以下)
Crは、鋼材の焼入れ性を向上させることによって最終製品の強度を増加させるのに有効な元素である。こうした効果を有効に発揮させるため、Cr含有量は0.85質量%以上とする。このような効果は、Cr含有量が増加するに従って大きくなる。しかしながら、Cr含有量が過剰になると、強度が高くなり過ぎて鋼の冷間加工性を劣化させるため、1.25質量%以下とする。
(Cr: 0.85% by mass or more and 1.25% by mass or less)
Cr is an effective element for increasing the strength of the final product by improving the hardenability of the steel material. In order to effectively exhibit such effects, the Cr content is set to 0.85% by mass or more. Such an effect increases as the Cr content increases. However, if the Cr content is excessive, the strength becomes too high and the cold workability of the steel deteriorates, so the Cr content is made 1.25% by mass or less.

(Mo:0.15質量%以上0.35質量%以下)
Moは、鋼材の焼入れ性を向上させることによって最終製品の強度を増加させるのに有効な元素である。特に、MoをCrと共に鋼に含有させることにより、最終製品の強度が顕著に増加し得る。こうした効果を有効に発揮させるため、Mo含有量は0.15質量%以上とする。このような効果は、Mo含有量が増加するに従って大きくなる。しかしながら、Mo含有量が過剰になると、強度が高くなり過ぎて鋼の冷間加工性が劣化する。特に、MoをCrと共に鋼に含有させることにより、鋼が球状化焼鈍後に顕著に軟質化しにくくなり得る。そのため、Moは0.35質量%以下とする。
(Mo: 0.15% by mass or more and 0.35% by mass or less)
Mo is an element effective in increasing the strength of the final product by improving the hardenability of the steel material. In particular, by including Mo in steel together with Cr, the strength of the final product can be significantly increased. In order to effectively exhibit these effects, the Mo content is set to 0.15% by mass or more. Such an effect increases as the Mo content increases. However, if the Mo content is excessive, the strength becomes too high and the cold workability of the steel deteriorates. In particular, by including Mo in the steel together with Cr, the steel can be significantly less likely to be softened after spheroidizing annealing. Therefore, Mo should be 0.35% by mass or less.

(Al:0.01質量%以上0.1質量%以下)
Alは、脱酸剤として有用であると共に、Nと結合してAlNを析出し、加工時に結晶粒が異常成長して強度が低下するのを防止する元素である。こうした効果を有効に発揮させるため、Al含有量は0.01質量%以上とし、好ましくは0.015質量%以上、より好ましくは0.020質量%以上である。しかし、Al含有量が過剰になると、Alが過剰に生成して冷間鍛造性を劣化させる。そのため、Al含有量は0.1%質量以下とし、好ましくは0.090質量%以下、より好ましくは0.080質量%以下である。
(Al: 0.01% by mass or more and 0.1% by mass or less)
Al is an element that is useful as a deoxidizing agent and combines with N to precipitate AlN, thereby preventing abnormal growth of crystal grains during working and a decrease in strength. In order to effectively exhibit these effects, the Al content is set to 0.01% by mass or more, preferably 0.015% by mass or more, and more preferably 0.020% by mass or more. However, when the Al content becomes excessive, Al 2 O 3 is excessively generated and deteriorates the cold forgeability. Therefore, the Al content is set to 0.1% by mass or less, preferably 0.090% by mass or less, and more preferably 0.080% by mass or less.

残部は鉄及び不可避不純物である。不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、B、As、Sn、Sb、Ca、O、H等)の混入が許容される。
なお、例えば、PおよびSのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念である。
The balance is iron and unavoidable impurities. As unavoidable impurities, contamination of elements (for example, B, As, Sn, Sb, Ca, O, H, etc.) brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. is allowed.
For example, there are elements, such as P and S, whose content is generally preferably as low as possible and thus are unavoidable impurities, but whose composition range is separately defined as described above. For this reason, in this specification, the term "inevitable impurities" constituting the balance is a concept excluding elements whose composition range is separately defined.

さらに、本発明の実施形態に係る冷間加工用機械構造用鋼は、必要に応じて以下の任意元素を選択的に含有してよく、含有される成分に応じて鋼の特性が更に改善される。 Furthermore, the steel for cold working machine structural use according to the embodiment of the present invention may selectively contain the following optional elements as necessary, and the properties of the steel are further improved according to the contained elements. be.

(Cu:0.25質量%以下(0質量%を含まない)、およびNi:0.25%質量以下(0質量%を含まない)よりなる群から選択される一種以上)
CuおよびNiは、焼入れ性を向上させると共に、製品強度を高めるのに有効に作用する元素である。こうした作用は、これらの元素の含有量が増加するにつれて増大するが、有効に発揮させるには、CuおよびNiは夫々好ましくは0.05質量%以上、より好ましくは0.08質量%以上、更に好ましくは0.10質量%以上である。しかし過剰に含有させると過冷組織が過剰に生成し、強度が高くなりすぎて冷間鍛造性が低下する。したがってCuおよびNiは夫々0.25質量%以下とすることが好ましい。より好ましくは0.22質量%以下、更に好ましくは0.20質量%以下である。なお、CuおよびNiは、夫々、単独で含有させてもよいし、2種以上を含有させてもよく、また2種以上を含有させる場合の含有量は夫々上記範囲で任意の含有量でよい。
(One or more selected from the group consisting of Cu: 0.25% by mass or less (not including 0% by mass) and Ni: 0.25% by mass or less (not including 0% by mass))
Cu and Ni are elements that improve hardenability and effectively act to increase product strength. Such action increases as the content of these elements increases. Preferably, it is 0.10% by mass or more. However, if it is contained excessively, a supercooled structure is excessively formed, the strength becomes too high, and the cold forgeability deteriorates. Therefore, it is preferable that each of Cu and Ni is 0.25% by mass or less. It is more preferably 0.22% by mass or less, still more preferably 0.20% by mass or less. In addition, Cu and Ni may be contained alone, or may be contained in two or more kinds, and when two or more kinds are contained, the content may be any content within the above range. .

(Ti:0.2質量%以下(0質量%を含まない)、Nb:0.2質量%以下(0質量%を含まない)、およびV:1.5質量%以下(0質量%を含まない)よりなる群から選択される一種以上)
Ti、Nb、Vは、Nと結合して化合物(窒化物)を形成し、鋼中の固溶N量を低減させて、変形抵抗低減効果が得られる元素である。こうした効果を発揮させるためには、Ti、Nb、Vは夫々、好ましくは0.05質量%以上、より好ましくは0.06質量%以上、更に好ましくは0.08質量%以上である。しかし、これらの元素を過剰に含有すると、窒化物量が増加し、変形抵抗が上昇して冷間鍛造性が劣化するため、Ti、Nbは夫々好ましくは0.2質量%以下、より好ましくは0.18質量%以下、更に好ましくは、0.15質量%以下であり、Vは好ましくは1.5質量%以下、より好ましくは1.3質量%以下、更に好ましくは1.0質量%以下である。なお、Ti、NbおよびVは、夫々、単独で含有させてもよいし、2種以上を含有させてもよく、また2種以上を含有させる場合の含有量は夫々上記範囲で任意の含有量でよい。
(Ti: 0.2% by mass or less (not including 0% by mass), Nb: 0.2% by mass or less (not including 0% by mass), and V: 1.5% by mass or less (not including 0% by mass) not) one or more selected from the group consisting of)
Ti, Nb, and V are elements that combine with N to form compounds (nitrides), reduce the amount of dissolved N in the steel, and obtain the effect of reducing deformation resistance. In order to exhibit such effects, each of Ti, Nb and V is preferably 0.05% by mass or more, more preferably 0.06% by mass or more, and still more preferably 0.08% by mass or more. However, if these elements are contained excessively, the amount of nitride increases, the deformation resistance increases, and the cold forgeability deteriorates. .18% by mass or less, more preferably 0.15% by mass or less, and V is preferably 1.5% by mass or less, more preferably 1.3% by mass or less, and still more preferably 1.0% by mass or less. be. Incidentally, Ti, Nb and V may be contained alone, or may be contained in combination of two or more. OK.

(N:0.01質量%以下(0質量%を含まない)、Mg:0.02質量%以下(0質量%を含まない)、Ca:0.05質量%以下(0質量%を含まない)、Li:0.02質量%(0質量%を含まない)、および希土類元素(Rare Earth Metal:REM):0.05質量%以下(0質量%を含まない)よりなる群から選択される一種以上)
Nは、鋼に不可避的に含まれる不純物であるが、鋼中に固溶Nが含まれていると、ひずみ時効による硬度上昇、延性低下を招き、冷間鍛造性が劣化する。したがって、Nは、0.01質量%以下が好ましく、より好ましくは0.009質量%以下、更に好ましくは0.008質量%以下である。また、Mg、Ca、Li、及びREMは、MnS等の硫化化合物系介在物を球状化させ、鋼の変形能を向上させるのに有効な元素である。こうした作用はその含有量が増加するにつれて増大するが、有効に発揮させるためには、Mg、Ca、Li及びREMは夫々好ましくは0.0001質量%以上、より好ましくは0.0005質量%以上である。しかし過剰に含有させてもその効果は飽和し、含有量に見合う効果が期待できないので、Mg及びLiは夫々好ましくは0.02質量%以下、より好ましくは0.018質量%以下、更に好ましくは0.015質量%以下、CaとREMは夫々好ましくは0.05質量%以下、より好ましくは0.045質量%以下、更に好ましくは0.040質量%以下である。なお、N、Ca、Mg、LiおよびREMは、夫々、単独で含有させてもよいし、2種以上を含有させてもよく、また2種以上を含有させる場合の含有量は夫々上記範囲で任意の含有量でよい。
(N: 0.01% by mass or less (not including 0% by mass), Mg: 0.02% by mass or less (not including 0% by mass), Ca: 0.05% by mass or less (not including 0% by mass ), Li: 0.02 mass% (not including 0 mass%), and rare earth element (Rare Earth Metal: REM): selected from the group consisting of 0.05 mass% or less (not including 0 mass%) one or more)
N is an impurity that is inevitably contained in steel, but when solid solution N is contained in steel, it causes an increase in hardness and a decrease in ductility due to strain aging, and deteriorates cold forgeability. Therefore, N is preferably 0.01% by mass or less, more preferably 0.009% by mass or less, and even more preferably 0.008% by mass or less. Moreover, Mg, Ca, Li, and REM are elements effective in making sulfide-based inclusions such as MnS spheroidized and improving the deformability of steel. These actions increase as the content increases, but in order to exhibit them effectively, each of Mg, Ca, Li and REM is preferably 0.0001% by mass or more, more preferably 0.0005% by mass or more. be. However, even if it is contained excessively, the effect is saturated, and the effect corresponding to the content cannot be expected. 0.015% by mass or less, Ca and REM are each preferably 0.05% by mass or less, more preferably 0.045% by mass or less, still more preferably 0.040% by mass or less. Incidentally, N, Ca, Mg, Li and REM may be contained singly or in combination of two or more. Any content is acceptable.

<2.金属組織>
本発明の実施形態に係る冷間加工用機械構造用鋼は、初析フェライトを含む。初析フェライトは、球状化焼鈍後の鋼の軟質化に寄与する。しかしながら、特にCrおよびMoを含有する場合、単に初析フェライトを含むだけでは、短時間焼鈍後に、球状化度に優れ、且つ十分に軟質化することができる鋼を実現できない。
そこで、以下に詳述するように、本発明の実施形態に係る冷間加工用機械構造用鋼は、初析フェライトの面積率が30%以上70%以下、およびフェライト結晶粒の平均粒径が5~15μmとなるように制御されている。
<2. Metal structure>
A cold working machine structural steel according to an embodiment of the present invention includes proeutectoid ferrite. Proeutectoid ferrite contributes to softening of steel after spheroidizing annealing. However, when Cr and Mo are contained in particular, the mere inclusion of proeutectoid ferrite cannot achieve a steel that is excellent in the degree of spheroidization and can be sufficiently softened after short-time annealing.
Therefore, as described in detail below, the steel for machine structural use for cold working according to the embodiment of the present invention has an area ratio of proeutectoid ferrite of 30% or more and 70% or less, and an average grain size of ferrite crystal grains of It is controlled to be 5 to 15 μm.

[2-1.初析フェライトの面積率:30%以上70%以下]
初析フェライトを多く存在させることで、球状化焼鈍中にセメンタイトなどの炭化物の凝集・球状化を促進させることができ、その結果、鋼の球状化度向上および鋼の硬さを低減できる。こうした観点から、初析フェライトの面積率は30%以上とする必要がある。初析フェライトの面積率は好ましくは30%超、より好ましくは35%超、更に好ましくは40%超である。一方、初析フェライトを多く存在させようとすると、製造時間が増加する。現実的な製造時間を考慮すると、初析フェライトの面積率は70%以下に抑える必要がある。
[2-1. Area ratio of proeutectoid ferrite: 30% or more and 70% or less]
The presence of a large amount of proeutectoid ferrite promotes aggregation and spheroidization of carbides such as cementite during spheroidizing annealing, and as a result, the degree of spheroidization of steel can be improved and the hardness of steel can be reduced. From this point of view, the area ratio of pro-eutectoid ferrite should be 30% or more. The area fraction of proeutectoid ferrite is preferably above 30%, more preferably above 35%, and even more preferably above 40%. On the other hand, if a large amount of pro-eutectoid ferrite is to be present, the manufacturing time increases. Considering a realistic production time, the area ratio of pro-eutectoid ferrite must be suppressed to 70% or less.

[2-2.フェライト結晶粒の平均粒径:5~15μm]
フェライトの結晶粒の平均粒径を微細化することで、球状化焼鈍後におけるセメンタイトなどの炭化物の凝集・球状化を促進させることができ、その結果、鋼の球状化度向上および硬さ低減を実現できる。こうした観点から、フェライト結晶粒の平均粒径を15μm以下に制御する必要がある。好ましくは13μm以下である。一方、微細化しすぎると硬さ上昇を招くため、5μm以上に制御する必要がある。好ましくは7μm以上である。
ここでいうフェライト結晶粒とは、後方散乱電子回折像(Electron backscattering pattern;EBSP)解析の結果、結晶方位差(斜角)が15°を超える境界(大角粒界ともいう)を結晶粒界として、その結晶粒界に囲まれたフェライト領域をいう。また、ここでいう平均粒径とは、結晶粒界で囲まれた領域の面積を円に換算したときの直径の平均値、すなわち平均円相当直径をいう。
フェライト結晶粒の平均粒径は、例えば電界放出型高分解能走査電子顕微鏡(Field emission scanning electron microscope;FE-SEM)およびEBSP解析装置を用いて測定される。
[2-2. Average grain size of ferrite crystal grains: 5 to 15 μm]
Refining the average grain size of ferrite crystal grains can promote the aggregation and spheroidization of cementite and other carbides after spheroidizing annealing, resulting in improved spheroidization and reduced hardness of steel. realizable. From this point of view, it is necessary to control the average grain size of ferrite crystal grains to 15 μm or less. It is preferably 13 μm or less. On the other hand, excessive miniaturization causes an increase in hardness, so it is necessary to control the grain size to 5 μm or more. It is preferably 7 μm or more.
The ferrite crystal grains referred to here are defined as grain boundaries where the crystal orientation difference (oblique angle) exceeds 15° (also referred to as a large angle grain boundary) as a result of electron backscattering pattern (EBSP) analysis. , refers to the ferrite region surrounded by the grain boundaries. The term "average grain size" as used herein refers to the average value of diameters when the area of a region surrounded by grain boundaries is converted into a circle, that is, the average equivalent circle diameter.
The average grain size of ferrite crystal grains is measured using, for example, a field emission scanning electron microscope (FE-SEM) and an EBSP analyzer.

さらに、本発明の実施形態に係る冷間加工用機械構造用鋼は、必要に応じて以下の任意の金属組織であってもよく、それによって球状化焼鈍後の鋼の特性が更に改善される。 Furthermore, the steel for cold working machine structural use according to the embodiment of the present invention may have any of the following metal structures as necessary, which further improves the properties of the steel after spheroidizing annealing .

[2-3.初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合:80%以下]
より球状化焼鈍後の鋼の球状化度を向上させる観点から、初析フェライト以外の組織(以下、「残部組織」と呼ぶことがある)において、パーライトの割合を減らすことが有効である。残部組織中のパーライトの割合が多すぎると、球状化焼鈍後も棒状の炭化物が存在しやすく、鋼の球状化度が悪くなりやすい。好ましくは、初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合は80%以下であり、より好ましくは70%以下である。
残部組織におけるパーライト以外の組織としては、ベイナイト、マルテンサイト、オーステナイト等が挙げられるが、全てベイナイトであることが鋼の球状化度を向上させる上でより好ましい。具体的には、残部組織中のパーライトの面積率の割合が80%以下の場合、残部組織中のベイナイトの面積率の割合が20%以上であることがより好ましく、残部組織中のパーライトの面積率の割合が70%以下の場合、残部組織中のベイナイトの面積率の割合が30%以上であることがより好ましい。
[2-3. Ratio of area ratio of pearlite to total area ratio of structures other than pro-eutectoid ferrite: 80% or less]
From the viewpoint of further improving the degree of spheroidization of the steel after spheroidizing annealing, it is effective to reduce the proportion of pearlite in the structure other than the proeutectoid ferrite (hereinafter sometimes referred to as "residual structure"). If the proportion of pearlite in the residual structure is too high, rod-like carbides tend to remain even after spheroidizing annealing, and the degree of spheroidization of the steel tends to deteriorate. Preferably, the ratio of the area ratio of pearlite to the total area ratio of structures other than pro-eutectoid ferrite is 80% or less, more preferably 70% or less.
Structures other than pearlite in the residual structure include bainite, martensite, austenite, etc., but bainite is more preferable for improving the spheroidization degree of the steel. Specifically, when the area ratio of pearlite in the residual structure is 80% or less, it is more preferable that the area ratio of bainite in the residual structure is 20% or more. When the area ratio is 70% or less, it is more preferable that the area ratio of bainite in the residual structure is 30% or more.

<3.硬さ>
さらに、本発明の実施形態に係る冷間加工用機械構造用鋼は、必要に応じて以下の任意の硬さを有していてもよく、それによって球状化焼鈍後の鋼の特性が更に改善される。
<3. Hardness>
Furthermore, the cold working machine structural steel according to the embodiments of the present invention may have any of the following hardnesses as required, which further improves the properties of the steel after spheroidizing annealing: be done.

[3.硬さが300HV以下]
球状化焼鈍後の鋼の軟質化を図る上で、鋼の硬さを下げておくことが有効である。そのため、鋼の硬さを、HV350以下とし、好ましくはHV300以下とする。より好ましくはHV290以下である。
[3. hardness of 300 HV or less]
In order to soften the steel after spheroidizing annealing, it is effective to reduce the hardness of the steel. Therefore, the hardness of the steel should be HV350 or less, preferably HV300 or less. More preferably, it is HV290 or less.

<4.製造方法>
本発明の実施形態に係る冷間加工用機械構造用鋼の製造方法において、上述の化学成分組成を満足する鋼材を用い、加工および加工後の冷却を行う。加工および加工後の冷却は、それぞれ2段階で行う。
具体的には、本発明の実施形態に係る冷間加工用機械構造用鋼の製造方法は、上述の化学成分組成を有する鋼材に、
(a)圧縮率20%以上、保持時間10秒以下で前加工を行う工程と、
(b)前記工程(a)後、800℃超1050℃以下、圧縮率20%以上で仕上げ加工を行う工程と、
(c)前記工程(b)後、750℃以上840℃以下まで10秒以下で冷却する工程と、
(d)前記工程(c)後、500℃以下まで0.1℃/秒以上10℃/秒未満の平均冷却速度で冷却する工程と、を含む。
以下、各工程について詳述する。なお、ここでいう加工は、上述の要件を満たす限り任意の加工であってよく、例えばプレス加工、圧延加工がこれに含まれ得る。また、工程(c)および(d)をそれぞれ、第1冷却および第2冷却と呼ぶことがある。
<4. Manufacturing method>
In the method of manufacturing a steel for machine structural use for cold working according to an embodiment of the present invention, a steel material satisfying the chemical composition described above is used, and working and cooling after working are performed. Processing and cooling after processing are each performed in two stages.
Specifically, in the method of manufacturing a steel for machine structural use for cold working according to an embodiment of the present invention, a steel material having the above-described chemical composition is
(a) a step of pre-processing at a compression ratio of 20% or more and a holding time of 10 seconds or less;
(b) After the step (a), a step of finishing at a compression ratio of 20% or more at a compression ratio of 20% or more, and 800° C. or more and 1050° C. or less;
(c) a step of cooling to 750° C. or higher and 840° C. or lower in 10 seconds or less after the step (b);
(d) after step (c), cooling to 500° C. or lower at an average cooling rate of 0.1° C./sec or more and less than 10° C./sec.
Each step will be described in detail below. The processing referred to here may be any processing as long as it satisfies the above requirements, and may include, for example, press processing and rolling processing. Steps (c) and (d) may also be referred to as first cooling and second cooling, respectively.

[(a)圧縮率20%以上、保持時間10秒以下で前加工を行う工程]
初析フェライトの割合増加およびフェライト結晶粒の微細化のために、圧縮率20%以上の前加工を行う。好ましくは圧縮率が30%以上である。なお、圧縮率は、以下のように計算される。
<プレス加工を施す場合の圧縮率(この場合圧縮率は圧下率ともいう)>
圧縮率(%)=(h1-h2)/h1×100
h1:加工前の鋼の高さ、h2:加工後の鋼の高さ
<圧延加工により線材を得る場合の圧縮率(この場合圧縮率は減面率ともいう)>
圧縮率(%)=(S1-S2)/S1×100
S1:加工前の鋼の断面積、h2:加工後の鋼の断面積
前加工時の温度は、初析フェライトの割合増加およびフェライト結晶粒の微細化のために、比較的低温であることが好ましい。
また、前加工から仕上げ加工までの保持時間は、フェライト結晶粒の成長を抑制するために比較的短くする必要がある。そのため、保持時間は10秒以下とし、好ましくは5秒以下とする。
[(a) Step of performing pre-processing with a compression rate of 20% or more and a holding time of 10 seconds or less]
In order to increase the proportion of pro-eutectoid ferrite and refine the ferrite crystal grains, pre-processing is performed with a compressibility of 20% or more. Preferably, the compressibility is 30% or more. Note that the compression rate is calculated as follows.
<Compression rate when press working (in this case, compression rate is also referred to as reduction rate)>
Compression ratio (%) = (h1-h2)/h1 x 100
h1: height of steel before working, h2: height of steel after working
Compression rate (%) = (S1-S2)/S1 x 100
S1: cross-sectional area of steel before working, h2: cross-sectional area of steel after working The temperature during pre-working is relatively low due to an increase in the proportion of pro-eutectoid ferrite and refinement of ferrite grains. preferable.
In addition, the holding time from pre-machining to finish-machining must be relatively short in order to suppress the growth of ferrite crystal grains. Therefore, the holding time should be 10 seconds or less, preferably 5 seconds or less.

[(b)工程(a)後、800℃超1050℃以下、圧縮率20%以上で仕上げ加工を行う工程]
初析フェライトの割合増加およびフェライト結晶粒の微細化のために、20%以上の圧縮率で仕上げ加工を行う。好ましくは圧縮率が50%以上である。また、加工温度は、フェライト結晶粒の平均粒径を5~15μmとするために、800℃超1050℃以下とする。フェライト結晶粒の微細化のためには、1000℃以下が好ましく、950℃以下がより好ましい。一方、フェライト結晶粒の過度の微細化を防止するためには、825℃以上が好ましく、850℃以上がより好ましい。
[(b) After the step (a), the step of finishing at a compression rate of 20% or more at a compression rate of 20% or more]
In order to increase the proportion of pro-eutectoid ferrite and refine the ferrite crystal grains, finish machining is performed at a compression ratio of 20% or more. Preferably, the compressibility is 50% or more. In addition, the processing temperature should be more than 800° C. and not more than 1050° C. in order to make the average grain size of ferrite crystal grains 5 to 15 μm. For refining ferrite crystal grains, the temperature is preferably 1000° C. or lower, more preferably 950° C. or lower. On the other hand, in order to prevent excessive refinement of ferrite crystal grains, the temperature is preferably 825° C. or higher, more preferably 850° C. or higher.

[第1冷却:(c)工程(b)後、750℃以上840℃以下まで10秒以下で冷却する工程]
初析フェライトの割合増加およびフェライト結晶粒の微細化のために、仕上げ加工後は速やかに所定の温度(以下、第1冷却停止温度と呼ぶことがある)まで冷却させる。仕上げ加工温度から第1冷却停止温度まで冷却させる時間は10秒以下とする。好ましくは5秒以下、更に好ましくは3秒以下とする。
初析フェライトの割合増加およびフェライト結晶粒の平均粒径を5~15μmとするために、第1冷却停止温度は、750℃以上840℃以下とする。初析フェライトの割合増加のためには、775℃以上が好ましい。一方、温度が高すぎるとフェライト結晶粒の平均粒径が大きくなりやすいため、820℃以下が好ましい。
[First cooling: (c) step of cooling to 750° C. or higher and 840° C. or lower in 10 seconds or less after step (b)]
In order to increase the proportion of pro-eutectoid ferrite and refine the ferrite grains, the work piece is quickly cooled to a predetermined temperature (hereinafter sometimes referred to as the first cooling stop temperature) after finishing. The time for cooling from the finishing temperature to the first cooling stop temperature shall be 10 seconds or less. It is preferably 5 seconds or less, more preferably 3 seconds or less.
In order to increase the proportion of proeutectoid ferrite and make the average grain size of ferrite crystal grains 5 to 15 μm, the first cooling stop temperature is set at 750° C. or higher and 840° C. or lower. A temperature of 775° C. or higher is preferable for increasing the proportion of proeutectoid ferrite. On the other hand, if the temperature is too high, the average grain size of the ferrite crystal grains tends to increase, so the temperature is preferably 820°C or less.

[第2冷却:(d)工程(c)後、500℃以下まで0.1℃/秒以上10℃/秒未満の平均冷却速度で冷却する工程]
初析フェライトの割合増加、フェライト結晶粒微細化、残部組織中のパーライトの割合低減および硬さ低減のために、0.1℃/秒以上10℃/秒未満の平均冷却速度で、第1冷却停止温度から500℃以下まで冷却する。好ましい平均冷却速度としては、1~3℃/秒である。
[Second cooling: (d) step of cooling to 500° C. or lower at an average cooling rate of 0.1° C./sec or more and less than 10° C./sec after step (c)]
In order to increase the proportion of proeutectoid ferrite, refine the ferrite grains, reduce the proportion of pearlite in the residual structure, and reduce the hardness, the first cooling is performed at an average cooling rate of 0.1 ° C./sec or more and less than 10 ° C./sec. Cool from stop temperature to 500°C or less. A preferable average cooling rate is 1 to 3° C./sec.

工程(d)後、500℃以下の温度範囲における冷却方法は特に限定されず、例えば、放冷であってもよく、又は第2冷却の平均冷却速度が例えば1℃/秒未満と比較的遅い場合には時間短縮のためにガス急冷等であってもよい。 After the step (d), the cooling method in the temperature range of 500 ° C. or less is not particularly limited. In some cases, rapid gas cooling or the like may be used to shorten the time.

以上のように本発明の実施形態に係る冷間加工用機械構造用鋼を得ることができる。本発明の実施形態に係る冷間加工用機械構造用鋼は、その後球状化焼鈍が施されることを想定しているが、場合によっては、球状化焼鈍前又は球状化焼鈍後に他の加工(伸線加工等)が施されてもよい。
本発明の実施形態に係る冷間加工用機械構造用鋼は、その後比較的時間を短縮した球状化焼鈍(例えば、従来:約15時間に対して約11時間に短縮した球状化焼鈍)が施された場合においても、球状化度に優れ、且つ十分に軟質化することができる。また、本発明において、上記製造条件で得た鋼材に対し、焼鈍、球状化焼鈍、伸線加工、圧造および焼入れ焼戻しのうち1つ以上の工程を行うことにより、鋼線を製造することができる。ここでいう鋼線とは、上記製造条件で得た鋼材に対し、焼鈍、球状化焼鈍、伸線加工、圧造、焼入れ焼戻し等を施して特性を調整した線状の鋼材を指すが、上記焼鈍等の工程以外に、2次加工メーカーが一般的に行う工程を経た、線状の鋼材も含む。
As described above, the steel for machine structural use for cold working according to the embodiment of the present invention can be obtained. It is assumed that the cold working machine structural steel according to the embodiment of the present invention is then subjected to spheroidizing annealing, but in some cases other processing ( wire drawing, etc.) may be applied.
The cold work machine structural steel according to embodiments of the present invention is then subjected to a relatively shortened spheroidizing anneal (e.g. conventional: about 11 hours of spheroidizing compared to about 15 hours). Even in the case of being spheroidized, it can be sufficiently softened. In the present invention, a steel wire can be produced by subjecting the steel material obtained under the above production conditions to one or more steps of annealing, spheroidizing annealing, wire drawing, heading, and quenching and tempering. . The steel wire here refers to a wire-shaped steel material obtained by subjecting the steel material obtained under the above manufacturing conditions to annealing, spheroidizing annealing, wire drawing, heading, quenching and tempering, etc. to adjust the properties. In addition to the above processes, it also includes linear steel materials that have undergone processes generally performed by secondary processing manufacturers.

以上のように本発明の実施形態に係る冷間加工用機械構造用鋼の製造方法を説明したが、本発明の実施形態に係る冷間加工用機械構造用鋼の所望の特性を理解した当業者が試行錯誤を行い、本発明の実施形態に係る所望の特性を有する冷間加工用機械構造用鋼を製造する方法であって、上記の製造方法以外の方法を見出す可能性がある。 As described above, the method of manufacturing the cold-work machine structural steel according to the embodiment of the present invention has been described. Through trial and error, a trader may find a method other than the method of manufacture described above to produce a cold work machine structural steel having the desired properties according to embodiments of the present invention.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can be implemented with appropriate modifications within the scope that can match the spirit described above and below. subsumed in

表1の鋼種AおよびDで示される化学成分組成の鋼を用いて、φ10mm×15mmの加工フォーマスタ用の試験片を作製した。作製した加工フォーマスタ用の試験片を用いて、表2に記載の条件にて加工フォーマスタ試験機によりプレス加工および冷却を行った。表2に記載されていないが、500℃以下の温度域の冷却は、第2冷却時の平均冷却速度が1℃/秒以上の場合、その第2冷却時の平均冷却速度で室温付近(25℃~40℃)まで冷却し、第2冷却時の平均冷却速度が1℃/秒未満の場合、ガス急冷とした。 Using the steels having the chemical compositions shown in Steel Types A and D in Table 1, φ10 mm × 15 mm test pieces for working formers were produced. Press working and cooling were performed by a working former tester under the conditions shown in Table 2 using the prepared test piece for working former. Although not listed in Table 2, cooling in the temperature range of 500 ° C. or less is performed when the average cooling rate during the second cooling is 1 ° C./sec or more, and the average cooling rate during the second cooling is around room temperature (25 to 40° C.), and when the average cooling rate during the second cooling was less than 1° C./sec, gas quenching was adopted.

表1および表2、ならびに後述する表3~5において、下線を付した数値は本発明の実施形態の範囲から外れていることを示す。なお、表1の炭素当量の欄には、下記式(1)で計算される値を記載した。

炭素当量(Ceq)=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14 ・・・(1)

ここで、[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]および[V]は、それぞれ、質量%で示したC、Si、Mn、Ni、Cr、MoおよびVの含有量を示す。
In Tables 1 and 2, and Tables 3-5 below, underlined numbers indicate values outside the scope of embodiments of the present invention. In addition, in the column of carbon equivalent in Table 1, the value calculated by the following formula (1) is described.

Carbon equivalent (Ceq)=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14 (1)

Here, [C], [Si], [Mn], [Ni], [Cr], [Mo] and [V] are respectively C, Si, Mn, Ni, Cr, Mo and V content.

Figure 0007247078000001
Figure 0007247078000001

Figure 0007247078000002
Figure 0007247078000002

加工熱処理試験を施した試験片を中心軸に沿って切断して4等分し、縦断面を含む4つのサンプルを得た。そのうちの1つは球状化焼鈍を施さないサンプル(以下、球状化焼鈍前サンプルと呼ぶことがある)とし、他の1つは球状化焼鈍を施したサンプル(以下、球状化焼鈍後サンプルと呼ぶことがある)とした。球状化焼鈍は、試験片をそれぞれ真空封入管に入れて行った。
球状化焼鈍は以下の2条件(SA1およびSA2)で実施した。
SA1:760℃で5時間均熱保持後、平均冷却速度13℃/時で685℃まで冷却し、その後放冷
SA2:750℃で2時間均熱保持後、平均冷却速度13℃/時で660℃まで冷却し、その後放冷
SA1は、従来技術における球状化焼鈍時間:約15時間に対して、球状化焼鈍時間:約11時間に短縮した条件とした。なお、ここでいう球状化焼鈍時間は、均熱保持時間と放冷するまでの冷却時間とを足し合わせた時間とした。また、SA2は、SA1と比較して温度の追従の遅れを想定して低温で行う条件とした。
The test piece subjected to the thermomechanical test was cut along the central axis and divided into four equal parts to obtain four samples including longitudinal sections. One of them is a sample not subjected to spheroidizing annealing (hereinafter sometimes referred to as a sample before spheroidizing annealing), and the other is a sample subjected to spheroidizing annealing (hereinafter referred to as a sample after spheroidizing annealing). (sometimes). The spheroidizing annealing was carried out by placing each test piece in a vacuum sealed tube.
Spheroidizing annealing was performed under the following two conditions (SA1 and SA2).
SA1: After soaking at 760°C for 5 hours, cool to 685°C at an average cooling rate of 13°C/hour, then allow to cool SA2: After soaking at 750°C for 2 hours, 660 at an average cooling rate of 13°C/hour ℃ and then allowed to cool SA1 was set to a condition in which the spheroidizing annealing time was shortened from about 15 hours in the conventional technology to about 11 hours. The spheroidizing annealing time referred to here was the sum of the soaking holding time and the cooling time until cooling. Also, SA2 was set to be performed at a low temperature assuming a delay in temperature follow-up compared to SA1.

球状化焼鈍前サンプルについて、縦断面が観察できるよう樹脂埋めし、(1)初析フェライトの面積率、(2)フェライト結晶粒の平均粒径、(3)初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合、および(4)球状化焼鈍前の硬さを測定した。
また、球状化焼鈍後サンプルについても、上記と同様に、縦断面が観察できるよう樹脂埋めし、(5)球状化焼鈍後の硬さおよび(6)球状化度を測定した。
(1)~(6)のいずれの測定についても、試験片の直径をDとし、試験片の側面から中心軸に向かってD/4の位置を測定した。
The sample before spheroidizing annealing was embedded in resin so that the longitudinal section could be observed, and (1) the area ratio of pro-eutectoid ferrite, (2) the average grain size of ferrite crystal grains, and (3) the total of structures other than pro-eutectoid ferrite. The ratio of the area ratio of pearlite to the area ratio and (4) the hardness before spheroidizing annealing were measured.
In addition, the samples after spheroidizing annealing were also embedded in resin in the same manner as described above so that the vertical cross section could be observed, and (5) the hardness after spheroidizing annealing and (6) the degree of spheroidization were measured.
For any of the measurements (1) to (6), the diameter of the test piece is D, and the position of D/4 from the side of the test piece toward the central axis was measured.

(1)初析フェライトの面積率の測定
球状化焼鈍前サンプルの縦断面について、ナイタールエッチングによって組織を現出させ、D/4位置を光学顕微鏡にて倍率400倍(視野領域:横220μm×縦165μm)および1000倍(視野領域:横88μm×縦66μm)で写真を撮影した。得られた写真について、等間隔の15本の縦線、等間隔の10本の横線を格子状に引き、150個の交点上に存在する初析フェライトの点数を測定して、当該点数を150で除した値を初析フェライトの面積率(%)とした。
この際、後述するフェライト結晶粒の平均粒径が10μm以上のサンプルについては倍率400倍の写真を用いて測定し、5μm未満のサンプルについては倍率1000倍の写真を用いて測定し、5μm以上10μm未満のサンプルについては倍率400倍または1000倍のいずれかの写真を適宜選択して測定した。
(1) Measurement of area ratio of pro-eutectoid ferrite For the longitudinal section of the sample before spheroidizing annealing, the structure was revealed by nital etching, and the D/4 position was observed with an optical microscope at a magnification of 400 times (field of view: horizontal 220 μm × 165 μm in height) and 1000× (viewing area: 88 μm in width×66 μm in height). On the obtained photograph, 15 equally spaced vertical lines and 10 equally spaced horizontal lines are drawn in a grid pattern, and the number of proeutectoid ferrite present on 150 intersections is measured. The area ratio (%) of the pro-eutectoid ferrite was obtained by dividing the value by .
At this time, samples with an average grain size of ferrite crystal grains of 10 μm or more, which will be described later, are measured using a photograph at a magnification of 400 times, and samples with an average grain size of less than 5 μm are measured using a photograph at a magnification of 1000 times. Samples with less than 100% magnification were measured by appropriately selecting either a 400-fold or 1000-fold photograph.

(2)フェライト結晶粒の平均粒径の測定
フェライト結晶粒の平均粒径は、FE-SEMおよびEBSP解析装置を用いて測定した。
球状化焼鈍前サンプルの縦断面のD/4位置について、FE-SEMにより後方散乱電子回折像を得た。得られた像において、EBSP解析装置を用いて、結晶方位差(斜角)が15°を超える境界、すなわち、大角粒界を結晶粒界として「結晶粒」を定義し、フェライトにおける結晶粒の平均粒径を決定した。その際、測定領域は200μm×200μm、測定ステップは0.4μm間隔として測定し、測定方位の信頼性を示すコンフィデンス・インデックス(Confidence Index)が0.1以下の測定点は解析対象から削除した。
(2) Measurement of Average Grain Size of Ferrite Crystal Grains The average grain size of ferrite crystal grains was measured using an FE-SEM and an EBSP analyzer.
A backscattered electron diffraction image was obtained by FE-SEM at the D/4 position of the longitudinal section of the sample before spheroidizing annealing. In the obtained image, using an EBSP analyzer, a boundary where the crystal orientation difference (oblique angle) exceeds 15°, that is, a large-angle grain boundary is defined as a “crystal grain”, and a “crystal grain” is defined as a crystal grain boundary. Average particle size was determined. At that time, the measurement area was set to 200 μm×200 μm, and the measurement step was performed at intervals of 0.4 μm. Measurement points with a confidence index of 0.1 or less, which indicates the reliability of the measurement direction, were deleted from the analysis target.

(3)初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合の測定
球状化焼鈍前サンプルの縦断面について、ナイタールエッチングによって組織を現出させ、D/4位置を光学顕微鏡にて倍率400倍(視野領域:横220μm×縦165μm)および1000倍(視野領域:横88μm×縦66μm)で写真を撮影した。得られた写真について、等間隔の15本の縦線、等間隔の10本の横線を格子状に引き、150個の交点上に存在する初析フェライトの点数Aを測定した。次に、150個の交点上に存在するパーライトの点数Bを測定して、点数Bを点数(150-A)で除した値を初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合(%)とした。
この際、後述するフェライト結晶粒の平均粒径が10μm以上のサンプルについては倍率400倍の写真を用いて測定し、5μm未満のサンプルについては倍率1000倍の写真を用いて測定し、5μm以上10μm未満のサンプルについては倍率400倍または1000倍のいずれかの写真を適宜選択して測定した。
(3) Measurement of the ratio of the area ratio of pearlite to the total area ratio of structures other than pro-eutectoid ferrite For the longitudinal section of the sample before spheroidizing annealing, the structure was revealed by nital etching, and the D / 4 position was observed with an optical microscope. Photographs were taken at a magnification of 400 (field of view area: 220 µm horizontal × 165 µm vertical) and 1000 × (field of view area: 88 µm horizontal × 66 µm vertical). On the obtained photograph, 15 equally spaced vertical lines and 10 equally spaced horizontal lines were drawn in a grid pattern, and the number A of proeutectoid ferrite existing on 150 intersections was measured. Next, the score B of pearlite present on 150 intersections is measured, and the value obtained by dividing the score B by the score (150-A) is the area ratio of pearlite with respect to the total area ratio of the structure other than pro-eutectoid ferrite. The ratio (%) of
At this time, samples with an average grain size of ferrite crystal grains of 10 μm or more, which will be described later, are measured using a photograph at a magnification of 400 times, and samples with an average grain size of less than 5 μm are measured using a photograph at a magnification of 1000 times. Samples with less than 100% magnification were measured by appropriately selecting either a 400-fold or 1000-fold photograph.

(4)球状化焼鈍前の硬さの測定
球状化焼鈍前サンプルの縦断面について、ビッカース硬度計を用いて、D/4位置にて荷重1kgfで3~5点測定し、その平均値(HV)を求めた。
(4) Measurement of hardness before spheroidizing annealing For the longitudinal section of the sample before spheroidizing annealing, a Vickers hardness tester was used to measure 3 to 5 points with a load of 1 kgf at the D/4 position, and the average value (HV ).

(5)球状化焼鈍後の硬さの測定
球状化焼鈍後サンプルの縦断面について、ビッカース硬度計を用いて、D/4位置にて荷重1kgfで3~5点測定し、その平均値(HV)を求めた。
(5) Measurement of hardness after spheroidizing annealing For the longitudinal section of the sample after spheroidizing annealing, using a Vickers hardness tester, 3 to 5 points were measured at the D/4 position with a load of 1 kgf, and the average value (HV ).

硬さは、鋼種の炭素当量が大きい程増大することが知られているため、本実施例の球状化焼鈍後の硬さの判定基準は、鋼種の炭素当量(Ceq)に応じて設定した。具体的には、SA1後の硬さについては、下記式(2)を満たすか否かにより判定した。

(硬さ(HV)) < 97.3×Ceq+84 ・・・(2)

SA1後の硬さが、上記式(2)を満たす場合を最も良好(◎)とし、上記式(2)を満たさない場合を不良(×)とした。
なお、炭素当量が0.70以上の場合、SA1後の硬さがHV150以下であれば、より好ましい。
Since it is known that the hardness increases as the carbon equivalent of the steel type increases, the criterion for hardness after spheroidizing annealing in this example was set according to the carbon equivalent (Ceq) of the steel type. Specifically, the hardness after SA1 was determined based on whether or not the following formula (2) was satisfied.

(Hardness (HV)) < 97.3 x Ceq + 84 (2)

The case where the hardness after SA1 satisfied the above formula (2) was rated as the best (⊚), and the case where the above formula (2) was not satisfied was rated as poor (x).
When the carbon equivalent is 0.70 or more, it is more preferable that the hardness after SA1 is HV 150 or less.

また、SA2は、SA1よりも低温で軟質化しにくい焼鈍条件であるため、SA2後の硬さについては、上記式(2)とは異なる基準(緩やかな基準)を設定した。具体的には、SA2後の硬さについては、下記式(3)を満たすか否かにより判定した。

(硬さ(HV)) < 97.3×Ceq+98 ・・・(3)

SA2後の硬さが、上記式(3)を満たす場合を最も良好(◎)とし、上記式(3)を満たさない場合を不良(×)とした。
なお、炭素当量が0.70以上の場合、SA2後の硬さがHV165以下であれば、より好ましい。
In addition, since SA2 is an annealing condition in which softening is less likely to occur at a lower temperature than in SA1, a standard (loose standard) different from the above formula (2) was set for the hardness after SA2. Specifically, the hardness after SA2 was determined based on whether or not the following formula (3) was satisfied.

(Hardness (HV)) < 97.3 x Ceq + 98 (3)

The case where the hardness after SA2 satisfies the above formula (3) was rated as the best (⊚), and the case where the above formula (3) was not satisfied was rated as poor (x).
When the carbon equivalent is 0.70 or more, it is more preferable that the hardness after SA2 is HV165 or less.

(6)球状化度の測定
球状化焼鈍後サンプルの縦断面について、ナイタールエッチングによって組織を現出させ、D/4位置にて光学顕微鏡を用いて倍率400倍(視野領域:横220μm×縦165μm)で観察した。観察した像について、JISG3509-2に記載されている「球状化組織の程度」に従って、球状化度1~3番を決定した。判定は球状化度が1番のときは最も良好(◎)とし、2番のときは良好(○)とし、3番のときは不良(×)とした。
(6) Measurement of degree of spheroidization For the longitudinal section of the sample after spheroidization annealing, the structure was revealed by nital etching, and an optical microscope was used at the D/4 position at a magnification of 400 times (field of view: horizontal 220 μm × vertical 165 μm). For the observed images, the degree of spheroidization Nos. 1 to 3 was determined according to the "degree of spheroidized structure" described in JISG3509-2. When the degree of spheroidization was No. 1, it was judged as the best (⊚).

上記(1)~(6)の要領で評価した球状化焼鈍前の組織および硬さ、ならびに球状化焼鈍後の硬さおよび球状化度を表3に示す。なお、SA1後の総合判定については、SA1後の硬さおよび球状化度において、全て◎のときは最も良好(◎)とした。◎と○が混在するときは、良好(○)とした。×が1つでも混在するときは、不良(×)とした。 Table 3 shows the structure and hardness before spheroidizing annealing and the hardness and degree of spheroidization after spheroidizing annealing, which were evaluated according to the above procedures (1) to (6). Regarding the overall judgment after SA1, the hardness and the degree of spheroidization after SA1 were judged to be the best (⊚) when they were all ⊙. When both ⊚ and ∘ coexist, it was rated as good (∘). When even one x was mixed, it was determined as defective (x).

Figure 0007247078000003
Figure 0007247078000003

表3の結果において、残部組織の内、パーライト以外は全てベイナイトであった。 In the results shown in Table 3, all of the residual structures other than pearlite were bainite.

表3の結果より、次のように考察できる。表3の試験No.1-1~1-4、1-9および1-10は、いずれも本発明の実施形態で規定する要件の全てを満足する例であり、従来よりも球状化焼鈍時間が短縮されたSA1後において、硬さおよび球状化度がいずれも良好または最も良好であった。特に試験No.1-1~1-2は、試験No.1-3~1-4、1-9および1-10とは異なり、炭素含有量が好ましい範囲(0.40質量%未満)で、且つ第2冷却時の平均冷却速度が好ましい範囲内(1~3℃/秒)にあり、その結果好ましい要件(初析フェライト面積率40%超および残部組織のパーライト面積率80%以下)を満たしたため、SA1後の球状化度が最も良好となり、総合判定において最も良好となった。
一方、表3の試験No.1-5~1-8は、本発明で規定する要件を満たしていない例であり、SA1後の硬さまたは球状化度が不良であった。
From the results of Table 3, it can be considered as follows. Test No. in Table 3. 1-1 to 1-4, 1-9 and 1-10 are all examples that satisfy all the requirements defined in the embodiments of the present invention, and after SA1 in which the spheroidizing annealing time is shorter than before , both the hardness and the degree of spheroidization were good or best. Especially test no. 1-1 and 1-2 are Test Nos. Unlike 1-3 to 1-4, 1-9 and 1-10, the carbon content is in the preferred range (less than 0.40% by mass), and the average cooling rate during the second cooling is in the preferred range (1 ~ 3 ° C./sec), and as a result, the preferable requirements (pro-eutectoid ferrite area ratio of more than 40% and pearlite area ratio of the remaining structure of 80% or less) were satisfied, so the degree of spheroidization after SA1 was the best, and comprehensive judgment was made. was the best in
On the other hand, Test No. in Table 3. 1-5 to 1-8 are examples that do not satisfy the requirements defined in the present invention, and the hardness or degree of spheroidization after SA1 was poor.

試験No.1-5は、仕上げ加工温度が1200℃と高かったため、フェライト結晶粒の平均粒径が15μm超となり、SA1後の球状化度が不良であった。 Test no. In No. 1-5, the finishing temperature was as high as 1200° C., so the average grain size of ferrite crystal grains exceeded 15 μm, and the degree of spheroidization after SA1 was poor.

試験No.1-6は、仕上げ加工温度が800℃と低いため、フェライト結晶粒の平均粒径が5μm未満となり、SA1後の硬さが不良であった。 Test no. In No. 1-6, since the finishing temperature was as low as 800° C., the average grain size of the ferrite crystal grains was less than 5 μm, and the hardness after SA1 was poor.

試験No.1-7は、第2冷却の平均冷却速度が10℃/秒と速かったため、初析フェライトの面積率が30%未満となり、SA1後の硬さが不良であった。 Test no. In No. 1-7, since the average cooling rate of the second cooling was as high as 10° C./sec, the area ratio of pro-eutectoid ferrite was less than 30%, and the hardness after SA1 was poor.

試験No.1-8は、仕上げ加工温度が1200℃と高く、初析フェライトの面積率が30%未満となり、かつフェライト結晶粒の平均粒径が15μm超となり、SA1後の硬さが不良であった。 Test no. In No. 1-8, the finishing temperature was as high as 1200° C., the area ratio of proeutectoid ferrite was less than 30%, the average grain size of ferrite crystal grains was more than 15 μm, and the hardness after SA1 was poor.

また、表3の試験No.1-1~1-4、1-9および1-10のように本発明の実施形態で規定する要件の全てを満足することにより、SA1と比較して温度の追従の遅れを想定して低温で球状化焼鈍を行ったSA2後においても、十分に軟質化することがわかった。 In addition, Test No. in Table 3. By satisfying all the requirements defined in the embodiments of the present invention such as 1-1 to 1-4, 1-9 and 1-10, the low temperature It was found that the steel was sufficiently softened even after SA2 in which spheroidizing annealing was performed at .

表1の鋼種B、Cで示される化学成分組成の鋼を用いて、実機の圧延ラインで表4の条件で圧延加工および冷却を行った。なお、実機の圧延ラインでは、加熱炉、粗列圧延機、中間列圧延機、中間水冷帯、ブロックミル圧延機、サイジングミル圧延機、製品水冷帯、冷却コンベアおよび立体倉庫がこの順に接続されており、前加工はブロックミル圧延機で行い、仕上げ加工はサイジングミル圧延機で行い、第1冷却および第2冷却は冷却コンベアで行った。表4に記載されていないが、500℃以下の温度域の冷却は、約400℃までは第2冷却時の平均冷却速度で冷却し、その後は放冷とした。得られた圧延材からサンプルを切り出し、そのうちの1つは球状化焼鈍を施さないサンプルとし、他の1つは球状化焼鈍を施したサンプルとした。
球状化焼鈍は以下の2条件(SA3およびSA4)で実施した。SA3は、従来技術における球状化焼鈍時間:約15時間に対して、球状化焼鈍時間:約9時間に短縮した条件とした。また、SA4はSA3と比較して温度の追従の遅れを想定して低温で行う条件とした。
SA3:770℃で2時間均熱保持後、平均冷却速度13℃/時で685℃まで冷却し、その後放冷
SA4:750℃で2時間均熱保持後、平均冷却速度13℃/時で660℃まで冷却し、その後放冷。
Using the steels having the chemical composition shown in steel grades B and C in Table 1, rolling and cooling were performed on an actual rolling line under the conditions shown in Table 4. In the actual rolling line, the heating furnace, roughing rolling mill, intermediate rolling mill, intermediate water cooling zone, block mill rolling mill, sizing mill rolling mill, product water cooling zone, cooling conveyor and multilevel warehouse are connected in this order. Pre-processing was performed by a block mill rolling mill, finishing processing was performed by a sizing mill rolling mill, and first cooling and second cooling were performed by a cooling conveyor. Although not shown in Table 4, cooling in the temperature range of 500°C or less was performed at the average cooling rate during the second cooling until about 400°C, and then allowed to cool. Samples were cut from the obtained rolled material, one of which was a sample not subjected to spheroidizing annealing, and the other was a sample subjected to spheroidizing annealing.
Spheroidizing annealing was performed under the following two conditions (SA3 and SA4). In SA3, the spheroidizing annealing time was shortened from about 15 hours in the prior art to about 9 hours. SA4 was set to be performed at a low temperature assuming a delay in temperature follow-up compared to SA3.
SA3: After soaking at 770°C for 2 hours, cool to 685°C at an average cooling rate of 13°C/hour, then allow to cool SA4: After soaking at 750°C for 2 hours, 660 at an average cooling rate of 13°C/hour Cool to °C and then stand to cool.

Figure 0007247078000004
Figure 0007247078000004

実施例1と同様に、(1)初析フェライトの面積率、(2)フェライト結晶粒の平均粒径、(3)初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合、(4)球状化焼鈍前の硬さ、(5)球状化焼鈍後の硬さおよび(6)球状化度を測定、評価した。なお、球状化焼鈍後の硬さの判定としては、SA3後の硬さについて、上記式(2)を満たす場合を最も良好(◎)とし、上記式(2)を満たさない場合を不良(×)とした。また、炭素当量が0.70以上の場合、SA3後の硬さがHV150以下であれば、より好ましい。SA4後の硬さについて、上記式(3)を満たす場合を最も良好(◎)とし、上記式(3)を満たさない場合を不良(×)とした。なお、炭素当量が0.70以上の場合、SA4後の硬さがHV165以下であれば、より好ましい。
結果を表5に示す。
As in Example 1, (1) the area ratio of pro-eutectoid ferrite, (2) the average grain size of ferrite crystal grains, (3) the ratio of the area ratio of pearlite to the total area ratio of structures other than pro-eutectoid ferrite, (4) Hardness before spheroidizing annealing, (5) hardness after spheroidizing annealing, and (6) degree of spheroidization were measured and evaluated. As for the hardness after spheroidizing annealing, the hardness after SA3 is best when the above formula (2) is satisfied (⊚), and when it does not satisfy the above formula (2), it is bad (× ). Further, when the carbon equivalent is 0.70 or more, it is more preferable that the hardness after SA3 is HV150 or less. Regarding the hardness after SA4, the case where the above formula (3) was satisfied was rated as the best (⊚), and the case where the above formula (3) was not satisfied was rated as poor (x). When the carbon equivalent is 0.70 or more, it is more preferable that the hardness after SA4 is HV165 or less.
Table 5 shows the results.

Figure 0007247078000005
Figure 0007247078000005

表5の結果において、残部組織の内、パーライト以外は全てベイナイトであった。 In the results shown in Table 5, all of the residual structures other than pearlite were bainite.

表5の結果より、次のように考察できる。表5のNo.2-2はいずれも本発明の実施形態で規定する要件の全てを満足する例であり、SA3後の硬さおよび球状化度が、いずれも最も良好または良好であった。
一方、表5のNo.2-1は、第1冷却の冷却停止温度が840℃超であり、初析フェライトの面積率が30%未満となり、かつフェライト結晶粒の平均粒径が15μm超となり、SA3後の硬さおよび球状化度が不良であった。
From the results of Table 5, it can be considered as follows. No. in Table 5. All of 2-2 are examples that satisfy all the requirements defined in the embodiments of the present invention, and the hardness and degree of spheroidization after SA3 were both the best or best.
On the other hand, No. in Table 5. In 2-1, the cooling stop temperature of the first cooling is over 840 ° C., the area ratio of pro-eutectoid ferrite is less than 30%, the average grain size of ferrite crystal grains is over 15 μm, and the hardness after SA3 and The degree of spheroidization was poor.

本発明に係る冷間加工用機械構造用鋼は、冷間鍛造、冷間圧造又は冷間転造等の冷間加工によって製造される各種部品の素材に好適である。鋼の形態は特に限定されないが、例えば線材または棒鋼等の圧延材とすることができる。
前記部品には、例えば、自動車用部品、建設機械用部品が含まれ、具体的には、ボルト、ねじ、ナット、ソケット、ボールジョイント、インナーチューブ、トーションバー、クラッチケース、ケージ、ハウジング、ハブ、カバー、ケース、受座金、タペット、サドル、バルグ、インナーケース、クラッチ、スリーブ、アウターレース、スプロケット、ステータ、アンビル、スパイダー、ロッカーアーム、ボディー、フランジ、ドラム、継手、コネクタ、プーリー、金具、ヨーク、口金、バルブリフター、スパークプラグ、ピニオンギヤ、ステアリングシャフト及びコモンレール等が含まれる。本発明に係る冷間加工用機械構造用鋼は、上記の部品の素材として好適に用いられる機械構造用鋼として産業上有用であり、球状化焼鈍後、室温および加工発熱領域において上記の各種部品に製造される際、変形抵抗が低く、優れた冷間加工性を発揮することができる。
The steel for cold working machine structural use according to the present invention is suitable as a material for various parts manufactured by cold working such as cold forging, cold heading, or cold rolling. Although the form of the steel is not particularly limited, it can be a rolled material such as a wire rod or a steel bar.
The parts include, for example, parts for automobiles and parts for construction machinery. Specifically, bolts, screws, nuts, sockets, ball joints, inner tubes, torsion bars, clutch cases, cages, housings, hubs, Covers, cases, receiving washers, tappets, saddles, bulks, inner cases, clutches, sleeves, outer races, sprockets, stators, anvils, spiders, rocker arms, bodies, flanges, drums, joints, connectors, pulleys, metal fittings, yokes, Bases, valve lifters, spark plugs, pinion gears, steering shafts and common rails are included. The steel for machine structural use for cold working according to the present invention is industrially useful as a steel for machine structural use that is suitably used as a raw material for the above parts. When it is manufactured in a low deformation resistance, it can exhibit excellent cold workability.

Claims (8)

C :0.32~0.44質量%、
Si:0.15~0.35質量%、
Mn:0.55~0.95質量%、
P :0.030質量%以下、
S :0.030質量%以下、
Cr:0.85~1.25質量%、
Mo:0.15~0.35質量%、
Al:0.01~0.1質量%、
残部:鉄および不可避不純物からなり、
初析フェライトの面積率が35%超70%以下であり、
フェライト結晶粒の平均粒径が5~15μmである冷間加工用機械構造用鋼。
C: 0.32 to 0.44% by mass,
Si: 0.15 to 0.35% by mass,
Mn: 0.55 to 0.95% by mass,
P: 0.030% by mass or less,
S: 0.030% by mass or less,
Cr: 0.85 to 1.25% by mass,
Mo: 0.15 to 0.35% by mass,
Al: 0.01 to 0.1% by mass,
balance: consisting of iron and unavoidable impurities,
The area ratio of proeutectoid ferrite is more than 35% and 70% or less,
Machine structural steel for cold working in which the average grain size of ferrite grains is 5 to 15 μm.
前記初析フェライト以外の組織の合計の面積率に対するパーライトの面積率の割合が80%以下である、請求項1に記載の冷間加工用機械構造用鋼。 2. The steel for cold working machine structural use according to claim 1, wherein the ratio of the area ratio of pearlite to the total area ratio of structures other than proeutectoid ferrite is 80% or less. 硬さがHV300以下である、請求項1または2に記載の冷間加工用機械構造用鋼。 3. The steel for cold working machine structural use according to claim 1 or 2, having a hardness of HV300 or less. Cu:0.25質量%以下(0質量%を含まない)、および
Ni:0.25質量%以下(0質量%を含まない)よりなる群から選択される一種以上を更に含有する請求項1~3のいずれか1つに記載の冷間加工用機械構造用鋼。
Cu: 0.25% by mass or less (not including 0% by mass), and Ni: 0.25% by mass or less (not including 0% by mass). 4. Steel for machine structural use for cold working according to any one of 1 to 3.
Ti:0.2質量%以下(0質量%を含まない)、
Nb:0.2質量%以下(0質量%を含まない)、および
V :1.5質量%以下(0質量%を含まない)よりなる群から選択される一種以上を更に含有する請求項1~4のいずれか1つに記載の冷間加工用機械構造用鋼。
Ti: 0.2% by mass or less (not including 0% by mass),
Nb: 0.2% by mass or less (not including 0% by mass), and V: 1.5% by mass or less (not including 0% by mass). 5. Steel for machine structural use for cold working according to any one of -4.
N :0.01質量%以下(0質量%を含まない)、
Mg :0.02質量%以下(0質量%を含まない)、
Ca :0.05質量%以下(0質量%を含まない)、
Li :0.02質量%以下(0質量%を含まない)、および
REM:0.05質量%以下(0質量%を含まない)よりなる群から選択される一種以上を含有する請求項1~5のいずれか1つに記載の冷間加工用機械構造用鋼。
N: 0.01% by mass or less (not including 0% by mass),
Mg: 0.02% by mass or less (excluding 0% by mass),
Ca: 0.05% by mass or less (not including 0% by mass),
Li: 0.02% by mass or less (not including 0% by mass), and REM: 0.05% by mass or less (not including 0% by mass). 6. Steel for machine structural use for cold working according to any one of 5.
請求項1~6のいずれか1つに記載の化学成分組成の鋼を用意し、
(a)圧縮率20%以上、保持時間10秒以下で前加工を行う工程と、
(b)前記工程(a)後、800℃超1050℃以下、圧縮率20%以上で仕上げ加工を行う工程と、
(c)前記工程(b)後、750℃以上840℃以下まで10秒以下で冷却する工程と、
(d)前記工程(c)後、500℃以下まで0.1℃/秒以上10℃/秒未満の平均冷却速度で冷却する工程とを含む、請求項1~6のいずれか1つに記載の冷間加工用機械構造用鋼の製造方法。
Prepare steel having the chemical composition according to any one of claims 1 to 6,
(a) a step of pre-processing at a compression ratio of 20% or more and a holding time of 10 seconds or less;
(b) After the step (a), a step of finishing at a compression ratio of 20% or more at a compression ratio of 20% or more, and 800° C. or more and 1050° C. or less;
(c) a step of cooling to 750° C. or higher and 840° C. or lower in 10 seconds or less after the step (b);
(d) after step (c), cooling to 500° C. or lower at an average cooling rate of 0.1° C./sec or more and less than 10° C./sec , according to any one of claims 1 to 6. of steel for cold working machine structural use.
請求項7の方法で製造した冷間加工用機械構造用鋼に、焼鈍、球状化焼鈍、伸線加工、圧造および焼入れ焼戻しのうち1つ以上の工程を行う鋼線の製造方法。 A method of manufacturing a steel wire, wherein the steel for machine structural use for cold working manufactured by the method of claim 7 is subjected to one or more steps of annealing, spheroidizing annealing, wire drawing, heading and quenching and tempering.
JP2019211181A 2019-01-31 2019-11-22 Mechanical structural steel for cold working and its manufacturing method Active JP7247078B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/426,412 US20220106670A1 (en) 2019-01-31 2020-01-14 Mechanical structure steel for cold-working and manufacturing method therefor
PCT/JP2020/000840 WO2020158368A1 (en) 2019-01-31 2020-01-14 Steel for cold working machine structures, and method for producing same
CA3126378A CA3126378C (en) 2019-01-31 2020-01-14 Mechanical structure steel for cold-working and manufacturing method therefor
KR1020217025731A KR102629833B1 (en) 2019-01-31 2020-01-14 Cold working machine structural steel and method of manufacturing the same
CN202080010594.8A CN113348256A (en) 2019-01-31 2020-01-14 Steel for cold working machine structural use and method for producing same
TW109101966A TWI727621B (en) 2019-01-31 2020-01-20 Mechanical structural steel for cold forming processing and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019016219 2019-01-31
JP2019016219 2019-01-31

Publications (2)

Publication Number Publication Date
JP2020125538A JP2020125538A (en) 2020-08-20
JP7247078B2 true JP7247078B2 (en) 2023-03-28

Family

ID=72083625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211181A Active JP7247078B2 (en) 2019-01-31 2019-11-22 Mechanical structural steel for cold working and its manufacturing method

Country Status (5)

Country Link
JP (1) JP7247078B2 (en)
KR (1) KR102629833B1 (en)
CN (1) CN113348256A (en)
CA (1) CA3126378C (en)
TW (1) TWI727621B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3210932A1 (en) * 2021-02-26 2022-09-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Cold-workable mechanical structural steel, and method for manufacturing same
CN113106343B (en) * 2021-04-02 2022-06-21 大冶特殊钢有限公司 Bolted steel for ocean platform and manufacturing method thereof
KR102521913B1 (en) * 2021-06-25 2023-05-02 주식회사 에스비비테크 Method for manufacturing strain wave gear device
WO2023190994A1 (en) * 2022-03-31 2023-10-05 日本製鉄株式会社 Wire rod

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227602A (en) 2012-04-24 2013-11-07 Kobe Steel Ltd Steel for machine structure for cold working and method of manufacturing the same
WO2018055937A1 (en) 2016-09-21 2018-03-29 Jfeスチール株式会社 Steel pipe for accumulator, method for manufacturing steel pipe for accumulator, and liner for composite container accumulator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3742232B2 (en) * 1998-10-13 2006-02-01 株式会社神戸製鋼所 Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
JP6497146B2 (en) 2015-03-16 2019-04-10 新日鐵住金株式会社 Steel wire rod with excellent cold workability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227602A (en) 2012-04-24 2013-11-07 Kobe Steel Ltd Steel for machine structure for cold working and method of manufacturing the same
WO2018055937A1 (en) 2016-09-21 2018-03-29 Jfeスチール株式会社 Steel pipe for accumulator, method for manufacturing steel pipe for accumulator, and liner for composite container accumulator

Also Published As

Publication number Publication date
CA3126378A1 (en) 2020-08-06
KR20210113668A (en) 2021-09-16
CA3126378C (en) 2023-05-09
TWI727621B (en) 2021-05-11
TW202031911A (en) 2020-09-01
KR102629833B1 (en) 2024-01-25
JP2020125538A (en) 2020-08-20
CN113348256A (en) 2021-09-03

Similar Documents

Publication Publication Date Title
JP5486634B2 (en) Steel for machine structure for cold working and method for producing the same
JP7247078B2 (en) Mechanical structural steel for cold working and its manufacturing method
JP4435954B2 (en) Bar wire for cold forging and its manufacturing method
JP4435953B2 (en) Bar wire for cold forging and its manufacturing method
US10570478B2 (en) Steel for mechanical structure for cold working, and method for producing same
JP5618916B2 (en) Machine structural steel for cold working, method for producing the same, and machine structural parts
US20180105894A1 (en) Steel wire for mechanical structural parts
US8034199B2 (en) Case-hardening steel excellent in cold forgeability and low carburization distortion property
JP5704716B2 (en) Machine structural steel for cold working and method for producing the same
JP2006233269A (en) Steel parts with excellent balance between strength and torsional characteristic, method for manufacturing the steel parts, and steel for the steel parts
JP2018024909A (en) Steel for machine structural use for cold working and production method thereof
WO2020090149A1 (en) Steel for bolts, and method for manufacturing same
WO2020158368A1 (en) Steel for cold working machine structures, and method for producing same
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP2007277654A (en) Cold forged components, manufacturing method for obtaining the same, and steel material
JPH10265841A (en) Production of high strength cold forging parts
JP6632281B2 (en) Case hardening steel for cold forging with excellent resistance to grain coarsening
WO2022181272A1 (en) Cold-workable mechanical structural steel, and method for producing same
US20240167116A1 (en) Steel wire for machine structural parts and method for manufacturing the same
JP2022132084A (en) Mechanical structural steel for cold working and its manufacturing method
CN116888293A (en) Steel for cold working machine structural use and method for producing same
JPWO2020090149A1 (en) Steel for bolts
JPH11236617A (en) Steel for high strength bolt excellent in cold workability and delayed fracture resistance and its production
JP2002097546A (en) Hot rolled wire rod and heat treated steel product therefor
JPH1096045A (en) Structural steel excellent in cold forgeability and strength, and production of forged member using the steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R151 Written notification of patent or utility model registration

Ref document number: 7247078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151