WO2023190994A1 - Wire rod - Google Patents

Wire rod Download PDF

Info

Publication number
WO2023190994A1
WO2023190994A1 PCT/JP2023/013402 JP2023013402W WO2023190994A1 WO 2023190994 A1 WO2023190994 A1 WO 2023190994A1 JP 2023013402 W JP2023013402 W JP 2023013402W WO 2023190994 A1 WO2023190994 A1 WO 2023190994A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
less
amount
pearlite
ferrite
Prior art date
Application number
PCT/JP2023/013402
Other languages
French (fr)
Japanese (ja)
Inventor
真 小此木
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2023190994A1 publication Critical patent/WO2023190994A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present disclosure relates to a wire.
  • Mechanical parts such as steel bolts and screws are made by softening the cold heading wire material by spheroidizing annealing to prevent mold wear during forming and processing cracks in the product. Thereafter, it is manufactured by molding and adding strength through quenching and tempering.
  • Patent Document 1 describes a steel wire rod with C: 0.2 to 0 that can achieve rapid spheroidization before cold forging and improved deformability to achieve excellent cold forgeability. 6% (the meaning of mass%, the same applies hereinafter), Si: 0.3% or less, Mn: 0.2 to 1.5%, respectively. It has a structure mainly composed of pro-eutectoid ferrite and pearlite, has an average crystal grain size of 6 to 15 ⁇ m, and has a pro-eutectoid ferrite volume fraction Vf with respect to the equilibrium pro-eutectoid ferrite volume fraction (Vpf1) expressed by the following formula (1). A steel wire rod having a ratio (Vf/Vpf1) of 0.05 to 0.75 has been proposed.
  • Patent Document 2 describes steel materials for mechanical structures that have excellent cold workability as hot-rolled, C: 0.10 to 0.40%, Si: 0.30% or less, Mn: 0. 20 to 1.70%, Al: 0.01 to 0.10%, the remainder consists of Fe and unavoidable impurities, the minimum from the surface layer is wire diameter (mm) x 0.1, and the maximum is wire diameter (mm)
  • Steel materials for mechanical structures have been proposed in which the average grain size of ferrite grains and pearlite grains is 10 ⁇ m or less over ⁇ 0.3.
  • Patent Document 4 as a steel material that can simultaneously achieve the shortening of the spheroidization time before cold forging and the improvement of cold workability, C: 0.005 to 0.60%, Si : 0.01 to 0.50%, Mn: 0.20 to 1.80%, Al: 0.01 to 0.06%, P: 0.04% or less, S: 0.05% or less, N: 0.01% or less, Cr: 0-1.50%, Mo: 0-0.50%, Ni: 0-1.00%, V: 0-0.50%, B: 0-0.0050% , Ti: 0 to 0.05%, the balance is Fe and impurities, the metal structure includes pearlite, and the Mn content in atomic % contained in cementite in the pearlite is A steel material is disclosed in which the value divided by the Mn content in atomic % contained in ferrite is greater than 0 and less than or equal to 5.0.
  • Patent Document 1 Japanese Patent Application Publication No. 2000-119809 Patent Document 2: Japanese Patent Application Publication No. 5-339677 Patent Document 3: Japanese Patent Application Publication No. 2006-225701 Patent Document 4: International Publication No. 2015/189978
  • low-alloy steel cold heading wire rods containing C, Mn, Cr, and Mo have high deformation resistance and low ductility, so sufficient workability cannot be obtained with one round of spheroidizing annealing, and generally 2 It is manufactured by performing spheroidizing annealing twice.
  • an increase in the number of annealing leads to an increase in manufacturing costs and CO2 emissions, there is a demand for simplifying the spheroidizing annealing.
  • the deformation resistance may be lowered and the ductility may be increased.
  • it is effective to make cementite spherical, further reduce the number density of spherical cementite, and increase the ferrite crystal grain size.
  • it is effective to make cementite spherical and uniformly disperse it.
  • an object of the present disclosure is to provide a wire rod that can reduce deformation resistance and improve ductility with one spheroidizing annealing even if the wire rod has a composition with a high Cr content. do.
  • the above problem is solved by the following means. ⁇ 1>
  • the chemical composition is in mass%, C: 0.30-0.50%, Si: 0.01-0.45%, Mn: 0.30-1.00%, P: 0.030% or less, S: 0.050% or less, Al: 0.001-0.080%, Cr: 0.85-1.50%, N: 0.0010-0.0200%, O: 0.004% or less, Mo: 0 to 0.70%, Ti: 0 to 0.040%, B: 0 to 0.0040%, Nb: 0 to 0.050%, Cu: 0 to 0.50%, Ni: 0 to 0.30%, Sn: 0 to 0.30%, Sb: 0 to 0.050%, V: 0 to 0.20%, and Ca: 0 to 0.0050%, with the remainder consisting of Fe and impurity elements,
  • the diameter of the wire is D, in a cross section perpendicular to the longitudinal direction of the wire, the metal structure at a depth of 1/4 D from the surface of the wire is pearl
  • the average value of Vickers hardness in the cross section is 415 x F1-90 or more and 465 x F1-80 or less, and the Vickers hardness HVs at a depth of 0.5 mm from the surface of the wire and the Vickers hardness at the center are A wire having a hardness difference (HVs-HVc) of 20 or less.
  • F1 is the content of C, Si, Mn, Cr, and Mo in mass% in the wire, respectively (C%), (Si%), (Mn%), (Cr%), and (Mo %), it is a value calculated by the following formula (1).
  • the chemical composition is in mass%, Ti: 0.002-0.040%, B: 0.0002 to 0.0040%, Nb: 0.002 to 0.050%, Cu: 0.02-0.50%, Ni: 0.02 to 0.30%, Sn: 0.002-0.30%, Sb: 0.001 to 0.050%, V: 0.02 to 0.20%, and Ca: 0.0002 to 0.0050%,
  • ⁇ 3> The wire rod according to ⁇ 1> or ⁇ 2>, wherein the chemical composition contains Mo: 0.10 to 0.65% in mass %.
  • ⁇ 4> The wire according to any one of ⁇ 1> to ⁇ 3>, wherein the wire has an aperture of -75 ⁇ F1+120% or more.
  • a wire rod that can reduce deformation resistance and improve ductility through one spheroidizing annealing even if the wire rod has a composition with a high Cr content.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after “ ⁇ ” as the lower limit and upper limit.
  • a numerical range in which "more than” or “less than” is attached to the numerical value written before and after “ ⁇ ” means a range that does not include these numerical values as the lower limit or upper limit.
  • the content of an element in a chemical composition may be expressed by adding "amount” to the element symbol (for example, the amount of C, the amount of Si, etc.).
  • “%” means “% by mass”.
  • the term "process” is included not only in an independent process but also in the case where the intended purpose of the process is achieved even if the process cannot be clearly distinguished from other processes.
  • the "surface” of the wire means the “outer peripheral surface.”
  • the "central axis" of a wire means an imaginary line passing through the center point of a cross section perpendicular to the longitudinal direction of the wire and extending in the longitudinal direction (axial direction). "Longitudinal axis” is also synonymous. "1/4D” is synonymous with "D/4".
  • the wire according to the present disclosure has a predetermined chemical composition described below, has a metal structure that satisfies the following (1), and has a cross section perpendicular to the longitudinal direction (sometimes referred to as "C cross section” in the present disclosure).
  • the area ratio of pearlite is 70% or more and 100% or less, and when the area ratio of pearlite is less than 100%, the remainder is one or two selected from the group consisting of ferrite and bainite.
  • the wire rod according to the present disclosure has low strength and can obtain a high drawing area even if the spheroidizing annealing, which is normally performed twice, is reduced to one time, even though the wire rod has a high Cr content. I can do it.
  • the wire rod according to the present disclosure was discovered based on the following findings.
  • it is effective to lower the deformation resistance (strength) and increase the ductility.
  • the structure of the steel wire may be made coarse in ferrite grain size and fine in size of spheroidal cementite.
  • cementite is difficult to become spherical, and it is difficult to make the ferrite grain size coarse.
  • the conventional technology when cementite is made fine, the growth of ferrite is suppressed, so that the ferrite grains become fine and it is difficult to reduce the deformation resistance.
  • the inventor of the present disclosure has achieved both coarse ferrite grains and fine cementite grains after annealing even in steel containing 0.85% or more of Cr by improving the manufacturing method and structure of the wire rod. It was found that a reduction in deformation resistance and an improvement in ductility were achieved simultaneously.
  • the metal structure of the wire is mainly bainite or martensite, cementite becomes fine after spheroidizing annealing.
  • the strength of steel in which spherical cementite is dispersed in ferrite increases when the distance between cementites is small. Therefore, as the size of the spherical cementite decreases, the spacing between them also decreases, and the strength increases.
  • steel with a high Cr content suppresses the growth of cementite during annealing, so the size of the cementite is small and the strength is less likely to decrease.
  • the metal structure of the wire is mainly pearlite
  • the size of cementite after spheroidizing annealing will be larger than in the case of bainite or martensite, and as a result, the spacing between cementites will be large, resulting in lower strength.
  • cementite is not generated in the ferrite portion of the wire after spheroidizing annealing, if the ferrite fraction of the wire is high, the distribution of cementite after spheroidizing annealing becomes uneven. When cementite is unevenly distributed, the microscopic strength becomes non-uniform, deformation becomes non-uniform during processing, ductility (restriction of area) decreases, and processing cracks are more likely to occur.
  • wires with low hardness have a large thickness of cementite that makes up the pearlite, and spheroidization is delayed. For this reason, it is effective to make the wire structure pearlite with a small lamella interval, that is, pearlite with high hardness (strength), in reducing the strength after spheroidizing annealing.
  • the hardness (strength) of the wire becomes too high, martensite will be mixed in the structure, and the strength after spheroidizing annealing will increase.
  • wire rods with a large difference in hardness between the surface and the center have large variations in cementite thickness and pearlite block grain size, and the ductility (drawing of area) after spheroidizing annealing increases. becomes lower.
  • a wire rod with a low reduction of area will have delayed recrystallization of ferrite grains during spheroidizing annealing, and will have a higher strength after spheroidizing annealing.
  • the inventor of the present disclosure has proposed that a wire having the above-mentioned characteristics be strained by wire drawing or the like such that the total area reduction rate is 20 to 50%, and then subjected to spheroidizing annealing at a temperature of A c1 or lower.
  • the ferrite grains are coarse grains, the carbides are fine, and the carbides are fine. It has been found that a structure with a small aspect ratio can be obtained, reducing deformation resistance and improving ductility.
  • the chemical composition (steel component) of the wire according to the present disclosure is expressed in mass%, C: 0.30-0.50%, Si: 0.01-0.45%, Mn: 0.30-1.00%, P: 0.030% or less, S: 0.050% or less, Al: 0.001-0.080%, Cr: 0.85-1.50%, N: 0.0010-0.0200%, O: Contains 0.004% or less, with the remainder consisting of Fe and impurity elements.
  • the reason why the amount of each element contained in the wire according to the present disclosure is limited to the above range will be explained below.
  • C 0.30-0.50% C is added to ensure strength as a mechanical component. If the C content is less than 0.30%, it is difficult to ensure the strength required as a mechanical component. On the other hand, when the amount of C exceeds 0.50%, ductility, toughness, and cold forgeability deteriorate. Therefore, the amount of C was set to 0.30 to 0.50%.
  • the preferred range of C content that achieves both high strength, ductility, toughness, and cold workability is 0.33 to 0.45%.
  • Si 0.01 ⁇ 0.45%
  • Si functions as a deoxidizing element, and is an effective element for imparting hardenability, improving temper softening resistance, and imparting the necessary strength to mechanical parts. If the amount of Si is less than 0.01%, these effects are insufficient. If the Si content exceeds 0.45%, the ductility and toughness of the mechanical parts will deteriorate, and the deformation resistance of the steel wire will increase, resulting in poor cold forgeability. Therefore, the amount of Si was set to 0.01 to 0.45%.
  • the preferred range of Si content is 0.03 to 0.40%. A more preferable range of Si amount is 0.05 to 0.30%.
  • Mn 0.30 ⁇ 1.00%
  • Mn is an element necessary to impart hardenability and the necessary strength to mechanical parts. If the amount of Mn is less than 0.30%, the effect is insufficient. When the amount of Mn exceeds 1.00%, the toughness of the mechanical parts deteriorates, and the deformation resistance of the steel wire increases, resulting in deterioration of cold forgeability. Therefore, the Mn amount was set to 0.30 to 1.00%.
  • the preferred range of Mn content is 0.35 to 0.90%. A more preferable range of Mn content is 0.40 to 0.85%.
  • P 0.030% or less P is contained in the wire as an impurity. P segregates in the grain boundaries of mechanical parts after quenching and tempering and deteriorates toughness, so it is desirable to reduce it. Therefore, the upper limit of the amount of P was set to 0.030%. The preferable upper limit of the amount of P is 0.020%. A more preferable upper limit of the amount of P is 0.015% or less. Note that the lower limit of the P amount is preferably 0% (that is, not included), but may be more than 0% (or 0.0001% or more) from the viewpoint of reducing the cost of removing P.
  • S 0.050% or less S is contained in the wire as a sulfide such as MnS. These sulfides improve the machinability of wire rods or drawn steel wires. When the amount of S exceeds 0.050%, it deteriorates the cold heading properties of the steel wire and also deteriorates the toughness of mechanical parts after quenching and tempering. Therefore, the upper limit of the amount of S was set to 0.050%. The preferable upper limit of the amount of S is 0.030%. A more preferable upper limit of the amount of S is 0.010%. Note that the lower limit of the S amount may be more than 0% (or 0.001% or more) from the viewpoint of reducing the S removal cost.
  • Cr 0.85-1.50% Cr is an element necessary to improve hardenability and provide necessary strength to mechanical parts. Furthermore, by containing Cr, the shape of the carbide becomes spherical after annealing, improving cold workability. If the amount of Cr is less than 0.85%, the effect is insufficient. When the Cr content exceeds 1.50%, the time for spheroidization of the carbide becomes long, which increases manufacturing costs, and also increases the deformation resistance of the steel wire and deteriorates cold forgeability. Therefore, the Cr content was set to 0.85 to 1.50%. The preferred range of Cr content is 0.87 to 1.40%. A more preferable range of Cr content is 0.90 to 1.30%.
  • Al functions as a deoxidizing element, forms AlN, refines austenite crystal grains, and has the effect of improving the toughness of mechanical parts. It also has the effect of fixing solid solution N, suppressing dynamic strain aging, and reducing deformation resistance. If the amount of Al is less than 0.001%, these effects are insufficient. If the amount of Al exceeds 0.080%, the effect may be saturated and the productivity may be reduced. Therefore, the amount of Al was set to 0.001 to 0.080%.
  • the preferred range of Al content is 0.010 to 0.060%.
  • a more preferable range of Al amount is 0.020 to 0.050%.
  • N 0.0010-0.0200% N forms nitrides with Al, Ti, Nb, V, etc., and has the effect of refining austenite crystal grains and improving the toughness of mechanical parts. If the amount of N is less than 0.0010%, the amount of nitride precipitated will be insufficient and no effect will be obtained. When the amount of N exceeds 0.0200%, the deformation resistance of the steel wire increases due to dynamic strain aging due to solid solution N, resulting in deterioration of workability. Therefore, the amount of N was set to 0.0010 to 0.0200%. The preferred range of N amount is 0.0020 to 0.0080%. A more preferable range of the amount of N is 0.0030 to less than 0.0050%.
  • O 0.004% or less O is an impurity and is unavoidably contained in steel. If the O amount exceeds 0.004%, coarse oxides may be formed and the fatigue strength may be reduced, so it is limited to 0.004% or less.
  • a preferable upper limit of the amount of O is 0.003%, and a more preferable upper limit is 0.002%.
  • Fe and Impurity Elements In the chemical composition of the wire according to the present disclosure, the remainder is Fe and impurity elements (which may be appropriately referred to as "impurities" in the present disclosure).
  • impurities refer to components contained in raw materials or components mixed in during the manufacturing process, but not intentionally included.
  • impurities also include components that are contained in an amount that does not affect the performance of the steel wire obtained by drawing the wire according to the present disclosure, even if the impurities are intentionally contained.
  • Mo 0.70% or less
  • Ti 0.040% or less
  • B 0.0040% or less
  • Nb 0.050% or less
  • Cu 0.50% or less
  • Ni 0.30% or less
  • Sn 0.30% or less
  • Sb 0.050% or less
  • V 0.20%
  • Ca 0.0050% or less
  • Mo, Ti, B, Nb, Cu, Ni, Sn, Sb, V, and Ca are optional elements, and these elements do not have to be contained in the wire according to the present disclosure, but if they are contained, shall be within the above range.
  • Mo 0-0.70% Mo has the effect of improving hardenability and imparting necessary strength to mechanical parts.
  • Mo content exceeds 0.70%, the alloy cost increases and the deformation resistance of the steel wire increases, deteriorating cold forgeability. Therefore, when Mo is included, the amount of Mo is preferably 0.02 to 0.70%.
  • a preferred range of Mo amount is 0.10 to 0.70%, a more preferred range of Mo amount is 0.10 to 0.65%, and an even more preferred range of Mo amount is 0.15 to 0.50%. It is.
  • Ti functions as a deoxidizing element, forms nitrides and carbides, refines austenite grains, improves the toughness of mechanical parts, promotes the formation of solid solution B, and improves hardenability. , has the effect of fixing solid solution N, suppressing dynamic strain aging, and reducing deformation resistance.
  • the amount of Ti exceeds 0.040%, these effects are saturated and coarse oxides or nitrides are generated, which may deteriorate the fatigue strength of mechanical parts. Therefore, when Ti is included, the amount of Ti is preferably 0.002 to 0.040%.
  • the preferred range of Ti amount is 0.005 to 0.030%.
  • a more preferable range of Ti amount is 0.010 to 0.025%.
  • B 0-0.0040% B segregates at grain boundaries as solid solution B, improves hardenability, and has the effect of imparting necessary strength to mechanical parts. If the amount of B exceeds 0.0040%, carbides may be generated at grain boundaries, which may deteriorate cold workability. Therefore, when B is included, the amount of B is preferably 0.0002 to 0.0040%. The preferred range of B amount is 0.0003 to 0.0030%. A more preferable range of B amount is 0.0005 to 0.0020%.
  • Nb 0-0.050%
  • Nb has the effect of increasing the strength of mechanical parts by precipitating carbides and nitrides, improving toughness by refining austenite crystal grains, and reducing deformation resistance by reducing solid solution N. be.
  • the amount of Nb exceeds 0.050%, the effect is saturated and cold forgeability may deteriorate. Therefore, when Nb is included, the amount of Nb is preferably 0.002 to 0.050%.
  • the preferred range of Nb content is 0.001 to 0.030%. A more preferable range of Nb content is 0.005 to 0.020%.
  • Cu 0-0.50% Cu has the effect of improving hardenability, precipitating finely, imparting necessary strength to mechanical parts, and improving corrosion resistance.
  • the amount of Cu exceeds 0.50%, hot ductility deteriorates and flaws are likely to occur on the surface. Therefore, when Cu is included, the amount of Cu is preferably 0.02 to 0.50%.
  • the preferable range of Cu amount is 0.02 to 0.30%.
  • Ni 0-0.30% Ni has the effect of improving hardenability and imparting the necessary strength to mechanical parts. If the Ni amount exceeds 0.30%, the alloy cost will increase. Therefore, when Ni is included, the Ni amount is preferably 0.02 to 0.30%. The preferable range of Ni content is 0.02 to 0.25%.
  • Sn 0-0.30% Sn has the effect of improving corrosion resistance.
  • the amount of Sn is preferably 0.002% or more. However, if the Sn amount exceeds 0.30%, ductility will decrease and cold workability will deteriorate, so it is limited to 0.30% or less.
  • a preferable upper limit of the amount of Sn is 0.25%.
  • Sb 0 to 0.050% Sb has the effect of improving corrosion resistance.
  • the amount of Sb is preferably 0.001% or more. However, if the amount of Sb exceeds 0.050%, ductility decreases and cold workability deteriorates, so it is limited to 0.050% or less.
  • a preferable upper limit of the amount of Sb is 0.040%, and a more preferable upper limit is 0.030%.
  • V 0-0.20% V has the effect of increasing the tensile strength of the wire. However, when the amount of V exceeds 0.20%, the alloy cost increases. Therefore, when V is included, the amount of V is preferably 0.02 to 0.20%. The preferred range of V content is 0.05 to 0.15%.
  • Ca 0-0.0050% Ca is added for the purpose of deoxidation, and has the effect of making oxides finer and improving fatigue strength. However, when the amount of Ca exceeds 0.0050%, ductility decreases and cold working deteriorates. Therefore, when Ca is included, the amount of Ca is preferably 0.0002 to 0.0050%. The preferred range of Ca amount is 0.0005 to 0.0030%.
  • the area ratio of pearlite at a depth of 1/4D from the surface (outer peripheral surface) of the wire in the C cross section is 70% or more and 100% or less.
  • the strength after spheroidizing annealing becomes high, or the area of drawing becomes low, resulting in poor workability.
  • a preferable lower limit of the pearlite area ratio is 75%, and a more preferable lower limit is 80%.
  • the remaining structure other than pearlite includes one or both of ferrite and bainite in a total area ratio of 30% or less.
  • the area ratio of ferrite is high, the area of area after spheroidizing annealing becomes low, and cold workability deteriorates.
  • the upper limit of the total area ratio of bainite and ferrite is 30%.
  • the lower limit of the total area ratio of bainite and ferrite is not particularly limited, and may be 0%, that is, bainite and ferrite are not included, and the pearlite area ratio may be 100%.
  • the area ratio of the metal structure at a depth of 1/4D from the surface (outer peripheral surface) of the wire according to the present disclosure is measured by the following method.
  • Each area ratio (area %) of pearlite, bainite, ferrite, etc. is determined by the following procedure. First, the C cross section of the wire to be measured is polished to a mirror surface, and then etched with Picral (5% picric acid + 95% ethanol solution) to reveal the structure. Next, when the diameter of the wire is D, the depth from the surface of the wire is 1/4D, the wire is rotated in the circumferential direction every 90 degrees around the longitudinal axis of the wire, and scanning electron beams are scanned at four locations.
  • a photograph of the tissue is taken at a magnification of 5000 times using a microscope (SEM).
  • the field of view at one location is an area of 25 ⁇ m or more in the circumferential direction and 19 ⁇ m or more in the depth direction.
  • pearlite is defined as a structure in which cementite phases alternate with ferrite phases substantially parallel to each other and a structure in which a plate-shaped cementite phase exists in a photographed structure photograph.
  • Figure 1 shows an example of pearlite structure. In the microstructure photograph, the dark part shows the ferrite phase, and the whitish part shows the cementite phase.
  • the structure in which a plate-like cementite phase was observed was defined as a pearlite structure.
  • a structure in which divided cementite phases exist in rows as shown in part D in FIG. 1(b) is also considered a pearlite structure.
  • the bainite structure has an acicular cementite phase with a ratio of (long axis length)/(short axis length) of 3.0 or more, and a structure in which ferrite phases and cementite phases coexist alternately and almost parallel to each other. Rather, the bainite structure is defined as a structure in which the angles of the long axis direction of the acicular cementite phase differ by 30 degrees or more in various orientations.
  • Figure 2 shows an example of a bainite structure.
  • the bainite structure is not a structure in which ferrite phases and cementite phases exist alternately and parallel to each other as shown in parts E and F in FIG. 2, but a structure in which acicular cementite phases in various orientations exist.
  • the ferrite phase which is distinguished from the pearlite structure or the bainite structure, was defined as a ferrite structure (sometimes referred to as "ferrite" in the present disclosure).
  • each structure of pearlite, bainite, and ferrite in the photographed structure photograph is visually marked, and the area of each structure is determined by image analysis (software name: Nireco's compact general-purpose image processing and analysis system LUZEX_AP). Note that this operation is performed by measuring and calculating the photographs of four locations, determining the average value thereof, and using the average value as the area % of each tissue in the present disclosure. If it is difficult to distinguish between ferrite and martensite, identify the observation position with an indentation, corrode it with Picral, take a photograph of the structure, repolish it, and etch it with nital (3% nitric acid + 97% ethanol solution). to reveal the organization.
  • image analysis software name: Nireco's compact general-purpose image processing and analysis system LUZEX_AP
  • a tissue photograph of the same location is taken using an SEM at a magnification of 5000 times. Areas that are corroded by nital but weakly corroded by picral are determined to be martensite, areas that are weakly corroded by both nital and picral are determined to be ferrite, and each tissue area is visually marked using the method described above. , area % is determined by image analysis.
  • the average value of Vickers hardness is less than 415 x F1-90, the thickness of layered cementite constituting pearlite is large, and the spheroidization of cementite is delayed, resulting in high strength after spheroidizing annealing and poor cold workability. to degrade. Moreover, lamellar pearlite remains after spheroidizing annealing, or coarse spherical cementite is generated, resulting in a decrease in ductility. Therefore, the lower limit of the average value of Vickers hardness was set to 415 ⁇ F1-90. Note that when the average value of Vickers hardness exceeds 465 ⁇ F1-80, the strength after spheroidizing annealing increases and cold workability deteriorates.
  • Vickers hardness is determined by mirror-polishing the C cross section of the wire and rotating it at 90° intervals in the circumferential direction around the longitudinal axis of the wire at 0.5 mm depth from the surface of the wire.
  • D When the diameter of is D, there are 4 locations rotated at 90° intervals around the longitudinal axis of the wire in the circumferential direction at a depth of 1/4D, and 1 location at the center, a total of 9 locations. was measured.
  • the test force for Vickers hardness measurement was 9.8N, and the measurement was performed according to the method of JIS Z2244-1:2020. The average value of the obtained nine locations was defined as the average value of Vickers hardness.
  • HVs-HVc In the wire according to the present disclosure, the difference (HVs-HVc) between the Vickers hardness HVs at a depth of 0.5 mm from the surface and the Vickers hardness HVc at the center is 20 or less. If (HVs-HVc) exceeds 20, the ductility after spheroidizing annealing decreases and cold workability deteriorates, so the upper limit of (HVs-HVc) was set to 20. HVs measures the Vickers hardness at four locations rotated at 90° intervals in the circumferential direction around the longitudinal axis of the wire at a depth of 0.5 mm from the surface of the wire on the C cross section of the wire. The values were measured and taken as the average value. HVc was defined as the Vickers hardness at one location in the center of the C cross section of the wire.
  • the aperture of the wire according to the present disclosure is preferably ⁇ 75 ⁇ F1+120% or more. If the reduction of area is ⁇ 75 ⁇ F1+120% or more, the strength after spheroidizing annealing will be low, and the cold workability will be further improved. Therefore, the lower limit of the aperture of the wire according to the present disclosure is preferably ⁇ 75 ⁇ F1+120%.
  • the aperture is a value measured by performing a tensile test using a 9A test piece of JIS Z2241:2011 according to the test method of JIS Z2241:2011.
  • the wire diameter D of the wire according to the present disclosure is not particularly limited, but is preferably 3.0 to 25.0 mm, more preferably 4.0 to 18.0 mm.
  • wire manufacturing method An example of a method for manufacturing a wire according to the present disclosure will be described.
  • the wire rod according to the present disclosure can be suitably manufactured by a method including, for example, a heating process, a hot rolling process, a first cooling process, and a second cooling process. Each step will be explained in detail below.
  • Heating process In the heating step, a steel piece having the chemical composition of the wire according to the present disclosure is heated to 950 to 1150°C. If the heating temperature is less than 950°C, the deformation resistance during hot rolling increases and the rolling cost increases. On the other hand, when the heating temperature exceeds 1150° C., decarburization of the surface layer becomes noticeable and the surface hardness of the mechanical component decreases.
  • the heated steel billet is hot rolled so that the entrance temperature in finish rolling is 700 to 760°C, and then rolled up at a temperature of 710 to 780°C.
  • the winding temperature is lower than 710°C, the ferrite grains after spheroidizing annealing become finer and the strength becomes higher. If the winding temperature exceeds 780°C, recrystallization of ferrite grains will be delayed during spheroidizing annealing, and the strength will increase.
  • the entry temperature in finish rolling is the surface temperature of the wire rod on the entry side during finish rolling
  • the winding temperature is the surface temperature of the wire rod immediately after being placed on the conveyor after hot rolling. Point.
  • First cooling step In the first cooling step, after winding, the wire rod, which is at a temperature of 710 to 780°C, is cooled to 560°C or more and 620°C or less at an average cooling rate of 10 to 20°C/s in the temperature range from 700°C to 650°C. .
  • a wire rod wound into a ring shape after hot rolling is cooled to the above average cooling rate.
  • the average cooling rate is less than 10° C./s, the area ratio of the ferrite structure exceeds 30%.
  • the average cooling rate refers to the surface cooling rate of the wire.
  • the upper limit of the cooling rate in the first cooling step is not particularly limited, the upper limit of the cooling rate may be 150° C./s or less due to equipment considerations.
  • the wire after the first cooling step is cooled for 600 seconds or more at an average cooling rate of 0.1 to 0.2° C./s.
  • the wire rod after the first cooling step can be transported and cooled in a furnace with a heat source so as to achieve the above-mentioned average cooling rate.
  • the average cooling rate exceeds 0.2° C./s, (HVs ⁇ HVc) tends to exceed 20.
  • the cooling time is less than 600 seconds, the area ratio of pearlite in the wire tends to be less than 70%.
  • the upper limit of the cooling time in the second cooling step is not particularly limited, and may be cooled to room temperature, but depending on the end temperature of the first cooling step, from the viewpoint of productivity improvement, equipment restrictions, etc. Therefore, in the second cooling step, after cooling for 600 seconds or more at an average cooling rate of 0.1 to 0.2°C/s, for example, the second cooling step is finished before the temperature drops to 440°C or less, and the cooling rate is 0.2°C/s. Cooling may be allowed to occur at a cooling rate exceeding .
  • the wire rod according to the present disclosure can be manufactured through each of the steps described above. Note that the above manufacturing method is an example, and the method for manufacturing a wire according to the present disclosure is not limited to the above method.
  • wire rod according to the present disclosure will be described in more detail by giving examples. However, these examples do not limit the wire rod according to the present disclosure.
  • the structure was observed by polishing a cross section (C cross section) perpendicular to the central axis of the wire, corroding it with Picral, and observing the 1/4D section.
  • the viewing area at one location was 25 ⁇ m (circumferential direction) ⁇ 19 ⁇ m (depth direction).
  • the hardness was measured by polishing a cross section (C cross section) perpendicular to the central axis of the wire, using a Vickers hardness meter, and holding the indenter for 15 seconds at a test force of 9.8 N.
  • HVc was defined as the Vickers hardness at one location in the center of the C cross section of the wire.
  • the tensile test was performed using a 9A test piece according to JIS Z2241:2011, and according to the test method of JIS Z2241:2011, specifically, using a linear test piece at a crosshead speed of 10 mm/min at room temperature in the atmosphere.
  • the aperture value (RA) was measured.
  • the tensile test was conducted using one wire of each test number. The results are shown in Table 3.
  • B means bainite
  • F means ferrite
  • M means martensite.
  • wire drawing and annealing were performed under the conditions shown in Table 5 to produce steel wires.
  • a tensile test was conducted on these steel wires to evaluate their mechanical properties.
  • the tensile test was carried out at room temperature in the atmosphere using a linear specimen cut from steel wire, with a gage distance of 100 mm and a crosshead speed of 10 mm/min.
  • the tensile strength (TS) and the aperture value (RA ) was measured.
  • the tensile test was conducted using three steel wires of each test number, and the average value was used.
  • Table 6 shows the tensile test results. When TS was 530 MPa or more or RA was 78.0% or less, workability was determined to be poor. Table 6 also shows the number of times of spheroidizing annealing and the evaluation results of workability.
  • the example of the present disclosure satisfies the requirements of the present disclosure, and has a TS of less than 530 MPa and an RA of more than 78.0% after one round of spheroidizing annealing.
  • the chemical composition and manufacturing conditions are outside the scope of the present disclosure, and the TS is 530 MPa or more or the RA is 78.0% or less after one round of spheroidizing annealing. From these results, it can be seen that the wire rod according to the present disclosure, which has a Cr content of 0.85% or more, achieves a reduction in deformation resistance and an improvement in ductility by one round of spheroidizing annealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A wire rod comprising a chemical composition in a predetermined range, wherein, when the diameter of the wire rod is D, in a cross section perpendicular to the longitudinal direction of the wire rod, the metal structure at the position of a depth 1/4D from the surface includes 70-100% of pearlite in area ratio, the remainder when pearlite is less than 100% comprising one or two selected from the group consisting of ferrite and bainite, wherein a mean value of Vickers hardness in the cross section is greater than or equal to 415×F1-90 and less than or equal to 465×F1-80, and the difference (HVs-HVc) between a Vickers hardness HVs at the position of a depth 0.5 mm from the surface and a Vickers hardness HVc in a central portion is less than or equal to 20. F1=(C%)+0.14×(Si%)+0.20×(Mn%)+0.11×(Cr%)+0.50×(Mo%)

Description

線材wire
 本開示は、線材に関する。 The present disclosure relates to a wire.
 鋼製のボルトやねじ等の機械部品は、素材である冷間圧造用線材を、成形の際の金型の摩耗や、製品の加工割れを抑制するため、球状化焼鈍を行って軟質化し、その後、成形して、焼入れ焼戻しにより強度を付与して製造される。 Mechanical parts such as steel bolts and screws are made by softening the cold heading wire material by spheroidizing annealing to prevent mold wear during forming and processing cracks in the product. Thereafter, it is manufactured by molding and adding strength through quenching and tempering.
 例えば、特許文献1には、冷間鍛造前の迅速球状化と、変形能を向上して優れた冷間鍛造性を併せて実現することができる鋼線材として、C:0.2~0.6%(質量%の意味、以下同じ)、Si:0.3%以下、Mn:0.2~1.5%を夫々含む熱間圧延鋼線材または冷間伸線された鋼線材において、初析フェライトとパーライトを主体とする組織を有すると共に、平均結晶粒径が6~15μmであり、且つ下記(1)式で表される平衡初析フェライト体積率(Vpf1 )に対する初析フェライト体積率Vfの比(Vf/Vpf1 )が0.05~0.75である鋼線材が提案されている。 For example, Patent Document 1 describes a steel wire rod with C: 0.2 to 0 that can achieve rapid spheroidization before cold forging and improved deformability to achieve excellent cold forgeability. 6% (the meaning of mass%, the same applies hereinafter), Si: 0.3% or less, Mn: 0.2 to 1.5%, respectively. It has a structure mainly composed of pro-eutectoid ferrite and pearlite, has an average crystal grain size of 6 to 15 μm, and has a pro-eutectoid ferrite volume fraction Vf with respect to the equilibrium pro-eutectoid ferrite volume fraction (Vpf1) expressed by the following formula (1). A steel wire rod having a ratio (Vf/Vpf1) of 0.05 to 0.75 has been proposed.
 また、特許文献2には、熱間圧延ままで優れた冷間加工性を有する機械構造用鋼材として、C:0.10~0.40%、Si:0.30%以下、Mn:0.20~1.70%、Al:0.01~0.10%を含み、残部はFeおよび不可避不純物よりなり、表層から最小で線径(mm)×0.1、最大で線径(mm)×0.3にわたってフェライト粒およびパーライト粒の平均粒径が10μm以下である機械構造用鋼材が提案されている。 Further, Patent Document 2 describes steel materials for mechanical structures that have excellent cold workability as hot-rolled, C: 0.10 to 0.40%, Si: 0.30% or less, Mn: 0. 20 to 1.70%, Al: 0.01 to 0.10%, the remainder consists of Fe and unavoidable impurities, the minimum from the surface layer is wire diameter (mm) x 0.1, and the maximum is wire diameter (mm) Steel materials for mechanical structures have been proposed in which the average grain size of ferrite grains and pearlite grains is 10 μm or less over ×0.3.
 また、特許文献3では、球状化焼鈍時間の短縮と、球状化処理後の加工性能の向上と変形抵抗の低減を実現する鋼線材として、C:0.005~0.6%(質量%、以下同じ)を含み、擬似パーライトが10面積%以上、ベイナイトが75面積%以下、フェライトが60面積%以下、(擬似パーライト面積%+ベイナイト面積%+フェライト面積%)≧90面積%の関係を満足することを特徴とする鋼線材が開示されている。
 また、特許文献4では、冷間鍛造前の球状化処理時間の短縮と、冷間加工性の向上とが同時に達成できる鋼材として、質量%で、C:0.005~0.60%、Si:0.01~0.50%、Mn:0.20~1.80%、Al:0.01~0.06%、P:0.04%以下、S:0.05%以下、N:0.01%以下、Cr:0~1.50%、Mo:0~0.50%、Ni:0~1.00%、V:0~0.50%、B:0~0.0050%、Ti:0~0.05%を含有し、残部がFe及び不純物からなり、金属組織が、パーライトを含み、前記パーライト中のセメンタイトに含まれる原子%でのMn含有量を、前記パーライト中のフェライトに含まれる原子%でのMn含有量で割った値が、0超5.0以下である鋼材が開示されている。
Furthermore, in Patent Document 3, C: 0.005 to 0.6% (mass%, (same below), pseudo pearlite is 10 area % or more, bainite is 75 area % or less, ferrite is 60 area % or less, satisfying the relationship of (pseudo pearlite area % + bainite area % + ferrite area %) ≧ 90 area % A steel wire rod is disclosed.
Furthermore, in Patent Document 4, as a steel material that can simultaneously achieve the shortening of the spheroidization time before cold forging and the improvement of cold workability, C: 0.005 to 0.60%, Si : 0.01 to 0.50%, Mn: 0.20 to 1.80%, Al: 0.01 to 0.06%, P: 0.04% or less, S: 0.05% or less, N: 0.01% or less, Cr: 0-1.50%, Mo: 0-0.50%, Ni: 0-1.00%, V: 0-0.50%, B: 0-0.0050% , Ti: 0 to 0.05%, the balance is Fe and impurities, the metal structure includes pearlite, and the Mn content in atomic % contained in cementite in the pearlite is A steel material is disclosed in which the value divided by the Mn content in atomic % contained in ferrite is greater than 0 and less than or equal to 5.0.
  特許文献1:特開2000-119809号公報
  特許文献2:特開平5-339677号公報
  特許文献3:特開2006-225701号公報
  特許文献4:国際公開第2015/189978号
Patent Document 1: Japanese Patent Application Publication No. 2000-119809 Patent Document 2: Japanese Patent Application Publication No. 5-339677 Patent Document 3: Japanese Patent Application Publication No. 2006-225701 Patent Document 4: International Publication No. 2015/189978
 一方、C、Mn、Cr、Moを含有する低合金鋼冷間圧造用線材は、変形抵抗が高く、延性が低いため、1回の球状化焼鈍では十分な加工性が得られず、一般に2回の球状化焼鈍を行って製造されている。しかし、焼鈍回数の増加は製造コストやCO排出量の増加につながるため、球状化焼鈍の簡省略化が求められている。 On the other hand, low-alloy steel cold heading wire rods containing C, Mn, Cr, and Mo have high deformation resistance and low ductility, so sufficient workability cannot be obtained with one round of spheroidizing annealing, and generally 2 It is manufactured by performing spheroidizing annealing twice. However, since an increase in the number of annealing leads to an increase in manufacturing costs and CO2 emissions, there is a demand for simplifying the spheroidizing annealing.
 球状化焼鈍後の加工性を向上させるためには、変形抵抗(強度)を低くして、延性を高くすればよい。変形抵抗を低くするには、セメンタイトを球状にして、さらに球状セメンタイトの個数密度を小さくすることや、フェライト結晶粒径を大きくすることが有効である。また、延性を向上させるためには、セメンタイトを球状にして、均一に分散させることが有効である。 In order to improve the workability after spheroidizing annealing, the deformation resistance (strength) may be lowered and the ductility may be increased. In order to lower the deformation resistance, it is effective to make cementite spherical, further reduce the number density of spherical cementite, and increase the ferrite crystal grain size. Furthermore, in order to improve ductility, it is effective to make cementite spherical and uniformly disperse it.
 しかし、CrやMoの含有量が高い低合金鋼では、セメンタイトの球状化が遅延してラメラ状のセメンタイトが残存したり、セメンタイトサイズが小さくなることで、変形抵抗が高く、かつ、延性が低い。このため、従来の低合金鋼は、十分な加工性を得るためには、2回の球状化焼鈍が必要である。 However, in low-alloy steels with high Cr and Mo contents, the spheroidization of cementite is delayed and lamellar cementite remains, or the cementite size becomes small, resulting in high deformation resistance and low ductility. . For this reason, conventional low alloy steel requires two spheroidizing annealings in order to obtain sufficient workability.
 上記のような事情に鑑み、本開示は、Crの含有量が高い組成であっても、1回の球状化焼鈍により変形抵抗の低減と延性の向上を達成できる線材を提供することを目的とする。 In view of the above circumstances, an object of the present disclosure is to provide a wire rod that can reduce deformation resistance and improve ductility with one spheroidizing annealing even if the wire rod has a composition with a high Cr content. do.
 上記課題は、以下の手段により解決される。
<1> 化学組成が、質量%で、
C :0.30~0.50%、
Si:0.01~0.45%、
Mn:0.30~1.00%、
P :0.030%以下、
S :0.050%以下、
Al:0.001~0.080%、
Cr:0.85~1.50%、
N :0.0010~0.0200%、
O :0.004%以下、
Mo:0~0.70%、
Ti:0~0.040%、
B :0~0.0040%、
Nb:0~0.050%、
Cu:0~0.50%、
Ni:0~0.30%、
Sn:0~0.30%、
Sb:0~0.050%、
V :0~0.20%、及び
Ca:0~0.0050%、
を含み、残部がFe及び不純物元素からなり、
 線材の直径をDとしたとき、前記線材の長手方向に垂直な断面において、前記線材の表面から深さが1/4Dの位置での金属組織が、面積率で70%以上100%以下のパーライトを含み、前記パーライトの面積率が100%未満である場合の残部がフェライト及びベイナイトからなる群より選ばれる1種又は2種であり、
 前記断面におけるビッカース硬さの平均値が、415×F1-90以上、465×F1-80以下であり、前記線材の表面から深さ0.5mmの位置でのビッカース硬さHVsと中心部のビッカース硬さHVcとの差(HVs-HVc)が、20以下である線材。
 ただし、前記F1は、前記線材における質量%でのC、Si、Mn、Cr、Moの各含有量をそれぞれ(C%)、(Si%)、(Mn%)、(Cr%)、(Mo%)としたとき、下記式(1)により算出される値である。
F1=(C%)+0.14×(Si%)+0.20×(Mn%)+0.11×(Cr%)+0.50×(Mo%) ・・・(1)
<2> 前記化学組成が、質量%で、
Ti:0.002~0.040%、
B :0.0002~0.0040%、
Nb:0.002~0.050%、
Cu:0.02~0.50%、
Ni:0.02~0.30%、
Sn:0.002~0.30%、
Sb:0.001~0.050%、
V :0.02~0.20%、及び
Ca:0.0002~0.0050%、
からなる群より選ばれる1種又は2種以上を含む<1>に記載の線材。
<3> 前記化学組成が、質量%で、Mo:0.10~0.65%を含む<1>又は<2>に記載の線材。
<4> 前記線材の絞りが、-75×F1+120%以上である<1>~<3>のいずれか1つに記載の線材。
The above problem is solved by the following means.
<1> The chemical composition is in mass%,
C: 0.30-0.50%,
Si: 0.01-0.45%,
Mn: 0.30-1.00%,
P: 0.030% or less,
S: 0.050% or less,
Al: 0.001-0.080%,
Cr: 0.85-1.50%,
N: 0.0010-0.0200%,
O: 0.004% or less,
Mo: 0 to 0.70%,
Ti: 0 to 0.040%,
B: 0 to 0.0040%,
Nb: 0 to 0.050%,
Cu: 0 to 0.50%,
Ni: 0 to 0.30%,
Sn: 0 to 0.30%,
Sb: 0 to 0.050%,
V: 0 to 0.20%, and Ca: 0 to 0.0050%,
with the remainder consisting of Fe and impurity elements,
When the diameter of the wire is D, in a cross section perpendicular to the longitudinal direction of the wire, the metal structure at a depth of 1/4 D from the surface of the wire is pearlite with an area ratio of 70% or more and 100% or less. , and when the area ratio of the pearlite is less than 100%, the remainder is one or two selected from the group consisting of ferrite and bainite,
The average value of Vickers hardness in the cross section is 415 x F1-90 or more and 465 x F1-80 or less, and the Vickers hardness HVs at a depth of 0.5 mm from the surface of the wire and the Vickers hardness at the center are A wire having a hardness difference (HVs-HVc) of 20 or less.
However, F1 is the content of C, Si, Mn, Cr, and Mo in mass% in the wire, respectively (C%), (Si%), (Mn%), (Cr%), and (Mo %), it is a value calculated by the following formula (1).
F1=(C%)+0.14×(Si%)+0.20×(Mn%)+0.11×(Cr%)+0.50×(Mo%)...(1)
<2> The chemical composition is in mass%,
Ti: 0.002-0.040%,
B: 0.0002 to 0.0040%,
Nb: 0.002 to 0.050%,
Cu: 0.02-0.50%,
Ni: 0.02 to 0.30%,
Sn: 0.002-0.30%,
Sb: 0.001 to 0.050%,
V: 0.02 to 0.20%, and Ca: 0.0002 to 0.0050%,
The wire rod according to <1>, including one or more selected from the group consisting of.
<3> The wire rod according to <1> or <2>, wherein the chemical composition contains Mo: 0.10 to 0.65% in mass %.
<4> The wire according to any one of <1> to <3>, wherein the wire has an aperture of -75×F1+120% or more.
 本開示によれば、Crの含有量が高い組成であっても、1回の球状化焼鈍により変形抵抗の低減と延性の向上を達成できる線材が提供される。 According to the present disclosure, there is provided a wire rod that can reduce deformation resistance and improve ductility through one spheroidizing annealing even if the wire rod has a composition with a high Cr content.
主にパーライト組織のSEM写真の一例を示す図である。It is a figure mainly showing an example of a SEM photograph of a pearlite structure. 主にベイナイト組織のSEM写真の一例を示す図である。It is a figure mainly showing an example of a SEM photograph of a bainite structure.
 本開示の一例である実施形態について説明する。
 なお、本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。ただし、「~」の前後に記載される数値に「超」又は「未満」が付されている場合の数値範囲は、これら数値を下限値又は上限値として含まない範囲を意味する。
 化学組成の元素の含有量は、元素記号に「量」を付して(例えば、C量、Si量等)表記する場合がある。
 化学組成の元素の含有量について、「%」は「質量%」を意味する。
 化学組成の元素の含有量について「0~」と記載している場合は、その元素を含まなくてもよいことを意味する。
 「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 線材の「表面」とは「外周面」を意味する。
 線材の「中心軸」とは、線材の長手方向に垂直な断面の中心点を通り、長手方向(軸方向)に延びる仮想線を意味する。「長手方向軸」も同義である。
 「1/4D」は「D/4」と同義である。
An embodiment that is an example of the present disclosure will be described.
In the present disclosure, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as the lower limit and upper limit. However, a numerical range in which "more than" or "less than" is attached to the numerical value written before and after "~" means a range that does not include these numerical values as the lower limit or upper limit.
The content of an element in a chemical composition may be expressed by adding "amount" to the element symbol (for example, the amount of C, the amount of Si, etc.).
Regarding the content of elements in the chemical composition, "%" means "% by mass".
When the content of an element in a chemical composition is described as "0~", it means that the element does not need to be included.
The term "process" is included not only in an independent process but also in the case where the intended purpose of the process is achieved even if the process cannot be clearly distinguished from other processes.
The "surface" of the wire means the "outer peripheral surface."
The "central axis" of a wire means an imaginary line passing through the center point of a cross section perpendicular to the longitudinal direction of the wire and extending in the longitudinal direction (axial direction). "Longitudinal axis" is also synonymous.
"1/4D" is synonymous with "D/4".
 本開示に係る線材は、後述する所定の化学組成を有し、下記(1)を満たす金属組織を有し、長手方向に垂直な断面(本開示において「C断面」と記す場合がある。)で測定したビッカース硬さが下記(2)及び(3)を満たす。
(1)線材の直径をDとしたとき、C断面において表面から深さが1/4Dの位置(本開示において「1/4D部」と記す場合がある。)での金属組織が、パーライト組織の面積率が70%以上100%以下であり、パーライトの面積率が100%未満である場合の残部がフェライト及びベイナイトからなる群より選ばれる1種又は2種である。
(2)C断面のビッカース硬さの平均値が、415×F1-90以上、465×F1-80以下である。ただし、質量%での前記C、Si、Mn、Cr、Moの各含有量をそれぞれ(C%)、(Si%)、(Mn%)、(Cr%)、(Mo%)としたとき、F1=(C%)+0.14×(Si%)+0.20×(Mn%)+0.11×(Cr%)+0.50×(Mo%)である。
(3)C断面において線材の表面から深さが0.5mmの位置でのビッカース硬さHVsと中心部のビッカース硬さHVcの差(HVs-HVc)が20以下である。
 本開示に係る線材は、上記構成により、Cr含有量が高い成分であるにも関わらず、通常2回行われる球状化焼鈍を1回に削減しても、強度が低く、高い絞りを得ることができる。
The wire according to the present disclosure has a predetermined chemical composition described below, has a metal structure that satisfies the following (1), and has a cross section perpendicular to the longitudinal direction (sometimes referred to as "C cross section" in the present disclosure). The Vickers hardness measured by satisfies (2) and (3) below.
(1) When the diameter of the wire is D, the metal structure at a depth of 1/4D from the surface in the C section (sometimes referred to as "1/4D section" in this disclosure) is a pearlite structure. The area ratio of pearlite is 70% or more and 100% or less, and when the area ratio of pearlite is less than 100%, the remainder is one or two selected from the group consisting of ferrite and bainite.
(2) The average value of Vickers hardness of the C cross section is 415×F1-90 or more and 465×F1-80 or less. However, when the contents of C, Si, Mn, Cr, and Mo in mass % are respectively (C%), (Si%), (Mn%), (Cr%), and (Mo%), F1=(C%)+0.14×(Si%)+0.20×(Mn%)+0.11×(Cr%)+0.50×(Mo%).
(3) In cross section C, the difference between the Vickers hardness HVs at a depth of 0.5 mm from the surface of the wire and the Vickers hardness HVc at the center (HVs - HVc) is 20 or less.
Due to the above configuration, the wire rod according to the present disclosure has low strength and can obtain a high drawing area even if the spheroidizing annealing, which is normally performed twice, is reduced to one time, even though the wire rod has a high Cr content. I can do it.
 本開示に係る線材は以下の知見により見出された。
 球状化焼鈍後の鋼線の冷間鍛造性を向上させるためには、変形抵抗(強度)を低くして、延性を高くすることが有効である。変形抵抗を低くして、かつ延性を高くするためには、鋼線の組織を、フェライト粒径を粗粒にして、球状セメンタイトのサイズを微細にすればよい。
 しかし、Crの含有量が高い鋼では、セメンタイトが球状になりにくく、フェライト粒径を粗粒にすることが困難である。また、従来技術では、セメンタイトを微細にすると、フェライトの成長が抑制されることから、フェライト粒が細粒となり、変形抵抗を低くすることが困難である。
The wire rod according to the present disclosure was discovered based on the following findings.
In order to improve the cold forgeability of the steel wire after spheroidizing annealing, it is effective to lower the deformation resistance (strength) and increase the ductility. In order to lower deformation resistance and increase ductility, the structure of the steel wire may be made coarse in ferrite grain size and fine in size of spheroidal cementite.
However, in steel with a high Cr content, cementite is difficult to become spherical, and it is difficult to make the ferrite grain size coarse. Furthermore, in the conventional technology, when cementite is made fine, the growth of ferrite is suppressed, so that the ferrite grains become fine and it is difficult to reduce the deformation resistance.
 ところが、本開示の発明者は、線材の製造方法と組織を改良することで、Crを0.85%以上含有する鋼でも、焼鈍後のフェライト粒の粗粒化とセメンタイトの微細化を両立し、変形抵抗の低減と延性の向上を同時に達成することを見出した。
 線材の金属組織がベイナイトやマルテンサイトが主体の場合、球状化焼鈍後にセメンタイトが微細となる。フェライト中に球状セメンタイトが分散した鋼の強度は、セメンタイト間距離が小さいと強度が高くなる。このため、球状セメンタイトのサイズが小さくなると、その間隔も小さくなり、強度が高くなる。特にCrの含有量が高い成分の鋼は、焼鈍中のセメンタイトの成長が抑制されるため、セメンタイトのサイズが小さく、強度が下がりにくい。
 一方、線材の金属組織がパーライト主体の場合、球状化焼鈍後のセメンタイトのサイズは、ベイナイトやマルテンサイトの場合よりも大きくなり、その結果セメンタイトの間隔も大きいため強度が低くなる。
 また、線材のフェライト部には、球状化焼鈍後にセメンタイトが生成しないため、線材のフェライト分率が高いと、球状化焼鈍後のセメンタイトの分布が偏在する。セメンタイトの分布が偏在すると、微視的な強度が不均一となり、加工の際に変形が不均一となり、延性(絞り)が低下し、加工割れが発生しやすくなる。
However, the inventor of the present disclosure has achieved both coarse ferrite grains and fine cementite grains after annealing even in steel containing 0.85% or more of Cr by improving the manufacturing method and structure of the wire rod. It was found that a reduction in deformation resistance and an improvement in ductility were achieved simultaneously.
When the metal structure of the wire is mainly bainite or martensite, cementite becomes fine after spheroidizing annealing. The strength of steel in which spherical cementite is dispersed in ferrite increases when the distance between cementites is small. Therefore, as the size of the spherical cementite decreases, the spacing between them also decreases, and the strength increases. In particular, steel with a high Cr content suppresses the growth of cementite during annealing, so the size of the cementite is small and the strength is less likely to decrease.
On the other hand, if the metal structure of the wire is mainly pearlite, the size of cementite after spheroidizing annealing will be larger than in the case of bainite or martensite, and as a result, the spacing between cementites will be large, resulting in lower strength.
Moreover, since cementite is not generated in the ferrite portion of the wire after spheroidizing annealing, if the ferrite fraction of the wire is high, the distribution of cementite after spheroidizing annealing becomes uneven. When cementite is unevenly distributed, the microscopic strength becomes non-uniform, deformation becomes non-uniform during processing, ductility (restriction of area) decreases, and processing cracks are more likely to occur.
 Crの含有量が高い鋼や、MoやBなどを含有する鋼は、焼き入れ性が高いため、線材の組織は、ベイナイトやマルテンサイトの面積率が高くなる。これらの組織を抑制するためには、冷却速度を小さくする必要がある。しかし、冷却速度を小さくすると初析フェライトの面積率が高くなり、パーライト面積率が小さくなる。 Steel with a high content of Cr and steel containing Mo, B, etc. have high hardenability, so the structure of the wire rod has a high area ratio of bainite and martensite. In order to suppress these structures, it is necessary to reduce the cooling rate. However, when the cooling rate is decreased, the area ratio of pro-eutectoid ferrite increases and the area ratio of pearlite decreases.
 また、線材の組織がパーライトであっても、硬さ(強度)が低い線材は、パーライトを構成するセメンタイトの厚みが大きく、球状化が遅延する。このため、線材の組織をラメラ間隔が小さなパーライト、すなわち、硬さ(強度)が高いパーライトとすることが、球状化焼鈍後の強度の低下に有効である。一方、線材の硬さ(強度)が高くなりすぎると、組織にマルテンサイトが混在して、球状化焼鈍後の強度が高くなる。 Furthermore, even if the structure of the wire is pearlite, wires with low hardness (strength) have a large thickness of cementite that makes up the pearlite, and spheroidization is delayed. For this reason, it is effective to make the wire structure pearlite with a small lamella interval, that is, pearlite with high hardness (strength), in reducing the strength after spheroidizing annealing. On the other hand, if the hardness (strength) of the wire becomes too high, martensite will be mixed in the structure, and the strength after spheroidizing annealing will increase.
 また、線材の組織がパーライトであっても、表面の硬さと中心部の硬さの差が大きい線材は、セメンタイトの厚みやパーライトブロック粒径のばらつきが大きく、球状化焼鈍後の延性(絞り)が低くなる。
 また、線材の組織がパーライトであっても、絞りが低い線材は、球状化焼鈍の際にフェライト粒の再結晶が遅延し、球状化焼鈍後の強度が高くなる。
In addition, even if the wire rod has a pearlite structure, wire rods with a large difference in hardness between the surface and the center have large variations in cementite thickness and pearlite block grain size, and the ductility (drawing of area) after spheroidizing annealing increases. becomes lower.
Furthermore, even if the wire rod has a pearlite structure, a wire rod with a low reduction of area will have delayed recrystallization of ferrite grains during spheroidizing annealing, and will have a higher strength after spheroidizing annealing.
 本開示の発明者は、上記の特徴をもつ線材に、総減面率が20~50%となる伸線加工などでひずみを付与し、その後、Ac1以下の温度で球状化焼鈍を行うことで、従来技術では困難であったCrを0.85~1.50%、Cを0.30~0.50%含有する鋼において、フェライト粒が粗粒で、炭化物が微細で、かつ、炭化物のアスペクト比が小さい組織が得られ、変形抵抗の低減と、延性の向上を達成できることを見出した。 The inventor of the present disclosure has proposed that a wire having the above-mentioned characteristics be strained by wire drawing or the like such that the total area reduction rate is 20 to 50%, and then subjected to spheroidizing annealing at a temperature of A c1 or lower. However, in steel containing 0.85 to 1.50% Cr and 0.30 to 0.50% C, which was difficult to achieve with conventional technology, the ferrite grains are coarse grains, the carbides are fine, and the carbides are fine. It has been found that a structure with a small aspect ratio can be obtained, reducing deformation resistance and improving ductility.
 本開示に係る線材の化学組成(鋼成分)は、質量%で、
C :0.30~0.50%、
Si:0.01~0.45%、
Mn:0.30~1.00%、
P :0.030%以下、
S :0.050%以下、
Al:0.001~0.080%、
Cr:0.85~1.50%、
N :0.0010~0.0200%、
O :0.004%以下を含み、残部がFe及び不純物元素からなる。
 以下、本開示に係る線材に含まれる各元素量を上記範囲に限定した理由を説明する。
The chemical composition (steel component) of the wire according to the present disclosure is expressed in mass%,
C: 0.30-0.50%,
Si: 0.01-0.45%,
Mn: 0.30-1.00%,
P: 0.030% or less,
S: 0.050% or less,
Al: 0.001-0.080%,
Cr: 0.85-1.50%,
N: 0.0010-0.0200%,
O: Contains 0.004% or less, with the remainder consisting of Fe and impurity elements.
The reason why the amount of each element contained in the wire according to the present disclosure is limited to the above range will be explained below.
C:0.30~0.50%
 Cは、機械部品としての強度を確保するため添加する。C量が0.30%未満では機械部品としての必要な強度を確保することが困難である。一方、C量が0.50%を越えると延性、靱性、及び冷間鍛造性が劣化する。そのため、C量は、0.30~0.50%とした。高強度と延性、靱性、冷間加工性を両立する好ましいC量の範囲は、0.33~0.45%である。
C: 0.30-0.50%
C is added to ensure strength as a mechanical component. If the C content is less than 0.30%, it is difficult to ensure the strength required as a mechanical component. On the other hand, when the amount of C exceeds 0.50%, ductility, toughness, and cold forgeability deteriorate. Therefore, the amount of C was set to 0.30 to 0.50%. The preferred range of C content that achieves both high strength, ductility, toughness, and cold workability is 0.33 to 0.45%.
Si:0.01~0.45%
 Siは、脱酸元素として機能するとともに、焼入れ性を付与し、焼戻し軟化抵抗を向上させて、機械部品に必要な強度を付与するのに有効な元素である。Si量が0.01%未満ではこれらの効果が不十分である。Si量が0.45%を越えると、機械部品の延性、靱性が劣化するとともに、鋼線の変形抵抗を上昇させて冷間鍛造性を劣化させる。そのため、Si量は、0.01~0.45%とした。好ましいSi量の範囲は0.03~0.40%である。より好ましいSi量の範囲は0.05~0.30%である。
Si: 0.01~0.45%
Si functions as a deoxidizing element, and is an effective element for imparting hardenability, improving temper softening resistance, and imparting the necessary strength to mechanical parts. If the amount of Si is less than 0.01%, these effects are insufficient. If the Si content exceeds 0.45%, the ductility and toughness of the mechanical parts will deteriorate, and the deformation resistance of the steel wire will increase, resulting in poor cold forgeability. Therefore, the amount of Si was set to 0.01 to 0.45%. The preferred range of Si content is 0.03 to 0.40%. A more preferable range of Si amount is 0.05 to 0.30%.
Mn:0.30~1.00%
 Mnは、焼入れ性を付与し、機械部品に必要な強度を付与するのに必要な元素である。Mn量が0.30%未満では効果が不十分である。Mn量が1.00%を越えると、機械部品の靱性が劣化するとともに、鋼線の変形抵抗が上昇し冷間鍛造性を劣化させる。そのため、Mn量は、0.30~1.00%とした。好ましいMn量の範囲は0.35~0.90%である。より好ましいMn量の範囲は0.40~0.85%である。
Mn: 0.30~1.00%
Mn is an element necessary to impart hardenability and the necessary strength to mechanical parts. If the amount of Mn is less than 0.30%, the effect is insufficient. When the amount of Mn exceeds 1.00%, the toughness of the mechanical parts deteriorates, and the deformation resistance of the steel wire increases, resulting in deterioration of cold forgeability. Therefore, the Mn amount was set to 0.30 to 1.00%. The preferred range of Mn content is 0.35 to 0.90%. A more preferable range of Mn content is 0.40 to 0.85%.
P:0.030%以下
 Pは、不純物として線材に含有される。Pは焼入れ焼戻し後の機械部品の結晶粒界に偏析し、靱性を劣化させるため低減することが望ましい。このため、P量の上限は、0.030%とした。好ましいP量の上限は、0.020%である。より好ましいP量の上限は0.015%以下である。なお、P量の下限は、0%(つまり含まないこと)がよいが、脱Pコストを低減する観点から、0%超え(又は0.0001%以上)であってもよい。
P: 0.030% or less P is contained in the wire as an impurity. P segregates in the grain boundaries of mechanical parts after quenching and tempering and deteriorates toughness, so it is desirable to reduce it. Therefore, the upper limit of the amount of P was set to 0.030%. The preferable upper limit of the amount of P is 0.020%. A more preferable upper limit of the amount of P is 0.015% or less. Note that the lower limit of the P amount is preferably 0% (that is, not included), but may be more than 0% (or 0.0001% or more) from the viewpoint of reducing the cost of removing P.
S:0.050%以下
 Sは、MnS等の硫化物として線材に含有される。これらの硫化物は線材又は伸線加工した鋼線の被削性を向上させる。S量が0.050%を超えると鋼線の冷間圧造性を劣化させるとともに、焼入れ焼戻し後の機械部品の靱性を劣化させる。このため、S量の上限は0.050%とした。好ましいS量の上限は、0.030%である。より好ましいS量の上限は、0.010%である。なお、S量の下限は、脱Sコストを低減する観点から、0%超え(又は0.001%以上)であってもよい。
S: 0.050% or less S is contained in the wire as a sulfide such as MnS. These sulfides improve the machinability of wire rods or drawn steel wires. When the amount of S exceeds 0.050%, it deteriorates the cold heading properties of the steel wire and also deteriorates the toughness of mechanical parts after quenching and tempering. Therefore, the upper limit of the amount of S was set to 0.050%. The preferable upper limit of the amount of S is 0.030%. A more preferable upper limit of the amount of S is 0.010%. Note that the lower limit of the S amount may be more than 0% (or 0.001% or more) from the viewpoint of reducing the S removal cost.
Cr:0.85~1.50%
 Crは、焼入れ性を向上させて、機械部品に必要な強度を付与するのに必要な元素である。さらに、Crを含有することにより、焼鈍後の炭化物の形状が球状になり、冷間加工性を向上させる。Cr量が0.85%未満では効果が不十分である。Cr量が1.50%を超えると、炭化物の球状化時間が長時間となり、製造コストを増加させるとともに、鋼線の変形抵抗が上昇し冷間鍛造性を劣化させる。そのため、Cr量は、0.85~1.50%とした。好ましいCr量の範囲は、0.87~1.40%である。より好ましいCr量の範囲は、0.90~1.30%である。
Cr: 0.85-1.50%
Cr is an element necessary to improve hardenability and provide necessary strength to mechanical parts. Furthermore, by containing Cr, the shape of the carbide becomes spherical after annealing, improving cold workability. If the amount of Cr is less than 0.85%, the effect is insufficient. When the Cr content exceeds 1.50%, the time for spheroidization of the carbide becomes long, which increases manufacturing costs, and also increases the deformation resistance of the steel wire and deteriorates cold forgeability. Therefore, the Cr content was set to 0.85 to 1.50%. The preferred range of Cr content is 0.87 to 1.40%. A more preferable range of Cr content is 0.90 to 1.30%.
Al:0.001~0.080%
 Alは、脱酸元素として機能するとともに、AlNを形成しオーステナイト結晶粒を細粒化し、機械部品の靱性を向上させる効果がある。また、固溶Nを固定して動的ひずみ時効を抑制し、変形抵抗を低減する効果がある。Al量が0.001%未満ではこれらの効果が不十分である。Al量が0.080%を超えると効果が飽和するとともに製造性を低下させることがある。そのため、Al量は0.001~0.080%とした。好ましいAl量の範囲は0.010~0.060%である。より好ましいAl量の範囲は0.020~0.050%である。
Al: 0.001-0.080%
Al functions as a deoxidizing element, forms AlN, refines austenite crystal grains, and has the effect of improving the toughness of mechanical parts. It also has the effect of fixing solid solution N, suppressing dynamic strain aging, and reducing deformation resistance. If the amount of Al is less than 0.001%, these effects are insufficient. If the amount of Al exceeds 0.080%, the effect may be saturated and the productivity may be reduced. Therefore, the amount of Al was set to 0.001 to 0.080%. The preferred range of Al content is 0.010 to 0.060%. A more preferable range of Al amount is 0.020 to 0.050%.
N:0.0010~0.0200%
 Nは、Al、Ti、Nb、V等と窒化物を形成し、オーステナイト結晶粒を細粒化し、機械部品の靱性を向上させる効果がある。N量が0.0010%未満では窒化物の析出量が不足し、効果が得られない。N量が0.0200%を超えると固溶Nによる動的ひずみ時効により鋼線の変形抵抗が高くなり加工性を劣化させる。そのため、N量は、0.0010~0.0200%とした。好ましいN量の範囲は0.0020~0.0080%である。より好ましいN量の範囲は、0.0030~0.0050%未満である。
N: 0.0010-0.0200%
N forms nitrides with Al, Ti, Nb, V, etc., and has the effect of refining austenite crystal grains and improving the toughness of mechanical parts. If the amount of N is less than 0.0010%, the amount of nitride precipitated will be insufficient and no effect will be obtained. When the amount of N exceeds 0.0200%, the deformation resistance of the steel wire increases due to dynamic strain aging due to solid solution N, resulting in deterioration of workability. Therefore, the amount of N was set to 0.0010 to 0.0200%. The preferred range of N amount is 0.0020 to 0.0080%. A more preferable range of the amount of N is 0.0030 to less than 0.0050%.
O:0.004%以下
 Oは不純物であり、不可避的に鋼中に含有される。O量が0.004%を超えると、粗大な酸化物を形成し、疲労強度を低下させる場合があるため、0.004%以下に制限する。O量の好ましい上限は0.003%であり、より好ましい上限は0.002%である。
O: 0.004% or less O is an impurity and is unavoidably contained in steel. If the O amount exceeds 0.004%, coarse oxides may be formed and the fatigue strength may be reduced, so it is limited to 0.004% or less. A preferable upper limit of the amount of O is 0.003%, and a more preferable upper limit is 0.002%.
残部:Fe及び不純物元素
 本開示に係る線材の化学組成において、残部は、Fe及び不純物元素(本開示において適宜「不純物」と記載する場合がある。)である。
 ここで、不純物とは、原材料に含まれる成分、又は、製造の工程で混入する成分であって、意図的に含有させたものではない成分を指す。さらに、不純物は、意図的に含有させた成分であっても、本開示に係る線材を伸線加工した鋼線の性能に影響を与えない範囲の量で含有する成分も含む。
Remainder: Fe and Impurity Elements In the chemical composition of the wire according to the present disclosure, the remainder is Fe and impurity elements (which may be appropriately referred to as "impurities" in the present disclosure).
Here, impurities refer to components contained in raw materials or components mixed in during the manufacturing process, but not intentionally included. Furthermore, impurities also include components that are contained in an amount that does not affect the performance of the steel wire obtained by drawing the wire according to the present disclosure, even if the impurities are intentionally contained.
 また、本開示に係る線材は、Feの一部に代えて、質量%で、
 Mo:0.70%以下、
 Ti:0.040%以下、
 B:0.0040%以下、
 Nb:0.050%以下、
 Cu:0.50%以下、
 Ni:0.30%以下、
 Sn:0.30%以下、
 Sb:0.050%以下、
 V :0.20%、及び
 Ca:0.0050%以下、
の1種又は2種以上を含んでもよい。
 つまり、Mo、Ti、B、Nb、Cu、Ni、Sn、Sb、V、Caは任意元素であり、これらの元素は、本開示に係る線材に含有されなくてもよいが、含有される場合は、上記範囲内とする。以下、これらの任意元素について説明する。
In addition, in the wire according to the present disclosure, instead of a part of Fe, in mass %,
Mo: 0.70% or less,
Ti: 0.040% or less,
B: 0.0040% or less,
Nb: 0.050% or less,
Cu: 0.50% or less,
Ni: 0.30% or less,
Sn: 0.30% or less,
Sb: 0.050% or less,
V: 0.20%, and Ca: 0.0050% or less,
It may contain one or more of the following.
In other words, Mo, Ti, B, Nb, Cu, Ni, Sn, Sb, V, and Ca are optional elements, and these elements do not have to be contained in the wire according to the present disclosure, but if they are contained, shall be within the above range. These arbitrary elements will be explained below.
Mo:0~0.70%
 Moは、焼入れ性を向上させて、機械部品に必要な強度を付与する効果がある。Mo量が0.70%を超えると、合金コストが増加するとともに、鋼線の変形抵抗が上昇し冷間鍛造性を劣化させる。そのため、Moを含む場合、Mo量は、0.02~0.70%とすることがよい。好ましいMo量の範囲は0.10~0.70%であり、より好ましいMo量の範囲は0.10~0.65%であり、さらに好ましいMo量の範囲は0.15~0.50%である。
Mo: 0-0.70%
Mo has the effect of improving hardenability and imparting necessary strength to mechanical parts. When the Mo content exceeds 0.70%, the alloy cost increases and the deformation resistance of the steel wire increases, deteriorating cold forgeability. Therefore, when Mo is included, the amount of Mo is preferably 0.02 to 0.70%. A preferred range of Mo amount is 0.10 to 0.70%, a more preferred range of Mo amount is 0.10 to 0.65%, and an even more preferred range of Mo amount is 0.15 to 0.50%. It is.
Ti:0~0.040%
 Tiは、脱酸元素として機能するとともに、窒化物や炭化物を形成し、オーステナイト結晶粒を細粒化し、機械部品の靱性を向上させる効果、固溶Bの生成を促進し、焼入れ性を高める効果、固溶Nを固定して動的ひずみ時効を抑制し、変形抵抗を低減する効果がある。Ti量が0.040%を超えるとこれらの効果が飽和するとともに粗大な酸化物又は窒化物を生成して、機械部品の疲労強度を劣化させることがある。そのため、Tiを含む場合、Ti量は0.002~0.040%とすることがよい。好ましいTi量の範囲は0.005~0.030%である。より好ましいTi量の範囲は0.010~0.025%である。
Ti: 0-0.040%
Ti functions as a deoxidizing element, forms nitrides and carbides, refines austenite grains, improves the toughness of mechanical parts, promotes the formation of solid solution B, and improves hardenability. , has the effect of fixing solid solution N, suppressing dynamic strain aging, and reducing deformation resistance. When the amount of Ti exceeds 0.040%, these effects are saturated and coarse oxides or nitrides are generated, which may deteriorate the fatigue strength of mechanical parts. Therefore, when Ti is included, the amount of Ti is preferably 0.002 to 0.040%. The preferred range of Ti amount is 0.005 to 0.030%. A more preferable range of Ti amount is 0.010 to 0.025%.
B:0~0.0040%
 Bは、固溶Bとして粒界に偏析して焼入れ性を向上させて、機械部品に必要な強度を付与する効果がある。B量が0.0040%を超えると粒界に炭化物を生成して冷間加工性を劣化させることがある。そのため、Bを含む場合、B量は0.0002~0.0040%とすることがよい。好ましいB量の範囲は0.0003~0.0030%である。より好ましいB量の範囲は0.0005~0.0020%である。
B: 0-0.0040%
B segregates at grain boundaries as solid solution B, improves hardenability, and has the effect of imparting necessary strength to mechanical parts. If the amount of B exceeds 0.0040%, carbides may be generated at grain boundaries, which may deteriorate cold workability. Therefore, when B is included, the amount of B is preferably 0.0002 to 0.0040%. The preferred range of B amount is 0.0003 to 0.0030%. A more preferable range of B amount is 0.0005 to 0.0020%.
Nb:0~0.050%
 Nbは、炭化物や窒化物を析出させて、機械部品の強度を高める効果、オーステナイト結晶粒を細粒化して靱性を向上させる効果、固溶Nを低減して、変形抵抗を低減する効果等がある。Nb量が0.050%を超えると効果が飽和するとともに冷間鍛造性を劣化させることがある。そのため、Nbを含む場合、Nb量は0.002~0.050%とすることがよい。好ましいNb量の範囲は0.001~0.030%である。より好ましいNb量の範囲は0.005~0.020%である。
Nb: 0-0.050%
Nb has the effect of increasing the strength of mechanical parts by precipitating carbides and nitrides, improving toughness by refining austenite crystal grains, and reducing deformation resistance by reducing solid solution N. be. When the amount of Nb exceeds 0.050%, the effect is saturated and cold forgeability may deteriorate. Therefore, when Nb is included, the amount of Nb is preferably 0.002 to 0.050%. The preferred range of Nb content is 0.001 to 0.030%. A more preferable range of Nb content is 0.005 to 0.020%.
Cu:0~0.50%
 Cuは、焼入れ性を向上させたり、微細に析出して、機械部品に必要な強度を付与するとともに耐食性を向上させる効果がある。Cu量が0.50%を超えると熱間延性が劣化し表面に疵が発生しやすくなる。そのため、Cuを含む場合、Cu量は0.02~0.50%とすることがよい。好ましいCu量の範囲は0.02~0.30%とすることがよい。
Cu: 0-0.50%
Cu has the effect of improving hardenability, precipitating finely, imparting necessary strength to mechanical parts, and improving corrosion resistance. When the amount of Cu exceeds 0.50%, hot ductility deteriorates and flaws are likely to occur on the surface. Therefore, when Cu is included, the amount of Cu is preferably 0.02 to 0.50%. The preferable range of Cu amount is 0.02 to 0.30%.
Ni:0~0.30%
 Niは、焼入れ性を向上させて、機械部品に必要な強度を付与する効果がある。Ni量が0.30%を超えると合金コストが増加する。そのため、Niを含む場合、Ni量は0.02~0.30%とすることがよい。好ましいNi量の範囲は0.02~0.25%とすることがよい。
Ni: 0-0.30%
Ni has the effect of improving hardenability and imparting the necessary strength to mechanical parts. If the Ni amount exceeds 0.30%, the alloy cost will increase. Therefore, when Ni is included, the Ni amount is preferably 0.02 to 0.30%. The preferable range of Ni content is 0.02 to 0.25%.
Sn:0~0.30%
 Snは耐食性を向上させる効果がある。Snを含む場合、Sn量は0.002%以上とすることがよい。ただし、Sn量が0.30%を超えると、延性が低下し冷間加工性を劣化させるため、0.30%以下に制限する。Sn量の好ましい上限は0.25%である。
Sn: 0-0.30%
Sn has the effect of improving corrosion resistance. When Sn is included, the amount of Sn is preferably 0.002% or more. However, if the Sn amount exceeds 0.30%, ductility will decrease and cold workability will deteriorate, so it is limited to 0.30% or less. A preferable upper limit of the amount of Sn is 0.25%.
Sb:0~0.050%
 Sbは耐食性を向上させる効果がある。Sbを含む場合、Sb量は0.001%以上とすることがよい。ただし、Sb量が0.050%を超えると、延性が低下し冷間加工性を劣化させるため、0.050%以下に制限する。Sb量の好ましい上限は0.040%であり、より好ましい上限は0.030%である。
Sb: 0 to 0.050%
Sb has the effect of improving corrosion resistance. When Sb is included, the amount of Sb is preferably 0.001% or more. However, if the amount of Sb exceeds 0.050%, ductility decreases and cold workability deteriorates, so it is limited to 0.050% or less. A preferable upper limit of the amount of Sb is 0.040%, and a more preferable upper limit is 0.030%.
V:0~0.20%
 Vは、線材の引張強さを高める効果がある。ただし、V量が0.20%を超えると、合金コストが増加する。そのため、Vを含む場合、V量は0.02~0.20%とすることがよい。好ましいV量の範囲は0.05~0.15%である。
V: 0-0.20%
V has the effect of increasing the tensile strength of the wire. However, when the amount of V exceeds 0.20%, the alloy cost increases. Therefore, when V is included, the amount of V is preferably 0.02 to 0.20%. The preferred range of V content is 0.05 to 0.15%.
Ca:0~0.0050%
 Caは、脱酸を目的に添加され、酸化物を微細にして疲労強度を向上させる効果がある。ただし、Ca量が0.0050%を超えると、延性が低下し、冷間加工を劣化させる。そのため、Caを含む場合、Ca量は0.0002~0.0050%とすることがよい。好ましいCa量の範囲は0.0005~0.0030%である。
Ca: 0-0.0050%
Ca is added for the purpose of deoxidation, and has the effect of making oxides finer and improving fatigue strength. However, when the amount of Ca exceeds 0.0050%, ductility decreases and cold working deteriorates. Therefore, when Ca is included, the amount of Ca is preferably 0.0002 to 0.0050%. The preferred range of Ca amount is 0.0005 to 0.0030%.
[金属組織]
 次に、本開示に係る線材の金属組織の限定理由について述べる。
 本開示に係る線材の金属組織は、C断面において線材の表面(外周面)から深さが1/4D部でのパーライトの面積率は70%以上100%以下である。パーライト面積率が70%未満では、球状化焼鈍後の強度が高くなったり、あるいは絞りが低くなり加工性が劣化する。パーライト面積率の好ましい下限は75%であり、より好ましい下限は80%である。
 パーライトの面積率が100%未満である場合、パーライト以外の残部組織としてフェライトとベイナイトの1種又は2種を合計の面積率で30%以下を含む。フェライトの面積率が高いと球状化焼鈍後の絞りが低くなり、冷間加工性が劣化する。また、ベイナイトの面積率が高いと焼鈍後の強度が高くなり、冷間加工性が劣化する。このため、ベイナイトとフェライトの合計面積率の上限は30%である。
 ベイナイトとフェライトの合計面積率の下限は特に限定されず、0%、すなわち、ベイナイトとフェライトを含まず、パーライト面積率が100%でもよい。
[Metal structure]
Next, the reason for limiting the metal structure of the wire according to the present disclosure will be described.
In the metal structure of the wire according to the present disclosure, the area ratio of pearlite at a depth of 1/4D from the surface (outer peripheral surface) of the wire in the C cross section is 70% or more and 100% or less. When the pearlite area ratio is less than 70%, the strength after spheroidizing annealing becomes high, or the area of drawing becomes low, resulting in poor workability. A preferable lower limit of the pearlite area ratio is 75%, and a more preferable lower limit is 80%.
When the area ratio of pearlite is less than 100%, the remaining structure other than pearlite includes one or both of ferrite and bainite in a total area ratio of 30% or less. When the area ratio of ferrite is high, the area of area after spheroidizing annealing becomes low, and cold workability deteriorates. Moreover, if the area ratio of bainite is high, the strength after annealing will be high and cold workability will be deteriorated. Therefore, the upper limit of the total area ratio of bainite and ferrite is 30%.
The lower limit of the total area ratio of bainite and ferrite is not particularly limited, and may be 0%, that is, bainite and ferrite are not included, and the pearlite area ratio may be 100%.
(金属組織の測定方法)
 本開示に係る線材の表面(外周面)から深さが1/4D部での金属組織の面積率の測定は、以下の方法によって行う。
 パーライト、ベイナイト、フェライト等の各面積率(面積%)は以下の手順により決定する。
 まず、測定対象とする線材のC断面を鏡面研磨した後、ピクラール(5%ピクリン酸+95%エタノール溶液)でエッチングして組織を現出させる。
 次に、線材の直径をDとした場合に、線材の表面からの深さが1/4Dの位置において線材の長手方向軸を中心に90°おきに周方向に回転させ4箇所について走査型電子顕微鏡(SEM)を用いて倍率5000倍の組織写真を撮影する。1箇所における視野は周方向に25μm以上、深さ方向に19μm以上の領域とする。
 本開示では、撮影された組織写真において、セメンタイト相がフェライト相と交互にほぼ平行に存在する組織及び板状のセメンタイト相が存在する組織をパーライトとした。図1にパーライト組織の例を示す。組織写真において、黒っぽい部分がフェライト相、白っぽい部分がセメンタイト相を示す。図1(a)のA部のように線状のセメンタイト相とフェライト相がほぼ平行に並んだ組織、B部のように線状のセメンタイト相と分断したセメンタイト相が並んだ組織、C部のように板状のセメンタイト相が認められる組織をパーライト組織とした。また、図1(b)のD部のように分断したセメンタイト相が列状に存在する組織もパーライト組織とした。
 また、ベイナイト組織は、(長軸の長さ)/(短軸の長さ)が3.0以上の針状のセメンタイト相が存在し、フェライト相とセメンタイト相が交互にほぼ平行に混在する構造ではなく、針状のセメンタイト相の長軸方向の角度が30度以上異なる種々の方位である組織をベイナイト組織とした。図2にベイナイト組織の例を示す。図2のE部及びF部のようにフェライト相とセメンタイト相が交互に平行に存在する構造ではなく、種々の方位の針状セメンタイト相が存在する組織をベイナイト組織とした。
 また、パーライト組織又はベイナイト組織とは区別されるフェライト相はフェライト組織(本開示において「フェライト」と称する場合がある。)とした。図1(a)のG部、図1(b)のH部のようにセメンタイト相がない組織をフェライト組織とした。
(Method for measuring metal structure)
The area ratio of the metal structure at a depth of 1/4D from the surface (outer peripheral surface) of the wire according to the present disclosure is measured by the following method.
Each area ratio (area %) of pearlite, bainite, ferrite, etc. is determined by the following procedure.
First, the C cross section of the wire to be measured is polished to a mirror surface, and then etched with Picral (5% picric acid + 95% ethanol solution) to reveal the structure.
Next, when the diameter of the wire is D, the depth from the surface of the wire is 1/4D, the wire is rotated in the circumferential direction every 90 degrees around the longitudinal axis of the wire, and scanning electron beams are scanned at four locations. A photograph of the tissue is taken at a magnification of 5000 times using a microscope (SEM). The field of view at one location is an area of 25 μm or more in the circumferential direction and 19 μm or more in the depth direction.
In the present disclosure, pearlite is defined as a structure in which cementite phases alternate with ferrite phases substantially parallel to each other and a structure in which a plate-shaped cementite phase exists in a photographed structure photograph. Figure 1 shows an example of pearlite structure. In the microstructure photograph, the dark part shows the ferrite phase, and the whitish part shows the cementite phase. A structure in which a linear cementite phase and a ferrite phase are arranged almost parallel to each other as shown in part A of Figure 1(a), a structure in which a linear cementite phase and a separated cementite phase are arranged in a row as shown in part B, and a structure in part C. The structure in which a plate-like cementite phase was observed was defined as a pearlite structure. In addition, a structure in which divided cementite phases exist in rows as shown in part D in FIG. 1(b) is also considered a pearlite structure.
In addition, the bainite structure has an acicular cementite phase with a ratio of (long axis length)/(short axis length) of 3.0 or more, and a structure in which ferrite phases and cementite phases coexist alternately and almost parallel to each other. Rather, the bainite structure is defined as a structure in which the angles of the long axis direction of the acicular cementite phase differ by 30 degrees or more in various orientations. Figure 2 shows an example of a bainite structure. The bainite structure is not a structure in which ferrite phases and cementite phases exist alternately and parallel to each other as shown in parts E and F in FIG. 2, but a structure in which acicular cementite phases in various orientations exist.
Further, the ferrite phase, which is distinguished from the pearlite structure or the bainite structure, was defined as a ferrite structure (sometimes referred to as "ferrite" in the present disclosure). A structure without a cementite phase, such as part G in FIG. 1(a) and part H in FIG. 1(b), was defined as a ferrite structure.
 さらに、撮影された組織写真中のパーライト、ベイナイト、フェライトの各組織を目視でマーキングし、各組織の領域の面積を画像解析(ソフト名:ニレコ製小型汎用画像処理解析システムLUZEX_AP)により求める。なお、この操作は4箇所の写真について測定、算出し、それらの平均値を求め、当該平均値を本開示における各組織の面積%とする。
 なお、フェライトとマルテンサイトの判別が困難な場合は、観察位置を圧痕で特定し、ピクラールで腐食して組織写真を撮影した後、再研磨し、ナイタール(3%硝酸+97%エタノール溶液)でエッチングして組織を現出させる。同一箇所の組織写真をSEMを用いて倍率5000倍で撮影する。ナイタールで腐食されるが、ピクラールでの腐食が弱い領域をマルテンサイトと判定し、ナイタール、ピクラールとも腐食が弱い領域をフェライトと判定して、上述の方法にて各組織の領域を目視でマーキングし、面積%を画像解析により求める。
Furthermore, each structure of pearlite, bainite, and ferrite in the photographed structure photograph is visually marked, and the area of each structure is determined by image analysis (software name: Nireco's compact general-purpose image processing and analysis system LUZEX_AP). Note that this operation is performed by measuring and calculating the photographs of four locations, determining the average value thereof, and using the average value as the area % of each tissue in the present disclosure.
If it is difficult to distinguish between ferrite and martensite, identify the observation position with an indentation, corrode it with Picral, take a photograph of the structure, repolish it, and etch it with nital (3% nitric acid + 97% ethanol solution). to reveal the organization. A tissue photograph of the same location is taken using an SEM at a magnification of 5000 times. Areas that are corroded by nital but weakly corroded by picral are determined to be martensite, areas that are weakly corroded by both nital and picral are determined to be ferrite, and each tissue area is visually marked using the method described above. , area % is determined by image analysis.
[ビッカース硬さ]
(ビッカース硬さの平均値)
 本開示に係る線材のビッカース硬さの平均値は、線材に含まれるC、Si、Mn、Cr、Moの各含有量をそれぞれ(C%)、(Si%)、(Mn%)、(Cr%)、(Mo%)で表し、F1=(C%)+0.14×(Si%)+0.20×(Mn%)+0.11×(Cr%)+0.50×(Mo%)とした場合、415×F1-90以上、465×F1-80以下である。なお、Moは任意元素であり、Moを含まない場合は(Mo%)を「0」としてF1を算出する。
[Vickers hardness]
(Average value of Vickers hardness)
The average value of the Vickers hardness of the wire rod according to the present disclosure is determined based on the contents of C, Si, Mn, Cr, and Mo contained in the wire rod, respectively (C%), (Si%), (Mn%), and (Cr %), (Mo%), F1 = (C%) + 0.14 x (Si%) + 0.20 x (Mn%) + 0.11 x (Cr%) + 0.50 x (Mo%) In this case, it is 415×F1-90 or more and 465×F1-80 or less. Note that Mo is an arbitrary element, and when Mo is not included, F1 is calculated by setting (Mo%) to "0".
 ビッカース硬さの平均値が415×F1-90未満では、パーライトを構成する層状セメンタイトの厚みが大きく、セメンタイトの球状化が遅延することで、球状化焼鈍後の強度が高くなり冷間加工性が劣化する。また、球状化焼鈍後にラメラ状パーライトが残存したり、粗大な球状セメンタイトが生成して、延性が低下する。このため、ビッカース硬さの平均値の下限を415×F1-90とした。なお、ビッカース硬さの平均値が465×F1-80を超えると、球状化焼鈍後の強度が高くなり、冷間加工性が劣化する。 When the average value of Vickers hardness is less than 415 x F1-90, the thickness of layered cementite constituting pearlite is large, and the spheroidization of cementite is delayed, resulting in high strength after spheroidizing annealing and poor cold workability. to degrade. Moreover, lamellar pearlite remains after spheroidizing annealing, or coarse spherical cementite is generated, resulting in a decrease in ductility. Therefore, the lower limit of the average value of Vickers hardness was set to 415×F1-90. Note that when the average value of Vickers hardness exceeds 465×F1-80, the strength after spheroidizing annealing increases and cold workability deteriorates.
 ビッカース硬さは、線材のC断面を鏡面研磨し、線材の表面から0.5mm深さの位置にて、線材の長手方向軸を中心に周方向に90°間隔で回転させた4箇所、線材の直径をDとしたとき、1/4Dの深さの位置にて周方向に、線材の長手方向軸を中心に90°間隔で回転させた4箇所、中心部にて1箇所、合計9箇所を測定した。ビッカース硬さ測定の際の試験力は9.8Nとして、JIS Z2244-1:2020の方法で測定した。得られた9箇所の平均値をビッカース硬さの平均値とした。 Vickers hardness is determined by mirror-polishing the C cross section of the wire and rotating it at 90° intervals in the circumferential direction around the longitudinal axis of the wire at 0.5 mm depth from the surface of the wire. When the diameter of is D, there are 4 locations rotated at 90° intervals around the longitudinal axis of the wire in the circumferential direction at a depth of 1/4D, and 1 location at the center, a total of 9 locations. was measured. The test force for Vickers hardness measurement was 9.8N, and the measurement was performed according to the method of JIS Z2244-1:2020. The average value of the obtained nine locations was defined as the average value of Vickers hardness.
(HVs-HVc)
 本開示に係る線材は、表面から深さが0.5mmの位置でのビッカース硬さHVsと中心部のビッカース硬さHVcのと差(HVs-HVc)が20以下である。(HVs-HVc)が20を超えると、球状化焼鈍後の延性が低くなり冷間加工性が劣化するため、(HVs-HVc)の上限を20とした。HVsは、線材のC断面にて、線材の表面から0.5mm深さの位置にて、線材の長手方向軸を中心に周方向に90°間隔で回転させた4箇所にてビッカース硬さを測定し、その平均値とした。HVcは、線材のC断面の中心部1箇所のビッカース硬さとした。
(HVs-HVc)
In the wire according to the present disclosure, the difference (HVs-HVc) between the Vickers hardness HVs at a depth of 0.5 mm from the surface and the Vickers hardness HVc at the center is 20 or less. If (HVs-HVc) exceeds 20, the ductility after spheroidizing annealing decreases and cold workability deteriorates, so the upper limit of (HVs-HVc) was set to 20. HVs measures the Vickers hardness at four locations rotated at 90° intervals in the circumferential direction around the longitudinal axis of the wire at a depth of 0.5 mm from the surface of the wire on the C cross section of the wire. The values were measured and taken as the average value. HVc was defined as the Vickers hardness at one location in the center of the C cross section of the wire.
[線材の絞り]
 本開示に係る線材の絞りは、-75×F1+120%以上であることが好ましい。絞りが-75×F1+120%以上であれば球状化焼鈍後の強度が低くなり、冷間加工性が一層向上する。このため本開示に係る線材の絞りの下限は、-75×F1+120%であることが好ましい。
 絞りは、JIS Z2241:2011の9A試験片を用い、JIS Z2241:2011の試験方法に従って引張試験を行って測定した値である。
[Wire rod drawing]
The aperture of the wire according to the present disclosure is preferably −75×F1+120% or more. If the reduction of area is −75×F1+120% or more, the strength after spheroidizing annealing will be low, and the cold workability will be further improved. Therefore, the lower limit of the aperture of the wire according to the present disclosure is preferably −75×F1+120%.
The aperture is a value measured by performing a tensile test using a 9A test piece of JIS Z2241:2011 according to the test method of JIS Z2241:2011.
(直径)
 本開示に係る線材の線径Dは特に限定されないが、好ましくは3.0~25.0mmであり、より好ましくは4.0~18.0mmである。
(diameter)
The wire diameter D of the wire according to the present disclosure is not particularly limited, but is preferably 3.0 to 25.0 mm, more preferably 4.0 to 18.0 mm.
[線材の製造方法]
 本開示に係る線材の製造方法の一例について説明する。本開示に係る線材は、例えば、加熱工程と、熱間圧延工程と、第1冷却工程と、第2冷却工程とを含む方法によって好適に製造することができる。以下各工程について詳細に説明する。
[Wire manufacturing method]
An example of a method for manufacturing a wire according to the present disclosure will be described. The wire rod according to the present disclosure can be suitably manufactured by a method including, for example, a heating process, a hot rolling process, a first cooling process, and a second cooling process. Each step will be explained in detail below.
(加熱工程)
 加熱工程では、本開示に係る線材の化学組成を有する鋼片を、950~1150℃に加熱する。加熱温度が950℃未満では、熱間圧延の際の変形抵抗が増大し圧延コストが嵩む。一方、加熱温度が1150℃を超えると表層部の脱炭が顕著となり、機械部品の表層硬さが低下する。
(Heating process)
In the heating step, a steel piece having the chemical composition of the wire according to the present disclosure is heated to 950 to 1150°C. If the heating temperature is less than 950°C, the deformation resistance during hot rolling increases and the rolling cost increases. On the other hand, when the heating temperature exceeds 1150° C., decarburization of the surface layer becomes noticeable and the surface hardness of the mechanical component decreases.
(熱間圧延工程)
 熱間圧延工程では、加熱された鋼片を、仕上げ圧延での入側温度が700~760℃となるように熱間圧延して、温度710~780℃で巻き取る。巻取り温度が710℃未満では、球状化焼鈍後のフェライト粒が細粒化し、強度が高くなる。巻取り温度が780℃を超えると、球状化焼鈍の際にフェライト粒の再結晶が遅延し、強度が高くなる。なお、仕上げ圧延での入側温度とは、仕上げ圧延時の入側の線材の表面温度であり、巻取り温度とは、熱間圧延後、コンベア上に載置した直後の線材の表面温度を指す。
(Hot rolling process)
In the hot rolling step, the heated steel billet is hot rolled so that the entrance temperature in finish rolling is 700 to 760°C, and then rolled up at a temperature of 710 to 780°C. When the winding temperature is lower than 710°C, the ferrite grains after spheroidizing annealing become finer and the strength becomes higher. If the winding temperature exceeds 780°C, recrystallization of ferrite grains will be delayed during spheroidizing annealing, and the strength will increase. In addition, the entry temperature in finish rolling is the surface temperature of the wire rod on the entry side during finish rolling, and the winding temperature is the surface temperature of the wire rod immediately after being placed on the conveyor after hot rolling. Point.
(第1冷却工程)
 第1冷却工程では、巻取り後、710~780℃である線材を、700℃から650℃までの温度領域では10~20℃/sの平均冷却速度として、560℃以上620℃以下まで冷却する。例えば、熱間圧延後にリング状に巻取った線材を上記平均冷却速度となるように冷却する。平均冷却速度が10℃/s未満では、フェライト組織の面積率が30%を超える。なお、平均冷却速度とは、線材の表面冷却速度を指す。第1冷却工程における冷却速度の上限は特に限定されないが、設備上、冷却速度の上限は150℃/s以下であってもよい。
(First cooling step)
In the first cooling step, after winding, the wire rod, which is at a temperature of 710 to 780°C, is cooled to 560°C or more and 620°C or less at an average cooling rate of 10 to 20°C/s in the temperature range from 700°C to 650°C. . For example, a wire rod wound into a ring shape after hot rolling is cooled to the above average cooling rate. When the average cooling rate is less than 10° C./s, the area ratio of the ferrite structure exceeds 30%. Note that the average cooling rate refers to the surface cooling rate of the wire. Although the upper limit of the cooling rate in the first cooling step is not particularly limited, the upper limit of the cooling rate may be 150° C./s or less due to equipment considerations.
(第2冷却工程)
 第2冷却工程では、第1冷却工程後の線材を、平均冷却速度0.1~0.2℃/sで600s以上冷却する。例えば、第1冷却工程後の線材を、熱源のある炉内で上記平均冷却速度となるように搬送して冷却することができる。平均冷却速度が0.2℃/sを超えると、(HVs-HVc)が20を超え易い。冷却時間が600s未満では、線材のパーライトの面積率が70%未満となり易い。
 なお、第2冷却工程における冷却時間の上限は特に限定されず、常温まで冷却してもよいが、第1冷却工程の終了温度にもよるが、生産性の向上、設備上の制限などの観点から、第2冷却工程では、平均冷却速度0.1~0.2℃/sで600s以上冷却した後、例えば440℃以下になる前に第2冷却工程を終了して0.2℃/sを超える冷却速度で放冷してもよい。
(Second cooling process)
In the second cooling step, the wire after the first cooling step is cooled for 600 seconds or more at an average cooling rate of 0.1 to 0.2° C./s. For example, the wire rod after the first cooling step can be transported and cooled in a furnace with a heat source so as to achieve the above-mentioned average cooling rate. When the average cooling rate exceeds 0.2° C./s, (HVs−HVc) tends to exceed 20. When the cooling time is less than 600 seconds, the area ratio of pearlite in the wire tends to be less than 70%.
Note that the upper limit of the cooling time in the second cooling step is not particularly limited, and may be cooled to room temperature, but depending on the end temperature of the first cooling step, from the viewpoint of productivity improvement, equipment restrictions, etc. Therefore, in the second cooling step, after cooling for 600 seconds or more at an average cooling rate of 0.1 to 0.2°C/s, for example, the second cooling step is finished before the temperature drops to 440°C or less, and the cooling rate is 0.2°C/s. Cooling may be allowed to occur at a cooling rate exceeding .
 第2冷却工程後は放冷する。
 上記のような各工程を経て、本開示に係る線材を製造することができる。なお、上記の製造方法は一例であり、本開示に係る線材の製造方法は、上記の方法に限定されるものではない。
After the second cooling step, it is left to cool.
The wire rod according to the present disclosure can be manufactured through each of the steps described above. Note that the above manufacturing method is an example, and the method for manufacturing a wire according to the present disclosure is not limited to the above method.
 以下、本開示に係る線材について実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本開示に係る線材を制限するものではない。 Hereinafter, the wire rod according to the present disclosure will be described in more detail by giving examples. However, these examples do not limit the wire rod according to the present disclosure.
<線材の製造及び評価>
 表1に示す化学組成の鋼A~D、F~Oを用いて、表2に示した条件で加熱し、熱間圧延と冷却を行い直径3.5~20.0mmの線材を製造した。なお、熱間圧延における仕上げ圧延の入側温度は710~850℃の範囲内とした。表2中の第2冷却速度「0」は、第1冷却終了温度で第2冷却時間の等温保持を示し、第2冷却後、放冷した。また、「-」は、第1冷却終了後、第2冷却を行わずに放冷したことを意味する。
 表1において空欄はその元素を含まないことを意味し、残部はFe及び不純物である。また、各表において下線は、本開示の範囲外であることを意味する。
<Manufacture and evaluation of wire rod>
Steels A to D and F to O having the chemical compositions shown in Table 1 were heated under the conditions shown in Table 2, hot rolled, and cooled to produce wire rods with a diameter of 3.5 to 20.0 mm. Note that the entrance temperature of finish rolling in hot rolling was within the range of 710 to 850°C. The second cooling rate "0" in Table 2 indicates isothermal maintenance for the second cooling time at the first cooling end temperature, and after the second cooling, it was allowed to cool. Moreover, "-" means that after the first cooling was completed, the second cooling was not performed and the temperature was left to cool.
In Table 1, a blank column means that the element is not included, and the remainder is Fe and impurities. Moreover, in each table, underlining means that it is outside the scope of the present disclosure.

 

 

 

 
 得られた線材を用いて、前述した方法により、組織観察、硬さ測定、絞り値測定を行った。
 組織観察は、線材の中心軸に垂直な断面(C断面)を研磨し、ピクラールで腐食を行い、1/4D部を観察した。1箇所における視野面積は25μm(周方向)×19μm(深さ方向)とした。
 硬さ測定は、線材の中心軸に垂直な断面(C断面)を研磨し、ビッカース硬さ計を用いて、圧子を押し込む試験力は9.8Nとして15秒保持した。線材の表面から0.5mm深さの位置にて、線材の長手方向軸を中心に周方向に90°間隔で回転させて4箇所、1/4Dの深さの位置にて90°間隔で回転させて4箇所、中心部にて1箇所を測定し、その平均値を求めた。
 また、HVsは、線材のC断面にて、線材の表面から0.5mm深さの位置にて90°間隔で回転させて4箇所にてビッカース硬さを測定し、その平均値とした。HVcは、線材のC断面の中心部1箇所のビッカース硬さとした。
 引張試験は、JIS Z2241:2011の9A試験片を用い、JIS Z2241:2011の試験方法、具体的には、線状の試験片を用いて、クロスヘッド速度を10mm/minとして、室温大気中で行い、絞り値(RA)を測定した。引張試験は各試験番号の1本の線材で行った。
 結果を表3に示す。なお、残部組織のBはベイナイト、Fはフェライト、Mはマルテンサイトを意味する。
Using the obtained wire, structure observation, hardness measurement, and aperture value measurement were performed by the method described above.
The structure was observed by polishing a cross section (C cross section) perpendicular to the central axis of the wire, corroding it with Picral, and observing the 1/4D section. The viewing area at one location was 25 μm (circumferential direction)×19 μm (depth direction).
The hardness was measured by polishing a cross section (C cross section) perpendicular to the central axis of the wire, using a Vickers hardness meter, and holding the indenter for 15 seconds at a test force of 9.8 N. At a position 0.5 mm deep from the surface of the wire, rotate at 90° intervals in the circumferential direction around the longitudinal axis of the wire at 4 locations, and at 90° intervals at a position 1/4D deep. Measurements were taken at four locations and one location at the center, and the average value was determined.
Further, for HVs, the Vickers hardness was measured at four locations on the C cross section of the wire at a depth of 0.5 mm from the surface of the wire at 90° intervals and measured, and the average value was taken as the average value. HVc was defined as the Vickers hardness at one location in the center of the C cross section of the wire.
The tensile test was performed using a 9A test piece according to JIS Z2241:2011, and according to the test method of JIS Z2241:2011, specifically, using a linear test piece at a crosshead speed of 10 mm/min at room temperature in the atmosphere. The aperture value (RA) was measured. The tensile test was conducted using one wire of each test number.
The results are shown in Table 3. In addition, in the remaining structure, B means bainite, F means ferrite, and M means martensite.
<鋼線の製造>
 表2の試験番号1で示した線材を用いて、表4に示した条件で焼鈍、伸線加工、焼鈍を行って鋼線を製造した。
<Manufacture of steel wire>
Using the wire shown in test number 1 in Table 2, annealing, wire drawing, and annealing were performed under the conditions shown in Table 4 to produce a steel wire.
 表2の試験番号2~11、13~25で示した線材を用いて、表5に示した条件で伸線加工と焼鈍を行って鋼線を製造した。 Using the wire rods shown in test numbers 2 to 11 and 13 to 25 in Table 2, wire drawing and annealing were performed under the conditions shown in Table 5 to produce steel wires.
[評価]
 これらの鋼線に対して引張試験を行い、機械的特性を評価した。引張試験は、鋼線を切断した線状の試験片を用いて、標点間距離を100mm、クロスヘッド速度を10mm/minとして、室温大気中で行い、引張強度(TS)と絞り値(RA)を測定した。引張試験は各試験番号の3本の鋼線で行い、その平均値を用いた。表6に引張試験結果を示す。TSが530MPa以上、又はRAが78.0%以下のとき、加工性が不良と判定した。表6には球状化焼鈍の回数と加工性の評価結果も併せて示した。
[evaluation]
A tensile test was conducted on these steel wires to evaluate their mechanical properties. The tensile test was carried out at room temperature in the atmosphere using a linear specimen cut from steel wire, with a gage distance of 100 mm and a crosshead speed of 10 mm/min. The tensile strength (TS) and the aperture value (RA ) was measured. The tensile test was conducted using three steel wires of each test number, and the average value was used. Table 6 shows the tensile test results. When TS was 530 MPa or more or RA was 78.0% or less, workability was determined to be poor. Table 6 also shows the number of times of spheroidizing annealing and the evaluation results of workability.

 

 
 本開示例は、本開示の要件を満たしており、1回の球状化焼鈍によりTSが530MPa未満、かつ、RAが78.0%超となっている。
 一方、比較例は、化学組成、製造条件が本開示の範囲外にあり、1回の球状化焼鈍によりTSが530MPa以上又はRAが78.0%以下となっている。
 これらの結果から、本開示に係る線材は、Cr量が0.85%以上であるが、1回の球状化焼鈍により変形抵抗の低減と延性の向上を達成していることがわかる。
The example of the present disclosure satisfies the requirements of the present disclosure, and has a TS of less than 530 MPa and an RA of more than 78.0% after one round of spheroidizing annealing.
On the other hand, in the comparative example, the chemical composition and manufacturing conditions are outside the scope of the present disclosure, and the TS is 530 MPa or more or the RA is 78.0% or less after one round of spheroidizing annealing.
From these results, it can be seen that the wire rod according to the present disclosure, which has a Cr content of 0.85% or more, achieves a reduction in deformation resistance and an improvement in ductility by one round of spheroidizing annealing.
 2022年3月31日に出願された日本特許出願2022-060862の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2022-060862 filed on March 31, 2022 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards mentioned in this specification are herein incorporated by reference to the same extent as if each individual document, patent application, and technical standard were specifically and individually cited as such. captured by.

Claims (5)

  1.  化学組成が、質量%で、
    C :0.30~0.50%、
    Si:0.01~0.45%、
    Mn:0.30~1.00%、
    P :0.030%以下、
    S :0.050%以下、
    Al:0.001~0.080%、
    Cr:0.85~1.50%、
    N :0.0010~0.0200%、
    O :0.004%以下、
    Mo:0~0.70%、
    Ti:0~0.040%、
    B :0~0.0040%、
    Nb:0~0.050%、
    Cu:0~0.50%、
    Ni:0~0.30%、
    Sn:0~0.30%、
    Sb:0~0.050%、
    V :0~0.20%、及び
    Ca:0~0.0050%、
    を含み、残部がFe及び不純物元素からなり、
     線材の直径をDとしたとき、前記線材の長手方向に垂直な断面において、前記線材の表面から深さが1/4Dの位置での金属組織が、面積率で70%以上100%以下のパーライトを含み、前記パーライトの面積率が100%未満である場合の残部がフェライト及びベイナイトからなる群より選ばれる1種又は2種であり、
     前記断面におけるビッカース硬さの平均値が、415×F1-90以上、465×F1-80以下であり、前記線材の表面から深さ0.5mmの位置でのビッカース硬さHVsと中心部のビッカース硬さHVcとの差(HVs-HVc)が、20以下である線材。
     ただし、前記F1は、前記線材における質量%でのC、Si、Mn、Cr、Moの各含有量をそれぞれ(C%)、(Si%)、(Mn%)、(Cr%)、(Mo%)としたとき、下記式(1)により算出される値である。
    F1=(C%)+0.14×(Si%)+0.20×(Mn%)+0.11×(Cr%)+0.50×(Mo%) ・・・(1)
    The chemical composition is in mass%,
    C: 0.30-0.50%,
    Si: 0.01-0.45%,
    Mn: 0.30-1.00%,
    P: 0.030% or less,
    S: 0.050% or less,
    Al: 0.001-0.080%,
    Cr: 0.85-1.50%,
    N: 0.0010-0.0200%,
    O: 0.004% or less,
    Mo: 0 to 0.70%,
    Ti: 0 to 0.040%,
    B: 0 to 0.0040%,
    Nb: 0 to 0.050%,
    Cu: 0 to 0.50%,
    Ni: 0 to 0.30%,
    Sn: 0 to 0.30%,
    Sb: 0 to 0.050%,
    V: 0 to 0.20%, and Ca: 0 to 0.0050%,
    with the remainder consisting of Fe and impurity elements,
    When the diameter of the wire is D, in a cross section perpendicular to the longitudinal direction of the wire, the metal structure at a depth of 1/4 D from the surface of the wire is pearlite with an area ratio of 70% or more and 100% or less. , and when the area ratio of the pearlite is less than 100%, the remainder is one or two selected from the group consisting of ferrite and bainite,
    The average value of Vickers hardness in the cross section is 415 x F1-90 or more and 465 x F1-80 or less, and the Vickers hardness HVs at a depth of 0.5 mm from the surface of the wire and the Vickers hardness at the center are A wire having a hardness difference (HVs-HVc) of 20 or less.
    However, F1 is the content of C, Si, Mn, Cr, and Mo in mass% in the wire, respectively (C%), (Si%), (Mn%), (Cr%), and (Mo %), it is a value calculated by the following formula (1).
    F1=(C%)+0.14×(Si%)+0.20×(Mn%)+0.11×(Cr%)+0.50×(Mo%)...(1)
  2.  前記化学組成が、質量%で、
    Ti:0.002~0.040%、
    B :0.0002~0.0040%、
    Nb:0.002~0.050%、
    Cu:0.02~0.50%、
    Ni:0.02~0.30%、
    Sn:0.002~0.30%、
    Sb:0.001~0.050%、
    V :0.02~0.20%、及び
    Ca:0.0002~0.0050%、
    からなる群より選ばれる1種又は2種以上を含む請求項1に記載の線材。
    The chemical composition is in mass%,
    Ti: 0.002-0.040%,
    B: 0.0002 to 0.0040%,
    Nb: 0.002 to 0.050%,
    Cu: 0.02-0.50%,
    Ni: 0.02 to 0.30%,
    Sn: 0.002-0.30%,
    Sb: 0.001 to 0.050%,
    V: 0.02 to 0.20%, and Ca: 0.0002 to 0.0050%,
    The wire according to claim 1, comprising one or more selected from the group consisting of:
  3.  前記化学組成が、質量%で、Mo:0.10~0.65%を含む請求項1に記載の線材。 The wire rod according to claim 1, wherein the chemical composition includes Mo: 0.10 to 0.65% in mass %.
  4.  前記化学組成が、質量%で、Mo:0.10~0.65%を含む請求項2に記載の線材。 The wire rod according to claim 2, wherein the chemical composition includes Mo: 0.10 to 0.65% in mass %.
  5.  前記線材の絞りが、-75×F1+120%以上である請求項1~請求項4のいずれか1項に記載の線材。 The wire rod according to any one of claims 1 to 4, wherein the aperture of the wire rod is -75×F1+120% or more.
PCT/JP2023/013402 2022-03-31 2023-03-30 Wire rod WO2023190994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022060862 2022-03-31
JP2022-060862 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190994A1 true WO2023190994A1 (en) 2023-10-05

Family

ID=88202218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013402 WO2023190994A1 (en) 2022-03-31 2023-03-30 Wire rod

Country Status (1)

Country Link
WO (1) WO2023190994A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023310A (en) * 2005-07-12 2007-02-01 Kobe Steel Ltd Steel for machine structural use
JP2015168882A (en) * 2014-03-11 2015-09-28 株式会社神戸製鋼所 Spheroidizing heat treatment method for alloy steel
JP2020125538A (en) * 2019-01-31 2020-08-20 株式会社神戸製鋼所 Steel for cold working machine structures, and method for producing same
WO2020230880A1 (en) * 2019-05-16 2020-11-19 日本製鉄株式会社 Steel wire and hot-rolled wire material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023310A (en) * 2005-07-12 2007-02-01 Kobe Steel Ltd Steel for machine structural use
JP2015168882A (en) * 2014-03-11 2015-09-28 株式会社神戸製鋼所 Spheroidizing heat treatment method for alloy steel
JP2020125538A (en) * 2019-01-31 2020-08-20 株式会社神戸製鋼所 Steel for cold working machine structures, and method for producing same
WO2020230880A1 (en) * 2019-05-16 2020-11-19 日本製鉄株式会社 Steel wire and hot-rolled wire material

Similar Documents

Publication Publication Date Title
KR101473121B1 (en) Special steel steel-wire and special steel wire material
US10407748B2 (en) High-carbon steel sheet and method of manufacturing the same
JP5397247B2 (en) Hot rolled steel bar or wire rod
JP5776623B2 (en) Steel wire rods / bars with excellent cold workability and manufacturing method thereof
JP5742801B2 (en) Hot rolled steel bar or wire rod
JP6528860B2 (en) Steel wire for non-heat treatment machine parts and non-heat treatment machine parts
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JP5333682B2 (en) Rolled steel bar or wire rod for hot forging
JP5630523B2 (en) Steel sheet for nitriding treatment and method for producing the same
CN108368583B (en) Steel wire for non-heat-treated machine part and non-heat-treated machine part
EP2824205B1 (en) Steel wire rod with excellent spring workability for high-strength spring, process for manufacturing same, and high-strength spring
KR20100076073A (en) Steel sheets and process for manufacturing the same
JP7151885B2 (en) steel wire
US10287660B2 (en) Steel wire rod for bearings having excellent drawability and coil formability after drawing
CN109312436B (en) Wire rod, steel wire and member
WO2023190994A1 (en) Wire rod
JP7226083B2 (en) wire and steel wire
JP2021161445A (en) Steel wire material
JP2021183710A (en) Steel wire, wire for non-heat-treated mechanical components, and non-heat-treated mechanical component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781002

Country of ref document: EP

Kind code of ref document: A1