JP5407178B2 - Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof - Google Patents

Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof Download PDF

Info

Publication number
JP5407178B2
JP5407178B2 JP2008125959A JP2008125959A JP5407178B2 JP 5407178 B2 JP5407178 B2 JP 5407178B2 JP 2008125959 A JP2008125959 A JP 2008125959A JP 2008125959 A JP2008125959 A JP 2008125959A JP 5407178 B2 JP5407178 B2 JP 5407178B2
Authority
JP
Japan
Prior art keywords
less
cold
steel wire
cementite
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008125959A
Other languages
Japanese (ja)
Other versions
JP2009275250A (en
Inventor
真 小此木
世紀 西田
浩 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008125959A priority Critical patent/JP5407178B2/en
Publication of JP2009275250A publication Critical patent/JP2009275250A/en
Application granted granted Critical
Publication of JP5407178B2 publication Critical patent/JP5407178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、ボルト、ねじ、ナット等の機械部品の素材として用いられ、冷間鍛造や転造などの冷間加工によって成形される鋼線材とその製造方法に関わり、特に成形割れの抑制が可能な冷間加工性に優れた鋼線材とその製造方法に関わるものである。なお、本発明で対象とする鋼線材は、熱間圧延棒鋼をコイル状に巻いた「バーインコイル」も含むものとする。   The present invention is used as a material for machine parts such as bolts, screws, and nuts, and relates to a steel wire formed by cold working such as cold forging and rolling, and a manufacturing method thereof, and particularly capable of suppressing forming cracks. The present invention relates to a steel wire rod excellent in cold workability and a manufacturing method thereof. In addition, the steel wire material made into object by this invention shall also contain the "burn-in coil" which wound the hot-rolled steel bar in the shape of a coil.

冷間鍛造は成品の寸法精度や生産性が優れることから、鋼製のボルト、ねじ、ナット等の機械部品の成形に際して、従来から行われていた熱間鍛造からの切り替えが拡大している。また、ボルトやナットなどの部品は構造用途に用いられることが多く、このためCやSi、Mnなどの合金元素を添加した成分の鋼を用いて、加工後に焼入れ処理などの熱処理により強度を付与している。しかし、合金元素含有量が増大すると鋼材の変形抵抗が高くなるため、冷間鍛造の際に金型負荷が増大することで金型の摩耗や損傷が発生することや、製品に加工割れが発生することなどの課題がある。これらを回避するため、冷間鍛造用鋼には軟質であるとともに、極めて高い延性が要求される。このため、従来より、熱間圧延材を球状化焼鈍により軟質化して、加工性を向上させることが行われている。このように、近年では部品製造コストの低減や部品の高機能化により、冷間鍛造に使用される鋼材には、加工性の向上が要求されている。   Since cold forging is excellent in dimensional accuracy and productivity of products, the switch from hot forging, which has been conventionally performed, is expanding when forming mechanical parts such as steel bolts, screws, and nuts. Parts such as bolts and nuts are often used for structural purposes. For this reason, steel is added with alloying elements such as C, Si, and Mn, and strength is applied by heat treatment such as quenching after processing. doing. However, as the alloying element content increases, the deformation resistance of the steel material increases, so that the mold load increases during cold forging, causing wear and damage to the mold, and processing cracks in the product. There are issues such as to do. In order to avoid these, the steel for cold forging is required to be soft and extremely ductile. For this reason, conventionally, hot rolled material has been softened by spheroidizing annealing to improve workability. Thus, in recent years, steel materials used for cold forging have been required to have improved workability due to reduction in component manufacturing costs and higher functionality of components.

鋼材の冷間鍛造性を向上させる技術は従来から種々の方法が提案されている。特許文献1ではSiを0.15%以下、Mnを0.60%以下に制限して、かつ、TiとBを添加して冷間鍛造性を向上させた冷間鍛造用鋼が開示されている。しかし、この方法では軟質化の程度が不十分であるとともに、組織中のフェライトの体積率が高く、組織が不均一であることにより延性が低下し、十分な加工性が得られていない。   Conventionally, various methods have been proposed for improving the cold forgeability of steel materials. Patent Document 1 discloses a steel for cold forging in which Si is limited to 0.15% or less and Mn is limited to 0.60% or less, and Ti and B are added to improve cold forgeability. However, in this method, the degree of softening is not sufficient, the volume fraction of ferrite in the structure is high, and the ductility is lowered due to the uneven structure, and sufficient workability is not obtained.

特許文献2ではフェライトの平均粒径が2〜5.5μm、かつ長径が3μm以下で、かつアスペクト比が3以下のセメンタイトの比率が全セメンタイトに対して70%以上である領域を表面から線径の10%以上とすることで冷間加工性が向上することが開示されている。この方法ではクラックの発生位置が圧延線材の表面近傍となる加工では有効であるが、クラックの発生位置が圧延線材の内部となる加工に対しては、加工性の向上効果が小さい。実際の冷間鍛造では圧延線材を切断した後、冷間鍛造されるため、圧延線材の表面近傍がクラックの発生位置とならない場合が多く、効果が限定される。   In Patent Document 2, the area where the average particle diameter of ferrite is 2 to 5.5 μm, the major axis is 3 μm or less, and the ratio of cementite whose aspect ratio is 3 or less is 70% or more of the total cementite is It is disclosed that the cold workability is improved by setting it to 10% or more. This method is effective in processing where the crack generation position is in the vicinity of the surface of the rolled wire, but the effect of improving workability is small for processing where the crack generation position is inside the rolled wire. In actual cold forging, since the cold wire forging is performed after the rolled wire is cut, the vicinity of the surface of the rolled wire often does not become a crack generation position, and the effect is limited.

特許文献3ではセメンタイト間距離の標準偏差をセメンタイト間距離の平均値で除した値が0.50以下とすることで、セメンタイト間の間隔がほぼ均一となり、その結果、冷間鍛造時の変形抵抗が低下し、かつ割れが低減されることが開示されている。この方法では、セメンタイトを球状化するために、焼鈍温度を高温化する必要があり、熱処理コストが高くなる課題がある。また、焼鈍温度を高温化した結果、セメンタイトの個数密度が減少し、サイズが大きくなる。その結果、冷間鍛造の際に、粗大なセメンタイトから亀裂が発生することで、延性の向上は十分ではない。また、セメンタイト間の間隔が大きくなり、焼入れ後の組織が不均一になる課題がある。   In Patent Document 3, when the value obtained by dividing the standard deviation of the distance between cementites by the average value of the distance between cementites is 0.50 or less, the distance between the cementites becomes almost uniform, and as a result, the deformation resistance during cold forging decreases. In addition, it is disclosed that cracking is reduced. In this method, in order to spheroidize cementite, it is necessary to increase the annealing temperature, and there is a problem that the heat treatment cost increases. Further, as a result of increasing the annealing temperature, the number density of cementite decreases and the size increases. As a result, during cold forging, cracks are generated from coarse cementite, so that ductility is not sufficiently improved. Moreover, the space | interval between cementite becomes large and there exists a subject that the structure | tissue after hardening becomes non-uniform | heterogenous.

特開昭60-230960号公報JP-A-60-230960 特開2000-73137号公報JP 2000-73137 A 特開2006-316291号公報JP 2006-316291 A

本発明は、優れた冷間加工性を有するとともに、焼入れ処理後に組織や強度の均一化が実現可能な冷間鍛造用鋼線材とその製造方法を提供することを目的とする。
An object of this invention is to provide the steel wire for cold forging which has the outstanding cold workability, and can implement | achieve the structure | tissue and intensity | strength homogenization after a quenching process, and its manufacturing method.

(1) 質量%で、C:0.005〜0.60%、Si:0.01〜0.40%、Mn:0.20〜1.80%、P:0.040%以下、S:0.050%以下、Al:0.001〜0.060%、N:0.0005〜0.0300%を含有し、残部がFe及び不可避的不純物からなり、かつ平均粒径が15μm以下のフェライト組織と、平均アスペクト比が3以下であり、かつ平均粒子径が0.6μm以下の球状セメンタイトからなり、これらを満たす球状セメンタイトの個数が1mm2当り1.0×106×C含有量(%)個以上であることを特徴とする冷間加工性に優れた冷間鍛造用鋼線材。
(2) 上記成分に加えて、さらに、質量%で、B:0.0001〜0.0060%を含有することを特徴とする(1)に記載の冷間加工性に優れた冷間鍛造用鋼線材。
(3) 上記成分に加えて、さらに、質量%で、Ti:0.002〜0.050%、Nb:0.005〜0.100%の1種または2種を含有することを特徴とする (1) 〜 (2) のいずれかの項に記載の冷間加工性に優れた冷間鍛造用鋼線材。
(4) (1) 〜 (3) のいずれか1項に記載の成分組成を有するブルーム鋼線材またはビレットを、熱間圧延し、巻取り、その後、 400℃以上600℃以下の溶融塩槽に10秒以上浸漬した後、450℃以上600℃以下の溶融塩槽に20秒以上150秒以下恒温保持した後冷却し、その後600℃以上700℃以下にて焼鈍することを特徴とする(1)〜(3)のいずれかの項に記載の冷間加工性に優れた冷間鍛造用鋼線材の製造方法。
(5) (1) 〜 (3) のいずれかに記載の鋼線材を、熱間圧延後に巻取り、その後、400℃以上600℃以下の溶融塩槽にて10秒以上浸漬した後、次いで450℃以上600℃以下の溶融塩槽に20秒以上150秒以下恒温保持した後冷却し、減面率40%以下の伸線加工を行った後、600℃以上700℃以下にて焼鈍することを特徴とする(1)〜(3)のいずれかの項に記載の冷間加工性に優れた冷間鍛造用鋼線材の製造方法。
(1) By mass%, C: 0.005 to 0.60%, Si: 0.01 to 0.40%, Mn: 0.20 to 1.80%, P: 0.040% or less, S: 0.050% or less, Al: 0.001 to 0.060%, N: 0.0005 Containing ~ 0.0300%, the balance is made of Fe and inevitable impurities, and the ferrite structure having an average particle size of 15 μm or less, and the spherical cementite having an average aspect ratio of 3 or less and an average particle size of 0.6 μm or less A steel wire rod for cold forging excellent in cold workability, characterized in that the number of spherical cementite satisfying these is 1.0 × 10 6 × C content (%) or more per 1 mm 2 .
(2) The steel wire rod for cold forging excellent in cold workability according to (1), further containing B: 0.0001 to 0.0060% by mass% in addition to the above components.
(3) In addition to the above components, the composition further comprises one or two of Ti: 0.002 to 0.050% and Nb: 0.005 to 0.100% by mass%. (1) to (2) A steel wire for cold forging excellent in cold workability according to any one of the items.
(4) Bloom steel wire or billet having the composition described in any one of (1) to (3) is hot-rolled, wound, and then put into a molten salt bath at 400 ° C to 600 ° C. After being immersed for 10 seconds or more, it is cooled after being kept at a constant temperature in a molten salt bath of 450 ° C. or more and 600 ° C. or less for 20 seconds or more and 150 seconds or less, and then annealed at 600 ° C. or more and 700 ° C. or less (1) The manufacturing method of the steel wire for cold forging excellent in the cold workability as described in any one of the items (3).
(5) The steel wire according to any one of (1) to ( 3 ) is wound after hot rolling, and then immersed in a molten salt bath at 400 ° C. or higher and 600 ° C. or lower for 10 seconds or longer, and then 450 Hold at a constant temperature for 20 seconds to 150 seconds in a molten salt bath of ℃ ℃ 600 ℃, cool, and after wire drawing with a surface area reduction of 40% or less, anneal at 600 ℃ to 700 ℃ The manufacturing method of the steel wire for cold forging excellent in the cold workability as described in any one of the items (1) to ( 3 ).

本発明によれば、鋼材の変形能を向上させることで、冷間鍛造による複雑形状部品の成形が可能となり、鋼材歩留まりの向上や生産性の向上により、部品加工費用が低減される効果がある。   According to the present invention, by improving the deformability of a steel material, it becomes possible to form a complex shaped part by cold forging, and there is an effect of reducing the cost of parts processing by improving the steel material yield and improving the productivity. .

本発明者らは、鋼材の変形能を向上させるため、金属組織の改良を検討した結果、冷間加工性を向上させるためには、セメンタイトを均一分散させて、更にセメンタイトの個数を増大させることが有効であることを見出した。従来では、セメンタイトの個数密度が増加しても、成形割れの発生は抑制できなかった。従来鋼では、セメンタイトの大きさのバラツキが大きく、個数密度を増やしても粗大なセメンタイトが含まれる。粗大なセメンタイトは冷間加工の際に、割れの発生起点となり、冷間加工性が劣化する。そこで、本発明者らは、素地のフェライト粒径を細粒にして、セメンタイトの個数密度を増加させることで、セメンタイトの大きさは均一になり、粗大なセメンタイトが抑制され、成形割れの発生が低減することを見出し、本発明に至った。   As a result of studying the improvement of the metal structure in order to improve the deformability of the steel material, the inventors have made it possible to uniformly disperse cementite and further increase the number of cementite in order to improve cold workability. Was found to be effective. Conventionally, even if the number density of cementite increases, the occurrence of molding cracks cannot be suppressed. Conventional steel has a large variation in cementite size, and coarse cementite is included even if the number density is increased. Coarse cementite becomes a starting point of cracking during cold working, and cold workability deteriorates. Therefore, the present inventors reduced the ferrite particle size of the substrate and increased the number density of cementite, thereby making the size of the cementite uniform, suppressing coarse cementite, and forming cracks. As a result, the present inventors have found that the reduction is achieved.

セメンタイトの個数の増加により成形割れが低減する理由は、以下のように推定することができる。セメンタイトの大きさが均一な場合は、個数密度の増加により、セメンタイトの粒子径が微細化する。変形の際に、歪みが大きくなるとフェライトとセメンタイトの界面にてクラックが発生するが、セメンタイトの大きさが小さい場合には、クラックの発生が抑制される。また、セメンタイトの個数密度が増加することで、組織中にセメンタイトが均一に分散する。この結果、局部的な強度の不均一が低減し、変形の際に歪みが局部的に集中することが抑制される。これらの効果により、成形割れが抑制されたと考えられる。   The reason why molding cracks are reduced by increasing the number of cementite can be estimated as follows. When the size of cementite is uniform, the particle diameter of cementite becomes finer as the number density increases. During deformation, cracks are generated at the interface between ferrite and cementite when the strain increases, but when the size of cementite is small, the generation of cracks is suppressed. In addition, the cementite is uniformly dispersed in the structure by increasing the number density of cementite. As a result, local unevenness in strength is reduced, and distortion is not concentrated locally during deformation. These effects are thought to suppress molding cracks.

本発明では鋼線材を特定の組織とする必要がある。組織の限定理由を以下に説明する。   In the present invention, the steel wire needs to have a specific structure. The reasons for limiting the organization are explained below.

フェライト結晶粒の細粒化は延性を向上させ変形能を改善する。平均粒径が15μmを超えると、延性が低下し冷鍛割れが発生する頻度が高くなる。このためフェライトの平均粒径の上限を15μmとした。   Finer ferrite grains improve ductility and improve deformability. When the average particle size exceeds 15 μm, the ductility decreases and the frequency of occurrence of cold forging cracks increases. For this reason, the upper limit of the average grain size of ferrite is set to 15 μm.

また、成形割れの発生は球状セメンタイトの平均粒子径と相関し、平均粒子径が粗大になると歪みを受けたセメンタイトの周囲からクラックが発生し割れが発生しやすくなる。球状セメンタイトの平均粒子径が0.6μmを超えると、延性が低下し冷鍛割れが発生しやすくなる。このため球状セメンタイトの平均粒子径を0.6μmとすることが望ましい。   In addition, the occurrence of molding cracks correlates with the average particle diameter of spherical cementite, and when the average particle diameter becomes coarse, cracks are generated from the periphery of strained cementite, and cracks are likely to occur. When the average particle diameter of spherical cementite exceeds 0.6 μm, ductility is lowered and cold forging cracks are likely to occur. For this reason, it is desirable that the average particle diameter of spherical cementite be 0.6 μm.

セメンタイトのアスペクト比が大きい組織は、変形抵抗が高く、冷間鍛造の際の金型負荷が増大する。平均アスペクト比が3を越えると、冷間変形抵抗が高くなり、金型の工具摩耗が発生しやすくなる。このため平均アスペクト比の上限を3とすることが望ましい。   A structure having a large aspect ratio of cementite has high deformation resistance, and the mold load during cold forging increases. When the average aspect ratio exceeds 3, the cold deformation resistance increases, and tool wear of the mold tends to occur. For this reason, it is desirable to set the upper limit of the average aspect ratio to 3.

1mm2当りの球状セメンタイトの個数が1.0×106×C含有量(%)個未満の場合、セメンタイトの分布が不均一となり、強度の不均一箇所が生成する。強度の不均一箇所が存在すると、鍛造加工の際に、局部的に変形が集中することにより、冷鍛割れが発生する場合がある。このため、球状セメンタイトの個数の下限を1mm2当り1.0×106×C含有量(%)個とした。より好ましい範囲は1mm2当り1.6×106×C含有量(%)個以上である。 When the number of spherical cementite per 1 mm 2 is less than 1.0 × 10 6 × C content (%), the distribution of cementite is non-uniform, and non-uniform strength is generated. If there is a non-uniform portion of strength, cold forging cracks may occur due to local concentration of deformation during forging. For this reason, the lower limit of the number of spherical cementite was set to 1.0 × 10 6 × C content (%) per 1 mm 2 . A more preferable range is 1.6 × 10 6 × C content (%) or more per 1 mm 2 .

本発明でのフェライト粒径、球状セメンタイトの平均粒子径、アスペクト比、個数、及び球状セメンタイト間の距離の測定方法を以下に説明する。   A method for measuring the ferrite particle diameter, the average particle diameter of spherical cementite, the aspect ratio, the number, and the distance between the spherical cementites in the present invention will be described below.

フェライト粒径の測定にはEBSP装置を用いた。線材の長手方向断面の表層近傍部、1/4D部、1/2部にてそれぞれ275μm×165μmの領域を測定した。EBSPにて測定したフェライトの結晶方位マップから、方位差15度以上となる境界をフェライト粒界とした。ブロックサイズはJohnson-Saltykovの方法(「計量形態学」内田老鶴圃、S47.7.30発行、原著:R.T.DeHoff,F.N.Rhiness.P189参照)にて求めた。   An EBSP apparatus was used to measure the ferrite particle size. A region of 275 μm × 165 μm was measured at the surface layer vicinity portion, 1 / 4D portion, and 1/2 portion of the cross section in the longitudinal direction of the wire. From the ferrite crystal orientation map measured by EBSP, the boundary where the orientation difference was 15 degrees or more was defined as the ferrite grain boundary. The block size was determined by the method of Johnson-Saltykov (“Metromorphology” Uchida Otsukuru, S47.7.30, original work: R.T.DeHoff, F.N.Rhiness.P189).

球状セメンタイトの平均粒子径とアスペクト比と個数は走査型電子顕微鏡写真を画像解析することにより求めた。線材の長手方向断面の表層近傍部、1/4D部、1/2D部にて25μm×20μmの視野を5000倍の倍率で5視野観察し、撮影写真を画像解析することで求めた。平均粒子径は円相当径として、アスペクト比は(長径の長さ)/(短径の長さ)とした。   The average particle diameter, aspect ratio, and number of spherical cementite were determined by image analysis of scanning electron micrographs. The visual field of 25 μm × 20 μm was observed at five magnifications at a magnification of 5000 in the vicinity of the surface layer, 1 / 4D portion, and 1 / 2D portion of the cross section in the longitudinal direction of the wire, and the obtained photograph was obtained by image analysis. The average particle diameter was the equivalent circle diameter, and the aspect ratio was (major axis length) / (minor axis length).

球状セメンタイト間の距離は5000倍の倍率で25μm×20μm領域を5視野撮影し、0.1μm以上のセメンタイトが含まれない領域に円を描き、円の最大直径をセメンタイト間の最大距離とした。   The distance between the spherical cementite was taken at five magnifications and 5 fields of 25 μm × 20 μm area was photographed. A circle was drawn in the area not containing 0.1 μm or more of cementite, and the maximum diameter of the circle was defined as the maximum distance between the cementites.

本発明の冷間鍛造用鋼線材は、質量%で、C:0.005〜0.60%、Si:0.01〜0.40%、Mn:0.20〜1.80%、P:0.040%以下、S:0.050%以下を主成分とし、残部Feおよび不可避的不純物からなる。以下にこれらの元素の範囲を限定した理由を説明する。
The steel wire rod for cold forging of the present invention is composed mainly of C: 0.005 to 0.60%, Si: 0.01 to 0.40%, Mn: 0.20 to 1.80%, P: 0.040% or less, and S: 0.050% or less. And the balance Fe and inevitable impurities. The reason why the range of these elements is limited will be described below.

Cは機械部品としての強度を確保するため添加する。0.005%未満では機械部品として必要な強度を確保できず、0.60%を越えると延性及び靱性が劣化するため0.005〜0.60%とした。   C is added to ensure strength as a machine part. If it is less than 0.005%, the strength required for machine parts cannot be secured, and if it exceeds 0.60%, ductility and toughness deteriorate, so 0.005 to 0.60% was set.

Siは脱酸元素として機能するとともに、鋼に必要な強度、焼入れ性を付与し、焼戻し軟化抵抗を向上するのに有効な元素である。0.01%未満ではこれらの効果が不十分で、0.40%を越えると靱性、延性が劣化するとともに、硬度の上昇し冷間鍛造性を劣化させるため、0.01〜0.40%とした。   Si functions as a deoxidizing element and is an element effective for imparting necessary strength and hardenability to steel and improving resistance to temper softening. If the content is less than 0.01%, these effects are insufficient. If the content exceeds 0.40%, the toughness and ductility deteriorate, and the hardness increases and the cold forgeability deteriorates, so the content was made 0.01 to 0.40%.

Mnは鋼に必要な強度、焼入れ性を付与するために必要な元素である。0.20%未満では効果が不十分であり、1.80%を越えると靱性が劣化するとともに硬度が上昇し冷間鍛造性を劣化させるため、0.20〜1.80%とした。   Mn is an element necessary for imparting necessary strength and hardenability to steel. If the content is less than 0.20%, the effect is insufficient. If the content exceeds 1.80%, the toughness deteriorates and the hardness increases and the cold forgeability deteriorates, so the content was made 0.20 to 1.80%.

Pは冷間鍛造時の変形抵抗を高め、靱性を劣化させる。また粒界偏析して焼入れ焼戻し後の結晶粒界を脆化して靱性を劣化させるため低減することが望ましい。従って上限を0.040%とした。   P increases deformation resistance during cold forging and degrades toughness. Further, it is desirable to reduce the grain boundary because it segregates and embrittles the crystal grain boundary after quenching and tempering to deteriorate toughness. Therefore, the upper limit was made 0.040%.

SはMn等の合金元素と反応して硫化物として存在する。これらの硫化物は被削性を向上させる。0.050%を越えて添加すると冷間鍛造性を劣化させるとともに、焼入れ焼戻し後の結晶粒界を脆化させ靱性が劣化する。このため0.050%以下とした。   S reacts with an alloy element such as Mn and exists as a sulfide. These sulfides improve machinability. If added over 0.050%, the cold forgeability deteriorates, and the grain boundaries after quenching and tempering become brittle and the toughness deteriorates. For this reason, it was made into 0.050% or less.

また、本発明の冷間鍛造用鋼線材は以下に記載する特性の向上を目的に、質量%で、Al:0.001〜0.060%、N:0.0005〜0.0300%、B:0.0001〜0.0060%、Ti:0.002〜0.050%、Nb:0.005〜0.10%の1種または2種以上含有させることができる。
Further, the steel wire for cold forging of the present invention is mass% for the purpose of improving the properties described below, Al: 0.001 to 0.060%, N: 0.0005 to 0.0300%, B: 0.0001 to 0.0060%, Ti: One or two or more of 0.002 to 0.050% and Nb: 0.005 to 0.10% can be contained.

Alは脱酸及びオーステナイト結晶粒の微細化を目的に添加する。Alは脱酸元素として機能するとともに、AlNを形成しピン止め粒子として機能し、結晶粒径を細粒化し加工性を向上させる。また固溶Nを固定して動的歪時効を抑制し、変形抵抗を低減する効果がある。0.001%未満ではこれらの効果が機能せず、また、0.060%を越えると靭性を劣化させるため、上限を0.060%とした。   Al is added for the purpose of deoxidation and austenite grain refinement. Al functions as a deoxidizing element, forms AlN and functions as pinning particles, and refines the grain size to improve workability. Moreover, solid solution N is fixed, and dynamic strain aging is suppressed and deformation resistance is reduced. If the content is less than 0.001%, these effects do not function. If the content exceeds 0.060%, the toughness deteriorates, so the upper limit was made 0.060%.

Nはオーステナイト結晶粒の微細化を目的に添加する。NはAl、Ti等と結合し窒化物を形成しピン止め粒子として機能し結晶粒を細粒化する。0.0005%未満では窒化物の析出量が不足し、結晶粒が粗大化し延性が劣化する。また0.0300%を越えて添加すると固溶Nによる動的歪時効により変形抵抗が増加し加工性を劣化させるため、0.0005〜0.0300%とした。   N is added for the purpose of refining austenite crystal grains. N combines with Al, Ti and the like to form nitrides, which function as pinning particles and make the crystal grains finer. If it is less than 0.0005%, the amount of deposited nitride is insufficient, the crystal grains become coarse and the ductility deteriorates. If added over 0.0300%, deformation resistance increases due to dynamic strain aging due to solute N and deteriorates workability, so 0.0005 to 0.0300% was set.

Bは焼入れ性の向上を目的に添加する。0.0001%未満では効果が不十分であり、0.0060%を越えて添加しても効果が飽和するので、0.0001〜0.0060%とした。   B is added for the purpose of improving hardenability. If it is less than 0.0001%, the effect is insufficient, and even if added over 0.0060%, the effect is saturated, so 0.0001 to 0.0060% was set.

Ti、Nbは炭窒化物を形成する。これらの炭窒化物は鋼中に分散しピン止め粒子として機能し、結晶粒の粗大化を抑制し、加工性を向上させる。   Ti and Nb form carbonitrides. These carbonitrides are dispersed in steel and function as pinning particles, suppress the coarsening of crystal grains and improve workability.

TiはCあるいはNと化合物を形成しTiC、TiN、あるいはTi(CN)として存在する。これらの炭窒化物はピン止め粒子として有効である。またB添加による焼入れ性の向上効果を有効に機能させるため鋼中のNの固定するために添加する。0.002%未満では効果が現れず、0.050%を越えるとその効果が飽和するとともに硬度の上昇を招き冷間鍛造性が劣化するため0.002〜0.050%とした。   Ti forms a compound with C or N and exists as TiC, TiN, or Ti (CN). These carbonitrides are effective as pinning particles. In addition, it is added to fix N in steel in order to make the effect of improving hardenability by adding B function effectively. If the content is less than 0.002%, the effect does not appear. If the content exceeds 0.050%, the effect is saturated and the hardness is increased and the cold forgeability is deteriorated, so the content is set to 0.002 to 0.050%.

NbはNあるいはCと結合しNbN、NbCあるいはそれらの複合介在物Nb(CN)を形成し、オーステナイト結晶粒の粗大化抑制に有効に機能する。0.005%未満では効果が不十分で、0.10%を越えて添加しても効果が飽和するため、0.005〜0.10%とした。   Nb combines with N or C to form NbN, NbC, or a composite inclusion Nb (CN) thereof, and effectively functions to suppress coarsening of austenite crystal grains. If less than 0.005%, the effect is insufficient, and even if added over 0.10%, the effect is saturated, so 0.005 to 0.10% was set.

Oは鋼中に不可避的に含有されAlやTiなどの酸化物として存在する。O含有量が高いと粗大な酸化物が形成し、疲労破壊の原因となるので0.01%以下に抑制することが望ましい。脱酸元素としてCaを0.0001〜0.01%、あるいはMgを0.0001〜0.01%、あるいはこれらの両方を含有することができる。これらの元素は脱酸に有効であるとともに、酸化物を微細化して疲労強度を向上させる効果がある。   O is inevitably contained in steel and exists as oxides such as Al and Ti. If the O content is high, a coarse oxide is formed, which causes fatigue failure. As the deoxidizing element, 0.0001 to 0.01% of Ca, or 0.0001 to 0.01% of Mg, or both of them can be contained. These elements are effective for deoxidation and have the effect of improving fatigue strength by refining oxides.

次に、本発明の製造方法を以下に説明する。   Next, the manufacturing method of this invention is demonstrated below.

上記成分組成を有するブルームまたはビレットを熱間圧延により線材に圧延し、熱間圧延後に巻き取る。巻取り温度は特に限定しないが、一般には750℃以上1000℃である。その後、400℃以上600℃以下の溶融塩槽に10秒以上浸漬する。冷却速度は特に限定しないが、φ12程度の線材の場合、巻取り後から600℃までの冷却速度は約40〜50℃/sである。溶融塩槽の温度が400℃未満の場合、マルテンサイト組織が生成し、焼鈍後の強度が高くなり、加工性を劣化させる。600℃を超える場合は溶融塩の分解が起こり操業性を阻害する。浸漬時間が10秒未満の場合、線材内部の冷却が不十分となり、冷却後の初析フェライトの体積率が増加することで、焼鈍後のセメンタイト間の間隔が増加し、焼入れ性や加工性を劣化させる。   A bloom or billet having the above component composition is rolled into a wire by hot rolling and wound up after hot rolling. The coiling temperature is not particularly limited, but is generally 750 ° C. or higher and 1000 ° C. Then, it is immersed in a molten salt bath at 400 ° C. or higher and 600 ° C. or lower for 10 seconds or longer. The cooling rate is not particularly limited, but in the case of a wire of about φ12, the cooling rate after winding up to 600 ° C. is about 40-50 ° C./s. When the temperature of the molten salt bath is less than 400 ° C., a martensite structure is generated, the strength after annealing is increased, and workability is deteriorated. If it exceeds 600 ° C, the molten salt will decompose and impair operability. When the immersion time is less than 10 seconds, the inside of the wire becomes insufficiently cooled, and the volume fraction of pro-eutectoid ferrite after cooling increases, increasing the spacing between cementite after annealing, and improving hardenability and workability. Deteriorate.

次いで、450℃以上600℃以下の溶融塩槽に20秒以上150秒以下恒温保持した後、冷却する。恒温保持温度が450℃未満の場合、変態完了時間が長時間化することで生産性を阻害する。600℃を超えるとパーライトのラメラ間隔が粗大化し、焼鈍後のセメンタイトの平均粒径が0.6μmを超える場合があるとともに、溶融塩の分解が起こり生産性を阻害する。恒温保持時間が20秒未満の場合、変態が完了せずに冷却されることにより、焼鈍後の強度が上昇し加工性を劣化させるため下限を20秒として、150秒以上では生産性を阻害するため、上限を150秒とした。なお、溶融塩槽への浸漬は530℃以上600℃以下の溶融塩槽を用いる場合、2槽に浸漬せずに1槽にて30秒以上浸漬してもよい。溶融塩槽での浸漬後の冷却は、通常は常温まで冷却し、その後、再加熱して焼鈍、または伸線加工後に再加熱して焼鈍を行うが、冷却終了温度は特に限定せず、600℃以下常温の範囲としてもよい。   Next, the mixture is kept in a molten salt bath at 450 ° C. or more and 600 ° C. or less for 20 seconds to 150 seconds and then cooled. When the constant temperature holding temperature is lower than 450 ° C., the transformation completion time is prolonged and the productivity is hindered. When the temperature exceeds 600 ° C., the lamella spacing of pearlite becomes coarse, the average particle size of cementite after annealing may exceed 0.6 μm, and the molten salt is decomposed to inhibit productivity. When the isothermal holding time is less than 20 seconds, the lower limit is set to 20 seconds to reduce the workability by increasing the strength after annealing due to cooling without completing the transformation. Therefore, the upper limit was set to 150 seconds. In the case of using a molten salt bath of 530 ° C. or higher and 600 ° C. or lower, the immersion in the molten salt bath may be performed for 30 seconds or longer in one bath without being immersed in two baths. Cooling after immersion in the molten salt bath is usually cooled to room temperature, then reheated and annealed, or reheated after wire drawing and annealed, but the cooling end temperature is not particularly limited, 600 It may be in the range of room temperature below ℃.

焼鈍後の炭化物のアスペクト比を小さくして、加工性を更に向上させる場合には、減面率40%以下の伸線加工を行うことができる。伸線加工によりセメンタイトが分断されることで、焼鈍後の球状化を促進され炭化物のアスペクト比が低減する。伸線加工の減面率が40%を超えると、焼鈍後の強度が高くなり加工性が劣化するため、上限を40%とした。   When the aspect ratio of the carbide after annealing is reduced to further improve the workability, wire drawing with a surface reduction rate of 40% or less can be performed. By dividing the cementite by wire drawing, spheroidization after annealing is promoted and the aspect ratio of the carbide is reduced. If the area reduction ratio of the wire drawing process exceeds 40%, the strength after annealing increases and the workability deteriorates, so the upper limit was made 40%.

軟質化焼鈍は600℃以上700℃以下で行う。焼鈍温度が600℃未満ではセメンタイトの球状化が不十分で平均アスペクト比が3以上となり、加工性を劣化させる。また700℃を超えるとセメンタイトが粗大化し平均粒子径が0.6μmを超え、またセメンタイトの個数も低下する。このため、焼鈍温度の下限を600℃、上限を700℃とした。なお、より好ましい範囲は600℃以上680℃以下である。   Softening annealing is performed at 600 ° C to 700 ° C. If the annealing temperature is less than 600 ° C, the cementite is insufficiently spheroidized and the average aspect ratio becomes 3 or more, which deteriorates the workability. On the other hand, when the temperature exceeds 700 ° C., the cementite becomes coarse and the average particle diameter exceeds 0.6 μm, and the number of cementite also decreases. For this reason, the lower limit of the annealing temperature was set to 600 ° C., and the upper limit was set to 700 ° C. A more preferable range is 600 ° C. or higher and 680 ° C. or lower.

供試鋼の成分を表1に示す。鋼Kと鋼Lは本発明の範囲を外れる比較例である。加工性と組織の関係を評価する目的で、表2の条件で熱間圧延と恒温変態処理を行い、その後、表3に示した種種の条件で焼鈍処理を行って組織を変化させた。加工性の評価には引張り試験を行い、絞り(RA)を延性の指標として評価した。表2および図1に鋼種Hを用いて評価した組織と加工性の関係を示す。表2の(1),(2),(3)は本発明の範囲を満たす実施例である。(4)は焼鈍温度を本発明の上限を超える温度として製造し、セメンタイトの平均粒子径、セメンタイトの個数が本発明の範囲を外れる比較例である。この結果、RAが本発明と比べて著しく低下していることがわかる。(6)は恒温変態条件が本発明の範囲を満たさない条件で製造し、フェライト粒径、セメンタイトの平均粒子径、及びセメンタイトの個数が本発明の範囲を外れる比較例である。本発明と比較してRAが低い。以上より、フェライトの平均粒径、セメンタイトの平均アスペクト比と平均粒子径、及びセメンタイトの個数が本発明の範囲を満たす場合には著しくRAが向上し、加工性が優れていることがわかる。
Table 1 shows the components of the test steel. Steel K and steel L are comparative examples outside the scope of the present invention. For the purpose of evaluating the relationship between workability and structure, hot rolling and isothermal transformation treatment were performed under the conditions shown in Table 2, and then annealing treatment was performed under various conditions shown in Table 3 to change the structure. For the evaluation of workability, a tensile test was performed, and the drawing (RA) was evaluated as an index of ductility. Table 2 and Fig. 1 show the relationship between microstructure and workability evaluated using steel type H. Tables (1), (2), and (3) are examples that satisfy the scope of the present invention. (4) is a comparative example in which the annealing temperature is set to a temperature exceeding the upper limit of the present invention, and the average particle diameter of cementite and the number of cementites are outside the scope of the present invention. As a result, it can be seen that RA is significantly lower than that of the present invention. (6) is prepared in the conditions isothermal transformation conditions do not satisfy the scope of the present invention, the ferrite grain diameter and the average particle diameter of cementite and number the number of cementite are comparative examples departing from the scope of the present invention. RA is low compared to the present invention. From the above, it can be seen that when the average particle diameter of ferrite, the average aspect ratio and average particle diameter of cementite, and the number of cementites satisfy the range of the present invention, RA is remarkably improved and workability is excellent.

表1に示した各鋼種を用いて線材圧延を行い、製造条件と焼鈍後の組織の関係を評価した。焼鈍は昇温速度180℃/hにて表4に記載した所定の温度まで加熱し、5h保持後空冷した。表4に示すように、17は冷却槽保持時間、恒温層保持時間のいずれもが本発明の範囲を外れる条件である。また、2,4,7,9,13,21は、巻取り後に恒温保持を行わない従来の製造条件にて製造した比較例である。これらはいずれも、セメンタイトの平均アスペクト比、セメンタイトの平均粒子径、セメンタイトの個数のいずれかが本発明の範囲を満たさない。以上から本発明の製造条件を満たさない条件では、焼鈍後の組織が本発明の範囲を外れることがわかる。 Wire rod rolling was performed using each steel type shown in Table 1, and the relationship between the manufacturing conditions and the structure after annealing was evaluated. In the annealing, heating was performed to a predetermined temperature described in Table 4 at a temperature increase rate of 180 ° C./h, and air cooling was performed after holding for 5 hours. As shown in Table 4, 17 is a condition in which both the cooling bath holding time and the constant temperature layer holding time are outside the scope of the present invention . Also, 2,4,7,9,13,21 is a comparative example was produced in a conventional production conditions after coiling is not carried out isothermal holding. In any of these, any of the average aspect ratio of cementite, the average particle diameter of cementite, and the number of cementite does not satisfy the scope of the present invention. From the above, it can be seen that the structure after annealing falls outside the scope of the present invention under conditions that do not satisfy the production conditions of the present invention.

表4に示した各実施例と比較例のRAを表5に示す。同じ鋼種のRAを比較すると、本発明は比較例より著しくRAが向上しており、加工性が優れていることがわかる。   Table 5 shows the RA of each Example and Comparative Example shown in Table 4. Comparing RA of the same steel type, it can be seen that the RA of the present invention is remarkably improved as compared with the comparative example, and the workability is excellent.

Figure 0005407178
Figure 0005407178

Figure 0005407178
Figure 0005407178

Figure 0005407178
Figure 0005407178

Figure 0005407178
Figure 0005407178

Figure 0005407178
Figure 0005407178

セメンタイトの平均粒子粒(μm)とRA(%)の関係を示す図。The figure which shows the relationship between the average particle diameter (micrometer) of cementite, and RA (%).

Claims (5)

質量%で、C:0.005〜0.60%、Si:0.01〜0.40%、Mn:0.20〜1.80%、P:0.040%以下、S:0.050%以下、Al:0.001〜0.060%、N:0.0005〜0.0300%を含有し、残部がFe及び不可避的不純物からなり、かつ平均粒径が15μm以下のフェライト組織と、平均アスペクト比が3以下であり、かつ平均粒子径が0.6μm以下の球状セメンタイトからなり、これらを満たす球状セメンタイトの個数が1mm2当り1.0×106×C含有量(%)個以上であることを特徴とする冷間加工性に優れた冷間鍛造用鋼線材。 In mass%, C: 0.005 to 0.60%, Si: 0.01 to 0.40%, Mn: 0.20 to 1.80%, P: 0.040% or less, S: 0.050% or less, Al: 0.001 to 0.060%, N: 0.0005 to 0.0300% The balance is made of Fe and inevitable impurities, and the ferrite structure has an average particle size of 15 μm or less, and the average aspect ratio is 3 or less, and the spherical particle cementite has an average particle size of 0.6 μm or less. A steel wire rod for cold forging excellent in cold workability, characterized in that the number of spherical cementite satisfying the requirement is 1.0 × 10 6 × C content (%) or more per 1 mm 2 . 上記成分に加えて、さらに、質量%で、B:0.0001〜0.0060%を含有することを特徴とする請求項1に記載の冷間加工性に優れた冷間鍛造用鋼線材。 In addition to the above components, further contains, by mass%, B: cold workability excellent cold forging steel wire rod according to claim 1, characterized in that it contains from 0.0001 to 0.0060 percent. 上記成分に加えて、さらに、質量%で、Ti:0.002〜0.050%、Nb:0.005〜0.100%の1種または2種を含有することを特徴とする請求項1又は2に記載の冷間加工性に優れた冷間鍛造用鋼線材。   The cold working according to claim 1 or 2, further comprising one or two of Ti: 0.002 to 0.050% and Nb: 0.005 to 0.100% in mass% in addition to the above components. Steel wire for cold forging with excellent properties. 請求項1〜3のいずれか1項に記載の成分組成を有するブルーム鋼線材またはビレットを、熱間圧延し、巻取り、その後、400℃以上600℃以下の溶融塩槽に10秒以上浸漬した後、450℃以上600℃以下の溶融塩槽に20秒以上150秒以下恒温保持した後冷却し、その後600℃以上700℃以下にて焼鈍することを特徴とする請求項1〜3のいずれか1項に記載の冷間加工性に優れた冷間鍛造用鋼線材の製造方法。   The bloom steel wire or billet having the component composition according to any one of claims 1 to 3 is hot-rolled, wound, and then immersed in a molten salt bath at 400 ° C or higher and 600 ° C or lower for 10 seconds or longer. Thereafter, holding at a constant temperature in a molten salt bath at 450 ° C. or higher and 600 ° C. or lower for 20 seconds or longer and 150 seconds or lower, cooling, and then annealing at 600 ° C. or higher and 700 ° C. or lower. The manufacturing method of the steel wire for cold forging excellent in the cold workability of 1 item | term. 請求項1〜3のいずれか1項に記載の鋼線材を、熱間圧延後に巻取り、その後、400℃以上600℃以下の溶融塩槽にて10秒以上浸漬した後、次いで450℃以上600℃以下の溶融塩槽に20秒以上150秒以下恒温保持した後冷却し、減面率40%以下の伸線加工を行った後、600℃以上700℃以下にて焼鈍することを特徴とする請求項1〜3のいずれか1項に記載の冷間加工性に優れた冷間鍛造用鋼線材の製造方法。 The steel wire according to any one of claims 1 to 3 is wound after hot rolling, and then immersed in a molten salt bath at 400 ° C to 600 ° C for 10 seconds or more, and then 450 ° C to 600 ° C. Maintained at a constant temperature in a molten salt bath at 20 ° C or lower for 20 seconds or more and 150 seconds or less, and then cooled, annealed at 600 ° C or more and 700 ° C or less after wire drawing with a surface area reduction rate of 40% or less. The manufacturing method of the steel wire for cold forging excellent in the cold workability of any one of Claims 1-3 .
JP2008125959A 2008-05-13 2008-05-13 Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof Active JP5407178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125959A JP5407178B2 (en) 2008-05-13 2008-05-13 Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125959A JP5407178B2 (en) 2008-05-13 2008-05-13 Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009275250A JP2009275250A (en) 2009-11-26
JP5407178B2 true JP5407178B2 (en) 2014-02-05

Family

ID=41440948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125959A Active JP5407178B2 (en) 2008-05-13 2008-05-13 Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5407178B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741441B (en) * 2010-03-02 2013-09-11 新日铁住金株式会社 Steel wire with excellent cold forging characteristics and manufacturing process thereof
JP5581344B2 (en) * 2012-02-10 2014-08-27 株式会社杉田製線 Manufacturing method of high strength thin steel wire
KR101412440B1 (en) 2012-03-29 2014-06-25 현대제철 주식회사 Bar steel for shaft and method of manufacturing the same
US20150275339A1 (en) * 2012-06-28 2015-10-01 Jfe Steel Corporation High-carbon steel tube having superior cold workability, machinability, and hardenability and method for manufacturing the same
WO2015141840A1 (en) * 2014-03-20 2015-09-24 新日鐵住金株式会社 Favorably workable steel wire and method for producing same
JP6497146B2 (en) * 2015-03-16 2019-04-10 新日鐵住金株式会社 Steel wire rod with excellent cold workability
JP6479538B2 (en) * 2015-03-31 2019-03-06 株式会社神戸製鋼所 Steel wire for machine structural parts
WO2017038436A1 (en) * 2015-09-03 2017-03-09 株式会社神戸製鋼所 Steel wire for mechanical structure parts
CN105568146A (en) * 2015-12-29 2016-05-11 东莞市科力钢铁线材有限公司 Production process of tiny chamfering special-shaped line for precise products
KR101819371B1 (en) 2016-10-04 2018-01-17 주식회사 포스코 High-strength wire rod and steel wire for concrete steel fiber and method for manufacturing thereof
KR102229284B1 (en) * 2019-03-28 2021-03-19 주식회사 포스코 Wire rod for high strength steel fiber, high strength steel fiber and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177326A (en) * 1985-01-31 1986-08-09 Nippon Steel Corp Manufacture of wire rod for wire having high strength as well as weatherability
JPH01279710A (en) * 1988-04-30 1989-11-10 Nippon Steel Corp Manufacture of high strength steel wire having excellent resistance to cracking induced by hydrogen
JP2000008140A (en) * 1998-04-21 2000-01-11 Kobe Steel Ltd Linear or bar-shaped steel and machine parts
JP3554506B2 (en) * 1999-05-27 2004-08-18 新日本製鐵株式会社 Manufacturing method of hot-rolled wire and bar for machine structure

Also Published As

Publication number Publication date
JP2009275250A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JP4842407B2 (en) Steel wire for low-temperature annealing and manufacturing method thereof
JP5026626B2 (en) Steel wire excellent in cold forgeability and manufacturing method thereof
JP5195009B2 (en) Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof
JP5257082B2 (en) Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability
CN107614728B (en) Steel sheet and method for producing same
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP5776623B2 (en) Steel wire rods / bars with excellent cold workability and manufacturing method thereof
KR101799712B1 (en) High-carbon steel sheet and method for producing same
JP6226085B2 (en) Rolled steel bar or wire rod for cold forging parts
JP2017043835A (en) Steel for machine structural use for cold-working, and production method therefor
JP6244701B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
CN108368583B (en) Steel wire for non-heat-treated machine part and non-heat-treated machine part
WO2020230880A1 (en) Steel wire and hot-rolled wire material
JPWO2019131099A1 (en) Hot rolled steel sheet and method for producing the same
JPWO2019151048A1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
KR101819343B1 (en) Wire rod having excellent drawability and method for manufacturing the same
WO2017033773A1 (en) Mechanical structure steel for cold-working and manufacturing method therefor
JP7226083B2 (en) wire and steel wire
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP4392324B2 (en) Method for producing case-hardened steel for cold forging
JP6645638B1 (en) Steel for bolts
JP7355994B2 (en) High carbon steel plate and its manufacturing method
JP2018141184A (en) Carbon steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R151 Written notification of patent or utility model registration

Ref document number: 5407178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350