JP4392324B2 - Method for producing case-hardened steel for cold forging - Google Patents

Method for producing case-hardened steel for cold forging Download PDF

Info

Publication number
JP4392324B2
JP4392324B2 JP2004314114A JP2004314114A JP4392324B2 JP 4392324 B2 JP4392324 B2 JP 4392324B2 JP 2004314114 A JP2004314114 A JP 2004314114A JP 2004314114 A JP2004314114 A JP 2004314114A JP 4392324 B2 JP4392324 B2 JP 4392324B2
Authority
JP
Japan
Prior art keywords
less
steel
spheroidizing annealing
cold forging
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004314114A
Other languages
Japanese (ja)
Other versions
JP2006124774A (en
Inventor
昌吾 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004314114A priority Critical patent/JP4392324B2/en
Publication of JP2006124774A publication Critical patent/JP2006124774A/en
Application granted granted Critical
Publication of JP4392324B2 publication Critical patent/JP4392324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、球状化焼鈍後の硬さが低く、かつ、この硬さが均質な冷間鍛造用肌焼鋼の製造方法に関する。なお、ここで記載する鋼材とは、熱間圧延した鋼線材、鋼棒などを言う。   The present invention relates to a method for producing a case-hardened steel for cold forging having a low hardness after spheroidizing annealing and a uniform hardness. In addition, the steel materials described here refer to hot-rolled steel wire rods, steel bars, and the like.

従来、自動車用部品、建設機械用部品等の機械構造用部品を製造する構造用鋼材としては、機械構造用炭素鋼材や機械構造用低合金鋼材が用いられている。これらの鋼材から自動車のボルト、ロット、エンジン部品、ギヤなど駆動系部品等の機械構造部品を製造するには、従来は主として熱間鍛造および切削工程により製造されていた。しかし、近年、生産性の向上等を狙いとして、冷間鍛造工程へ切り替えが指向されている。   Conventionally, carbon steel materials for machine structures and low alloy steel materials for machine structures have been used as structural steel materials for producing machine structural parts such as automobile parts and construction machine parts. In order to manufacture machine structural parts such as drive system parts such as automobile bolts, lots, engine parts, and gears from these steel materials, conventionally, they have been mainly manufactured by hot forging and cutting processes. However, in recent years, switching to a cold forging process has been directed toward improving productivity and the like.

冷間鍛造工程では、通常、熱間圧延線材を伸線した鋼線などの鋼材に、球状化焼鈍(SA)を施して冷間加工性を確保した後に、冷間鍛造が施されている。ところが、冷間鍛造では鋼材に加工硬化が生じ、延性が低下して、割れ発生や金型寿命の低下を招くことが問題である。   In the cold forging process, cold forging is usually performed after spheroidizing annealing (SA) is performed on a steel material such as a steel wire drawn from a hot rolled wire to ensure cold workability. However, in cold forging, there is a problem that work hardening occurs in the steel material, ductility is reduced, and cracking occurs and the die life is reduced.

特に、近年では、環境問題からくる自動車軽量化のために冷間鍛造部品の余肉を極力小さくすべく、冷間鍛造の加工度(加工率)が大きくなり、金型寿命は益々低下する傾向にある。このような金型寿命の低下は、鍛造部品の大型化により、金型が大型化している状況下では、冷間鍛造工程の生産性を大きく阻害する要因になる。   In particular, in recent years, in order to reduce the extra space of cold forged parts as much as possible in order to reduce the weight of automobiles due to environmental problems, the degree of cold forging processing (processing rate) has increased, and the mold life has been steadily decreasing. It is in. Such a decrease in the mold life is a factor that greatly hinders the productivity of the cold forging process under the situation that the mold is enlarged due to the enlargement of forged parts.

このため、球状化焼鈍後の硬さを低く、軟質化して、冷間鍛造性を改善する技術が,従来から種々提案されている。
例えば、熱間圧延材の組織を微細化させ、引抜き加工を行ない、球状化焼鈍を省略する肌焼鋼の製造方法が提案されている(特許文献1参照)。
For this reason, various techniques for improving the cold forgeability by reducing the hardness after spheroidizing annealing and softening have been proposed.
For example, a method for producing a case-hardened steel has been proposed in which the structure of a hot-rolled material is refined, the drawing process is performed, and the spheroidizing annealing is omitted (see Patent Document 1).

また、熱延材をマルテンサイト、ベイナイト或はマルテンサイト+ベイナイトの組織とし、粗引き伸線、球状化焼鈍、、仕上伸線、冷間鍛造、浸炭、焼入れ焼戻しの機械構造用部品製造工程において、球状化焼鈍前の粗引き伸線(伸線引抜き加工)を省略し、高延性の球状化焼鈍材を提供することが提案されている(特許文献2参照)。   In addition, the hot-rolled material has a martensite, bainite or martensite + bainite structure and is used in the mechanical structural parts manufacturing process of rough drawing, spheroidizing annealing, finish drawing, cold forging, carburizing and quenching and tempering. In addition, it has been proposed to provide a highly ductile spheroidizing material by omitting rough drawing (drawing) before spheroidizing annealing (see Patent Document 2).

更に、マルテンサイト、ベイナイト、パーライトの1種又は2種以上からなる組織を有する鋼棒線材の、表面から棒線材半径×0.15の深さまでの領域のフェライトの組織面積率を10%以下として、表面層のみを硬くし、中心部は軟らかい組織とすることにより、球状化焼鈍後の延性に優れた冷間鍛造用棒線材とすることが提案されている(特許文献3参照)。
特公平6−99747号公報(特許請求の範囲) 特開2000−336457号公報(特許請求の範囲、段落0004) 特開2001−240941号公報(特許請求の範囲)
Furthermore, the structure area ratio of the ferrite in the region from the surface to the depth of the rod wire radius x 0.15 of the steel rod wire material having a structure composed of one or more of martensite, bainite, pearlite is set to 10% or less. It has been proposed that only the surface layer is hardened and that the central portion has a soft structure to provide a bar wire for cold forging having excellent ductility after spheroidizing annealing (see Patent Document 3).
Japanese Patent Publication No. 6-99747 (Claims) JP 2000-336457 A (claims, paragraph 0004) JP 2001-240941 A (Claims)

上記各公報に開示された各技術は、特に、前記金型の大型化に対する金型寿命延長のために必要な、冷間鍛造用鋼の球状化焼鈍後の硬さ低下が、未だ不十分である。   Each technique disclosed in each of the above publications, in particular, is still insufficient to reduce the hardness after spheroidizing annealing of the steel for cold forging, which is necessary for extending the die life for the enlargement of the die. is there.

更に、特許文献1は、球状化焼鈍を省略した熱延材ままであるために、ロット内やロット間の鋼材の硬さのバラツキも大きい。特許文献2のマルテンサイトやベイナイトの組織も、冷却速度に敏感であり、線径、熱延における圧延、冷却時の温度のバラツキによって、球状化焼鈍を省略した熱延材ままであるために、ロット内やロット間の鋼材の硬さのバラツキが大きい。これは特許文献3も同様である。   Furthermore, since Patent Document 1 remains a hot-rolled material in which spheroidizing annealing is omitted, there is a large variation in the hardness of the steel material within and between lots. Since the structure of martensite and bainite in Patent Document 2 is also sensitive to the cooling rate, and remains as a hot-rolled material in which spheroidizing annealing is omitted due to variations in wire diameter, rolling in hot rolling, and temperature during cooling, There are large variations in the hardness of steel materials within and between lots. The same applies to Patent Document 3.

また、従来、冷間鍛造性を改善するために、球状化焼鈍を2〜3回の複数回繰り返すことも実施されているが、長時間に亘る球状化焼鈍の繰り返しは、生産性を著しく低下させる。また、これに関して、球状化焼鈍の改良に関する技術も、従来から多数提案されているものの、前記した、金型の大型化に対する金型寿命延長のために必要な、冷間鍛造用鋼の球状化焼鈍後の硬さ低下が不十分であり、また、これを改善しようとする技術ではない。   Conventionally, in order to improve cold forgeability, spheroidizing annealing is also repeated two or three times, but repeated spheroidizing annealing over a long period of time significantly reduces productivity. Let In this regard, although a number of techniques relating to the improvement of spheroidizing annealing have been proposed in the past, the spheroidizing of steel for cold forging, which is necessary for extending the die life for the enlargement of the die, as described above. The hardness reduction after annealing is insufficient, and it is not a technique for improving this.

本発明は、かかる問題に鑑みなされたもので、一回のみの球状化焼鈍であっても、球状化焼鈍後の硬さが低く、かつ、この硬さが均質な、冷間鍛造性に優れた肌焼鋼の製造方法を提供することを目的とする。   The present invention has been made in view of such a problem, and even in the case of only one spheroidizing annealing, the hardness after spheroidizing annealing is low, and this hardness is uniform and excellent in cold forgeability. An object of the present invention is to provide a method for producing a case-hardened steel.

この目的を達成するために、本発明の球状化焼鈍後の硬さが低く、かつ均質な冷間鍛造用肌焼鋼の製造方法の要旨は、質量%で、C:0.25%以下、Si:0.3%以下、Mn:1.5%以下、P:0.02%以下、S:0.02%以下、Al:0.08%以下、N:0.100%以下(これらいずれの元素も0%を含まず)、Cr:0.2〜1.5%、を含み、残部Feおよび不可避的不純物からなる鋼材であって、鋼材の表面から中心までの任意の断面における組織が、ベイナイト体積分率が平均で50%以下(0%を含む)であるフェライト・パーライト組織からなる鋼材を、減面率28%以上の伸線引抜き加工を行なった後に、球状化焼鈍を行なうことである。 In order to achieve this object, the gist of the method for producing a case-hardened steel for cold forging that is low in hardness after spheroidizing annealing of the present invention and is homogeneous is mass%, and C: 0.25% or less, Si: 0.3% or less, Mn: 1.5% or less, P: 0.02% or less, S: 0.02% or less, Al: 0.08% or less, N: 0.100% or less (any of these) Element is also 0%), Cr: 0.2 to 1.5% , and a steel material composed of the remaining Fe and unavoidable impurities, and has a structure in an arbitrary cross section from the surface to the center of the steel material. , Spheroidizing annealing is performed on a steel material having a bainite volume fraction of 50% or less (including 0%) on average, after wire drawing with a reduction in area of 28% or more. It is.

通常、熱間圧延された線材の組織は、フェライトとラメラー状パーライトの組織からなっており、直接球状化焼鈍を行っても、硬度は一定レベル以下にはならない。このため、従来においても、例えば、特許文献2にも開示されるごとく(段落0004)、球状化焼鈍前に粗引き伸線工程(伸線引抜き加工)を行って、パーライトラメラー(セメンタイト)の分断及び引抜き歪を付与して、球状化焼鈍を可能にしている。   Normally, the structure of the hot-rolled wire is composed of ferrite and lamellar pearlite, and the hardness does not fall below a certain level even when direct spheroidizing annealing is performed. For this reason, conventionally, for example, as disclosed in Patent Document 2 (paragraph 0004), the pearlite lamellar (cementite) is divided by performing a rough drawing process (drawing process) before spheroidizing annealing. And drawing distortion is given and spheroidizing annealing is enabled.

但し、Cが0.25%以下の低炭素鋼材においては、粗引き伸線加工率が高いほど、球状化焼鈍後のフェライト粒径が小さくなるため、軟質化が困難と考えられていた。このため、Cが0.25%以下の低炭素鋼材の粗引き伸線加工率は、せいぜい減面率が28%未満程度であった。   However, in a low carbon steel material having C of 0.25% or less, the higher the rough drawing rate, the smaller the ferrite grain size after spheroidizing annealing, and thus it was considered difficult to soften. For this reason, the rough drawing-drawing rate of the low carbon steel material having C of 0.25% or less has a surface reduction rate of less than about 28%.

しかし、本発明では、球状化焼鈍前に、敢えて減面率28%以上の強伸線加工(伸線引抜き加工)を行ない、球状化焼鈍時にセメンタイトの球状化を促進させて、冷間鍛造用肌焼鋼の軟質化を図る。   However, in the present invention, prior to spheroidizing annealing, a strong wire drawing process (drawing process) with a surface reduction rate of 28% or more is intentionally performed to promote cementite spheroidization during spheroidizing annealing for cold forging. To soften case-hardened steel.

この球状化焼鈍前の鋼材組織として、本発明では、ベイナイト体積分率が平均で50%以下(0%を含む)であるフェライト・パーライト組織からなるものとする。球状化焼鈍前の鋼材組織が、ベイナイトやマルテンサイト主体の場合には、球状化焼鈍前に減面率28%以上の強伸線加工を行なっても、一回の球状化焼鈍では、セメンタイトの粗大化ができず、冷間鍛造用肌焼鋼の軟質化を図ることは困難である。また、伸線時の変形抵抗が過大となって、伸線ダイスの寿命低下の悪影響の方が大きくなる。   In the present invention, the steel material structure before spheroidizing annealing is composed of a ferrite pearlite structure having an average bainite volume fraction of 50% or less (including 0%). When the steel structure before spheroidizing annealing is mainly bainite or martensite, even if the wire drawing with a reduction in area of 28% or more is performed before spheroidizing annealing, the cementite It cannot be coarsened, and it is difficult to soften the case-hardened steel for cold forging. In addition, the deformation resistance during wire drawing becomes excessive, and the adverse effect of shortening the life of the wire drawing dies becomes greater.

なお、中炭素鋼材では、伸線加工率が高いほど球状化焼鈍時にセメンタイトの球状化が促進されることで軟質化することが知られている。しかし、中炭素鋼材では、低炭素鋼材に比して、パーライト分率が大きく、フェライト分率が小さい。一方、Cが0.25%以下の低炭素鋼材においては、中炭素鋼材よりもフェライト分率が大きい。このため、前記した通り、粗引き伸線加工率が高いほど、球状化焼鈍後のフェライト粒径が小さくなるため、軟質化が困難と考えられ、粗引き伸線加工率を高くすることは避けられていた。   In addition, it is known that medium carbon steel material is softened by increasing the spheroidizing of cementite at the time of spheroidizing annealing as the drawing rate is higher. However, the medium carbon steel material has a larger pearlite fraction and a lower ferrite fraction than the low carbon steel material. On the other hand, in the low carbon steel material with C of 0.25% or less, the ferrite fraction is larger than that of the medium carbon steel material. For this reason, as described above, the higher the rough drawing rate, the smaller the ferrite grain size after spheroidizing annealing, so it is considered difficult to soften, and avoid increasing the rough drawing rate. It was done.

(鋼材組織)
本発明は、熱延後の冷却過程で生じやすいベイナイトの体積分率は、球状化焼鈍による軟質化のためには、少ないほど好ましい。このために、ベイナイト体積分率は、平均で50%以下(0%を含む)、好ましくは30%以下、より好ましくは10%以下とする。そして、組織を主相としてフェライト・パーライト組織からなるものとする。これによって、強伸線加工を行なった場合に、一回の球状化焼鈍で、セメンタイトの球状化および粗大化を促進させ、冷間鍛造用肌焼鋼の軟質化を図れる。金型寿命を伸ばすことができる、
(Steel structure)
In the present invention, the volume fraction of bainite, which is likely to occur in the cooling process after hot rolling, is preferably as small as possible for softening by spheroidizing annealing. Therefore, the average bainite volume fraction is 50% or less (including 0%), preferably 30% or less, more preferably 10% or less. And it shall consist of a ferrite pearlite structure | tissue with a structure | tissue as a main phase. Thus, when strong wire drawing is performed, spheroidizing and coarsening of cementite can be promoted by a single spheroidizing annealing, and the case-hardening steel for cold forging can be softened. Can extend the mold life,

前記した通り、球状化焼鈍前の鋼材組織が、50%を超えるベイナイトや、あるいはマルテンサイト主体の場合には、球状化焼鈍前に減面率28%以上の強伸線加工を行なっても、一回の球状化焼鈍で、セメンタイトの球状化および粗大化を促進させ、冷間鍛造用肌焼鋼の上記軟質化を図ることは困難である。ベイナイトやマルテンサイト主体の組織の場合には、セメンタイトの分散は均一で、焼鈍による球状化自体は容易だが、平均粒子間距離が短いため、軟質化の程度が低い。このため、必要レベルまで軟質化するためには、セメンタイトをオストワルド成長させる必要があり、このためには、生産効率を犠牲にして、球状化焼鈍を繰り返す必要が生じる。   As described above, when the steel material structure before spheroidizing annealing is bainite exceeding 50%, or in the case of mainly martensite, even if the wire drawing with a reduction in area of 28% or more is performed before spheroidizing annealing, It is difficult to promote softening of the case-hardened steel for cold forging by promoting spheroidization and coarsening of cementite by one spheroidizing annealing. In the case of a bainite or martensite-based structure, the dispersion of cementite is uniform and spheroidization by annealing is easy, but the degree of softening is low due to the short average interparticle distance. For this reason, in order to soften to the required level, it is necessary to grow the cementite by Ostwald. For this purpose, it is necessary to repeat the spheroidizing annealing at the expense of production efficiency.

また、球状化焼鈍後の低い硬さが、鋼材の部位に亙って均質化されるように、鋼材の表面から中心までの任意の断面において、上記組織とする。部分的に本発明組織となっていても、一部に50%を超えるベイナイトや、あるいはマルテンサイト主体の組織があった場合、硬さのバラツキが大きくなる。このため、鋼材の部位によっては、硬度が高くなり過ぎ、金型寿命を伸ばすことができないこととなる。   Moreover, it is set as the said structure | tissue in the arbitrary cross sections from the surface of steel materials so that the low hardness after spheroidizing annealing may be homogenized over the site | part of steel materials. Even if the structure of the present invention is partly present, if there is a bainite exceeding 50% or a structure mainly composed of martensite, the variation in hardness increases. For this reason, depending on the part of the steel material, the hardness becomes too high and the mold life cannot be extended.

金型寿命の延長に効果のある軟質化の程度は、球状化焼鈍後の鋼材の平均硬度として、Cの含有量が0.2%未満の場合、Crの含有量が1.0%程度で430MPa以下、Crの含有量が1.1%程度では425MPa以下、Crの含有量が1.2%程度では450MPa以下、Cの含有量が0.2%程度の場合、Crの含有量が1.1%程度では440MPa以下、が目安となる。   The degree of softening effective in extending the mold life is as follows. When the C content is less than 0.2% as the average hardness of the steel material after spheroidizing annealing, the Cr content is about 1.0%. When the Cr content is about 1.1%, 425 MPa or less, when the Cr content is about 1.2%, 450 MPa or less, and when the C content is about 0.2%, the Cr content is 1 For about 1%, 440 MPa or less is a standard.

(鋼材の組成)
本発明鋼材の組成(単位:質量%)について、各元素の限定理由を含めて、以下に説明する。
(Composition of steel material)
The composition (unit: mass%) of the steel material of the present invention will be described below including the reasons for limiting each element.

本発明鋼材の上記組織を得、優れた冷間鍛造性を得る前提として、本発明鋼材の組成は、C:0.25%以下、Si:0.3%以下、Mn:1.5%以下、P:0.02%以下、S:0.02%以下、Al:0.08%以下、N:0.100%以下(これらいずれの元素も0%を含まず)、Cr:0.2〜1.5%、を含み、残部Feおよび不可避的不純物からなる鋼材とする。 As a premise of obtaining the above structure of the steel of the present invention and obtaining excellent cold forgeability, the composition of the steel of the present invention is C: 0.25% or less, Si: 0.3% or less, Mn: 1.5% or less P: 0.02% or less, S: 0.02% or less, Al: 0.08% or less, N: 0.100% or less (all of these elements do not include 0%), Cr: 0.2 It is made into the steel material which contains -1.5% , and consists of remainder Fe and an unavoidable impurity.

そして、必要により、上記成分組成において、更に、必要により、Mo:0.4%以下(0%を含まず)、あるいは、更に、V:1.5%以下、Ti:0.2%以下、Nb:0.2%以下(いずれも0%を含まず)の一種または二種以上を含有する。   And, if necessary, in the above component composition, if necessary, Mo: 0.4% or less (not including 0%), or V: 1.5% or less, Ti: 0.2% or less, Nb: Contains one or more of 0.2% or less (both not including 0%).

C:0.25%以下(0%を含まず)。
Cは、鋼の強度を確保するために含有する。C含有量が0.02%未満では鋼の強度が不足する可能性があり、好ましくは0.02%以上含有させる。一方、C含有量が0.25%を超えると、強度やフェライトの硬度が過度に高くなり、冷間鍛造性が却って低下する。このため、Cは0.25%以下の低炭素とし、好ましくは0.02〜0.25%の範囲とする。
C: 0.25% or less (excluding 0%).
C is contained to ensure the strength of the steel. If the C content is less than 0.02%, the strength of the steel may be insufficient, and preferably 0.02% or more. On the other hand, when the C content exceeds 0.25%, the strength and the hardness of the ferrite are excessively increased, and the cold forgeability is deteriorated. For this reason, C is 0.25% or less of low carbon, preferably 0.02 to 0.25%.

Si:0.3%以下(0%を含まず)。
Siは、脱酸元素として、及び固溶体硬化による最終製品の強度を増加させることを目的として含有させる。Si含有量が0.01%未満では、これらの効果による強度が不足する可能性があり、好ましくは0.01%以上含有させる。一方、Siが0.3%を超えた場合、この効果は飽和し、むしろ、硬度の上昇や延性の劣化を招く。このため、Si0.3%以下、好ましくは、0.01〜0.3%の範囲とする。
Si: 0.3% or less (excluding 0%).
Si is contained as a deoxidizing element and for the purpose of increasing the strength of the final product by solid solution hardening. If the Si content is less than 0.01%, the strength due to these effects may be insufficient, and preferably 0.01% or more. On the other hand, when Si exceeds 0.3%, this effect is saturated, and rather, the hardness is increased and the ductility is deteriorated. For this reason, Si is 0.3% or less, preferably 0.01 to 0.3%.

Mn:1.5%以下(0%を含まず)。
Mnは焼入れ性の向上を通じて、最終製品の強度を増加させるのに有効な元素である。Mnが0.2%未満では、最終製品の強度が不足する可能性がある。一方、Mnが1.5%を超えると、この効果は飽和し、むしろ、硬度の上昇や延性の劣化を招く。このため、Mnは1.5%以下、好ましくは、0.2〜1.5%の範囲とする。
Mn: 1.5% or less (excluding 0%).
Mn is an element effective for increasing the strength of the final product through improvement in hardenability. If Mn is less than 0.2%, the strength of the final product may be insufficient. On the other hand, when Mn exceeds 1.5%, this effect is saturated, but rather the hardness is increased and the ductility is deteriorated. For this reason, Mn is 1.5% or less, preferably 0.2 to 1.5%.

P:0.02%以下(0%を含まず)。
Pは、鋼中に不可避的に含有される成分であるが、Pは鋼中で粒界偏析や中心偏析を起こし、延性劣化の原因となるので、0.02%以下に抑制する。
P: 0.02% or less (excluding 0%).
P is a component inevitably contained in the steel, but P causes grain boundary segregation and center segregation in the steel and causes ductile deterioration, so it is suppressed to 0.02% or less.

S:0.02%以下(0%を含まず)。
Sは、鋼中に不可避的に含有される成分であるが、鋼中でMnSとして存在し、冷間鍛造加工にとっては延性を劣化させる有害な元素であるから、0.02%以下に抑制する。
S: 0.02% or less (excluding 0%).
S is a component inevitably contained in the steel, but is present as MnS in the steel and is a harmful element that deteriorates ductility for cold forging, so it is suppressed to 0.02% or less. .

Al:0.08%以下(0%を含まず)。
Alは、脱酸剤として有用であると共に、鋼中に存在する固溶NをAlNとして固定するのに有用である。Al含有量が0.01%未満では、これらの効果が不足する可能性があり、好ましくは0.01%以上含有させる。しかし、Al含有量が0.08%を超えて多すぎると、Al2 3 が過度に生成することとなり、内部欠陥が増大すると共に、冷間鍛造性を劣化することとなる。このため、Alは0.08%以下、好ましくは、0.01〜0.08%の範囲とする。
Al: 0.08% or less (excluding 0%).
Al is useful as a deoxidizer and is useful for fixing solute N present in steel as AlN. If the Al content is less than 0.01%, these effects may be insufficient, and preferably 0.01% or more. However, if the Al content exceeds 0.08% and Al 2 O 3 is excessively generated, internal defects increase and cold forgeability deteriorates. For this reason, Al is made into 0.08% or less, preferably 0.01 to 0.08%.

N:0.100%以下(0%を含まず)。
Nは、鋼中に不可避的に含有される成分であって、他の元素と窒化物を形成して冷間鍛造性を低下させる有害な元素であるから、0.100%以下に抑制する。
N: 0.100% or less (excluding 0%).
N is a component inevitably contained in the steel, and is a harmful element that forms nitrides with other elements to lower the cold forgeability, so it is suppressed to 0.100% or less.

Cr:0.2〜1.5%。
Crは、焼入れ性の増加等により最終製品の強度を増加させる。Crが0.2%未満では、最終製品の強度が不足する可能性がある。一方、Crが1.5%を超えると、熱間圧延ままで鋼材の一部(冷却速度の大きい表面あるいは合金元素が偏析しやすい中心部など)にベイナイト、マルテンサイト組織を生じて、硬さの増加を招く。このため、Crは0.2〜1.5%の範囲とする。
Cr: 0.2 to 1.5%.
Cr increases the strength of the final product by increasing hardenability. If Cr is less than 0.2%, the strength of the final product may be insufficient. On the other hand, if Cr exceeds 1.5%, bainite and martensite structures are formed on a part of the steel material (such as a surface with a high cooling rate or a central part where alloy elements are easily segregated) as hot rolled, and the hardness is high. Increase. For this reason, Cr is 0 . The range is 2 to 1.5%.

Mo:0.4%以下(0%を含まず)
MoもCrと同様に、焼入れ性の増加等により最終製品の強度を増加させる。選択的に含有させる場合、Moが0.05%未満ではこの効果が得られない可能性がある。一方、Moが0.4%を超えると、Crと同様に、熱間圧延ままで鋼材の一部に、ベイナイト、マルテンサイト組織を生じて、硬さの増加を招く。このため、選択的に含有させる場合、Moは0.4%以下、好ましくは、0.05〜0.4%の範囲とする。
Mo: 0.4% or less (excluding 0%)
Mo, like Cr, increases the strength of the final product by increasing hardenability. In the case of selective inclusion, if Mo is less than 0.05%, this effect may not be obtained. On the other hand, when Mo exceeds 0.4%, similarly to Cr, bainite and martensite structure are formed in a part of the steel material in the hot rolled state, and the hardness is increased. For this reason, when it contains selectively, Mo is 0.4% or less, Preferably, you may be 0.05 to 0.4% of range.

V:1.5%以下、Ti:0.2%以下、Nb:0.2%以下(いずれも0%を含まず)。
V、Ti、Nbは、鋼材の結晶粒を細かくする効果があり、結晶粒度調整に選択的に含有させる。選択的に含有させる場合、Ti、Nb含有量が各々0.005%未満、V含有量が0.03%未満では、この効果が得られない可能性がある。一方、V:1.5%、Ti:0.2%、Nb:0.2%を各々超えると、その効果は飽和し、むしろ延性を劣化させる。このため、これらの一種または二種以上を選択的に含有させる場合、V:1.5%以下、Ti:0.2%以下、Nb:0.2%以下とし、好ましくは、V:0.03〜1.5%、Ti:0.005〜0.2%、Nb:0.005〜0.2%、の範囲とする。
V: 1.5% or less, Ti: 0.2% or less, Nb: 0.2% or less (all do not include 0%).
V, Ti, and Nb have the effect of making the crystal grains of the steel material finer, and are selectively contained for adjusting the crystal grain size. When selectively contained, if Ti and Nb contents are each less than 0.005% and the V content is less than 0.03%, this effect may not be obtained. On the other hand, when V exceeds 1.5%, Ti: 0.2%, and Nb: 0.2%, the effect is saturated and the ductility is rather deteriorated. Therefore, when one or more of these are selectively contained, V: 1.5% or less, Ti: 0.2% or less, and Nb: 0.2% or less, preferably V: 0.0. It is set as the range of 03-1.5%, Ti: 0.005-0.2%, Nb: 0.005-0.2%.

(製造方法)
本発明鋼材の好ましい製造条件について以下に説明する。
(Production method)
Preferred production conditions for the steel of the present invention will be described below.

本発明鋼材の工程自体は、常法による。即ち、線材であれば、上記成分組成を有する鋼を溶製、鋳造し、鋼片(鋳片)を加熱して熱間圧延後に冷却し、コイリングする。その後、線材コイルを酸洗して、伸線引抜き加工し、球状化焼鈍を行ない、冷間鍛造用鋼線材とする。棒鋼の場合も、線材特有の工程を除いて、同じ工程で棒鋼材が製造される。   The process itself of the steel of the present invention is based on a conventional method. That is, in the case of a wire rod, the steel having the above composition is melted and cast, the steel slab (slab) is heated, cooled after hot rolling, and coiled. Thereafter, the wire coil is pickled, drawn and drawn, and spheroidized annealing is performed to obtain a steel wire for cold forging. In the case of a steel bar, the steel bar is manufactured in the same process except for the process specific to the wire.

鋼片の熱間圧延の際に、熱間圧延上がりでの鋼材組織を、鋼材の表面から中心までの任意の断面における組織が、ベイナイト体積分率が平均で50%以下(0%を含む)であるフェライトとパーライトとの複合組織からなるものとする。熱間圧延は、粗圧延、中間圧延、仕上げ圧延からなる。   When hot-rolling a steel slab, the steel material structure after hot rolling is the structure in an arbitrary cross section from the surface of the steel material to the center, and the average bainite volume fraction is 50% or less (including 0%). And a composite structure of ferrite and pearlite. Hot rolling consists of rough rolling, intermediate rolling, and finish rolling.

このためには、熱間圧延の際の鋼片加熱温度を、少なくとも850℃以上とすることが好ましい。この鋼片の加熱温度はビレットが加熱炉を出た段階で測定される。   For this purpose, it is preferable to set the steel slab heating temperature during hot rolling to at least 850 ° C. or higher. The heating temperature of the billet is measured when the billet leaves the furnace.

また、その後の熱間圧延温度をオーステナイト域とすることが有効である。   It is also effective to set the subsequent hot rolling temperature to the austenite region.

そして、この熱間圧延後(仕上げ圧延後)の冷却速度の制御も重要である。熱間圧延後のステルモアラインの冷却制御は、鋼材の表面から中心までの任意の断面における組織を、上記ベイナイト体積分率が少なく、フェライトとパーライトとの複合組織とするために有効である。   And control of the cooling rate after this hot rolling (after finish rolling) is also important. The cooling control of the stealmore line after hot rolling is effective for making the structure in an arbitrary cross section from the surface to the center of the steel material a composite structure of ferrite and pearlite with a small bainite volume fraction.

この熱間圧延後の冷却速度が速い(速過ぎる)場合、鋼材組織が、50%を超えるベイナイトや、あるいはマルテンサイト主体となって、球状化焼鈍前に減面率28%以上の強伸線加工を行なっても、一回の球状化焼鈍で、セメンタイトの球状化および粗大化を促進させ、冷間鍛造用肌焼鋼の上記軟質化を図ることは困難である。また、組織の鋼材の表面から中心までの任意の断面において、上記本発明組織に均質化することが困難となる。   When the cooling rate after this hot rolling is fast (too fast), the steel structure becomes more than 50% bainite or martensite mainly, and the wire drawing has a surface reduction rate of 28% or more before spheroidizing annealing. Even if the processing is performed, it is difficult to promote the spheroidization and coarsening of cementite by one spheroidizing annealing and to soften the case-hardened steel for cold forging. Further, it becomes difficult to homogenize the structure of the present invention in an arbitrary cross section from the surface to the center of the steel material having the structure.

本発明では、更に、圧延後の冷却速度を小さくすることで、上記ベイナイト体積分率が少ない、フェライトとパーライトとの複合組織とすることができる。この熱間圧延後の冷却速度について、熱間圧延した鋼線材をステルモアラインで冷却する際に、ステルモアラインに実質的に載置した直後から少なくとも500℃までの平均冷却速度V(℃/s)を2.0℃/s以下、好ましくは1℃/s以下で冷却することが好ましい。「実質的に載置」とは、風冷設備がある最初の個所での載置を意味する。ステルモアコンベアにて冷却される場合の線材の冷却速度は、厳密には線材コイルの疎部と密部によって異なるが、これらの冷却速度の平均の冷却速度を意味する。   In the present invention, the composite structure of ferrite and pearlite having a low bainite volume fraction can be obtained by further reducing the cooling rate after rolling. As for the cooling rate after this hot rolling, when cooling the hot-rolled steel wire with a stealmore line, an average cooling rate V (° C / ° C) from immediately after being placed on the stealmore line to at least 500 ° C. It is preferable to cool s) at 2.0 ° C./s or less, preferably 1 ° C./s or less. “Substantially placed” means placing at the first location where there is an air cooling facility. Strictly speaking, the cooling rate of the wire rod when cooled by the stealth conveyor is different depending on the sparse part and the dense part of the wire coil coil, but means an average cooling rate of these cooling rates.

この制御熱延、制御冷却後の線材コイルに、必要により酸洗、被膜処理などの前処理を施した後に、減面率28%以上の伸線引抜き加工を行なう。この強伸線加工によって、歪みが線材に導入されて、一回の球状化焼鈍で、セメンタイトの球状化および粗大化を促進させ、冷間鍛造用肌焼鋼の軟質化を図れ、金型寿命を伸ばすことができる。また、球状化焼鈍時に生じるフェライト再結晶が均一となって、硬さのバラツキが抑制される。この点、減面率は高いほど好ましく、減面率を28%以上、好ましくは30%以上、より好ましくは35%以上とする。   The wire coil after the controlled hot rolling and controlled cooling is subjected to a pretreatment such as pickling or coating as necessary, and then subjected to a drawing process with a surface reduction rate of 28% or more. By this strong wire drawing, strain is introduced into the wire, spheroidizing annealing of one time promotes spheroidization and coarsening of cementite, softening of case-hardened steel for cold forging, mold life Can be stretched. In addition, ferrite recrystallization generated during spheroidizing annealing becomes uniform, and variations in hardness are suppressed. In this respect, the area reduction rate is preferably as high as possible, and the area reduction rate is 28% or more, preferably 30% or more, more preferably 35% or more.

一方、伸線引抜き加工の減面率が28%未満では、熱延後の鋼材を、ベイナイト体積分率が少ないフェライトとパーライトとの複合組織からなるものとしても、一回の球状化焼鈍で、セメンタイトの球状化を促進させ、冷間鍛造用肌焼鋼の上記軟質化を図ることは困難である。また、球状化焼鈍時に生じるフェライト再結晶が不十分あるいは不均一となって、硬さのバラツキが大きくなる原因となる。   On the other hand, if the area reduction rate of the wire drawing process is less than 28%, even if the steel material after hot rolling is composed of a composite structure of ferrite and pearlite with a low bainite volume fraction, in one spheroidizing annealing, It is difficult to promote the spheroidization of cementite and to soften the case-hardening steel for cold forging. In addition, ferrite recrystallization that occurs during spheroidizing annealing becomes insufficient or non-uniform, which causes a large variation in hardness.

前記した通り、球状化焼鈍前の鋼材組織が、50%を超えるベイナイトや、あるいはマルテンサイト主体の場合には、球状化焼鈍前に減面率28%以上の強伸線加工を行なっても、一回の球状化焼鈍で、セメンタイトの球状化および粗大化を促進させ、冷間鍛造用肌焼鋼の上記軟質化を図ることは困難である。   As described above, when the steel material structure before spheroidizing annealing is bainite exceeding 50%, or in the case of mainly martensite, even if the wire drawing with a reduction in area of 28% or more is performed before spheroidizing annealing, It is difficult to promote softening of the case-hardened steel for cold forging by promoting spheroidization and coarsening of cementite by one spheroidizing annealing.

線材などの冷間鍛造用鋼材は、必要により、ボンデ処理などを施されて、冷間鍛造に供せられる。   A steel material for cold forging such as a wire rod is subjected to a bondage treatment or the like, if necessary, and is subjected to cold forging.

以下に本発明の実施例を説明する。各成分組成の鋼線材を、前記した常法により、但し熱間圧延後の冷却条件を変えて、熱延後の組織の内、特にベイナイトの体積分率を変化させて、実機にて製造した。そして、これらの鋼線材を表2に示す伸線加工率で伸線引抜き加工を行ない、線径がΦ10〜55mmの鋼線とした上で、球状化焼鈍し、焼鈍後の軟質化と均質化の評価により、冷間鍛造における金型寿命への影響を予測した。   Examples of the present invention will be described below. Steel wire rods of each component composition were produced by the above-mentioned conventional method, except that the cooling conditions after hot rolling were changed, and the volume fraction of bainite was changed in the structure after hot rolling, in particular. . Then, these steel wires are drawn at a drawing rate shown in Table 2 to obtain a steel wire having a wire diameter of Φ10 to 55 mm, then spheroidizing annealing, softening and homogenization after annealing. From this evaluation, the effect on the die life in cold forging was predicted.

具体的には、表1に示す成分組成の鋼片を加熱、熱間圧延し、表2に示すように、熱間圧延後の冷却条件を変えた上で、共通してΦ15mmの線径の鋼線材を製造した。なお、表2に示す圧延後の冷却速度は、仕上げ圧延後、ステルモアコンベア上に鋼線材が載置されてから500℃まで冷却した場合の、平均冷却速度を示す。これら熱間圧延後の冷却速度は、コイル状線材のリングピッチの制御や、徐冷カバーの使用、風冷の際の風量、風向き、などを組み合わせて、適宜制御した。   Specifically, the steel slab having the composition shown in Table 1 is heated and hot-rolled. As shown in Table 2, after changing the cooling conditions after the hot-rolling, the wire diameter of Φ15 mm is commonly used. A steel wire was produced. In addition, the cooling rate after rolling shown in Table 2 shows an average cooling rate when the steel wire is cooled to 500 ° C. after the steel wire is placed on the stealmore conveyor after finish rolling. The cooling rate after the hot rolling was appropriately controlled by combining the ring pitch of the coiled wire, the use of a slow cooling cover, the air volume at the time of air cooling, the wind direction, and the like.

この熱延後の鋼線材のベイナイト組織の体積分率は、鋼線材の各試験片の5000倍のSEM(走査型電子顕微鏡:JEOL社製 JSM-5410 )を用いて、鋼線材のの表面から中心までの10箇所の断面における組織を1視野ずつ測定した。これを画像解析ソフト(MEDIA CYBERNETICS TM社製Image-Pro Prus)で、前記SEMで観察した視野におけるベイナイトの合計測定面積の、フェライトやパーライトなどの他の組織とを合計した測定面積に対する、ベイナイト組織の面積分率(%)を各々求め、10箇所(10視野)の結果を平均化した上で、ベイナイト組織の体積分率とした。これらの結果を表2に示す。 The volume fraction of the bainite structure of the steel wire after hot rolling was measured from the surface of the steel wire using a SEM (scanning electron microscope: JSM-5410, manufactured by JEOL Co., Ltd.) 5000 times that of each test piece of the steel wire. The structures in 10 cross sections up to the center were measured one field at a time. This is an image analysis software (Image-Pro Prus manufactured by MEDIA CYBERNETICS ), and the bainite structure is the total measurement area of bainite in the field of view observed with the SEM, with respect to the measurement area totaled with other structures such as ferrite and pearlite. The area fraction (%) of each was obtained and the results at 10 locations (10 fields of view) were averaged, and then the volume fraction of the bainite structure was obtained. These results are shown in Table 2.

なお、製造された各鋼線材の、上記組織観察結果では、上記ベイナイト以外は、全て、フェライトとパーライトの混合組織であった。   In addition, in the said structure observation result of each manufactured steel wire, all except the said bainite was a mixed structure of a ferrite and pearlite.

そして、これらの鋼線材を、表2に示す各伸線加工率で伸線引抜き加工を行ない、線径がΦ11〜15mmの鋼線とした上で、1回のみ球状化焼鈍し、各々約2トンの鋼線コイルを得た。表2の球状化焼鈍パターンは二種類とし、Aパターンが均熱を760℃×5hrで処理後、13℃/hrの冷却速度で徐冷し、685℃以降は放冷、Bパターンが均熱を760℃×7hrで処理後、11℃/hrの冷却速度で徐冷し、680℃以降は放冷放冷した。   Then, these steel wires are drawn and drawn at the respective drawing rates shown in Table 2 to obtain steel wires having a wire diameter of Φ11 to 15 mm, and then spheroidized and annealed only once, each of about 2 Ton steel wire coil was obtained. There are two types of spheroidizing annealing patterns in Table 2. After pattern A is soaked at 760 ° C. × 5 hr, it is gradually cooled at a cooling rate of 13 ° C./hr, allowed to cool after 685 ° C., and pattern B is soaked. After being treated at 760 ° C. × 7 hr, it was gradually cooled at a cooling rate of 11 ° C./hr, and after 680 ° C., it was allowed to cool and cool.

以上の製造された鋼線の平均引張強度(平均TS:MPa)と、最大と最低の引張強度の差ΔTS(MPa)とを測定した。鋼線の平均TSは、製造した上記鋼線コイルの内、トップ、ミドル、ボトムの各1リンク計3リンクのTSの平均を求めた。ΔTSは、これらTSの中から選択される、最大TSと最低TSとの差を求めた。これらの結果を表2に示す。   The average tensile strength (average TS: MPa) of the manufactured steel wire and the difference ΔTS (MPa) between the maximum and minimum tensile strength were measured. The average TS of the steel wire was obtained by calculating the average of the TS of three links in total, one for each of the top, middle, and bottom among the manufactured steel wire coils. For ΔTS, the difference between the maximum TS and the minimum TS selected from these TSs was obtained. These results are shown in Table 2.

球状化焼鈍による鋼線の平均TSの軟質化評価の合格基準は、表1の鋼種毎に設定され、鋼種1は430MPa以下、鋼種2は425MPa以下、鋼種3は440MPa以下、鋼種4は450MPa以下、とした。また、球状化焼鈍による鋼線の均質化基準は、ΔTSは20MPa以下とした。   The acceptance criteria for the softening evaluation of the average TS of the steel wire by spheroidizing annealing are set for each steel type shown in Table 1, steel type 1 is 430 MPa or less, steel type 2 is 425 MPa or less, steel type 3 is 440 MPa or less, and steel type 4 is 450 MPa or less. , And. Moreover, as for the homogenization standard of the steel wire by spheroidizing annealing, ΔTS was set to 20 MPa or less.

表2から明らかな通り、発明例3〜6、9〜12、15の鋼線材は、本発明成分組成であるとともに、鋼線材の表面から中心までの任意の断面における組織が、ベイナイト体積分率が平均で50%以下であるフェライト・パーライト組織からなる。そして、この鋼線材は、減面率28%以上の伸線引抜き加工が行なわれている。この結果、上記球状化焼鈍後の硬さが低く、かつ均質な鋼線(冷間鍛造用肌焼鋼)が得られている。したがって、冷間鍛造金型の使用寿命を著しく延ばすことができるものと予想される。   As is clear from Table 2, the steel wire rods of Invention Examples 3-6, 9-12, and 15 have the composition of the present invention, and the structure in an arbitrary cross section from the surface to the center of the steel wire rod has a bainite volume fraction. Is composed of a ferrite pearlite structure having an average of 50% or less. And this steel wire has been drawn to a reduction in area of 28% or more. As a result, a steel wire (hardened steel for cold forging) having a low hardness after the spheroidizing annealing is obtained. Therefore, it is expected that the service life of the cold forging die can be extended significantly.

これに対して、各比較例1、2、7、8、13、14、16は、発明例に比して、上記球状化焼鈍後の硬さが高過ぎるか、硬さにバラツキがある。このため、冷間鍛造金型の使用寿命を低下させるものと予想される。   On the other hand, each of Comparative Examples 1, 2, 7, 8, 13, 14, and 16 has a hardness after the spheroidizing annealing that is too high or varies in hardness as compared with the inventive examples. For this reason, it is expected that the service life of the cold forging die will be reduced.

例えば、比較例1は、伸線加工率が0%であり、伸線引抜き加工を行なっていない。このため、ベイナイト体積分率が0%以下であるフェライト・パーライト組織からなるものの、上記球状化焼鈍後の鋼線の硬さが高過ぎ、また、硬さにバラツキがある。   For example, in Comparative Example 1, the wire drawing rate is 0%, and no wire drawing is performed. For this reason, although it consists of a ferrite pearlite structure | tissue whose bainite volume fraction is 0% or less, the hardness of the steel wire after the said spheroidizing annealing is too high, and hardness varies.

比較例2は、伸線加工率が低過ぎる。このため、ベイナイト体積分率が0%であるフェライト・パーライト組織からなるものの、比較例1と同様に、上記球状化焼鈍後の鋼線の硬さが高過ぎ、また、硬さにバラツキがある。   In Comparative Example 2, the wire drawing rate is too low. For this reason, although it consists of a ferrite pearlite structure whose bainite volume fraction is 0%, as in Comparative Example 1, the hardness of the steel wire after the spheroidizing annealing is too high, and the hardness varies. .

比較例7、比較例13、比較例16は、圧延後の冷却速度が比較的大きいこともあり、鋼線材のベイナイト体積分率が高過ぎる。このため、減面率28%以上の伸線引抜き加工を行なっているにもかかわらず、上記球状化焼鈍後の鋼線の硬さが高過ぎ、また、硬さにバラツキがある。   In Comparative Example 7, Comparative Example 13, and Comparative Example 16, the cooling rate after rolling may be relatively high, and the bainite volume fraction of the steel wire is too high. For this reason, the steel wire after the spheroidizing annealing is too high and the hardness varies even though the wire drawing with a reduction in area of 28% or more is performed.

比較例8、比較例14は、伸線加工率が低過ぎる。このため、ベイナイト体積分率が0%であるフェライト・パーライト組織からなるものの、比較例1と同様に、上記球状化焼鈍後の鋼線の硬さが高過ぎ、また、硬さにバラツキがある。   In Comparative Example 8 and Comparative Example 14, the wire drawing rate is too low. For this reason, although it consists of a ferrite pearlite structure whose bainite volume fraction is 0%, as in Comparative Example 1, the hardness of the steel wire after the spheroidizing annealing is too high, and the hardness varies. .

以上の結果から、本発明要件の臨界的な意義が分かる。   From the above results, the critical significance of the requirements of the present invention can be understood.

Figure 0004392324
Figure 0004392324

Figure 0004392324
Figure 0004392324

以上説明したように、本発明によれば、一回のみの球状化焼鈍であっても、球状化焼鈍後の硬さが低く、かつ、この硬さが均質な、冷間鍛造性に優れた肌焼鋼の製造方法を提供することができる。このため、本発明鋼材は、被削性を重視した部品類で、切削によって多量に製作される主に小物部品であるネジ類、ニップル類などに有用である。   As described above, according to the present invention, even after spheroidizing annealing only once, the hardness after spheroidizing annealing is low, and this hardness is uniform and excellent in cold forgeability. A method for producing case-hardened steel can be provided. For this reason, the steel material of the present invention is a component that places importance on machinability, and is useful for screws, nipples, and the like, which are mainly small components manufactured in large quantities by cutting.

Claims (3)

質量%で、C:0.25%以下、Si:0.3%以下、Mn:1.5%以下、P:0.02%以下、S:0.02%以下、Al:0.08%以下、N:0.100%以下(これらいずれの元素も0%を含まず)、Cr:0.2〜1.5%、を含み、残部Feおよび不可避的不純物からなる鋼材であって、鋼材の表面から中心までの任意の断面における組織が、ベイナイト体積分率が平均で50%以下(0%を含む)であるフェライト・パーライト組織からなる鋼材を、減面率28%以上の伸線引抜き加工を行なった後に、球状化焼鈍を行なうことを特徴とする、球状化焼鈍後の硬さが低く、かつ均質な冷間鍛造用肌焼鋼の製造方法。 In mass%, C: 0.25% or less, Si: 0.3% or less, Mn: 1.5% or less, P: 0.02% or less, S: 0.02% or less, Al: 0.08% Hereinafter, N: 0.100% or less (all of these elements do not include 0%), Cr: 0.2-1.5% , a steel material composed of the balance Fe and inevitable impurities, Steel with a pearlite structure with an average bainite volume fraction of 50% or less (including 0%) in an arbitrary cross section from the surface to the center of steel is drawn with a reduction in area of 28% or more. A method for producing a case-hardened steel for cold forging having a low hardness after spheroidizing annealing and homogeneous, characterized by performing spheroidizing annealing after processing. 前記鋼材が、更に、Mo:0.4%以下(0%を含まず)を含有する請求項1に記載の冷間鍛造用肌焼鋼の製造方法。   The manufacturing method of the case hardening steel for cold forging of Claim 1 in which the said steel materials contain Mo: 0.4% or less (excluding 0%) further. 前記鋼材が、更に、V:1.5%以下、Ti:0.2%以下、Nb:0.2%以下(いずれも0%を含まず)の一種または二種以上を含有する請求項1または2に記載の冷間鍛造用肌焼鋼の製造方法。   The steel material further contains one or more of V: 1.5% or less, Ti: 0.2% or less, Nb: 0.2% or less (both not including 0%). Or the manufacturing method of the case hardening steel for cold forging of 2.
JP2004314114A 2004-10-28 2004-10-28 Method for producing case-hardened steel for cold forging Expired - Fee Related JP4392324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314114A JP4392324B2 (en) 2004-10-28 2004-10-28 Method for producing case-hardened steel for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314114A JP4392324B2 (en) 2004-10-28 2004-10-28 Method for producing case-hardened steel for cold forging

Publications (2)

Publication Number Publication Date
JP2006124774A JP2006124774A (en) 2006-05-18
JP4392324B2 true JP4392324B2 (en) 2009-12-24

Family

ID=36719793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314114A Expired - Fee Related JP4392324B2 (en) 2004-10-28 2004-10-28 Method for producing case-hardened steel for cold forging

Country Status (1)

Country Link
JP (1) JP4392324B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130058069A (en) 2010-11-30 2013-06-03 제이에프이 스틸 가부시키가이샤 Carburizing steel having excellent cold forgeability, and production method thereof
CN105002337A (en) * 2015-07-21 2015-10-28 北京奥普科星技术有限公司 H13 die steel heat treating method and H13 die steel obtained through same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101382664B1 (en) * 2009-11-17 2014-04-07 신닛테츠스미킨 카부시키카이샤 Steel wire for low temperature annealing and producing method thereof
JP5397247B2 (en) * 2010-02-02 2014-01-22 新日鐵住金株式会社 Hot rolled steel bar or wire rod
KR102170944B1 (en) * 2018-11-09 2020-10-29 주식회사 포스코 Steel wire rod for cold forging and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130058069A (en) 2010-11-30 2013-06-03 제이에프이 스틸 가부시키가이샤 Carburizing steel having excellent cold forgeability, and production method thereof
CN105002337A (en) * 2015-07-21 2015-10-28 北京奥普科星技术有限公司 H13 die steel heat treating method and H13 die steel obtained through same

Also Published As

Publication number Publication date
JP2006124774A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4842407B2 (en) Steel wire for low-temperature annealing and manufacturing method thereof
JP5026626B2 (en) Steel wire excellent in cold forgeability and manufacturing method thereof
JP3966493B2 (en) Cold forging wire and method for producing the same
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
JP5270274B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JP6226086B2 (en) Rolled steel bar or wire rod for cold forging parts
CN108474073B (en) Steel wire for non-heat-treated machine part and non-heat-treated machine part
JP6226085B2 (en) Rolled steel bar or wire rod for cold forging parts
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2013234349A (en) Steel wire rod/steel bar having excellent cold-workability, and method for producing the same
JP2001240940A (en) Bar wire rod for cold forging and its production method
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JP2010159476A (en) Steel wire rod having excellent cold forgeability after low temperature annealing and method for producing the same, and method for producing steel wire rod having excellent cold forgeability
JP6819198B2 (en) Rolled bar for cold forged tempered products
JP2017043835A (en) Steel for machine structural use for cold-working, and production method therefor
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
CN108368583B (en) Steel wire for non-heat-treated machine part and non-heat-treated machine part
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP2017122270A (en) Steel for cold-worked component
JP4392324B2 (en) Method for producing case-hardened steel for cold forging
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4392324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees