JPH1096045A - Structural steel excellent in cold forgeability and strength, and production of forged member using the steel - Google Patents
Structural steel excellent in cold forgeability and strength, and production of forged member using the steelInfo
- Publication number
- JPH1096045A JPH1096045A JP28279796A JP28279796A JPH1096045A JP H1096045 A JPH1096045 A JP H1096045A JP 28279796 A JP28279796 A JP 28279796A JP 28279796 A JP28279796 A JP 28279796A JP H1096045 A JPH1096045 A JP H1096045A
- Authority
- JP
- Japan
- Prior art keywords
- strength
- cold
- steel
- cold forging
- forging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は,冷間加工性に優れ
るとともに,熱処理ひずみや表面の酸化等を発生させる
ことなく,すなわち冷間鍛造の利点を損なうことなく,
中炭素強靭鋼の調質材と同等の高い強度を得ることがで
きる冷間鍛造用鋼および当該鋼材を用いた強度の高い鍛
造部材の製造方法に関する。TECHNICAL FIELD The present invention is excellent in cold workability and does not cause heat treatment distortion or surface oxidation, that is, without impairing the advantages of cold forging.
The present invention relates to a cold forging steel capable of obtaining a high strength equivalent to that of a tempered material of a medium-carbon tough steel, and a method of manufacturing a high-strength forged member using the steel.
【0002】[0002]
【従来の技術】JIS−SCM440等の中炭素強靱鋼
を熱間鍛造後に焼入焼戻しを行った部材は機械的性質や
強度に優れるため,機械構造部材として多く使用されて
いる。しかし,重量精度や寸法・形状精度が問題となる
部品に対しては,熱間鍛造後または焼入焼戻し後に機械
加工が必要になるため,部品の製造コストが高い。これ
に対して,冷間鍛造により成形された部材は重量精度,
寸法・形状精度および表面肌が良好であるという特長を
有するが,中炭素強靭鋼を冷間加工することは焼鈍材で
あっても困難である。2. Description of the Related Art A member obtained by quenching and tempering a medium-carbon tough steel such as JIS-SCM440 after hot forging is excellent in mechanical properties and strength, and is therefore often used as a mechanical structural member. However, parts requiring high precision in weight, dimensions and shape require machining after hot forging or quenching and tempering, so that the manufacturing cost of the parts is high. On the other hand, the members formed by cold forging have weight accuracy,
Although it has the features of good dimensional and shape accuracy and good surface texture, it is difficult to cold work medium-carbon tough steel even with annealed material.
【0003】[0003]
【発明が解決しようとする課題】冷間鍛造は重量や寸法
精度の向上による機械性能の向上や機械加工工程の簡略
化に貢献するとともに鍛造工場の環境も熱間鍛造に比べ
て良好であるため,従来適用されていなかった分野であ
るところの熱間鍛造−焼入焼戻し−機械加工からなる部
材の製造工程を代替することが望まれる。しかし,冷間
鍛造時の変形抵抗の増大や鍛造割れの発生の観点から,
冷間鍛造ままで得られる強度には限界があるとともに,
加工硬化による強化では疲労強度が硬度の上昇に追従せ
ず,機械構造用部材として十分な疲労強度が得られな
い。したがって,冷間鍛造後に焼入れ等の変態を伴う熱
処理を行う必要があり,冷間鍛造材の特長のひとつであ
る形状精度や表面性状が劣化する。すなわち,冷間鍛造
材の特長と中炭素強靭鋼並みの強度を両立することは困
難であった。The cold forging contributes to the improvement of the mechanical performance and the simplification of the machining process by improving the weight and dimensional accuracy, and the environment of the forging factory is better than that of the hot forging. It is desired to replace the member manufacturing process of hot forging, quenching and tempering and machining, which is a field that has not been applied conventionally. However, from the viewpoint of the increase in deformation resistance during cold forging and the occurrence of forging cracks,
There is a limit to the strength that can be obtained with cold forging,
With the strengthening by work hardening, the fatigue strength does not follow the increase in hardness, and a sufficient fatigue strength as a member for machine structure cannot be obtained. Therefore, it is necessary to perform heat treatment accompanied by transformation such as quenching after cold forging, and the shape accuracy and surface properties, which are one of the features of the cold forged material, deteriorate. In other words, it was difficult to achieve both the characteristics of cold forged materials and the strength of medium carbon tough steel.
【0004】[0004]
【課題を解決するための手段】本発明の発明者は低炭素
鋼の冷間鍛造後の強度におよぼす化学成分,特に時効析
出元素の影響を調査した結果,以下のようなことを見出
した。Means for Solving the Problems The inventors of the present invention have investigated the effects of chemical components, particularly aging precipitation elements, on the strength of low carbon steel after cold forging and found the following.
【0005】1%以上のCuを含有する低炭素鋼は,冷
間鍛造後に変態点以下の温度で時効することにより比較
的短時間で析出硬化を示し,中炭素強靭鋼と同等の強度
が得られる。また,熱間圧延の冷却過程ではCuの析出
が顕著でないため,冷間鍛造前に溶体化処理や焼鈍など
の費用のかかる熱処理をする必要がない。したがって,
冷間鍛造性と強靭鋼並みの強度の両立とともに熱処理コ
ストの低減も可能である。ただし,焼鈍を省略しつつ十
分な冷間鍛造性を確保するためには,炭化物を形成する
Cやフェライト強化元素であるSiやMnを低減して熱
間圧延状態での硬さを180HV以下とし,Crの添加
によりパーライトの靭性を向上することが必要である。
また,Cuの添加により熱間加工性が劣化するため,C
u量の1/2以上のNiの添加が必要である。[0005] A low carbon steel containing 1% or more of Cu exhibits precipitation hardening in a relatively short time by aging at a temperature below the transformation point after cold forging, and can obtain strength equivalent to that of a medium carbon tough steel. Can be Further, since the precipitation of Cu is not remarkable in the cooling process of hot rolling, it is not necessary to perform expensive heat treatment such as solution treatment or annealing before cold forging. Therefore,
It is possible to reduce the heat treatment cost while achieving both the cold forgeability and the strength equivalent to that of tough steel. However, in order to secure sufficient cold forgeability while omitting annealing, the hardness in the hot-rolled state is set to 180 HV or less by reducing C, which forms carbide, and Si and Mn, which are ferrite strengthening elements. It is necessary to improve the toughness of pearlite by adding Cr and Cr.
In addition, the hot workability deteriorates due to the addition of Cu.
It is necessary to add at least 1/2 of the u amount of Ni.
【0006】Cu添加鋼の時効硬化現象についての研究
例は少なく,特に,冷間鍛造との組み合わせにおける時
効条件の影響については報告がない。そこで発明者は,
Cu添加低炭素鋼の強度におよぼす冷間鍛造条件および
時効処理条件の影響を調べた結果,以下のようなことを
見出した。There are few studies on the age hardening phenomenon of Cu-added steel, and there is no report on the effect of aging conditions in combination with cold forging. Therefore, the inventor
As a result of examining the effects of cold forging conditions and aging treatment conditions on the strength of Cu-added low carbon steel, the following was found.
【0007】1%以上のCuを含有する低炭素鋼の時効
後の硬さは時効温度や時効時間,冷間加工度により変化
するが,時効時間や冷間加工度の影響が小さくなる時効
温度域が存在する。時効時間や冷間加工度の影響が小さ
いことは,連続炉による熱処理における在炉時間のばら
つきや冷間鍛造品のひずみ分布を考慮した場合,強度の
均質性の点で有利である。ただし,この温度域であって
も適正な保持時間は存在するのでこの範囲を逸脱しない
ことが肝要である。また,より均質な強度を有する鍛造
部材を製造するには,40%以上の平均加工率が必要で
ある。これにより,冷間鍛造の特長を有しつつ強度の高
い鍛造部材を製造することが可能になる。The hardness after aging of a low carbon steel containing 1% or more of Cu changes with the aging temperature, the aging time, and the degree of cold working, but the aging temperature at which the influence of the aging time and the degree of cold working becomes small. Area exists. The small influence of the aging time and the degree of cold working is advantageous in terms of the homogeneity of strength when considering the variation in furnace time in heat treatment in a continuous furnace and the strain distribution of cold forgings. However, even in this temperature range, there is an appropriate holding time, so it is important not to deviate from this range. Further, in order to manufacture a forged member having more uniform strength, an average working ratio of 40% or more is required. This makes it possible to manufacture a forged member having high strength while having the features of cold forging.
【0008】すなわち,本発明は,重量で,C:0.0
5〜0.15%,Si:0.05〜0.15%,Mn:
0.05〜0.35%,Cu:1.00〜2.00,N
i:0.75〜1.50%,Cr:0.15〜0.60
%を含有し,さらに,V:0.05〜0.15%,S:
0.030〜0.080%,Te:0.005〜0.0
40%,Pb:0.03〜0.30%,Bi:0.03
〜0.20%,Ca:0.0005〜0.0050%か
ら選んだ1種または2種以上を含有し,残部実質的にF
eからなり,熱間圧延状態の硬さが180HV以下であ
ることを特徴とする強度に優れた冷間鍛造用鋼を第1の
発明とし,第1の発明に該当する鋼に平均加工率が40
%以上の冷間鍛造を施した後,350℃以上550℃以
下の温度で120〜240分間保持する熱処理を行うこ
とにより,強度に優れた冷間鍛造部材を製造する方法を
第2の発明とする2つの発明よりなるものである。That is, according to the present invention, C: 0.0
5 to 0.15%, Si: 0.05 to 0.15%, Mn:
0.05-0.35%, Cu: 1.00-2.00, N
i: 0.75 to 1.50%, Cr: 0.15 to 0.60
%, V: 0.05 to 0.15%, S:
0.030 to 0.080%, Te: 0.005 to 0.0
40%, Pb: 0.03 to 0.30%, Bi: 0.03
-0.20%, Ca: 0.0005-0.0050%, one or more selected from the group consisting essentially of F
e, and the steel for cold forging having excellent strength characterized in that the hardness in the hot-rolled state is 180 HV or less is defined as the first invention, and the steel corresponding to the first invention has an average working ratio of 40
% Of cold forging, followed by heat treatment at a temperature of 350 ° C. or more and 550 ° C. or less for 120 to 240 minutes to produce a cold forged member having excellent strength. It consists of two inventions.
【0009】本発明の請求範囲の限定理由について以下
に説明する。The reasons for limiting the scope of the present invention will be described below.
【0010】C:0.05〜0.15% Cは鋼の強度を向上する元素であり,含有量が0.05
%未満では冷間鍛造後の強度が不足する。一方,Cはパ
ーライトを生成し冷間加工性を劣化させる元素であり,
0.15%を越えるとその影響が顕著になる。よって,
Cの含有量は0.05〜0.15%とする。C: 0.05 to 0.15% C is an element for improving the strength of steel, and has a content of 0.05%.
%, The strength after cold forging is insufficient. On the other hand, C is an element that forms pearlite and deteriorates cold workability.
If it exceeds 0.15%, the effect becomes significant. Therefore,
The content of C is 0.05 to 0.15%.
【0011】Si:0.05〜0.15% Siは固溶強化によりフェライト相を強化する元素であ
り,冷間鍛造後の鋼の強度を向上する効果を有するが,
含有量が0.05%未満では効果が小さく,また,0.
15%を越えるとフェライトの延性を低下させ冷間加工
性が劣化する。よって,Siの含有量は0.05〜0.
15%とする。Si: 0.05-0.15% Si is an element that strengthens the ferrite phase by solid solution strengthening, and has the effect of improving the strength of steel after cold forging.
If the content is less than 0.05%, the effect is small.
If it exceeds 15%, the ductility of the ferrite decreases, and the cold workability deteriorates. Therefore, the content of Si is 0.05 to 0.1.
15%.
【0012】Mn:0.05〜0.35% Mnは固溶強化によりフェライト相を強化するとともに
パーライトの靭性を向上することにより冷間鍛造性を向
上する元素であるが,含有量が0.05%未満では効果
が小さく,また,0.35%を越えるとフェライトの加
工硬化を助長するため冷間加工性が劣化する。よって,
Mnの含有量は0.05〜0.35%とする。Mn: 0.05-0.35% Mn is an element that strengthens the ferrite phase by solid solution strengthening and improves the forgeability of cold by improving the toughness of pearlite. If it is less than 05%, the effect is small, and if it exceeds 0.35%, work hardening of ferrite is promoted, so that cold workability is deteriorated. Therefore,
The content of Mn is set to 0.05 to 0.35%.
【0013】Cu:1.00〜2.00% Cuは冷間鍛造に続く時効処理により析出し,冷間鍛造
材の強度を向上する元素であるが,含有量が1.00%
未満では効果が小さく,また,2.00%を越えると熱
間加工性を著しく劣化させる。よって,Cuの含有量は
1.00〜2.00%とする。Cu: 1.00 to 2.00% Cu is an element that precipitates by aging treatment following cold forging and improves the strength of the cold forged material.
If it is less than 2,000%, the effect is small, and if it exceeds 2.00%, the hot workability is significantly deteriorated. Therefore, the content of Cu is set to 1.00 to 2.00%.
【0014】Ni:0.75〜1.50% NiはCuによる熱間加工性の劣化を防止する元素であ
るが,含有量が0.75%未満では効果が小さく,ま
た,1.50%を越えると被削性が劣化する。よって,
Niの含有量は0.75〜1.50%とし,好ましく
は,Cuの含有量の0.7〜0.8倍とする。Ni: 0.75 to 1.50% Ni is an element for preventing deterioration of hot workability due to Cu, but if the content is less than 0.75%, the effect is small, and 1.50% If it exceeds, the machinability deteriorates. Therefore,
The Ni content is 0.75 to 1.50%, and preferably 0.7 to 0.8 times the Cu content.
【0015】Cr:0.15〜0.60% Crはパーライトの靭性を向上することにより冷間鍛造
における変形能を向上する元素であるが,含有量が0.
15%未満では効果が小さく,また,0.60%を越え
るとパーライト量を増加させ冷間加工における変形抵抗
を上昇させる。よって,Crの含有量は0.15〜0.
60%とする。Cr: 0.15 to 0.60% Cr is an element that improves the deformability in cold forging by improving the toughness of pearlite.
If it is less than 15%, the effect is small, and if it exceeds 0.60%, the amount of pearlite increases and the deformation resistance in cold working increases. Therefore, the content of Cr is 0.15 to 0.5.
60%.
【0016】V:0.05〜0.15% Vは析出硬化によりフェライト相の強度を向上すること
により冷間鍛造後の鋼の強度を向上する元素であり,必
要に応じて添加されるが,含有量が0.05%未満では
その効果が顕著でなく,また,0.15%を越えると時
効による硬度の上昇が小さくなる。よって,Vの含有量
は0.05〜0.15%とする。V: 0.05 to 0.15% V is an element which improves the strength of the steel after cold forging by improving the strength of the ferrite phase by precipitation hardening, and is added as necessary. If the content is less than 0.05%, the effect is not remarkable, and if it exceeds 0.15%, the increase in hardness due to aging becomes small. Therefore, the content of V is set to 0.05 to 0.15%.
【0017】S:0.030〜0.080% Sは被削性を改善する元素であり,必要に応じて添加さ
れるが,0.030%未満では効果が小さく,0.08
0%を越えると冷間加工性および強度が劣化する。よっ
て,Sの含有量は0.030〜0.080%とする。S: 0.030% to 0.080% S is an element for improving machinability, and is added as needed. However, if it is less than 0.030%, the effect is small.
If it exceeds 0%, the cold workability and strength deteriorate. Therefore, the content of S is set to 0.030 to 0.080%.
【0018】Te:0.005〜0.040% Teは硫化物を球状化することにより被削性および冷間
加工性を改善する元素であり,必要に応じて添加される
が,0.005%未満では効果が小さく,0.040%
を越えると熱間加工性を害する。よってTeの含有量は
0.005〜0.040%とする。Te: 0.005 to 0.040% Te is an element that improves machinability and cold workability by spheroidizing sulfide, and is added as necessary. %, The effect is small, 0.040%
Exceeding the value impairs hot workability. Therefore, the content of Te is set to 0.005 to 0.040%.
【0019】Pb:0.03〜0.30% Pbは鋼の被削性を改善する元素であり,必要に応じて
添加されるが,0.03%未満では効果小さく,また,
0.30%を越えると強度が劣化する。よって,Pbの
含有量は0.03〜0.30%とする。Pb: 0.03 to 0.30% Pb is an element for improving the machinability of steel, and is added as needed. However, if it is less than 0.03%, the effect is small.
If it exceeds 0.30%, the strength deteriorates. Therefore, the content of Pb is set to 0.03 to 0.30%.
【0020】Bi:0.03〜0.20% Biは切削加工時の切屑破砕性を向上する元素であり,
必要に応じて添加されるが,0.03%未満では効果が
小さく,また,0.20%を越えると熱間加工性が劣化
する。よって,Biの含有量は0.03〜0.20%と
する。Bi: 0.03% to 0.20% Bi is an element that improves the chip crushability during cutting.
It is added as needed, but if it is less than 0.03%, the effect is small, and if it exceeds 0.20%, the hot workability deteriorates. Therefore, the content of Bi is set to 0.03 to 0.20%.
【0021】Ca:0.0005〜0.0050% Caは酸化物の組成を制御することにより被削性を改善
する元素であり,必要に応じて添加されるが,0.00
05%未満では効果が小さく,また,0.0050%を
越えると硬質のCaSが生成して被削性が劣化する。よ
って,Caの含有量は0.0005〜0.0050%と
する。Ca: 0.0005 to 0.0050% Ca is an element that improves machinability by controlling the composition of the oxide, and is added as necessary.
If it is less than 05%, the effect is small, and if it exceeds 0.0050%, hard CaS is generated and the machinability deteriorates. Therefore, the content of Ca is set to 0.0005 to 0.0050%.
【0022】平均加工率:40%以上 冷間鍛造における加工率は時効処理後の強度に影響し,
平均加工率が40%未満では十分な強度が得られず,ま
た,40%以上では強度の変化が小さい。よって,平均
加工率は40%以上とする。Average working ratio: 40% or more The working ratio in cold forging affects the strength after aging treatment.
If the average working ratio is less than 40%, sufficient strength cannot be obtained, and if it is more than 40%, the change in strength is small. Therefore, the average processing rate is set to 40% or more.
【0023】時効処理温度:350〜550℃ 時効処理時間:120〜240分間 本発明の請求項第1項に該当する鋼材は冷間鍛造後に時
効処理を行うことで強度が向上するが,処理温度350
℃以下では加工ひずみの低い部分で十分な強度が得られ
ず,また,550℃を超えると加工ひずみの回復により
十分な硬さが得られない。さらに,処理時間120分未
満ではその時効による硬化が顕著でなく,また,処理時
間が240分を越えると硬さが低下する。よって,時効
処理温度は350〜550℃,時効処理時間は120〜
240分間とする。Aging temperature: 350 to 550 ° C. Aging time: 120 to 240 minutes The steel material corresponding to claim 1 of the present invention is improved in strength by aging after cold forging. 350
If the temperature is lower than ℃, sufficient strength cannot be obtained in a portion where the processing strain is low, and if it exceeds 550 ° C, sufficient hardness cannot be obtained due to recovery of the processing strain. Further, if the processing time is less than 120 minutes, the hardening due to the aging is not remarkable, and if the processing time exceeds 240 minutes, the hardness is reduced. Therefore, the aging temperature is 350 to 550 ° C and the aging time is 120 to
240 minutes.
【0024】[0024]
【実施例】以下に実施例を挙げて本発明を説明する。表
1に示す化学組成の鋼をアーク炉で溶製後,熱間圧延に
より直径25mmの丸棒を製造した。The present invention will be described below with reference to examples. After melting steel having the chemical composition shown in Table 1 in an arc furnace, a round bar having a diameter of 25 mm was manufactured by hot rolling.
【0025】[0025]
【表1】 [Table 1]
【0026】表1において,発明鋼1〜5については,
直径20mm長さ100mmに機械加工した後,軸に垂
直な方向すなわち直径方向に50%の圧縮率の冷間鍛造
を無潤滑で行った。この冷間鍛造材に表2に示す条件で
時効処理を行った後,軸心部から,試験部直径3mmの
引張試験片および引張圧縮疲労試験片を機械加工により
採取し強度を評価した。比較鋼AはJIS−SCM44
0であり,1200℃で同様の形状に熱間鍛造した後,
850℃に1時間保持後水冷の焼入れおよび550℃に
1時間保持後水冷の焼戻しを行い,軸心部から試験片を
採取した。さらに,冷間加工性を評価するため,直径2
0mm長さ30mmの円柱形機械加工品を軸方向に種々
の圧縮率で冷間鍛造し,円筒面を倍率20倍の実体顕微
鏡で観察し,割れの有無を判定した。In Table 1, for Invention Steels 1 to 5,
After machining to a diameter of 20 mm and a length of 100 mm, cold forging with a compressibility of 50% in the direction perpendicular to the axis, that is, in the diameter direction, was performed without lubrication. After aging treatment of the cold forged material under the conditions shown in Table 2, a tensile test piece and a tensile compression fatigue test piece having a test part diameter of 3 mm were sampled from the shaft center by machining to evaluate the strength. Comparative steel A is JIS-SCM44
0, and after hot forging to a similar shape at 1200 ° C,
After holding at 850 ° C. for 1 hour, water-cooled quenching and after holding at 550 ° C. for 1 hour, water-cooled tempering were performed, and test specimens were collected from the shaft center. Furthermore, in order to evaluate the cold workability, the diameter 2
A cylindrical machined product having a length of 0 mm and a length of 30 mm was cold-forged at various compression ratios in the axial direction, and the cylindrical surface was observed with a stereoscopic microscope having a magnification of 20 times to determine the presence or absence of cracks.
【0027】引張強さ,107回引張圧縮疲れ強さおよ
び割れ発生限界圧縮率を表2に示す。割れ発生限界圧縮
率は圧延材の冷間鍛造において割れ発生確率が5%とな
る圧縮率を採用した。The tensile strength, Table 2 shows the 10 7 times tensile compressive fatigue strength and crack occurrence limit compression ratio. As the crack occurrence limit compression ratio, a compression ratio at which a crack occurrence probability becomes 5% in cold forging of a rolled material was employed.
【0028】[0028]
【表2】 [Table 2]
【0029】表2において発明例1〜5はそれぞれ本発
明の請求項第1項に該当する発明鋼1〜5を本発明の請
求項第2項に該当する条件で冷間鍛造および時効処理を
行ったものであり,硬さ300HV以上,引張強さ96
0MPa以上,疲れ強さ520MPa以上であり,SC
M440を焼入焼戻しした比較例1と同等以上の強度が
得られている。また,限界圧縮率はいずれも70%以上
であり,良好な冷間鍛造性が得られている。In Table 2, Invention Examples 1 to 5 were prepared by subjecting invention steels 1 to 5 corresponding to claim 1 of the present invention to cold forging and aging treatment under the conditions corresponding to claim 2 of the present invention. The test was conducted with a hardness of 300 HV or more and a tensile strength of 96.
0MPa or more, fatigue strength 520MPa or more, SC
Strength equal to or higher than Comparative Example 1 obtained by quenching and tempering M440 was obtained. In addition, the critical compressibility is 70% or more in each case, and good cold forgeability is obtained.
【0030】すなわち,本発明の請求項第1項を満足す
る鋼材を製造し,この鋼材を本発明の請求項第2項に該
当する方法で冷間加工および時効処理することにより,
良好な冷間鍛造性および中炭素強靭鋼焼入焼戻し材と同
等の強度の両立を実現することが可能である。That is, a steel material satisfying claim 1 of the present invention is manufactured, and the steel material is subjected to cold working and aging treatment by a method corresponding to claim 2 of the present invention.
It is possible to achieve both good cold forgeability and strength equivalent to that of a medium-carbon toughened steel quenched and tempered material.
【0031】[0031]
【発明の効果】以上のように本発明によれば,従来困難
であった中炭素強靭鋼焼入焼戻し材と同等の強度と冷間
鍛造による高い形状精度および高品位な表面肌を有する
機械構造部材を安価に製造することが可能となり,産業
上の利点は極めて大きい。As described above, according to the present invention, a mechanical structure having the same strength as that of a medium-carbon toughened steel quenched and tempered material, high shape accuracy by cold forging and high-quality surface skin, which has been difficult in the past. The member can be manufactured at low cost, and the industrial advantage is extremely large.
Claims (2)
i:0.05〜0.15%,Mn:0.05〜0.35
%,Cu:1.00〜2.00,Ni:0.75〜1.
50%,Cr:0.15〜0.60%を含有し,さら
に,V:0.05〜0.15%,S:0.030〜0.
080%,Te:0.005〜0.040%,Pb:
0.03〜0.30%,Bi:0.03〜0.20%,
Ca:0.0005〜0.0050%から選んだ1種ま
たは2種以上を含有し,残部実質的にFeからなり,熱
間圧延状態の硬さが180HV以下であることを特徴と
する強度に優れた冷間鍛造用鋼。1. C: 0.05 to 0.15% by weight, S
i: 0.05 to 0.15%, Mn: 0.05 to 0.35
%, Cu: 1.00-2.00, Ni: 0.75-1.
50%, Cr: 0.15-0.60%, V: 0.05-0.15%, S: 0.030-0.
080%, Te: 0.005 to 0.040%, Pb:
0.03 to 0.30%, Bi: 0.03 to 0.20%,
Ca: one or more selected from 0.0005 to 0.0050%, the balance being substantially Fe, and a hardness in a hot-rolled state of 180 HV or less. Excellent cold forging steel.
i:0.05〜0.15%,Mn:0.05〜0.35
%,Cu:1.00〜2.00,Ni:0.75〜1.
50%,Cr:0.15〜0.60%を含有し,さら
に,V:0.05〜0.15%,S:0.030〜0.
080%,Te:0.005〜0.040%,Pb:
0.03〜0.30%,Bi:0.03〜0.20%,
Ca:0.0005〜0.0050%から選んだ1種ま
たは2種以上を含有し,残部実質的にFeからなる鋼に
平均加工率が40%以上の冷間鍛造を施した後,350
℃以上550℃以下の温度で120〜240分間保持す
る熱処理を行うことを特徴とした,強度に優れた冷間鍛
造部材の製造方法。2. C: 0.05 to 0.15% by weight, S
i: 0.05 to 0.15%, Mn: 0.05 to 0.35
%, Cu: 1.00-2.00, Ni: 0.75-1.
50%, Cr: 0.15-0.60%, V: 0.05-0.15%, S: 0.030-0.
080%, Te: 0.005 to 0.040%, Pb:
0.03 to 0.30%, Bi: 0.03 to 0.20%,
Ca: 350% after subjecting a steel containing at least one selected from 0.0005% to 0.0050% to at least 40% or more to a steel substantially composed of Fe and having a balance of at least 40%.
A method for producing a cold forged member having excellent strength, comprising performing a heat treatment at a temperature of not less than 550C and not more than 550C for 120 to 240 minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28279796A JPH1096045A (en) | 1996-09-19 | 1996-09-19 | Structural steel excellent in cold forgeability and strength, and production of forged member using the steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28279796A JPH1096045A (en) | 1996-09-19 | 1996-09-19 | Structural steel excellent in cold forgeability and strength, and production of forged member using the steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1096045A true JPH1096045A (en) | 1998-04-14 |
Family
ID=17657223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28279796A Pending JPH1096045A (en) | 1996-09-19 | 1996-09-19 | Structural steel excellent in cold forgeability and strength, and production of forged member using the steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1096045A (en) |
-
1996
- 1996-09-19 JP JP28279796A patent/JPH1096045A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7247078B2 (en) | Mechanical structural steel for cold working and its manufacturing method | |
JP4773106B2 (en) | Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts | |
JPH09324219A (en) | Production of high strength spring excellent in hydrogen embrittlement resistance | |
JP4328924B2 (en) | Manufacturing method of high-strength shaft parts | |
JPS6159379B2 (en) | ||
JP2841468B2 (en) | Bearing steel for cold working | |
JP3242336B2 (en) | Cold forging steel excellent in cold forgeability and fatigue strength and method for producing cold forged member | |
JP3721723B2 (en) | Machine structural steel with excellent machinability, cold forgeability and hardenability | |
JPH10265841A (en) | Production of high strength cold forging parts | |
JP3419333B2 (en) | Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same | |
JPH09202921A (en) | Production of wire for cold forging | |
JPH09279296A (en) | Steel for soft-nitriding excellent in cold forgeability | |
JPH11106863A (en) | Steel for mechanical structure excellent in cold workability and its production | |
JPH10152754A (en) | Case hardening steel and production of case hardening steel | |
JPH1096045A (en) | Structural steel excellent in cold forgeability and strength, and production of forged member using the steel | |
JPH04329824A (en) | Production of martensitic stainless steel for cold forging | |
JP4103191B2 (en) | High hardness steel for induction hardening with excellent corrosion resistance | |
JP3903996B2 (en) | Steel bar and machine structural member for cold forging with excellent machinability, cold forgeability and fatigue strength characteristics after quenching and tempering | |
JP3593686B2 (en) | Structural steel excellent in cold forgeability and strength, and method for manufacturing forged member using the steel | |
JPH108209A (en) | Non-heat treated steel excellent in cold workability, its production, and production of non-heat treated steel forged member | |
JP2003041344A (en) | High-carbon seamless steel pipe superior in secondary workability, and manufacturing method therefor | |
JPH10265840A (en) | Production of cold forging parts | |
JP3282491B2 (en) | Steel for mechanical structure excellent in cold workability and method for producing the same | |
JPH11106864A (en) | Steel for machine structure excellent cold-workability and its production | |
JP3738534B2 (en) | Age-hardening steel bar with excellent cold forgeability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20040527 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040720 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041112 |