JP2841468B2 - Bearing steel for cold working - Google Patents

Bearing steel for cold working

Info

Publication number
JP2841468B2
JP2841468B2 JP11659189A JP11659189A JP2841468B2 JP 2841468 B2 JP2841468 B2 JP 2841468B2 JP 11659189 A JP11659189 A JP 11659189A JP 11659189 A JP11659189 A JP 11659189A JP 2841468 B2 JP2841468 B2 JP 2841468B2
Authority
JP
Japan
Prior art keywords
cold working
cold
less
steel
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11659189A
Other languages
Japanese (ja)
Other versions
JPH02294451A (en
Inventor
豊 紅林
邦夫 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11659189A priority Critical patent/JP2841468B2/en
Publication of JPH02294451A publication Critical patent/JPH02294451A/en
Application granted granted Critical
Publication of JP2841468B2 publication Critical patent/JP2841468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷間加工用軸受鋼に関するもので、例えば
ころがり軸受レース、鋼球などの用途に供される鋼材と
して用いられる。
Description: TECHNICAL FIELD The present invention relates to a bearing steel for cold working, and is used as a steel material used for applications such as rolling bearing races and steel balls.

(従来の技術) 軸受の多くは、高C−高Cr系のJIS−SUJ2に代表され
る軸受鋼から製造されており、主に直径30mmφ以下の小
径軸受では切削加工、直径30mmφ以上の大径軸受では熱
間鍛造および切削加工の工程にて製造されている。
(Prior art) Most bearings are manufactured from bearing steel represented by JIS-SUJ2 of high C and high Cr system. Mainly, small-diameter bearings with a diameter of 30 mmφ or less are machined by cutting, large diameters with a diameter of 30 mmφ or more. Bearings are manufactured by hot forging and cutting processes.

小径軸受では圧延丸棒または鋼管パイプを球状化焼な
まし処理した後に旋盤等の工作機によって加工する方法
が採られている。一方、大径軸受では1200℃前後の温度
域にて鍛造加工してベアリング素材を製造し、続いて、
被削性改善を目的として球状化焼なまし処理した後に旋
盤等の工作機によって加工する。その後、その加工材に
焼入れ、焼もどし処理を施して通常ロックウエル硬さHR
C60以上の硬さとし、最後に研磨加工、仕上げ加工を行
ってベアリングに製造する。
In the case of a small-diameter bearing, a method is employed in which a rolled round bar or a steel pipe is subjected to spheroidizing annealing and then processed by a machine tool such as a lathe. On the other hand, for large-diameter bearings, bearing materials are manufactured by forging in a temperature range around 1200 ° C.
After spheroidizing annealing for the purpose of improving machinability, it is processed by a machine tool such as a lathe. After that, the work material is quenched and tempered to give normal Rockwell hardness HR
Hardness of C60 or more, and finally polishing and finishing processing to produce bearings.

これらの製造方法に対し冷間加工(例えば冷間鍛造)
によって軸受を製造した場合には、(1)エネルギーの
低減(2)加工歩留りの向上(3)製造コストの低減
等が可能である。従って軸受の製造において冷間加工
は、従来の製造工程に対して種々の点で優れた加工方法
である。
Cold working (eg cold forging) for these manufacturing methods
When a bearing is manufactured by (1) energy reduction (2) processing yield improvement (3) manufacturing cost reduction
Etc. are possible. Therefore, in the production of bearings, cold working is an excellent working method in various points over the conventional manufacturing process.

しかし、このような加工を実施する場合には素材を冷
間鍛造したとき、その変形抵抗が小さく、かつ変形能が
大きい、即ち、割れずに加工ができ、かつ用いる工具の
損耗が小さくなるような材質であることが要求される。
However, when performing such processing, when the material is cold forged, its deformation resistance is small, and its deformability is large, that is, it can be processed without cracking, and the wear of the tool used is reduced. Material is required.

(発明が解決しようとする課題) しかしながら、現在の軸受鋼の主流を占めているJIS
−SUJ2の場合、一般に、C、Siの含有量はそれぞれ、C:
0.95〜1.10wt%、Si:0.15〜0.35wt%である、そのた
め、冷間加工素材に供するために実施する球状化焼なま
し処理の過程でC、Siが基地中に固溶して材料の固溶硬
化を促進し、その結果、冷間加工性を低下させるという
難点がある。また、前記球状化焼なまし処理時に析出す
る炭化物も、例えば焼なまし処理時の冷却速度を大にす
ると、その形状が線形になりやすく、このことも冷間成
形性を低下する原因になっている。
(Problems to be solved by the invention) However, JIS, which occupies the current mainstream of bearing steel,
In the case of -SUJ2, the contents of C and Si are generally C:
0.95 to 1.10 wt%, Si: 0.15 to 0.35 wt%. Therefore, in the process of spheroidizing annealing that is performed to provide cold-worked materials, C and Si are dissolved in the matrix to form a solid solution. There is a disadvantage that solid solution hardening is promoted, and as a result, cold workability is reduced. In addition, the carbides precipitated during the spheroidizing annealing also tend to have a linear shape when, for example, the cooling rate during the annealing is increased, which also reduces the cold formability. ing.

このような問題は、C、Siの含有量を減ずればある程
度解消することはできる。一般にC、Siの含有量を減ず
れば加工性が向上することは周知の事実であるが、軸受
鋼においては、C、Siはいずれも硬さや強度を確保する
ために必須の成分であり、これらの減量は転動寿命を短
くすることになる。
Such a problem can be solved to some extent by reducing the contents of C and Si. In general, it is a well-known fact that the workability is improved if the content of C and Si is reduced, but in bearing steel, C and Si are both essential components for securing hardness and strength. These weight reductions will shorten the rolling life.

本発明は、上記したように相矛盾する問題を、各成分
の重量比を後述するように規定することによって解決
し、冷間加工性、転動寿命のいずれも優れている冷間加
工用軸受鋼を提供することを目的とする。
The present invention solves the contradictory problems as described above by defining the weight ratio of each component as described below, and provides a cold working bearing excellent in both cold workability and rolling life. It aims to provide steel.

(課題を解決するための手段) 前記課題を解決するための本発明の第1の発明の冷間
加工用軸受鋼は、組成がwt%で C :0.45〜0.70% Si:<0.15% Mn:≦0.40% Cr:1.00超〜2.50% P :≦0.015% B :0.0005〜0.0100% 残部がFeおよび不可避的不純物からなり、C、Crの間
で0.7≦[Cr/C]≦5.0を満足し、かつ、Mn、Cr、Bの間
で0.55≦[Mn+Cr+100B]≦3.50を満足することを特徴
とする。
(Means for Solving the Problems) The bearing steel for cold working of the first invention of the present invention for solving the above-mentioned problems has a composition of wt% C: 0.45 to 0.70% Si: <0.15% Mn: ≦ 0.40% Cr: more than 1.00 to 2.50% P: ≦ 0.015% B: 0.0005 to 0.0100% The balance consists of Fe and unavoidable impurities, and satisfies 0.7 ≦ [Cr / C] ≦ 5.0 between C and Cr, Further, it is characterized in that 0.55 ≦ [Mn + Cr + 100B] ≦ 3.50 among Mn, Cr and B is satisfied.

本発明の第2の発明の冷間加工用軸受鋼は、焼なまし
処理時に析出する炭化物の平均直径が1μm以下、面積
率が25%以下、かつアスペクト比0.5以上のものが50%
以上含まれていることを特徴とする。ここでアスペクト
比とは炭化物の短径と長径の比率をいい、アスペクト
比:A、炭化物の短径:X、炭化物の長径:Yとすれば、次式
A=X/Y で定義される。
In the bearing steel for cold working of the second invention of the present invention, 50% of carbides precipitated during the annealing treatment have an average diameter of 1 μm or less, an area ratio of 25% or less, and an aspect ratio of 0.5 or more.
It is characterized in that it is included above. Here, the aspect ratio refers to the ratio of the minor axis to the major axis of the carbide. If the aspect ratio is A, the minor axis of the carbide is X, and the major axis of the carbide is Y, the following equation is defined as A = X / Y.

本発明の第3の発明の冷間加工用軸受鋼は、前記組成
にはさらにwt%で Ni:≦1.00% Mo:≦0.50% Nb:≦0.30% V :≦0.50% のうち1種または2種以上が含まれており、さらに必要
に応じて Pb :≦0.25% S :≦0.25% Ca :≦0.15% Rem:≦0.15% Te :≦0.030% のうち1種または2種以上を含むことを特徴とする。
The bearing steel for cold working according to the third invention of the present invention further comprises one or more of Ni: ≦ 1.00% Mo: ≦ 0.50% Nb: ≦ 0.30% V: ≦ 0.50% in wt% in the composition. At least one of Pb: ≦ 0.25% S: ≦ 0.25% Ca: ≦ 0.15% Rem: ≦ 0.15% Te: ≦ 0.030% Features.

本発明の第4の発明の冷間加工用軸受鋼は、前記不可
避的不純物のうち O :≦0.0015% Ti:≦0.0020% Al:≦0.0350% であることを特徴とする。
The bearing steel for cold working according to a fourth aspect of the present invention is characterized in that, among the inevitable impurities, O: ≦ 0.0015% Ti: ≦ 0.0020% Al: ≦ 0.0350%.

前述した各成分の下限値および上限値を定めた理由は
次のとおりである。
The reasons for setting the lower limit and upper limit of each component described above are as follows.

第1の発明において、Cは、強度を確保するため0.45
%以上にし、冷間加工性を向上させるために0.70%以下
にした。ロックウエル硬さが61以上の高い硬さをもたせ
るためには、Cは0.55%以上にするのが望ましい。Si
は、冷間加工性を向上させるために0.15%未満とした。
Mnは、焼入れ性を確保するために添加し、冷間加工性を
向上させるために0.40%以下とした。Crは、転動寿命を
確保するために1.00%を超える量とし、被削性の低下を
防止するために2.50%以下とした。Pは、冷間加工性を
向上させるために0.015%以下とした。Bは、焼入れ性
を確保するために0.0005%以上にし、分塊圧延時等の熱
間加工性を良好にするために0.0100%以下にした。
In the first invention, C is 0.45 to secure strength.
% Or less, and 0.70% or less to improve cold workability. In order to have a high Rockwell hardness of 61 or more, C is preferably set to 0.55% or more. Si
Was made less than 0.15% in order to improve cold workability.
Mn was added to secure hardenability, and was made 0.40% or less to improve cold workability. Cr is set to an amount exceeding 1.00% in order to secure the rolling life, and to 2.50% or less in order to prevent a decrease in machinability. P is set to 0.015% or less in order to improve cold workability. B was made 0.0005% or more to ensure hardenability, and made 0.0100% or less to improve hot workability at the time of slab rolling.

CとCrの間で、0.7≦Cr/Cとしたのは転動寿命を向上
させるためであり、Cr/C≦5.0としたのは鋼塊鋳造時に
析出する大型炭化物の発生を抑止するとともにCr/Cの値
が5.0を超えたとしても転動寿命はさほど向上しないた
めである。また 0.55≦Mn+Cr+100B としたのは焼入れ性を向上するためであり、 Mn+Cr+100B≦3.50 としたのは、冷間加工性を向上させかつ3.50を超える量
にしても焼入れ性はさほど向上しないためである。
The reason why 0.7 ≦ Cr / C between C and Cr is to improve the rolling life, and the reason that Cr / C ≦ 5.0 is to suppress the generation of large carbides that precipitate during This is because even if the value of / C exceeds 5.0, the rolling life is not significantly improved. The reason for satisfying 0.55 ≦ Mn + Cr + 100B is to improve the hardenability. The reason for satisfying Mn + Cr + 100B ≦ 3.50 is to improve the cold workability and to harden the hardenability so much even if the amount exceeds 3.50.

第2の発明において、焼なまし処理時に析出する炭化
物の平均直径および面積率を所定値以下とし、かつアス
ペクト比が0.5以上のものが50%以上含まれることとし
たのは、軸受鋼の冷間加工性を向上させるためである。
In the second invention, the reason why the average diameter and the area ratio of the carbide precipitated during the annealing treatment are set to a predetermined value or less and that the one having an aspect ratio of 0.5 or more are contained by 50% or more is that the bearing steel is cooled. This is for improving the inter-workability.

第3の発明において、Niは転動寿命および焼入れ性を
向上させるために添加し、被削性の低下を防止するため
に1.00%以下とした。Moは転動寿命および焼入れ性を向
上させるために添加し、冷間加工性を防止するために0.
50%未満とした。NbおよびVは転動寿命を向上させるた
めに添加し、それぞれ冷間加工性の低下を防止するため
Nbは0.3%以下、Vは0.50%以下とした。
In the third invention, Ni is added to improve rolling life and hardenability, and is set to 1.00% or less to prevent a decrease in machinability. Mo is added to improve rolling life and hardenability, and is added to prevent cold workability.
It was less than 50%. Nb and V are added to improve the rolling life, and to prevent a decrease in cold workability, respectively.
Nb was 0.3% or less and V was 0.50% or less.

第3の発明において、選択元素としてのPbおよびS
は、それぞれ被削性を向上させるために添加し、冷間加
工性および転動寿命の低下を防止するために0.25%以下
とした。CaおよびRem(希土類元素)はともに被削性を
向上させるために添加し転動寿命の低下を防止するため
に0.15%以下とした。Teは被削性の向上を図るために添
加し、転動寿命の低下を防止するために0.030%以下と
した。
In the third invention, Pb and S as selective elements
Was added to improve machinability, respectively, and was set to 0.25% or less to prevent a reduction in cold workability and rolling life. Ca and Rem (rare earth elements) were both added to improve machinability, and were set to 0.15% or less to prevent a reduction in rolling life. Te was added to improve machinability, and was made 0.030% or less to prevent a reduction in rolling life.

第4の発明において、O、Ti、Alを所定%以下とした
のは、鋼材中の介在物を減少させ、転動寿命の向上およ
び加工性を向上させるためである。
In the fourth invention, the reason why O, Ti, and Al are set to a predetermined percentage or less is to reduce inclusions in the steel material, improve the rolling life and improve the workability.

(実施例) 以下、本発明の実施例について説明する。(Example) Hereinafter, an example of the present invention will be described.

まず各種の軸受鋼の製造方法について説明する。所定
の化学組成をもつ鋼を真空誘導炉により溶解し、鋳造し
た。得られたインゴットを熱間鍛造し、第1図に示す熱
処理条件でのもとで850℃、60分加熱後、焼ならしし、
次いで第2図に示す所定の熱処理条件で球状化焼なまし
をし、得られた鋼を直径6mm、高さ10mmの円柱状の試験
片に切削加工した。
First, methods for producing various bearing steels will be described. Steel having a predetermined chemical composition was melted in a vacuum induction furnace and cast. The obtained ingot was hot forged, heated at 850 ° C. for 60 minutes under the heat treatment conditions shown in FIG.
Next, spheroidizing annealing was performed under predetermined heat treatment conditions shown in FIG. 2, and the obtained steel was cut into a cylindrical test piece having a diameter of 6 mm and a height of 10 mm.

各種鋼材の化学成分は第1表に示すとおりである。 The chemical components of various steel materials are as shown in Table 1.

第1表に示すそれぞれの鋼について、球状焼なまし後
の硬さをロックウエル硬さ試験により測定した。さらに
各種の試験片から試料を切出し、表面バフ研磨により鏡
面仕上し、腐食液に浸漬して腐食させ、その表面を6000
倍にて電子顕微鏡観察し、画像解析した。その結果、炭
化物の平均直径、炭化物の面積率および、アスペクト比
0.5以上の炭化物量を測定したところ、第2表に示す結
果を得た。
For each of the steels shown in Table 1, the hardness after spherical annealing was measured by a Rockwell hardness test. Furthermore, samples were cut out from various test pieces, mirror-finished by surface buffing, immersed in a corrosive solution to cause corrosion, and the surface
Observation with an electron microscope was performed at × magnification and image analysis was performed. As a result, the average diameter of carbide, the area ratio of carbide, and the aspect ratio
When the amount of carbide of 0.5 or more was measured, the results shown in Table 2 were obtained.

冷間加工テスト 次いで各種の鋼材について冷間加工性を評価した。第
1の試験は変形抵抗および限界圧縮率を測定することで
行なった。結果は第3表に示すとおりである。
Cold work test Next, various steel materials were evaluated for cold workability. The first test was performed by measuring the deformation resistance and the critical compression ratio. The results are as shown in Table 3.

ここに「変形抵抗」は、次のようにして求めた。前記
所定サイズの試験片を圧縮変形し、そのときの荷重と試
験片の高さを測定した。変形後の高さをH0としたとき、
歪量εはε=12/H0で表わされ、式ln(ε)の値が所定
値のときの荷重を断面積で割った値を変形抵抗とした。
「限界圧縮率」は、割れ発生した試験片の高さをH1とし
たときの次式 (1−H1/12)×100(%) で求めた値とした。
Here, the "deformation resistance" was obtained as follows. The test piece of the predetermined size was compressed and deformed, and the load at that time and the height of the test piece were measured. When the height after deformation is H 0 ,
The strain amount ε is represented by ε = 12 / H 0 , and the value obtained by dividing the load when the value of the expression ln (ε) is a predetermined value by the cross-sectional area was defined as the deformation resistance.
"Critical compressibility" was a value calculated by the following formula (1-H 1/12) × 100 (%) when the height of the cracking test specimens was H 1.

第3表に示されるように、比較例1および2では、変
形抵抗が実施例1〜11に比べ相対的に大きく、かつ限界
圧縮率も実施例1〜11に比べ相対的に小さいことから、
冷間加工性が悪いことが解る。これに対し、実施例1〜
11は、比較例1および2に比べ相対的に冷間加工性が良
好であることが判明した。
As shown in Table 3, in Comparative Examples 1 and 2, the deformation resistance is relatively large as compared with Examples 1 to 11, and the limit compression ratio is relatively small as compared with Examples 1 to 11,
It turns out that cold workability is bad. In contrast, Examples 1 to
11 was found to have relatively good cold workability as compared with Comparative Examples 1 and 2.

次に冷間加工性の評価の第2の試験として割れ発生率
を測定した。この割れ試験の条件は、まず直径30mm、高
さ45mmの円柱状の試験片について、圧縮変形後の高さを
H2としたとき、圧縮率[(1−H2/45)×100](%)が
50〜80%の範囲で割れの発生する確率を求めた。試験は
実施例および比較例についてそれぞれ10個ずつ行なっ
た。結果は第4表に示すとおりである。
Next, a crack generation rate was measured as a second test for evaluating cold workability. The conditions for this cracking test are as follows: First, the height after compression deformation of a cylindrical test piece of 30 mm in diameter and 45 mm in height
When the H 2, the compression ratio [(1-H 2/45 ) × 100] (%) is
The probability of occurrence of cracks in the range of 50 to 80% was determined. The test was performed for each of Examples and Comparative Examples. The results are as shown in Table 4.

第4表から明らかなように、比較例1および2では、
60%の圧縮率でそれぞれ割れの発生が確認された。これ
に対し実施例1〜11では、いずれも圧縮率60%で割れが
発生したものはなかった。これにより、実施例の鋼材で
は冷間加工性が良好であることが判明した。
As is clear from Table 4, in Comparative Examples 1 and 2,
Cracking was confirmed at a compression ratio of 60%. On the other hand, in Examples 1 to 11, none of them had cracks at a compression ratio of 60%. Thereby, it turned out that the cold workability is good in the steel material of an Example.

転動寿命テスト 前述した各種の実施例および比較例について転動寿命
を測定した。試験条件は次のとおりである。
Rolling life test Rolling life was measured for the various examples and comparative examples described above. The test conditions are as follows.

試料 :ラジアル型寿命試験片 (直径12mm、長さ22mm) 試験条件:負荷応力 600kgf/mm2 回転速度 46260rpm 試験片の熱処理条件:球状化焼なまし処理後 下記の焼入れ・焼もどし 焼入れ :850℃×30分 油冷 焼もどし:180℃×60分 空冷 を行なったものを用いた。Specimen: Radial life test specimen (diameter 12mm, length 22mm) Test condition: applied stress 600kgf / mm 2 rotation speed 46260rpm Heat treatment condition of test specimen: After spheroidizing annealing The following quenching / tempering quenching: 850 ℃ Oil-cooled tempering for 30 minutes: 180 ° C for 60 minutes.

得られた試験片のロックウエル硬さ(HRC)および転
動寿命を測定した。その結果は第5表に示すとおりであ
る。
Rockwell hardness (HRC) and rolling life of the obtained test piece were measured. The results are as shown in Table 5.

第5表において、転動寿命は、比較例2の転動寿命を
標準寿命「1.0」とし、これに対するそれぞれの転動寿
命の比率を示している。なお実施例1〜3については、
未測定である。
In Table 5, the rolling life is the ratio of each rolling life to the standard life "1.0" of the rolling life of Comparative Example 2. In addition, about Examples 1-3,
Not measured.

第5表から明らかなように、比較例1および2に比べ
実施例4〜11では、相対的に転動寿命が長いことが判明
した。
As is clear from Table 5, it was found that the rolling life was longer in Examples 4 to 11 than in Comparative Examples 1 and 2.

次に第2の転動寿命テストを条件を変えて行なった。
前述した転動寿命試験と比べ異なる点は、負荷応力を40
0kgf/mm2としたことである。他の試験条件および熱処理
条件については前記したものと同一条件である。この転
動寿命テストの結果は第6表に示すとおりであった。
Next, a second rolling life test was performed under different conditions.
The difference from the rolling life test described above is that the applied stress is 40
0 kgf / mm 2 . Other test conditions and heat treatment conditions are the same as those described above. The results of the rolling life test are as shown in Table 6.

第6表から明らかなように実施例1〜6では、比較例
1に比べ相対的に転動寿命がかなり長いことが判明し
た。
As is clear from Table 6, in Examples 1 to 6, it was found that the rolling life was relatively longer than that of Comparative Example 1.

(発明の効果) 以上説明したように、本発明の冷間加工用軸受鋼によ
れば、冷間加工が比較的行ない易い鋼材になるので軸受
鋼の種類、用途に応じて冷間加工作業を簡便化すること
ができ、しかも転動寿命特性に優れた軸受鋼が得られる
という効果がある。
(Effects of the Invention) As described above, according to the bearing steel for cold working of the present invention, since the cold working is a steel material which is relatively easy to perform, the cold working work can be performed according to the type and use of the bearing steel. There is an effect that bearing steel which can be simplified and has excellent rolling life characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は焼なまし工程を表わす熱処理工程図、第2図は
球状化焼なまし工程を表わす熱処理工程図である。
FIG. 1 is a heat treatment process diagram showing an annealing process, and FIG. 2 is a heat treatment process diagram showing a spheroidizing annealing process.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成がwt%で C :0.45〜0.70% Si:<0.15% Mn:≦0.40% Cr:1.00超〜2.50% P :≦0.015% B :0.0005〜0.0100% 残部がFeおよび不可避的不純物からなり、 C、Crの間で、 0.7≦[Cr/C]≦5.0を満足し、 かつ、Mn、Cr、Bの間で、 0.55≦Mn+Cr+100B≦3.50 を満足することを特徴とする冷間加工用軸受鋼。1. Composition: wt% C: 0.45-0.70% Si: <0.15% Mn: ≦ 0.40% Cr: more than 1.00-2.50% P: ≦ 0.015% B: 0.0005-0.0100% The balance is Fe and inevitable Cold, characterized by satisfying 0.7 ≦ [Cr / C] ≦ 5.0 between C and Cr and satisfying 0.55 ≦ Mn + Cr + 100B ≦ 3.50 between Mn, Cr and B Bearing steel for machining. 【請求項2】焼なまし処理時に析出する炭化物の平均直
径が1μm以下、面積率が25%以下、かつアスペクト比
(短径/長径)0.5以上のものが50%以上含まれている
ことを特徴とする請求項1に記載の冷間加工用軸受鋼。
2. The method according to claim 1, wherein carbides precipitated during the annealing treatment have an average diameter of 1 μm or less, an area ratio of 25% or less, and an aspect ratio (minor axis / major axis) of 0.5 or more contained at least 50%. The bearing steel for cold working according to claim 1, wherein:
【請求項3】前記組成にはさらにwt%で Ni:≦1.00% Mo:≦0.50% Nb:≦0.30% V :≦0.50% のうち1種または2種以上が含まれており、さらに必要
に応じて Pb :≦0.25% S :≦0.25% Ca :≦0.15% Rem:≦0.15% Te :≦0.030% のうち1種または2種以上を含む請求項1または2に記
載の冷間加工用軸受鋼。
3. The composition further contains one or more of Ni: ≦ 1.00% Mo: ≦ 0.50% Nb: ≦ 0.30% V: ≦ 0.50% in wt%, and further required. 3. The bearing for cold working according to claim 1, wherein the bearing contains one or more of Pb: ≦ 0.25% S: ≦ 0.25% Ca: ≦ 0.15% Rem: ≦ 0.15% Te: ≦ 0.030% steel.
【請求項4】前記不可避的不純物のうち O :≦0.0015% Ti:≦0.0020% Al:≦0.0350% である請求項1、2または3のいずれか一項に記載の冷
間加工用軸受鋼。
4. The bearing steel for cold working according to claim 1, wherein O: ≦ 0.0015% Ti: ≦ 0.0020% Al: ≦ 0.0350% of the unavoidable impurities.
JP11659189A 1989-05-10 1989-05-10 Bearing steel for cold working Expired - Fee Related JP2841468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11659189A JP2841468B2 (en) 1989-05-10 1989-05-10 Bearing steel for cold working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11659189A JP2841468B2 (en) 1989-05-10 1989-05-10 Bearing steel for cold working

Publications (2)

Publication Number Publication Date
JPH02294451A JPH02294451A (en) 1990-12-05
JP2841468B2 true JP2841468B2 (en) 1998-12-24

Family

ID=14690932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11659189A Expired - Fee Related JP2841468B2 (en) 1989-05-10 1989-05-10 Bearing steel for cold working

Country Status (1)

Country Link
JP (1) JP2841468B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733388A (en) * 1994-08-11 1998-03-31 Daido Tokiushuko Kabushiki Kaisha Steel composition for bearings and method of producing the same
JPH0853735A (en) * 1994-08-11 1996-02-27 Daido Steel Co Ltd Steel for bearing
JP3565960B2 (en) * 1995-11-01 2004-09-15 山陽特殊製鋼株式会社 Bearing steel, bearings and rolling bearings
JP2006153188A (en) * 2004-11-30 2006-06-15 Nsk Ltd Roller bearing system for supporting wheel
JP2011190921A (en) * 2010-03-17 2011-09-29 Nsk Ltd Thrust roller bearing
JP2011256456A (en) * 2010-06-11 2011-12-22 Sanyo Special Steel Co Ltd Method for manufacturing steel for cold forging
JP6100676B2 (en) * 2013-11-12 2017-03-22 株式会社神戸製鋼所 Spheroidizing heat treatment method for alloy steel

Also Published As

Publication number Publication date
JPH02294451A (en) 1990-12-05

Similar Documents

Publication Publication Date Title
JP4435953B2 (en) Bar wire for cold forging and its manufacturing method
JP6528860B2 (en) Steel wire for non-heat treatment machine parts and non-heat treatment machine parts
JP3405277B2 (en) Steel wire rod, steel bar and steel pipe for bearing element parts with excellent machinability
JP6461672B2 (en) Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering
JP2841468B2 (en) Bearing steel for cold working
JP7151885B2 (en) steel wire
JP2001026836A (en) Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength
JP7155644B2 (en) bolt
CN111321346B (en) Ultrahigh-strength spring steel with excellent hydrogen-induced delayed fracture resistance and production method thereof
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
KR20180082543A (en) High strength bolt
JPH09287056A (en) Wire rod and bar steel excellent on cold forgeability and their production
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JPH0526850B2 (en)
JPH09217143A (en) Steel for machine structural use, excellent in cold forgeability, induction hardenability, and rolling fatigue characteristics
JP3627393B2 (en) Wire rod steel with excellent cold-cutability
JPH11106863A (en) Steel for mechanical structure excellent in cold workability and its production
CN111334708B (en) High-strength spring steel with tensile strength of more than or equal to 2250MPa and excellent fatigue performance and production method thereof
WO2023248556A1 (en) Steel for high-frequency hardening
JPH11335773A (en) Bearing steel excellent in cold workability
JP4196485B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP3217943B2 (en) Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering
JP4103191B2 (en) High hardness steel for induction hardening with excellent corrosion resistance
JP2000282184A (en) High hardness steel for induction hardening excellent in machinability and corrosion resistance
JP2024002995A (en) Steel for induction hardening

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees