JP3627393B2 - Wire rod steel with excellent cold-cutability - Google Patents
Wire rod steel with excellent cold-cutability Download PDFInfo
- Publication number
- JP3627393B2 JP3627393B2 JP21338896A JP21338896A JP3627393B2 JP 3627393 B2 JP3627393 B2 JP 3627393B2 JP 21338896 A JP21338896 A JP 21338896A JP 21338896 A JP21338896 A JP 21338896A JP 3627393 B2 JP3627393 B2 JP 3627393B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- steel
- carbide
- wire rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、冷間切断性に優れる炭素鋼または合金鋼からなる線棒鋼材に関するものである。
【0002】
【従来の技術】
自動車、産業機械等の機械部品の製造には、従来から、炭素鋼または合金鋼の線棒鋼材が素材として使用されている。
これら機械部品は、一般に、線棒形状に圧延した鋼素材を球状化焼なましして線棒鋼材としたのち、これを切断し、冷間鍛造したのち、最後に切削等の加工を行うことによって製造される。ここで、冷間鍛造は、加工精度、量産性およびコストの点で優れた加工法であり、また球状化焼なましは、変形抵抗を低下させ冷間鍛造性を向上させるために行なわれるものである。
ところで、機械部品の上記製造工程において、線棒鋼材を切断するための、最も安価で生産性の高い方法は、冷間でのシャー切断である。
しかしながら、冷間でのシャー切断の場合、素材の搬送疵を起点として、冷間シャー割れが発生することがある。このような場合には、生産性が低い温間でのシヤ一切断、あるいは冷間でののこ切断を余儀なくされて、コストアップの原因となっていた。
【0003】
冷間シャー割れが発生する原因として素材の切欠感受性の高さが挙げられる。このため、冷間シャー割れ防止のためには、切欠感受性の低下が有効であると考えられ、そのための具体的対策として、
1)酸素、窒素、燐など有害成分の低下
2)フェライト粒径の微細化
などの手段が講じられてきた。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の対策のうち、上記1)は不純物低減のためのコストの大幅増を招くという問題が、また、上記2)は効果はあるものの依然として冷間シャー割れが発生し、割れ防止の決め手とはなっていないという問題があった。
そこで、本発明の目的は、従来技術が抱えていた上記問題に鑑み、安価で冷間切断性に優れた線棒鋼材を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記の問題を解決するために鋭意検討を行った結果、冷間切断性に対して、鋼中の炭化物の平均粒径と鋼中における炭化物の体積割合が大きな影響を及ほしてしており、これらを適正な範囲に制御することにより冷間切断性が改善されることを知見し、本発明を完成するに至った。すなわち本発明の要旨構成は以下のとおりである。
【0007】
(1)C:0.40〜1.50mass%、Si:0.10〜1.5mass%、Mn:0.10〜2.0mass%、P:0.05mass%以下、S:0.05mass%以下、Cr:0.1〜2.50mass%を含有し、残部はFe及び不可避的不純物からなり、炭化物の平均粒径が2.0μm以下、かつ炭化物の鋼中に占める体積割合(%)が7×C量(mass%)以下であることを特徴とする冷間切断性に優れる線棒鋼材。
【0008】
(2)C:0.40〜1.50mass%、Si:0.10〜1.5mass%、Mn:0.10〜2.0mass%、P:0.05mass%以下、S:0.05mass%以下、Cr:0.1〜2.50mass%、Mo:0.10〜1.0mass%を含有し、残部はFe及び不可避的不純物からなり、炭化物の平均粒径が2.0μm以下、かつ炭化物の鋼中に占める体積割合(%)が7×C量(mass%)以下であることを特徴とする冷間切断性に優れる線棒鋼材。
【0009】
【発明の実施の形態】
発明者らの研究調査によれば、線棒鋼材の冷間切断性の改善を目指した研究の中で、この鋼材の切欠感受性(シャルピー衝撃特性)は炭化物の平均粒径および鋼中体積率によって左右され、これらを適正範囲に制御することにより切欠感受性、ひいては冷間切断性を向上させることができる。なお、本発明における炭化物の平均粒径と鋼中体積率の観察面は、線棒鋼材の圧延方向の切断面についてのものである。
なお、このような炭化物の影響は、本発明が対象とする線棒鋼材は、焼入れ, 焼戻しを行うと比較的硬いマルテンサイト中に硬い炭化物が分散した組織となり、炭化物の粒径増大や体積率増加が切欠感受性を増大させることによるものと考えられる。
【0010】
次に、鋼の成分組成および炭化物の粒径、体積率を要旨構成のとおりに限定した理由について説明する。
C:0.40〜1.50mass%
Cは、固溶により基地を強化し、機械部品としての十分な強度、耐磨耗性を得るのに必要な元素である。含有量が0.40mass%未満ではその効果が少ない。一方、1.50mass%を超えて添加すると、鋼の靱性が低下する。したがってC含有量は0.40〜1.50mass%とする。
【0011】
Si:0.10〜1.5 mass%
Siは、脱酸の他に、基地に固溶して強度を高める元素として必要な元素である。含有量が0.10mass%未満ではこの効果がなく、一方1.5 mass%を超えて添加すると、特に球状化焼なまし後の硬さが上昇するため、被削性および加工性が著しく低下する。よってSi量は0.10〜1.5 mass%の範囲に限定する。
【0012】
Mn:0.10〜2.0 mass%
Mnは、鋼の焼入性を向上させることによって基地の強度, 靱性を高める。しかし、0.10mass%に満たないとこの添加効果に乏しく、一方2.0 mass%を超えて添加すると被削性, 靱性および加工性が著しく低下するので、Mn量は0.10〜2.0 mass%の範囲に限定する。なお、より好ましくは0.50〜1.20mass%の範囲とするのがよい。
【0013】
P:0.05mass%以下
Pは、靱性あるいは耐疲労性に悪影響を及ぼすため、できるだけ少ない方がよい。ただし、Pの低下は大きなコストアップ要因となるので、0.05mass%以下に限定する。
【0014】
S:0.05mass%以下
Sは、切削性を向上せしめる元素であるが、0.05mass%を超えるとその効果はほぼ飽和し、逆に靱性あるいは耐疲労性に悪影響を及ぼすため、0.05mass%以下に限定する。
【0015】
Cr:0.10〜2.50mass%
Crは、鋼の焼入れ性改善と炭化物の球状化のうえで有効に寄与する。Crの量が0.10mass%未満ではその効果が少なく、一方、2.50mass%を超えると炭化物の粗大化による切削性の低下を招くとともに、コストアップをも招く。したがって、Cr添加量は0.10〜2.50mass%の範囲とする。
【0016】
Mo:0.10〜1.0 mass%
Moは、常温および高温での強度を上昇させる効果があるが、1.0 mass%を超えると高価となるので、1.0 mass%以下の範囲で添加する。なお、強度上昇効果を発揮するためには、0.10mass%以上添加することが好ましい。
【0017】
・炭化物の平均粒径:2.0 μm以下
図1は、線棒鋼材における炭化物の平均粒径と冷間シャー切断時の割れ発生率との関係を調べた結果である。ただし、炭化物の鋼中での体積割合(%)が7×C量(mass%)以下を満たすもののみを対象とした。
図1より、炭化物の平均粒径が冷間シヤー切断時の割れ発生に大きな影響を及ほし、この値が2.3 μmより小さい領域では割れが格段に滅少し、2.0 以下では割れは発生しなくなることがわかる。これから、本発明では炭化物の平均粒径を2.0 μm以下とする。
【0018】
・炭化物の鋼中における体積割合(%):7×C量(mass%)以下
図2は、炭化物の平均粒径が 2.0μm以下である線棒鋼材について、炭化物の鋼中体積率と冷間シャー切断時の割れ発生率との関係について調べた結果である。
図2より、炭化物の鋼中体積率が冷間シャー切断時の割れ発生に大きな影響を及ぼし、この鋼中体積率が8×C量(mass%)より小さい領域では割れが格段に減少し、さらに7×C量(mass%)以下では割れは発生しなくなることがわかる。よって、本発明における炭化物の鋼中体積率は、7×C量(mass%)以下とする。
【0019】
次に、本発明鋼材の製造方法について説明する。溶製は、転炉、電気炉等いずれの方法でもよく、スラブの製造は、連鋳、造塊いずれの工程によってもよい。次いで、熱間圧延したのち、球状化焼きなましを行う。その後、焼入れ, 焼もどしを実施する。
特に、炭化物の粒径および炭化物の鋼材中における体積割合を所定範囲に制御するためには、焼入れ工程を 870〜920 ℃の条件で行うことが望ましい。
【0020】
【実施例】
以下本発明を実施例にもとづいて説明する。
表1に示す化学組成を有する鋼を、転炉で溶製し、連続鋳造法でスラブとした。その後、棒鋼圧延工程を常法の条件で、55mmφの棒材に熱間圧延した。また、比較例も同じ条件で、55mmφの棒材に熱間圧延した。
これらの棒材に常法の条件で球状化焼なましを施して線棒鋼材を製造した。その後、これらの棒材を焼入れ, 焼もどし処理を行った。ただし、比較例は発明例より80℃低い焼入れ温度 790〜840 ℃を選択した。
得られた上記鋼材から、ミクロサンプルを切り出し、その圧延方向断面を5000倍で10視野づつ顕微鏡観察することにより、炭化物粒径の平均値および鋼材中の炭化物体積割合(%)を求めた。
また、得られた線棒鋼材について、冷間シャー切断を各1000回づつ行い、割れの発生状況を調べ、冷間シャー割れの発生率を割れ発生回数/1000×100(%)により求めた。これらの試験結果を併せて表1に示す。
【0021】
【表1】
【0022】
表1から、炭化物の平均粒径および鋼材中の炭化物の体積割合が発明範囲を満たすNo. 1〜15は、いずれも冷間切断割れが発生しなかった。
これに対して、炭化物の平均粒径が2.0 μmを超えるNo.16〜20の比較例、炭化物の体積割合が7×C量(%)を超えるNo.21〜25の比較例、およびこれら両条件が発明範囲を外れるNo.26〜30の比較例では、いずれも数多くの割れが発生した。
【0023】
【発明の効果】
以上説明したように、本発明によれば、炭化物の平均粒径および炭化物の鋼材中における体積割合を適正範囲に制御することにより、酸素、窒素、燐などの含有量を低減するための特別な配慮を必要とせず、冷間切断性に優れた線棒鋼材を提供できるので、機械部品を安価に製造することが可能となり、産業上の寄与は極めて大きい。
【図面の簡単な説明】
【図1】炭化物の平均粒径と冷間シャー割れ発生率との関係を示す図である。
【図2】炭化物の鋼材中における体積割合とC量との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wire rod steel material made of carbon steel or alloy steel excellent in cold cutability.
[0002]
[Prior art]
Conventionally, carbon steel or alloy steel wire rod steel has been used as a raw material for manufacturing machine parts such as automobiles and industrial machines.
In general, these machine parts are obtained by spheroidizing a steel material rolled into a wire rod shape into a wire rod steel material, then cutting and cold forging, and finally performing processing such as cutting. Manufactured by. Here, cold forging is a processing method that is excellent in terms of processing accuracy, mass productivity, and cost, and spheroidizing annealing is performed to reduce deformation resistance and improve cold forgeability. It is.
By the way, in the above manufacturing process of machine parts, the cheapest and highly productive method for cutting wire rod steel is cold shear cutting.
However, in the case of cold shear cutting, cold shear cracking may occur starting from the material conveyance rod. In such a case, hot shear cutting or cold saw cutting with low productivity is forced, which causes an increase in cost.
[0003]
One of the causes of cold shear cracking is the high notch sensitivity of the material. For this reason, in order to prevent cold shear cracking, it is considered effective to reduce notch susceptibility.
1) Reduction of harmful components such as oxygen, nitrogen and phosphorus 2) Means such as refinement of ferrite grain size have been taken.
[0004]
[Problems to be solved by the invention]
However, among the conventional measures, the above 1) has a problem that the cost for reducing impurities is greatly increased, and although the above 2) is effective, cold shear cracks still occur, which is a decisive factor for preventing cracks. There was a problem that it was not.
Then, the objective of this invention is providing the wire rod steel material which was cheap and excellent in cold cut property in view of the said problem which the prior art had.
[0005]
[Means for Solving the Problems]
As a result of diligent studies to solve the above problems, the present inventors have a large influence on the cold cutability by the average particle size of carbides in steel and the volume ratio of carbides in steel. Therefore, it has been found that cold cutting properties are improved by controlling these within an appropriate range, and the present invention has been completed. That is, the gist configuration of the present invention is as follows.
[0007]
( 1 ) C: 0.40 to 1.50 mass%, Si: 0.10 to 1.5 mass%, Mn: 0.10 to 2.0 mass%, P: 0.05 mass% or less, S: 0.05 mass% or less, Cr: 0.1 to 2.50 mass% The balance consists of Fe and inevitable impurities, the average particle size of the carbide is 2.0 μm or less, and the volume ratio (%) of the carbide in the steel is 7 × C amount (mass%) or less. Wire rod steel with excellent cold cutability.
[0008]
( 2 ) C: 0.40-1.50 mass%, Si: 0.10-1.5 mass%, Mn: 0.10-2.0 mass%, P: 0.05 mass% or less, S: 0.05 mass% or less, Cr: 0.1-2.50 mass%, Mo : 0.10 to 1.0 mass%, the balance consists of Fe and inevitable impurities, the average particle size of the carbide is 2.0 μm or less, and the volume ratio (%) of the carbide in the steel is 7 × C amount (mass% ) A wire rod steel material excellent in cold cutability characterized by the following.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the research conducted by the inventors, among the research aimed at improving the cold cutability of wire rod steel, the notch sensitivity (Charpy impact property) of this steel depends on the average particle size of carbide and the volume fraction in steel. Depending on this, it is possible to improve notch sensitivity and thus cold cutability by controlling these within an appropriate range. In addition, the observation surface of the average particle diameter of the carbide | carbonized_material and the volume fraction in steel in this invention is a thing about the cut surface of the rolling direction of a wire rod steel material.
The effect of such carbides is that the wire rod steel material to which the present invention is applied has a structure in which hard carbides are dispersed in relatively hard martensite when subjected to quenching and tempering. The increase is thought to be due to increased notch sensitivity.
[0010]
Next, the reason why the component composition of steel, the particle size of the carbide, and the volume ratio are limited as in the gist configuration will be described.
C: 0.40 to 1.50 mass%
C is an element necessary for strengthening the base by solid solution and obtaining sufficient strength and wear resistance as a machine part. If the content is less than 0.40 mass%, the effect is small. On the other hand, if added over 1.50 mass%, the toughness of the steel decreases. Therefore, the C content is set to 0.40 to 1.50 mass%.
[0011]
Si: 0.10 to 1.5 mass%
In addition to deoxidation, Si is an element that is necessary as an element that dissolves in the matrix to increase the strength. If the content is less than 0.10 mass%, this effect is not obtained. On the other hand, when the content exceeds 1.5 mass%, the hardness after spheroidizing annealing is increased, so that machinability and workability are remarkably reduced. To do. Therefore, the amount of Si is limited to the range of 0.10 to 1.5 mass%.
[0012]
Mn: 0.10 to 2.0 mass%
Mn increases the strength and toughness of the base by improving the hardenability of the steel. However, if the amount is less than 0.10 mass%, the effect of this addition is poor. On the other hand, if it exceeds 2.0 mass%, the machinability, toughness and workability are remarkably lowered, so the amount of Mn is 0.10-2. It is limited to the range of 0 mass%. More preferably, the range is 0.50 to 1.20 mass%.
[0013]
P: 0.05 mass% or less P is preferably as small as possible because it adversely affects toughness or fatigue resistance. However, since a decrease in P causes a large cost increase, it is limited to 0.05 mass% or less.
[0014]
S: 0.05 mass% or less S is an element that improves machinability, but if it exceeds 0.05 mass%, its effect is almost saturated, and adversely affects toughness or fatigue resistance. % Or less.
[0015]
Cr: 0.10 to 2.50 mass%
Cr contributes effectively in improving the hardenability of steel and spheroidizing carbides. If the amount of Cr is less than 0.10 mass%, the effect is small. On the other hand, if it exceeds 2.50 mass%, the machinability is reduced due to coarsening of the carbide, and the cost is also increased. Therefore, the Cr addition amount is set to a range of 0.10 to 2.50 mass%.
[0016]
Mo: 0.10 to 1.0 mass%
Mo has the effect of increasing the strength at normal temperature and high temperature, but if it exceeds 1.0 mass%, it becomes expensive, so it is added in the range of 1.0 mass% or less. In order to exert the effect of increasing the strength, it is preferable to add 0.10 mass% or more.
[0017]
Average particle size of carbide: 2.0 μm or less FIG. 1 shows the result of examining the relationship between the average particle size of carbide in wire rod steel and the crack generation rate during cold shear cutting. However, only those in which the volume ratio (%) of carbide in steel satisfies 7 × C amount (mass%) or less were used.
From Fig. 1, the average particle size of the carbide has a great effect on the occurrence of cracks during cold shear cutting. The cracks are remarkably reduced in the region where this value is less than 2.3 μm, and the cracks are less than 2.0. It turns out that it does not occur. Therefore, in the present invention, the average particle size of the carbide is set to 2.0 μm or less.
[0018]
・ Volume ratio (%) of carbide in steel: 7 × C amount (mass%) or less FIG. 2 shows the volume ratio of carbide in steel and the cooling rate for wire rod steel having an average particle size of carbide of 2.0 μm or less. It is the result of investigating the relationship with the crack occurrence rate at the time of hot shear cutting.
From FIG. 2, the volume fraction of carbide in steel has a large effect on the occurrence of cracks during cold shear cutting, and cracks are significantly reduced in the region where the volume fraction in steel is less than 8 × C amount (mass%). Furthermore, it can be seen that cracking does not occur when the amount is 7 × C or less (mass%). Therefore, the volume ratio in steel of the carbide in the present invention is set to 7 × C amount (mass%) or less.
[0019]
Next, the manufacturing method of this invention steel material is demonstrated. Melting may be performed by any method such as a converter or an electric furnace, and the slab may be produced by any process of continuous casting or ingot forming. Next, after hot rolling, spheroidizing annealing is performed. After that, quenching and tempering are performed.
In particular, in order to control the particle size of the carbide and the volume ratio of the carbide in the steel material to a predetermined range, it is desirable to perform the quenching process at a temperature of 870 to 920 ° C.
[0020]
【Example】
Hereinafter, the present invention will be described based on examples.
Steel having the chemical composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. Then, the steel bar rolling process was hot-rolled to a 55 mmφ bar under the usual conditions. Moreover, the comparative example was hot-rolled to a 55 mmφ bar under the same conditions.
Wire rod steel was produced by subjecting these rods to spheroidizing annealing under the usual conditions. After that, these bars were quenched and tempered. However, the comparative example selected the quenching temperature 790-840 degreeC lower 80 degreeC than the invention example.
From the obtained steel material, a micro sample was cut out, and the rolling direction cross section was observed with a microscope at a magnification of 5000 at 10 fields of view to determine an average value of carbide particle diameter and a carbide volume ratio (%) in the steel material.
Moreover, about the obtained wire rod steel material, cold shear cutting | disconnection was performed 1000 times each, the occurrence condition of a crack was investigated, and the generation | occurrence | production rate of cold shear crack was calculated | required by the frequency | count of crack generation / 1000x100 (%). These test results are shown together in Table 1.
[0021]
[Table 1]
[0022]
From Table 1, No. 1 in which the average particle size of carbides and the volume ratio of carbides in steel satisfy the scope of the invention. In all of Nos. 1 to 15, cold cut cracks occurred.
On the other hand, No. in which the average particle size of the carbide exceeds 2.0 μm. No. 16-20 comparative examples, No. in which the volume ratio of carbide exceeds 7 × C amount (%) No. 21-25 comparative examples and these two conditions are outside the scope of the invention. In all of Comparative Examples 26 to 30, many cracks occurred.
[0023]
【The invention's effect】
As described above, according to the present invention, by controlling the average particle size of carbides and the volume ratio of carbides in the steel material to an appropriate range, a special content for reducing the content of oxygen, nitrogen, phosphorus and the like. Since it is possible to provide a wire rod steel material that does not require consideration and is excellent in cold cutability, it is possible to manufacture machine parts at low cost, and the industrial contribution is extremely large.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the average particle size of carbides and the occurrence rate of cold shear cracks.
FIG. 2 is a view showing a relationship between a volume ratio of carbide in a steel material and a C amount.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21338896A JP3627393B2 (en) | 1996-08-13 | 1996-08-13 | Wire rod steel with excellent cold-cutability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21338896A JP3627393B2 (en) | 1996-08-13 | 1996-08-13 | Wire rod steel with excellent cold-cutability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1060594A JPH1060594A (en) | 1998-03-03 |
JP3627393B2 true JP3627393B2 (en) | 2005-03-09 |
Family
ID=16638384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21338896A Expired - Lifetime JP3627393B2 (en) | 1996-08-13 | 1996-08-13 | Wire rod steel with excellent cold-cutability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3627393B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9611523B2 (en) | 2005-12-20 | 2017-04-04 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Cold formable spring steel wire excellent in cold cutting capability and fatigue properties and manufacturing process thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6273966B1 (en) * | 1998-12-03 | 2001-08-14 | Etrema Products, Inc. | High performance rare earth-transition metal magnetostrictive materials |
JP2005320610A (en) * | 2004-05-11 | 2005-11-17 | Daido Steel Co Ltd | Steel |
-
1996
- 1996-08-13 JP JP21338896A patent/JP3627393B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9611523B2 (en) | 2005-12-20 | 2017-04-04 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Cold formable spring steel wire excellent in cold cutting capability and fatigue properties and manufacturing process thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH1060594A (en) | 1998-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5195009B2 (en) | Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof | |
JP6794012B2 (en) | Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance | |
JP3764586B2 (en) | Manufacturing method of case-hardened steel with excellent cold workability and low carburizing strain characteristics | |
WO2007123164A1 (en) | Piston ring material for internal combustion engine | |
JPH06116635A (en) | Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance | |
JPH05214484A (en) | High strength spring steel and its production | |
JP2012193404A (en) | Seamless steel pipe and method for manufacturing the same | |
JP4299744B2 (en) | Hot rolled wire rod for cold forging and method for producing the same | |
JP3355132B2 (en) | Machine structural steel with excellent fracture separation and durability | |
JP4605695B2 (en) | Pre-hardened steel for die casting molds | |
JPH02247357A (en) | Steel for form rolling die | |
JP3627393B2 (en) | Wire rod steel with excellent cold-cutability | |
JP2841468B2 (en) | Bearing steel for cold working | |
CN111321346B (en) | Ultrahigh-strength spring steel with excellent hydrogen-induced delayed fracture resistance and production method thereof | |
JPH11131187A (en) | Rapidly graphitizable steel and its production | |
JP3721723B2 (en) | Machine structural steel with excellent machinability, cold forgeability and hardenability | |
JP4032915B2 (en) | Wire for machine structure or steel bar for machine structure and manufacturing method thereof | |
JPH0526850B2 (en) | ||
WO2018139671A1 (en) | Steel pipe for underbody components of automobiles, and underbody component of automobiles | |
WO2018139672A1 (en) | Steel pipe for underbody components of automobiles, and underbody component of automobiles | |
JP4920144B2 (en) | Steel for constant velocity joint outer | |
CN111334708B (en) | High-strength spring steel with tensile strength of more than or equal to 2250MPa and excellent fatigue performance and production method thereof | |
JPH11106866A (en) | Case hardening steel excellent in preventability of coarse grain and its production | |
JPH11106863A (en) | Steel for mechanical structure excellent in cold workability and its production | |
JP3217943B2 (en) | Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040817 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041129 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121217 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121217 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |