JP4144500B2 - Non-tempered steel with excellent balance between strength and machinability and method for producing the same - Google Patents

Non-tempered steel with excellent balance between strength and machinability and method for producing the same Download PDF

Info

Publication number
JP4144500B2
JP4144500B2 JP2003341035A JP2003341035A JP4144500B2 JP 4144500 B2 JP4144500 B2 JP 4144500B2 JP 2003341035 A JP2003341035 A JP 2003341035A JP 2003341035 A JP2003341035 A JP 2003341035A JP 4144500 B2 JP4144500 B2 JP 4144500B2
Authority
JP
Japan
Prior art keywords
graphite
strength
machinability
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003341035A
Other languages
Japanese (ja)
Other versions
JP2005105359A (en
Inventor
隆 岩本
明博 松崎
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003341035A priority Critical patent/JP4144500B2/en
Publication of JP2005105359A publication Critical patent/JP2005105359A/en
Application granted granted Critical
Publication of JP4144500B2 publication Critical patent/JP4144500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

この発明は、主に機械構造用鋼としての用途に供して好適な、強度と被削性のバランスに優れた非調質鋼材およびその製造方法に関するものである。   The present invention relates to a non-heat treated steel material excellent in the balance between strength and machinability, which is suitable for use mainly as a machine structural steel, and a method for producing the same.

産業機械や自動車等の機械部品には、鋼素材を、熱間鍛造をはじめとする熱間加工の後に、切削等により所定の形状に加工し、ついで焼入れ−焼戻しを施すことによって、機械部品としての要求特性を確保する、いわゆる調質機械構造用鋼と、焼入れ−焼戻しを施すことなくそのまま、機械部品としての要求特性を確保する、いわゆる非調質機械構造用鋼の二種類が知られている。
上記した二種類の鋼材のうち、調質機械構造用鋼は、非調質機械構造用鋼に比べると、焼入れ−焼戻し工程を必要とし、工程的にもコストの面でも劣っていることから、最近では非調質機械構造用鋼に対する需要が高まっている。
For machine parts such as industrial machines and automobiles, steel materials are processed into a predetermined shape by cutting after hot working such as hot forging, and then subjected to quenching and tempering. There are two types of so-called tempered mechanical structural steels that ensure the required properties of the steel and so-called non-tempered mechanical structural steels that ensure the required properties as machine parts without quenching and tempering. Yes.
Of the two types of steel materials described above, tempered mechanical structural steel requires a quenching-tempering process and is inferior in terms of process and cost as compared to non-tempered mechanical structural steel. Recently, demand for non-tempered mechanical structural steel is increasing.

かような機械構造用鋼では、機械部品としての最終強度を有する部材に対する切削加工が必要となるため、熱間加工後に強度と被削性の両者に優れることが求められる。
鋼材の被削性を改善する手段としては、鋼中にPb,S,BiおよびP等の快削性元素を単独または複合添加する方法が一般的である。特にPbは、被削性を改善する作用が極めて強いために多用されている。しかしながら、一方でPbは、人体に有害な元素であり、鋼材の製造工程や機械部品の加工工程で大がかり排気設備を必要とするだけでなく、鋼材のリサイクルの面でも多大の問題がある。
また、Pb,S,Te,Bi,P等の元素は、熱間鍛造時の延性の低下に伴う割れの発生や、最終部品としての強度、中でも特に疲労強度の低下を引き起こす作用があるため、これらの特性の観点からは、逆に低減することが望ましい。
Such machine structural steel requires cutting work on a member having final strength as a machine part, and therefore is required to be excellent in both strength and machinability after hot working.
As a means for improving the machinability of a steel material, a method of adding free-cutting elements such as Pb, S, Bi and P alone or in combination to steel is generally used. In particular, Pb is frequently used because it has an extremely strong effect of improving machinability. However, on the other hand, Pb is an element harmful to the human body, and not only does it require a large amount of exhaust equipment in the manufacturing process of steel materials and the machining process of machine parts, but there are also significant problems in terms of recycling steel materials.
In addition, elements such as Pb, S, Te, Bi, and P have the effect of causing cracking due to a decrease in ductility during hot forging and reducing the strength as a final part, particularly fatigue strength. From the viewpoint of these characteristics, it is desirable to reduce them.

これらの相矛盾する合金設計を可能にするために、本発明では鋼中の黒鉛析出に着目した。
鋼中への黒鉛析出に関しては、従来、例えば特許文献1に開示の技術に代表されるように、鋼中Cを黒鉛化する方法が提案されている。しかしながら、これまでの技術では、黒鉛析出のために、熱間加工後、再加熱による黒鉛化処理が不可欠であり、製造プロセスの煩雑化を招くところに問題を残していた。
In order to enable these contradictory alloy designs, the present invention focuses on the precipitation of graphite in the steel.
As for graphite precipitation in steel, a method of graphitizing C in steel has been proposed, as represented by the technique disclosed in Patent Document 1, for example. However, in the conventional technology, for the precipitation of graphite, after hot working, graphitization treatment by reheating is indispensable, leaving a problem in that the manufacturing process becomes complicated.

この点、特許文献2では、熱間加工後の冷却過程で黒鉛化を図ることにより、熱間加工後における再加熱処理を不要にした機械構造用鋼の製造方法が提案されている。
しかしながら、この技術は、いわゆる「調質型」の機械構造用鋼であり、「非調質型」に比べると工程およびコストの面で劣っているのは前述したとおりである。
In this regard, Patent Document 2 proposes a method for manufacturing steel for machine structural use that eliminates the need for reheating after hot working by graphitizing in the cooling process after hot working.
However, this technique is a so-called “tempered type” steel for machine structural use and is inferior in terms of process and cost as compared with “non-tempered type” as described above.

特開昭51−57621号公報Japanese Patent Laid-Open No. 51-57621 特開2002−180185号公報JP 2002-180185 A

本発明の目的は、上述したような従来技術が抱えている問題を有利に解決することにある。
すなわち、本発明は、熱間鍛造をはじめとする熱間加工により成形される機械部品において、必ずしもPbを用いなくとも、熱間加工ままで従来のPb添加快削鋼と同等以上の被削性と、優れた強度とを兼ね備え、しかも焼入れ−焼戻し処理が不要の、強度と被削性のバランスに優れた非調質鋼材を、その有利な製造方法と共に提案することを目的とする。
An object of the present invention is to advantageously solve the problems of the conventional techniques as described above.
That is, the present invention is a machine part formed by hot working such as hot forging. Even if Pb is not necessarily used, machinability equal to or better than that of conventional Pb-added free cutting steel with hot working. And it aims at proposing the non-tempered steel material which was excellent in the balance of intensity | strength and machinability with the advantageous manufacturing method which combines the outstanding intensity | strength, and does not require quenching-tempering process.

さて、発明者らは、再加熱処理を実施することなく、機械構造用鋼中に黒鉛を析出させて被削性を向上させるべく、鋭意研究・検討を行った結果、ミクロ組織中に体積率で0.03%以上の黒鉛が存在すれば、Pbを添加した構造用鋼と同等以上の被削性を得られることを見出した。しかも、成分組成を適正化した上で、熱間加工後の冷却速度を適切に制御することにより、鋼材の被削性向上に必要な黒鉛が、熱間加工後の再加熱を要することなく得られることを見出した。   Now, as a result of earnest research and examination to improve the machinability by precipitating graphite in steel for machine structural use without carrying out reheating treatment, the inventors have found that the volume fraction in the microstructure It was found that if 0.03% or more of graphite is present, machinability equivalent to or better than that of structural steel to which Pb is added can be obtained. In addition, by optimizing the component composition and appropriately controlling the cooling rate after hot working, graphite required for improving the machinability of steel can be obtained without requiring reheating after hot working. I found out that

また、熱間加工のままで十分な強度を得るためには、フェライト分率を20%以下とするパーライトを基本組織とし、このパーライトのラメラー間隔および黒鉛粒子のサイズをそれぞれ適正範囲に適切に制御することが有効であることを見出した。
ここに、パーライト中のラメラー間隔の微細化には、MnやCr等の添加が有効であるが、これらの元素は一方で鋼中の黒鉛析出を阻害する元素でもある。
そこで、本発明者らは、これらの矛盾点の解決を目的にさらなる実験・検討を重ねた結果、黒鉛化阻害の影響力が強いCrの添加を避け、Mn量を適切に調整すると共に、Si等の黒鉛化促進元素あるいは黒鉛化阻害作用が比較的軽微なMo等を活用し、さらには熱間加工後の冷却を2段階冷却とし、各冷却工程における冷却速度を厳密に管理することにより、目的とする組織制御が有利に達成されることを新たに見出した。
本発明は、上記の知見に立脚するものである。
In addition, in order to obtain sufficient strength with hot working, pearlite with a ferrite fraction of 20% or less is used as the basic structure, and the lamellar spacing of this pearlite and the size of the graphite particles are appropriately controlled within appropriate ranges. I found it effective.
Here, addition of Mn, Cr, or the like is effective for refining the lamellar spacing in pearlite, but these elements are also elements that inhibit graphite precipitation in steel.
Therefore, as a result of repeated experiments and examinations for the purpose of solving these contradictions, the present inventors avoided the addition of Cr, which has a strong influence on graphitization inhibition, and appropriately adjusted the Mn amount, and Si By utilizing a graphitization promoting element such as Mo or Mo having a relatively slight graphitization inhibitory effect, and further cooling after hot working in two stages, and strictly controlling the cooling rate in each cooling process, It was newly found that the desired organization control is achieved advantageously.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
C:0.5 〜1.2 %、 Si:0.5 〜2.0 %、
Mn:0.02〜0.5 %、 B:0.0003〜0.015 %、
Al:0.005 〜0.1 %およびN:0.0015〜0.015 %
を含有し、かつ不純物としてのOおよびCrの混入をそれぞれ、
O:0.0020%以下、 Cr:0.05%以下
に抑制し、残部はFeおよび不可避的不純物の組成になり、熱間加工後のミクロ組織が、パーライトまたはパーライトと体積率で20%以下のフェライト、さらに体積率で0.03%以上の黒鉛からなり、該パーライトのラメラー間隔が 0.3μm 以下で、かつ黒鉛粒子の平均粒子径が5μm 以下であることを特徴とする、強度と被削性のバランスに優れた非調質鋼材。
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.5 to 1.2%, Si: 0.5 to 2.0%,
Mn: 0.02 to 0.5%, B: 0.0003 to 0.015%,
Al: 0.005 to 0.1% and N: 0.0015 to 0.015%
And mixing of O and Cr as impurities, respectively
O: 0.0020% or less, Cr: 0.05% or less, the balance is Fe and inevitable impurities, the microstructure after hot working is pearlite or pearlite and ferrite with a volume ratio of 20% or less, It is composed of graphite with a volume ratio of 0.03% or more, the pearlite lamellar spacing is 0.3 μm or less, and the average particle diameter of graphite particles is 5 μm or less, and has an excellent balance between strength and machinability Non-tempered steel.

2.上記1において、鋼材が、さらに質量%で、
Ni:0.05〜3.0 %、 Cu:0.1 〜3.0 %、
Co:0.1 〜3.0 %、 Mo:0.05〜1.0 %、
V:0.05〜0.5 %、 Nb:0.005 〜0.05%、
Ti:0.005 〜0.05%、 Zr:0.005 〜0.2 %および
REM:0.0005〜0.2 %
のうちから選ばれる1種または2種以上を含有する組成になることを特徴とする、強度と被削性のバランスに優れた非調質鋼材。
2. In the above 1, the steel material is further in mass%,
Ni: 0.05-3.0%, Cu: 0.1-3.0%,
Co: 0.1 to 3.0%, Mo: 0.05 to 1.0%,
V: 0.05 to 0.5%, Nb: 0.005 to 0.05%,
Ti: 0.005-0.05%, Zr: 0.005-0.2% and
REM: 0.0005-0.2%
A non-tempered steel material excellent in the balance between strength and machinability, characterized in that the composition contains one or more selected from among them.

3.上記1または2において、鋼材が、さらに質量%で、
Pb:0.05〜0.30%、 P:0.10%以下、
S:0.001 〜0.50%、 Ca:0.0005〜0.010 %および
Te:0.005 〜0.05%
のうちから選ばれる1種または2種以上を含有する組成になることを特徴とする、強度と被削性のバランスに優れた非調質鋼材。
3. In said 1 or 2, steel materials are further mass%,
Pb: 0.05 to 0.30%, P: 0.10% or less,
S: 0.001 to 0.50%, Ca: 0.0005 to 0.010% and
Te: 0.005 to 0.05%
A non-tempered steel material excellent in the balance between strength and machinability, characterized in that the composition contains one or more selected from among them.

4.上記1〜3のいずれかに記載の成分組成になる鋼素材を、加熱後、 750〜1150℃の温度域で熱間加工し、ついで 800℃〜Ar1の温度域を0.5 ℃/s超、Ar1〜500 ℃の温度域を0.05℃/s以上、1.0 ℃/s以下の速度で冷却することを特徴とする、強度と被削性のバランスに優れた非調質鋼材の製造方法。 4). The steel material having the composition according to any one of the above 1 to 3 is heated and then hot worked in a temperature range of 750 to 1150 ° C., and then the temperature range of 800 ° C. to Ar 1 is over 0.5 ° C./s, A method for producing a non-tempered steel material having an excellent balance between strength and machinability, wherein the temperature range of Ar 1 to 500 ° C is cooled at a rate of 0.05 ° C / s to 1.0 ° C / s.

かくして、本発明に従い、鋼のミクロ組織を適正に制御することにより、熱間加工後に再加熱による軟化焼鈍等を必要とすることなしに、優れた被削性と強度を併せて得ることができ、これにより、必ずしもPb等の人体に悪影響を及ぼす成分を用いなくとも、強度と被削性のバランスに優れた非調質鋼材を得ることができる。   Thus, according to the present invention, by appropriately controlling the microstructure of steel, excellent machinability and strength can be obtained without requiring softening annealing by reheating after hot working. Thus, it is possible to obtain a non-heat treated steel material having an excellent balance between strength and machinability without necessarily using a component such as Pb that adversely affects the human body.

以下、本発明を具体的に説明する。
まず、本発明において、鋼材の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.5 〜1.2 %
Cは、黒鉛相の形成および熱間加工後の強度を得るための必須成分である。C量が0.5%未満では、機械部品としての強度を確保すること、および被削性の向上に必要な黒鉛相の析出量を確保することが共に困難となるので、0.5 %以上の添加を必要とする。一方、1.2 %を超えると、熱間加工時の変形抵抗が上昇するだけでなく、変形能が低下し、熱間加工時の割れやきずの発生が増大し、さらには熱間加工後の硬さを必要以上に上昇させ、鋼材の被削性を著しく劣化させるため、1.2 %までの添加とする。なお、後述するように、鋼組織についてフェライト分率:20%以下を達成して必要な強度を得るため、加えて熱間加工後の冷却時により効率的に黒鉛の析出を図るためには、Cは 0.8%以上含有させることが有利である。
The present invention will be specifically described below.
First, the reason why the component composition of the steel material is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.5-1.2%
C is an essential component for forming the graphite phase and obtaining the strength after hot working. If the amount of C is less than 0.5%, it will be difficult to secure the strength as a machine part and to secure the amount of precipitation of the graphite phase necessary for improving machinability, so addition of 0.5% or more is necessary. And On the other hand, if it exceeds 1.2%, not only the resistance to deformation during hot working increases, but also the deformability decreases, the occurrence of cracks and flaws during hot working increases, and the hardness after hot working further increases. In order to raise the thickness more than necessary and significantly deteriorate the machinability of the steel material, the addition should be up to 1.2%. As will be described later, in order to achieve the required strength by achieving a ferrite fraction of 20% or less for the steel structure, in addition, in order to more efficiently precipitate graphite during cooling after hot working, C is advantageously contained in an amount of 0.8% or more.

Si:0.5 〜2.0 %
Siは、セメンタイト中に固溶せず、セメンタイトを不安定化することにより黒鉛析出を促進するだけでなく、熱間加工後の強度を上昇させる元素でもあるため、積極的に添加する。このSi量が、0.5 %未満では、熱間加工後の冷却過程で黒鉛を析出させることが極めて困難となり、一方 2.0%を超えると、熱間加工時の変形能を低下させるだけでなく、加工後の硬さが上昇しすぎて被削性を劣化させるため、Siは 0.5〜2.0 %の範囲に限定した。
Si: 0.5-2.0%
Since Si is not dissolved in cementite and destabilizes cementite, it not only promotes precipitation of graphite but also increases strength after hot working, so it is actively added. If the Si content is less than 0.5%, it will be extremely difficult to precipitate graphite in the cooling process after hot working. On the other hand, if it exceeds 2.0%, not only will the deformability during hot working be reduced, Si was limited to the range of 0.5 to 2.0% in order to increase the hardness afterwards and deteriorate the machinability.

Mn:0.02〜0.5 %
Mnは、鋼の脱酸に有効なだけでなく、熱間加工後のパーライトのラメラー間隔を微細にする働きがあり、また強度上昇にも有用な元素であるので、積極的に添加するが、一方で過剰に添加すると、セメンタイト中に固溶し、黒鉛の析出を阻害する。ここに、Mnの含有量が0.02%未満では、脱酸および強度上昇に効果がないので、少なくとも0.02%の添加を必要とするが、0.5 %を超えて添加すると黒鉛の析出を阻害し、熱間加工後の冷却中に十分な量の黒鉛を析出させることが不可能となるので、Mn量は0.02〜0.5 %の範囲に限定した。
Mn: 0.02 to 0.5%
Mn is not only effective for deoxidation of steel, but also has a function of reducing the lamellar spacing of pearlite after hot working, and is also a useful element for increasing strength, so it is actively added. On the other hand, when added excessively, it dissolves in cementite and inhibits the precipitation of graphite. Here, if the Mn content is less than 0.02%, there is no effect on deoxidation and strength increase, so addition of at least 0.02% is required, but if added over 0.5%, the precipitation of graphite is inhibited, and heat is added. Since it becomes impossible to deposit a sufficient amount of graphite during cooling after the inter-working, the amount of Mn is limited to a range of 0.02 to 0.5%.

B:0.0003〜0.015 %
Bは、鋼中のNと結合してBNを形成し、これが黒鉛の結晶化の核となって黒鉛の析出を促進すると共に、黒鉛粒を微細化する働きもある。また、鋼の焼入性を高め、焼入後の強度を確保する上でも有用な元素である。しかしながら、含有量が0.0003%に満たないと黒鉛の析出効果および焼入性の向上効果が小さく、一方 0.015%を超えて添加するとBがセメンタイト中に固溶してセメンタイトを安定化することにより、逆に黒鉛の析出を阻害することになるので、Bは0.0003〜0.015 %の範囲に限定した。
B: 0.0003 to 0.015%
B combines with N in the steel to form BN, which acts as a nucleus for crystallization of graphite and promotes precipitation of graphite, and also has a function of refining graphite grains. It is also an element useful for enhancing the hardenability of steel and ensuring the strength after quenching. However, if the content is less than 0.0003%, the effect of improving the precipitation and hardenability of graphite is small, while if added over 0.015%, B dissolves in the cementite and stabilizes the cementite. Conversely, since precipitation of graphite is inhibited, B is limited to a range of 0.0003 to 0.015%.

Al:0.005 〜0.1 %
Alは、鋼中のNと反応してAlNを形成し、これが黒鉛の核形成サイトとして作用することにより、黒鉛の析出を促進するので積極的に添加するが、0.005 %未満の添加では、その作用が小さいので、少なくとも 0.005%の添加を必要とする。一方、0.1 %を超えて添加すると鋳造工程において、Al系酸化物が多数形成され、この酸化物は単独でも疲労破壊の起点となるばかりでなく、この酸化物を核として著しく粗大な黒鉛粒が形成される。また、Al系酸化物は硬質なため、切削時に工具を摩耗させることにより被削性を低下させる弊害が生じる。以上の理由により、Alは 0.005〜0.1 %の範囲に限定した。
Al: 0.005 to 0.1%
Al reacts with N in the steel to form AlN, which acts as a nucleation site for graphite, thereby promoting the precipitation of graphite. However, if added less than 0.005%, Since the action is small, at least 0.005% addition is required. On the other hand, if it exceeds 0.1%, a large number of Al-based oxides are formed in the casting process, and this oxide alone not only becomes a starting point for fatigue fracture, but also extremely coarse graphite grains with this oxide as a nucleus. It is formed. In addition, since the Al-based oxide is hard, there is a problem that the machinability is lowered by wearing the tool during cutting. For these reasons, Al is limited to the range of 0.005 to 0.1%.

N:0.0015〜0.015 %
Nは、Bと化合してBNを形成し、このBNが黒鉛の結晶化の核となることにより、黒鉛の析出を促進すると共に黒鉛粒の細粒化に寄与するので、本発明においては必須の元素である。しかしながら、含有量が0.0015%に満たないと十分な量のBNが形成されず、一方 0.015%を超えると連続鋳造時に鋳片の割れを促進するので、Nは0.0015〜0.015 %の範囲に限定した。
N: 0.0015 to 0.015%
N is combined with B to form BN, and this BN serves as a nucleus for crystallization of graphite, thereby promoting the precipitation of graphite and contributing to the refinement of graphite grains. Therefore, it is essential in the present invention. Elements. However, if the content is less than 0.0015%, a sufficient amount of BN is not formed. On the other hand, if it exceeds 0.015%, cracking of the slab is promoted during continuous casting, so N is limited to the range of 0.0015 to 0.015%. .

O:0.0020%以下
Oは、酸化物系非金属介在物を形成し、熱間加工性および被削性を共に低下させるので、極力低減すべきであるが、0.0020%までであれば許容される。
O: 0.0020% or less O forms oxide-based non-metallic inclusions and reduces both hot workability and machinability. Therefore, it should be reduced as much as possible, but is allowed up to 0.0020%. .

Cr:0.05%以下
Crは、セメンタイト中に固溶し、微量の混入でも黒鉛の析出を著しく阻害する。従って、熱間加工後の冷却過程において十分な量の黒鉛析出を必要とする本発明においては、極力低減すべき元素であるが、0.05%以下であれば許容される。
Cr: 0.05% or less
Cr dissolves in cementite and significantly inhibits the precipitation of graphite even when a small amount is mixed. Therefore, in the present invention that requires a sufficient amount of graphite precipitation in the cooling process after hot working, it is an element that should be reduced as much as possible, but 0.05% or less is acceptable.

以上、必須成分および抑制成分について説明したが、本発明ではその他にも、さらなる黒鉛析出の促進および熱間加工後の強度上昇を目的として以下に述べる元素を適宜含有させることができる。
Ni:0.05〜3.0 %、Cu:0.1 〜3.0 %、Co:0.1 〜3.0 %
Ni,CuおよびCoはいずれも、黒鉛の析出を促進する元素である。また、焼入性を向上させる作用も併せ持つので、黒鉛析出を阻害せずに、焼入性を向上させる上で極めて有用な元素である。しかしながら、含有量が下限に満たないとその添加効果に乏しく、一方上限を超えて添加してもその効果は飽和するので、それぞれ上記の範囲で含有させるものとした。
As described above, the essential component and the suppressing component have been described. However, in the present invention, the following elements can be appropriately contained for the purpose of further promoting the precipitation of graphite and increasing the strength after hot working.
Ni: 0.05-3.0%, Cu: 0.1-3.0%, Co: 0.1-3.0%
Ni, Cu and Co are all elements that promote the precipitation of graphite. Moreover, since it also has the effect | action which improves hardenability, it is an extremely useful element in improving hardenability, without inhibiting graphite precipitation. However, if the content is less than the lower limit, the effect of addition is poor. On the other hand, even if the content exceeds the upper limit, the effect is saturated.

Mo:0.05〜1.0 %
Moは、熱間加工後の強度を高める効果と同時に、Mn,Cr等の合金元素に比較してセメンタイトへの分配が小さいという特徴があるので、黒鉛析出を著しく阻害することなく鋼材の熱間加工後の強度を高めることができる。このため、疲労強度を初めとする強度を一層向上させる必要がある場合に用いる。しかしながら、含有量が0.05%に満たないとその効果が小さく、一方 1.0%を超えて添加すると、Moでも黒鉛の析出を阻害し、熱間加工後冷却時の黒鉛析出が困難となり、被削性を低下させるので、Moは0.05〜1.0 %の範囲で含有させるものとした。
Mo: 0.05-1.0%
Mo has the effect of increasing the strength after hot working, and at the same time, has a feature that the distribution to cementite is smaller than that of alloy elements such as Mn and Cr. The strength after processing can be increased. For this reason, it is used when it is necessary to further improve the strength including fatigue strength. However, if the content is less than 0.05%, the effect is small. On the other hand, if added over 1.0%, Mo also inhibits precipitation of graphite, making it difficult to precipitate graphite during cooling after hot working, and machinability. Therefore, Mo is included in the range of 0.05 to 1.0%.

V:0.05〜0.5 %、Nb:0.005 〜0.05%
VおよびNbはいずれも、炭化物形成元素であるが、セメンタイト中にはほとんど固溶しないので、黒鉛の析出をさほど阻害しない。また、炭窒化物を形成しこの析出強化作用により熱間加工後の強度を上昇させる効果があるので、疲労強度を向上させる必要のある場合に有用である。Vの場合、0.05%未満の添加ではこれらの効果が小さく、一方 0.5%を超えて添加しても効果が飽和するので、0.05〜0.5 %の範囲の添加とする。他方、Nbの場合、0.005 %未満の添加では、やはり上記の効果が小さく、一方 0.05 %を超えて添加しても効果が飽和するので、 0.005〜0.05%の範囲の添加とする。
V: 0.05 to 0.5%, Nb: 0.005 to 0.05%
V and Nb are both carbide-forming elements, but hardly dissolve in cementite and thus do not significantly inhibit the precipitation of graphite. In addition, since carbonitride is formed and the effect of increasing the strength after hot working by this precipitation strengthening action, it is useful when it is necessary to improve the fatigue strength. In the case of V, if less than 0.05% is added, these effects are small. On the other hand, even if added over 0.5%, the effect is saturated. On the other hand, in the case of Nb, if the addition is less than 0.005%, the above effect is still small. On the other hand, if the addition exceeds 0.05%, the effect is saturated, so the addition is in the range of 0.005 to 0.05%.

Ti:0.005 〜0.05%、Zr:0.005 〜0.2 %
TiおよびZrはともに、炭窒化物を形成し、これらが黒鉛の結晶化の核として作用することにより黒鉛粒を微細化するので、黒鉛粒をさらに微細にする必要のある場合に用いる。このような効果を発揮させるためには、Ti,Zrともに 0.005%以上の添加が必要である。一方、Ti、Zrをそれぞれ0.05%および 0.2%を超えて添加すると、BNを形成するためのNが不足し、その結果黒鉛粒が粗大化すると共に、熱間加工後の黒鉛析出が極めて困難となるので、それぞれ 0.005〜0.05%および 0.005〜0.2 %の範囲の添加とする。
Ti: 0.005 to 0.05%, Zr: 0.005 to 0.2%
Both Ti and Zr form carbonitrides, which act as nuclei for crystallization of graphite to refine the graphite grains, and are used when the graphite grains need to be further refined. In order to exert such effects, it is necessary to add 0.005% or more of both Ti and Zr. On the other hand, if Ti and Zr are added in excess of 0.05% and 0.2%, respectively, N for forming BN is insufficient, and as a result, graphite grains become coarse and graphite precipitation after hot working becomes extremely difficult. Therefore, the addition is in the range of 0.005 to 0.05% and 0.005 to 0.2%, respectively.

REM :0.0005〜0.2 %
La, Ceなどのいわゆる希土類元素(REM)は、Sと結合して硫化物を形成し、これが黒鉛析出の核となり、黒鉛析出を促進すると共に黒鉛粒を微細化するので、黒鉛粒の微細化および黒鉛析出の促進が必要な場合に用いる。しかしながら、含有量が0.0005%未満ではその効果に乏しく、一方 0.2%を超えて添加しても効果が飽和するので、REM は0.0005〜0.2 %の範囲の添加とする。
REM: 0.0005-0.2%
So-called rare earth elements (REM) such as La and Ce combine with S to form sulfides, which become the core of graphite precipitation, which promotes graphite precipitation and refines the graphite grains. And used when it is necessary to promote the precipitation of graphite. However, if the content is less than 0.0005%, the effect is poor. On the other hand, if the content exceeds 0.2%, the effect is saturated, so REM should be added in the range of 0.0005 to 0.2%.

さらに、本発明では、一層の被削性向上を目的として、以下に述べる元素を必要に応じて添加することができる。
Pb:0.05〜0.30%
本発明において、Pbの添加は必須ではないが、切削性を著しく向上させる元素であるので、必要に応じて添加することができる。しかしながら、含有量が0.05%未満ではその効果が小さく、一方0.30%超になるとその効果は飽和し、耐疲労性が低下するので、添加する場合には0.05〜0.30%の範囲とする。
Furthermore, in the present invention, for the purpose of further improving machinability, the following elements can be added as necessary.
Pb: 0.05-0.30%
In the present invention, addition of Pb is not essential, but it is an element that remarkably improves the machinability, and can be added as necessary. However, if the content is less than 0.05%, the effect is small. On the other hand, if it exceeds 0.30%, the effect is saturated and the fatigue resistance is lowered. Therefore, when added, the content is made 0.05 to 0.30%.

P:0.10%以下
切削性の向上を目的としてPを添加することも可能である。ただし、Pは、靭性あるいは耐疲労性に悪影響を及ぼすので、0.10%以下で添加する必要がある。好ましくは0.07%以下である。
P: 0.10% or less P may be added for the purpose of improving machinability. However, since P adversely affects toughness or fatigue resistance, it is necessary to add P at 0.10% or less. Preferably it is 0.07% or less.

S:0.001 〜0.50%
Sは、切削性を向上させる元素であり、その効果を発揮させるには少なくとも 0.001%の添加が必要である。しかしながら、過剰に添加すると清浄性が劣化するだけでなく、靭性の低下を招くので、上限は0.50%に止める。
S: 0.001 to 0.50%
S is an element that improves machinability, and at least 0.001% of addition is necessary to exert its effect. However, if added excessively, not only does the cleanliness deteriorate, but also the toughness decreases, so the upper limit is limited to 0.50%.

Ca:0.0005〜0.010 %
Caは、Pbとほぼ同様な効果を持つ元素で、その効果を発揮するためには0.0005%以上の添加を必要とするが、0.010 %を超えるとその効果は飽和するので、Caは0.0005〜0.010%の範囲とする。
Ca: 0.0005 to 0.010%
Ca is an element having almost the same effect as Pb, and 0.0005% or more is necessary to exert the effect. However, if it exceeds 0.010%, the effect is saturated, so Ca is 0.0005 to 0.010. % Range.

Te:0.005 〜0.05%
Teも、PbやCaと同じく、切削性を向上させる有用元素である。しかしながら、含有量が0.005 %未満ではその効果が小さく、一方0.05%を超えるとその効果は飽和し、むしろ耐疲労性の低下を招くので、Teは 0.005〜0.05%の範囲とした。
Te: 0.005 to 0.05%
Te, like Pb and Ca, is a useful element that improves machinability. However, when the content is less than 0.005%, the effect is small, while when the content exceeds 0.05%, the effect is saturated and rather the fatigue resistance is lowered. Therefore, Te is set in the range of 0.005 to 0.05%.

以上、好適成分組成範囲について説明したが、本発明では、成分組成を上記の範囲に限定するだけでは不十分で、鋼組織の調整も重要である。
すなわち、本発明においては、熱間加工後のミクロ組織が、パーライトまたはパーライトと体積率で20%以下のフェライト、さらに体積率で0.03%以上の黒鉛からなる組織とする必要がある。
ここに、鋼組織を、パーライト主体の組織としたのは、熱間加工後の冷却のみで鋼の硬さを上昇させ、高い疲労強度を達成するためである。
なお、本発明では、鋼組織中にある程度のフェライトの存在は許容できるが、フェライト量が体積率で20%を超えると、目的とする高い強度を安定して得ることが難しくなるので、フェライト量は体積率で20%以下に制限するものとした。
また、より安定的に高強度化を達成するためには、フェライト量は体積率で7%以下とするのが好適である。
Although the preferred component composition range has been described above, in the present invention, it is not sufficient to limit the component composition to the above range, and adjustment of the steel structure is also important.
That is, in the present invention, the microstructure after hot working needs to be pearlite or pearlite and ferrite having a volume ratio of 20% or less and further a graphite having a volume ratio of 0.03% or more.
The reason why the steel structure is made of a pearlite-based structure is to increase the hardness of the steel only by cooling after hot working and achieve high fatigue strength.
In the present invention, the presence of some ferrite in the steel structure is acceptable, but if the ferrite content exceeds 20% by volume, it is difficult to stably obtain the desired high strength. Is limited to 20% or less by volume ratio.
In order to achieve higher strength more stably, the ferrite content is preferably 7% or less by volume ratio.

また、本発明では、鋼組織中に体積率で0.03%以上の黒鉛を存在させる必要がある。というのは、黒鉛量が体積率で0.03%に満たないと、必要とする被削性が得られないという不利が生じるからである。   In the present invention, it is necessary that 0.03% or more by volume of graphite be present in the steel structure. This is because if the amount of graphite is less than 0.03% by volume, there is a disadvantage that the required machinability cannot be obtained.

さらに、本発明では、パーライトのラメラー間隔を 0.3μm 以下、また黒鉛粒子の平均粒子径を5μm 以下とすることが重要である。
というのは、パーライトのラメラー間隔が 0.3μm 超では、鋼組織を上述したようにフェライトの体積率が20%以下のパーライトを主体とする組織にしたとしても、疲労強度が低下するという不利が生じるからである。
また、黒鉛粒子の平均粒子径が5μm 超では、黒鉛粒子が疲労破壊の起点となり、静的な強度を十分に有している鋼材でも、必要な疲労強度が得られなくなるからである。
Furthermore, in the present invention, it is important that the pearlite lamellar spacing is 0.3 μm or less, and the average particle diameter of the graphite particles is 5 μm or less.
This is because if the pearlite lamellar spacing exceeds 0.3 μm, even if the steel structure is made mainly of pearlite whose ferrite volume fraction is 20% or less as described above, there is a disadvantage that the fatigue strength is reduced. Because.
Further, if the average particle diameter of the graphite particles exceeds 5 μm, the graphite particles serve as a starting point for fatigue fracture, and even a steel material having sufficient static strength cannot obtain the required fatigue strength.

次に、本発明の製造工程について説明する。
本発明では、所定の成分組成に調整した鋼素材を、加熱後、 750〜1150℃の温度域で熱間加工し、ついで 800℃〜Ar1の温度域を 0.5℃/s超の速度で、引き続きAr1〜500 ℃の温度域を0.05℃/s以上、1.0 ℃/s以下の速度で冷却することにより、パーライトのラメラー間隔を 0.3μm 以下とし、同時にミクロ組織中に体積率で0.03%以上の黒鉛を析出させ、さらに黒鉛粒子の平均粒子径を5μm 以下に制御して、優れた被削性と強度とをバランス良く実現させることができる。
ここに、熱間加工温度が、 750℃に満たないと、著しい荷重の増大を引き起こして加工が実質的に困難となり、一方1150℃を超えると、加工後のオーステナイト粒径が粗大化し、その影響で黒鉛の析出サイトが減少して黒鉛の析出が困難となる。また、オーステナイト粒の粗大化はパーライトのノジュールサイズの粗大化を引き起こし、強度とくに疲労強度を低下させる不利もある。
Next, the manufacturing process of the present invention will be described.
In the present invention, a steel material adjusted to a predetermined composition is hot-worked in a temperature range of 750 to 1150 ° C., and then a temperature range of 800 ° C. to Ar 1 at a rate of more than 0.5 ° C./s. Subsequently, by cooling the temperature range of Ar 1 to 500 ° C at a rate of 0.05 ° C / s or more and 1.0 ° C / s or less, the pearlite lamellar spacing is made 0.3µm or less, and at the same time 0.03% or more by volume in the microstructure. The graphite is further precipitated, and the average particle diameter of the graphite particles is controlled to 5 μm or less, so that excellent machinability and strength can be realized in a well-balanced manner.
Here, if the hot working temperature is less than 750 ° C, a significant increase in load will be caused, making the working substantially difficult. On the other hand, if the hot working temperature exceeds 1150 ° C, the austenite grain size after processing becomes coarse and the effect This reduces the number of graphite precipitation sites, making it difficult to deposit graphite. In addition, coarsening of austenite grains causes coarsening of the pearlite nodule size, which has the disadvantage of lowering strength, particularly fatigue strength.

また、本発明では、熱間加工後の冷却を、上述したとおり2段階冷却とすることが重要であり、かくしてパーライトのラメラー間隔および黒鉛の析出量・平均粒子径を、所望の範囲に制御することができる。
ここに、第1段目の冷却である 800℃〜Ar1の温度域での冷却速度が 0.5℃/s以下になると、パーライトのラメラー間隔が大きくなって、強度の低下を引き起こす。また、第2段目の冷却であるAr1〜500 ℃の温度域での冷却速度が0.05℃/sを下回ると、黒鉛の粒子径が粗大化して疲労強度の低下を招き、一方 1.0℃/sを上回ると、鋼材の成分組成を本発明の適正範囲に調整しても冷却中における黒鉛の析出が困難となる。
In the present invention, it is important that the cooling after hot working is two-stage cooling as described above. Thus, the lamellar spacing of pearlite and the precipitation amount / average particle diameter of graphite are controlled within a desired range. be able to.
Here, when the cooling rate in the temperature range of 800 ° C. to Ar 1 , which is the first stage cooling, is 0.5 ° C./s or less, the pearlite lamellar spacing becomes large, causing a decrease in strength. Moreover, when the cooling rate in the temperature range of Ar 1 to 500 ° C., which is the second stage cooling, is less than 0.05 ° C./s, the particle diameter of the graphite becomes coarse and the fatigue strength is lowered, while 1.0 ° C. / If it exceeds s, precipitation of graphite during cooling becomes difficult even if the component composition of the steel material is adjusted within the proper range of the present invention.

以下、本発明を実施例に従って説明する。
(1) 鋼素材の成分組成
表1に、実施例で使用した鋼素材の成分組成を示す。このうち、鋼A〜Pは、成分組成が本発明の範囲内にある適合鋼である。一方、鋼QはMnが、鋼RはCrが、鋼SはBが、鋼TはSiが、それぞ本発明の適正範囲を逸脱した比較鋼であり、鋼Uは JIS規格のS53Cに相当する鋼にPbを添加したもの、鋼Vは JIS規格のSCM435に相当する鋼である。
Hereinafter, the present invention will be described according to examples.
(1) Component composition of steel material Table 1 shows the component composition of the steel material used in the examples. Among these, steels A to P are compatible steels whose component compositions are within the scope of the present invention. On the other hand, steel Q is Mn, steel R is Cr, steel S is B, steel T is Si, and these are comparative steels that deviate from the proper range of the present invention, and steel U corresponds to JIS standard S53C. Steel V with steel added, steel V is steel equivalent to JIS standard SCM435.

(2) 製造条件
これらの鋼素材を、 950〜1200℃に加熱後、表2に示す温度で熱間加工を行ったのち、同じく表2に示す種々の冷却速度で2段階冷却を行った。
(2) Manufacturing conditions These steel materials were heated to 950 to 1200 ° C. and then hot-worked at the temperatures shown in Table 2, followed by two-stage cooling at various cooling rates shown in Table 2.

(3) かくして得られた鋼材について、以下の調査を実施した。
・ミクロ組織
鋼材より採取した顕微鏡用試片について、研磨後腐食せず、画像解析装置により断面:5箇所、各箇所について 400倍の倍率の光学顕微鏡像:10視野にわたって、フェライトおよび黒鉛の面積率をそれぞれ測定し、その平均値をもってフェライト分率および黒鉛体積率とした。加えて、上記5箇所について1000倍の倍率の光学顕微鏡像:10視野にわたって観察された全ての黒鉛粒子の粒子径を測定し、その平均値をもって平均黒鉛粒子径とした。
また、同様の試片を研磨後、硝酸アルコール溶液にて腐食し、走査型電子顕微鏡を用いて5000倍の倍率で10視野にわたり、各視野における層状セメンタイトの間隔の最小値を測定し、10視野の平均値をパーライトラメラー間隔とした。
(3) The following investigation was conducted on the steel materials thus obtained.
・ Microstructure Microscopic specimens collected from steel materials were not corroded after polishing, and were analyzed by an image analyzer. Cross section: 5 locations, optical microscope images at 400x magnification for each location: area ratio of ferrite and graphite over 10 fields of view Were measured, and the average value was used as the ferrite fraction and the graphite volume fraction. In addition, optical microscope images at a magnification of 1000 times at the above five locations: the particle diameters of all graphite particles observed over 10 fields of view were measured, and the average value was taken as the average graphite particle diameter.
In addition, after polishing a similar specimen, it corroded with a nitric alcohol solution and measured the minimum value of the interval between the layered cementite in each field of view at 10 magnifications at a magnification of 5000 using a scanning electron microscope. The average value of was the perlite lamellar interval.

・被削性
被削性試験は、高速度工具鋼SKH4を用い、52mmφの試片を切削速度:80 m/min、無潤滑の条件によって外周旋削を行い、工具が切削不能となるまでの時間を工具寿命として評価した。
・疲労強度
熱間加工後の素材から、平行部:8mmφ×16mmL の試片を作成し、回転曲げ疲労試験を実施した。種々の負荷応力にて試験を実施し、応力負荷回数が107 を超えても破断の生じない最大の応力を疲労強度とした。
得られた結果を、表2に併記する。
・ Machinability In the machinability test, a high speed tool steel SKH4 was used, and a 52 mmφ specimen was cut at a cutting speed of 80 m / min under non-lubricated conditions, and the time required until the tool became uncuttable. Was evaluated as the tool life.
・ Fatigue strength Specimens with a parallel part of 8 mmφ x 16 mmL were made from the material after hot working, and a rotating bending fatigue test was conducted. Tests were conducted under various load stresses, and the maximum stress at which no fracture occurred even when the number of stress loads exceeded 10 7 was defined as fatigue strength.
The obtained results are also shown in Table 2.

Figure 0004144500
Figure 0004144500

Figure 0004144500
Figure 0004144500

表3から明らかなように、発明例はいずれも、Pb添加S53Cに相当する鋼U(No.32)と比較して、同等以上の優れた被削性を得ることができた。特に発明例中でも、黒鉛面積率の高い鋼ほど優れた被削性を示す傾向が認められた。また、熱間加工後の疲労強度も、発明例はNo.32 よりも優れた値を示した。
これに対し、成分組成が本発明の適正範囲を逸脱した(No.28〜31)あるいは成分組成は本発明内であっても、熱間加工温度が発明範囲を超えた場合(No.7) または第2段目の冷却速度が発明範囲を超えた場合(No.1, 8)には、いずれも熱間加工後の冷却中の黒鉛の析出が認められず、そのため、得られる被削性も発明例と比較すると著しく劣るものであった。
また、成分組成は本発明の適正範囲内であっても、第1段目の冷却速度が本発明の規定に満たない場合(No.3)には、パーライトのラメラー間隔が粗大となり、さらに第1段目だけでなく、第2段目の冷却速度も本発明の規定に満たない場合(No.11)には、パーライトのラメラー間隔が粗大となるだけでなく、黒鉛の粒子径も粗大となり、いずれも十分な疲労強度が得られなかった。
As apparent from Table 3, all of the inventive examples were able to obtain the same or better machinability as compared with steel U (No. 32) corresponding to Pb-added S53C. In particular, among the inventive examples, a tendency was shown that the steel having a higher graphite area ratio showed better machinability. In addition, the fatigue strength after hot working was also superior in the inventive example to No.32.
On the other hand, when the component composition deviates from the appropriate range of the present invention (No. 28 to 31) or the component composition is within the present invention, the hot working temperature exceeds the invention range (No. 7). Alternatively, when the cooling rate of the second stage exceeds the scope of the invention (Nos. 1 and 8), no precipitation of graphite during cooling after hot working was observed, and therefore the machinability obtained Was significantly inferior to the inventive examples.
Even if the component composition is within the proper range of the present invention, if the cooling rate of the first stage does not meet the requirements of the present invention (No. 3), the pearlite lamellar spacing becomes coarse, If not only the first stage but also the second stage cooling rate does not meet the requirements of the present invention (No. 11), not only the pearlite lamellar spacing is coarse, but also the graphite particle size is coarse. In either case, sufficient fatigue strength was not obtained.

本発明によれば、焼入れ−焼戻しなどの調質処理を施す必要なしに、強度と被削性のバランスに優れた非調質鋼材を得ることができ、従って、産業機械や自動車等の機械部品に適用して偉功を奏する。   According to the present invention, it is possible to obtain a non-tempered steel material having an excellent balance between strength and machinability without the need for a tempering treatment such as quenching and tempering, and therefore, machine parts such as industrial machines and automobiles. Apply to the feat.

Claims (4)

質量%で、
C:0.5 〜1.2 %、 Si:0.5 〜2.0 %、
Mn:0.02〜0.5 %、 B:0.0003〜0.015 %、
Al:0.005 〜0.1 %およびN:0.0015〜0.015 %
を含有し、かつ不純物としてのOおよびCrの混入をそれぞれ、
O:0.0020%以下、 Cr:0.05%以下
に抑制し、残部はFeおよび不可避的不純物の組成になり、熱間加工後のミクロ組織が、パーライトまたはパーライトと体積率で20%以下のフェライト、さらに体積率で0.03%以上の黒鉛からなり、該パーライトのラメラー間隔が 0.3μm 以下で、かつ黒鉛粒子の平均粒子径が5μm 以下であることを特徴とする、強度と被削性のバランスに優れた非調質鋼材。
% By mass
C: 0.5 to 1.2%, Si: 0.5 to 2.0%,
Mn: 0.02 to 0.5%, B: 0.0003 to 0.015%,
Al: 0.005 to 0.1% and N: 0.0015 to 0.015%
And mixing of O and Cr as impurities, respectively
O: 0.0020% or less, Cr: 0.05% or less, the balance is Fe and inevitable impurities, the microstructure after hot working is pearlite or pearlite and ferrite with a volume ratio of 20% or less, It is composed of graphite with a volume ratio of 0.03% or more, the pearlite lamellar spacing is 0.3 μm or less, and the average particle diameter of graphite particles is 5 μm or less, and has an excellent balance between strength and machinability Non-tempered steel.
請求項1において、鋼材が、さらに質量%で、
Ni:0.05〜3.0 %、 Cu:0.1 〜3.0 %、
Co:0.1 〜3.0 %、 Mo:0.05〜1.0 %、
V:0.05〜0.5 %、 Nb:0.005 〜0.05%、
Ti:0.005 〜0.05%、 Zr:0.005 〜0.2 %および
REM:0.0005〜0.2 %
のうちから選ばれる1種または2種以上を含有する組成になることを特徴とする、強度と被削性のバランスに優れた非調質鋼材。
In Claim 1, steel materials are further mass%,
Ni: 0.05-3.0%, Cu: 0.1-3.0%,
Co: 0.1 to 3.0%, Mo: 0.05 to 1.0%,
V: 0.05 to 0.5%, Nb: 0.005 to 0.05%,
Ti: 0.005-0.05%, Zr: 0.005-0.2% and
REM: 0.0005-0.2%
A non-tempered steel material excellent in the balance between strength and machinability, characterized in that the composition contains one or more selected from among them.
請求項1または2において、鋼材が、さらに質量%で、
Pb:0.05〜0.30%、 P:0.10%以下、
S:0.001 〜0.50%、 Ca:0.0005〜0.010 %および
Te:0.005 〜0.05%
のうちから選ばれる1種または2種以上を含有する組成になることを特徴とする、強度と被削性のバランスに優れた非調質鋼材。
In Claim 1 or 2, steel materials are further mass%,
Pb: 0.05 to 0.30%, P: 0.10% or less,
S: 0.001 to 0.50%, Ca: 0.0005 to 0.010% and
Te: 0.005 to 0.05%
A non-tempered steel material excellent in the balance between strength and machinability, characterized in that the composition contains one or more selected from among them.
請求項1〜3のいずれかに記載の成分組成になる鋼素材を、加熱後、 750〜1150℃の温度域で熱間加工し、ついで 800℃〜Ar1の温度域を0.5 ℃/s超、Ar1〜500 ℃の温度域を0.05℃/s以上、1.0 ℃/s以下の速度で冷却することを特徴とする、強度と被削性のバランスに優れた非調質鋼材の製造方法。 The steel material having the composition according to any one of claims 1 to 3 is heated and then hot-worked in a temperature range of 750 to 1150 ° C, and then the temperature range of 800 ° C to Ar 1 exceeds 0.5 ° C / s. A method for producing a non-tempered steel material having an excellent balance between strength and machinability, wherein the temperature range of Ar 1 to 500 ° C. is cooled at a rate of 0.05 ° C./s to 1.0 ° C./s.
JP2003341035A 2003-09-30 2003-09-30 Non-tempered steel with excellent balance between strength and machinability and method for producing the same Expired - Fee Related JP4144500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003341035A JP4144500B2 (en) 2003-09-30 2003-09-30 Non-tempered steel with excellent balance between strength and machinability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003341035A JP4144500B2 (en) 2003-09-30 2003-09-30 Non-tempered steel with excellent balance between strength and machinability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005105359A JP2005105359A (en) 2005-04-21
JP4144500B2 true JP4144500B2 (en) 2008-09-03

Family

ID=34535759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341035A Expired - Fee Related JP4144500B2 (en) 2003-09-30 2003-09-30 Non-tempered steel with excellent balance between strength and machinability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4144500B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686895B2 (en) * 2007-01-31 2010-03-30 Caterpillar Inc. Method of improving mechanical properties of gray iron
GB2535782A (en) * 2015-02-27 2016-08-31 Skf Ab Bearing Steel

Also Published As

Publication number Publication date
JP2005105359A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP2012246527A (en) Steel component for machine structure with high fatigue strength and high toughness, and method of manufacturing the same
JP2013234354A (en) Hot-rolled steel bar or wire rod for cold forging
JPWO2012161323A1 (en) Steel parts for machine structure and manufacturing method thereof
JP3489434B2 (en) High-strength free-cut non-heat treated steel
JP2015166495A (en) Case hardening steel excellent in cold forgeability and crystal grain coarsening suppression performance
JP2017066460A (en) Age hardening steel
JPWO2012161322A1 (en) Steel parts for machine structure and manufacturing method thereof
JP6477382B2 (en) Free-cutting steel
JP4752800B2 (en) Non-tempered steel
JP2017057475A (en) Free cutting steel
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP4144500B2 (en) Non-tempered steel with excellent balance between strength and machinability and method for producing the same
JP3489656B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JP3475706B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP3494271B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JP2005023360A (en) Case hardening steel excellent in treatability of chip
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3552286B2 (en) Manufacturing method of machine structural steel having excellent machinability, cold forgeability and fatigue strength after quenching and tempering, and a method of manufacturing the member
JP4513206B2 (en) Machine structural steel excellent in machinability and manufacturing method thereof
JPH10237582A (en) Free cutting non-heat treated steel with high strength and high toughness
JP3217943B2 (en) Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering
JP4900251B2 (en) Manufacturing method of nitrided parts
JP7552959B1 (en) Non-tempered steel for hot forging, hot forging material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4144500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees