JP3405277B2 - Steel wire rod, steel bar and steel pipe for bearing element parts with excellent machinability - Google Patents

Steel wire rod, steel bar and steel pipe for bearing element parts with excellent machinability

Info

Publication number
JP3405277B2
JP3405277B2 JP22007799A JP22007799A JP3405277B2 JP 3405277 B2 JP3405277 B2 JP 3405277B2 JP 22007799 A JP22007799 A JP 22007799A JP 22007799 A JP22007799 A JP 22007799A JP 3405277 B2 JP3405277 B2 JP 3405277B2
Authority
JP
Japan
Prior art keywords
less
content
steel
wire rod
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22007799A
Other languages
Japanese (ja)
Other versions
JP2001049388A (en
Inventor
善弘 大藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22007799A priority Critical patent/JP3405277B2/en
Publication of JP2001049388A publication Critical patent/JP2001049388A/en
Application granted granted Critical
Publication of JP3405277B2 publication Critical patent/JP3405277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被削性に優れた軸
受要素部品用の鋼線材、棒鋼及び鋼管に関する。より詳
しくは、ボール、コロ、ニードル、シャフト、レースな
どの軸受要素部品の用途に好適な被削性に優れた鋼線
材、棒鋼及び鋼管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel wire rod, a steel bar and a steel pipe for bearing element parts having excellent machinability. More specifically, the present invention relates to a steel wire rod, a steel bar and a steel pipe having excellent machinability suitable for use in bearing element parts such as balls, rollers, needles, shafts and races.

【0002】[0002]

【従来の技術】ボール、コロ、ニードル、シャフト、レ
ースなどの軸受要素部品の素材鋼として、一般に、JIS
G 4805で規格化されたSUJ2鋼などの高炭素クロム軸
受鋼が多用されている。
2. Description of the Related Art Generally, JIS is used as a material steel for bearing element parts such as balls, rollers, needles, shafts and races.
High carbon chrome bearing steel such as SUJ2 steel standardized by G 4805 is often used.

【0003】上記の所謂「軸受用鋼」は、熱間圧延など
の手段で加工された後、軟化を目的とした球状化焼鈍を
受け、次いで冷間鍛造、冷間抽伸や切削などの加工を施
され、更に、焼入れと低温での焼戻しによる熱処理を受
けて所望の機械的性質を付与される。
The so-called "bearing steel" is processed by means such as hot rolling, then subjected to spheroidizing annealing for the purpose of softening, and then subjected to processing such as cold forging, cold drawing and cutting. And further subjected to heat treatment by quenching and tempering at low temperature to impart the desired mechanical properties.

【0004】上記の各工程のうち、切削加工、なかでも
大抵の旋削加工においては、表面性状、寸法精度などを
向上させるために、表面層を厚さで少なくとも200μ
m、多い場合で500μm程度切削することが行われて
おり、この切削加工のコストが嵩むので、切削速度の向
上や工具寿命の延長が可能となる被削性に優れた軸受用
鋼に対する要求が極めて大きくなっている。
In the cutting process, and most of the turning processes, among the above processes, the surface layer has a thickness of at least 200 μm in order to improve the surface texture and dimensional accuracy.
m, and in many cases, about 500 μm is cut, and the cost of this cutting process increases, so there is a need for a bearing steel with excellent machinability that can improve the cutting speed and extend the tool life. It has become extremely large.

【0005】鋼にPbやSなどの快削元素(被削性改善
元素)を単独あるいは複合させて添加すれば、被削性が
向上することはよく知られている。しかし、各種の産業
機械や自動車などに使用される軸受には高い面圧が繰り
返し作用する。このため、軸受用鋼に前記快削元素を添
加すれば、軸受(要素部品)の転動疲労寿命が大幅に低
下してしまう。更に、前記快削元素は一般に熱間加工性
を低下させる。したがって、熱間圧延などの熱間加工時
に表面割れや疵が発生しやすくなるという問題もある。
It is well known that the machinability is improved by adding a free-cutting element (machinability improving element) such as Pb or S to the steel alone or in combination. However, high surface pressure is repeatedly applied to bearings used in various industrial machines and automobiles. Therefore, if the free cutting element is added to the bearing steel, the rolling contact fatigue life of the bearing (element component) will be significantly reduced. Furthermore, the free-cutting elements generally reduce hot workability. Therefore, there is also a problem that surface cracks and flaws are likely to occur during hot working such as hot rolling.

【0006】このため、特開平3−56641号公報
に、鋼中にBN化合物を生成させることで、転動疲労寿
命を低下させることなく被削性を向上させる「被削性に
優れた軸受鋼」が開示されている。しかし、Bは鋼中へ
の溶解度が小さいため、鋼中での歩留まりが不安定であ
るし、偏析も生じやすい。更に、Bは高炭素鋼の凝固開
始温度を著しく低下させるので、Bの偏析と相まって、
凝固偏析が助長されることになる。加えて、凝固開始温
度の低下が熱間加工性の低下につながり、熱間加工時に
表面割れや疵が生成しやすくなる。したがって、軸受用
鋼のB含有量をたとえ前記公報で規定された値、つま
り、重量%で、0.004〜0.020%にしても、必
ずしも工業的規模で安定して軸受要素部品が製造できる
というものでもなかった。
For this reason, Japanese Patent Laid-Open No. 3-56641 discloses that a BN compound is produced in steel to improve the machinability without lowering the rolling fatigue life. Is disclosed. However, since B has a low solubility in steel, the yield in steel is unstable and segregation easily occurs. Further, B significantly lowers the solidification start temperature of the high carbon steel, and therefore, in combination with the segregation of B,
Solidification segregation will be promoted. In addition, the lowering of the solidification start temperature leads to the lowering of hot workability, and surface cracks and flaws are likely to be generated during hot working. Therefore, even if the B content of the bearing steel is set to the value specified in the above-mentioned publication, that is, 0.004 to 0.020% by weight, the bearing element parts can be manufactured stably on an industrial scale. It wasn't something I could do.

【0007】特開平9−227991号公報には、特定
の条件で熱処理して組織中の炭化物数と硬さを調整する
「被削性及び冷間加工性に優れる軸受鋼及びその製造方
法」が開示されている。しかし、この公報で提案された
焼鈍条件では、加熱工程の途中で徐熱又は等温保持を行
う必要がある。このため、焼鈍時間が長くなり生産性の
低下をきたす。更に、徐熱、急熱、徐冷など熱処理条件
の変更が必要であるため、例えば、鋼線材(以下、「鋼
線材」を単に「線材」という)の一般的な形状である巻
取りコイルを対象とする場合、コイル全体を均一に熱処
理(焼鈍処理)することが困難である。たとえ均一な熱
処理ができたとしても、工業的規模で用いられる連続熱
処理炉は、一般に各ゾーンの温度が決まっていて、ゾー
ンの数も限られているため、前記公報で規定された条件
で焼鈍を実施することは難しいし、規定条件で焼鈍する
ためには連続熱処理炉の改造や更新が必要でコストが嵩
んでしまう。
Japanese Unexamined Patent Publication (Kokai) No. 9-227991 discloses "a bearing steel having excellent machinability and cold workability and a method for producing the same" in which heat treatment is performed under specific conditions to adjust the number of carbides in the structure and hardness. It is disclosed. However, under the annealing conditions proposed in this publication, it is necessary to perform gradual heating or isothermal holding during the heating process. Therefore, the annealing time becomes long and the productivity is lowered. Furthermore, since it is necessary to change the heat treatment conditions such as slow heating, rapid heating, and slow cooling, for example, a winding coil that is a general shape of a steel wire rod (hereinafter, "steel wire rod" is simply referred to as "wire rod") is used. When it is a target, it is difficult to uniformly heat-treat (anneal) the entire coil. Even if a uniform heat treatment can be performed, a continuous heat treatment furnace used on an industrial scale generally has a fixed temperature in each zone, and the number of zones is limited. Therefore, annealing is performed under the conditions specified in the above publication. Is difficult to carry out, and the continuous heat treatment furnace needs to be modified or renewed in order to anneal under the specified conditions, resulting in an increase in cost.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、その目的は、快削元素を特別に添
加・含有させることなく、且つ、焼鈍時間も従来と同様
の10〜20時間程度であるため生産性の低下をきたす
こともなく、ボール、コロ、ニードル、シャフト、レー
スなどの軸受要素部品の用途に好適な被削性に優れた線
材、棒鋼及び鋼管を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and an object thereof is to add 10 times the same as conventional ones without adding and containing a free-cutting element. To provide wire rods, steel bars and steel pipes having excellent machinability suitable for use in bearing element parts such as balls, rollers, needles, shafts, races, etc. without lowering productivity because it takes about 20 hours. Is.

【0009】なお、既に述べたように、軸受には高い面
圧が繰り返し作用するので、後述の実施例における転動
疲労試験で、1×10 以上の転動疲労寿命を有する
ことを目標とする。
As already mentioned, since high bearing pressure is repeatedly applied to the bearing, the goal is to have a rolling fatigue life of 1 × 10 7 or more in the rolling fatigue test in the examples described later. To do.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、下記
(1)、(2)に示す被削性に優れた軸受要素部品用の
線材、(3)、(4)に示す被削性に優れた軸受要素部
品用の棒鋼及び(5)、(6)に示す被削性に優れた軸
受要素部品用の鋼管にある。
The gist of the present invention is to provide wire rods for bearing element parts having excellent machinability as shown in (1) and (2) below, and machinability as shown in (3) and (4). And a steel pipe for bearing element parts, which is excellent in machinability as shown in (5) and (6) .

【0011】(1)重量%で、C:0.75〜1.2
%、Si:0.1〜1.5%、Mn:0.2〜1.5
%、Cr:0.2〜2.0%およびAl:0.003〜
0.05%を含有し、残部はFe及び不可避不純物から
なり、不純物中のPは0.02%以下、Sは0.015
%以下は、Nは0.007%以下、O(酸素)は0.0
015%以下、Tiは0.002%以下、Cuは0.0
5%未満、Niは0.2%未満、Moは0.05%未
満、Vは0.05%未満、Nbは0.01%未満、Bは
0.0003%未満、希土類元素は合計で0.001%
未満、Caは0.0001%未満、Mgは0.0001
%未満で、更に、鋼線材の横断面において外周から深さ
200μmの位置までの領域におけるC含有量の平均値
が0.4×C〜0.9×C%(但し、Cは鋼線材のC含
有量)であることを特徴とする被削性に優れた軸受要素
部品用の鋼線材。
(1) C: 0.75 to 1.2 by weight%
%, Si: 0.1 to 1.5%, Mn: 0.2 to 1.5
%, Cr: 0.2 to 2.0% and Al: 0.003 to
0.05% , the balance consists of Fe and unavoidable impurities, P in the impurities is 0.02% or less, S is 0.015
% Or less, N is 0.007% or less, and O (oxygen) is 0.0
015% or less, Ti 0.002% or less, Cu 0.0
Less than 5%, Ni less than 0.2%, Mo less than 0.05%
Full, V is less than 0.05%, Nb is less than 0.01%, B is
Less than 0.0003%, total rare earth elements 0.001%
Less, Ca less than 0.0001%, Mg 0.0001
% , And the average value of C content in the region from the outer periphery to the position of 200 μm in depth in the cross section of the steel wire rod is 0.4 × C to 0.9 × C% (where C is the value of the steel wire rod). A steel wire rod for bearing element parts having excellent machinability, characterized in that it has a C content).

【0012】(2)重量%で、C:0.75〜1.2
%、Si:0.1〜1.5%、Mn:0.2〜1.5
%、Cr:0.2〜2.0%およびAl:0.003〜
0.05%を含有するとともに、Cu:0.05〜2.
%、Ni:0.2〜4.0%、Mo:0.05〜0.
%、V:0.05〜0.4%、Nb:0.01〜0.
%、B:0.0003〜0.003%、希土類元素:
合計で0.001〜0.01%、Ca:0.0001〜
0.003%およびMg:0.0001〜0.003%
のうちの1種以上を含有し、残部はFe及び不可避不純
物からなり、不純物中のTiは0.002%以下、Pは
0.02%以下、Sは0.015%以下、Nは0.00
7%以下、O(酸素)は0.0015%以下で、更に、
鋼線材の横断面において外周から深さ200μmの位置
までの領域におけるC含有量の平均値が0.4×C〜
0.9×C%(但し、Cは鋼線材のC含有量)であるこ
とを特徴とする被削性に優れた軸受要素部品用の鋼線
(2) C: 0.75 to 1.2 by weight%
%, Si: 0.1 to 1.5%, Mn: 0.2 to 1.5
%, Cr: 0.2 to 2.0% and Al: 0.003 to
In addition to containing 0.05% , Cu: 0.05 to 2.
0 %, Ni: 0.2 to 4.0%, Mo: 0.05 to 0.
5 %, V: 0.05 to 0.4 %, Nb: 0.01 to 0.
1%, B: 0.0003~ 0.003% , the rare earth elements:
0.001 to 0.01 % in total , Ca: 0.0001 to
0.003% and Mg: 0.0001 to 0.003%
1 or more of the above , the balance consisting of Fe and unavoidable impurities, Ti in the impurities is 0.002% or less, P is 0.02% or less, S is 0.015% or less, and N is 0. 00
7% or less, O (oxygen) is 0.0015% or less, and
In the cross section of the steel wire rod , the average value of C content in the region from the outer periphery to the position of 200 μm in depth is 0.4 × C to
Steel wire for bearing element parts with excellent machinability, characterized in that it is 0.9 x C% (where C is the C content of the steel wire material ).
Material .

【0013】(3)重量%で、C:0.75〜1.2
%、Si:0.1〜1.5%、Mn:0.2〜1.5
%、Cr:0.2〜2.0%およびAl:0.003〜
0.05%を含有し、残部はFe及び不可避不純物から
なり、不純物中のPは0.02%以下、Sは0.015
%以下は、Nは0.007%以下、O(酸素)は0.0
015%以下、Tiは0.002%以下、Cuは0.0
5%未満、Niは0.2%未満、Moは0.05%未
満、Vは0.05%未満、Nbは0.01%未満、Bは
0.0003%未満、希土類元素は合計で0.001%
未満、Caは0.0001%未満、Mgは0.0001
%未満で、更に、棒鋼の横断面において外周から深さ2
00μmの位置までの領域におけるC含有量の平均値
.4×C〜0.9×C%(但し、Cは棒鋼のC含有
量)であることを特徴とする被削性に優れた軸受要素部
品用の棒鋼
(3) C: 0.75 to 1.2 by weight%
%, Si: 0.1 to 1.5%, Mn: 0.2 to 1.5
%, Cr: 0.2 to 2.0% and Al: 0.003 to
0.05% , the balance consists of Fe and unavoidable impurities, P in the impurities is 0.02% or less, S is 0.015
% Or less, N is 0.007% or less, and O (oxygen) is 0.0
015% or less, Ti 0.002% or less, Cu 0.0
Less than 5%, Ni less than 0.2%, Mo less than 0.05%
Full, V is less than 0.05%, Nb is less than 0.01%, B is
Less than 0.0003%, total rare earth elements 0.001%
Less, Ca less than 0.0001%, Mg 0.0001
Less than%, further, the outer circumference or RaFukashi of Te cross section smell bars 2
The average value of C content in the area up to the position of 00 μm is
0 . 4 × C to 0.9 × C% (however, C is the C content of the steel bar ), which is a steel bar for bearing element parts having excellent machinability.

【0014】(4)重量%で、C:0.75〜1.2
%、Si:0.1〜1.5%、Mn:0.2〜1.5
%、Cr:0.2〜2.0%およびAl:0.003〜
0.05%を含有するとともに、Cu:0.05〜2.
0%、Ni:0.2〜4.0%、Mo:0.05〜0.
5%、V:0.05〜0.4%、Nb:0.01〜0.
1%、B:0.0003〜0.003%以下、希土類元
素:合計で0.001〜0.01%、Ca:0.000
1〜0.003%およびMg:0.0001〜0.00
3%のうちの1種以上を含有し、残部はFe及び不可避
不純物からなり、不純物中のTiは0.002%以下、
Pは0.02%以下、Sは0.015%以下、Nは0.
007%以下、O(酸素)は0.0015%以下で、更
に、棒鋼の横断面において外周から深さ200μmの位
置までの領域におけるC含有量の平均値が0.4×C〜
0.9×C%(但し、Cは棒鋼のC含有量)であること
を特徴とする被削性に優れた軸受要素部品用の棒鋼。
(4) C: 0.75 to 1.2 by weight%
%, Si: 0.1 to 1.5%, Mn: 0.2 to 1.5
%, Cr: 0.2 to 2.0% and Al: 0.003 to
0.05% and Cu: 0.05-2.
0%, Ni: 0.2-4.0%, Mo: 0.05-0.
5%, V: 0.05 to 0.4%, Nb: 0.01 to 0.
1%, B: 0.0003 to 0.003% or less, rare earth element
Elementary: 0.001-0.01% in total, Ca: 0.000
1 to 0.003% and Mg: 0.0001 to 0.00
Contains at least one of 3%, the balance Fe and unavoidable
It consists of impurities, and Ti in the impurities is 0.002% or less,
P is 0.02% or less, S is 0.015% or less, and N is 0.
007% or less, O (oxygen) is 0.0015% or less,
The depth of 200 μm from the outer circumference in the cross section of the steel bar.
The average value of C content in the region up to
0.9 x C% (however, C is the C content of the steel bar)
Steel bar for bearing element parts with excellent machinability.

【0015】(5)重量%で、C:0.75〜1.2
%、Si:0.1〜1.5%、Mn:0.2〜1.5
%、Cr:0.2〜2.0%およびAl:0.003〜
0.05%を含有し、残部はFe及び不可避不純物から
なり、不純物中のPは0.02%以下、Sは0.015
%以下は、Nは0.007%以下、O(酸素)は0.0
15%以下、Tiは0.002%以下、Cuは0.0
5%未満、Niは0.2%未満、Moは0.05%未
満、Vは0.05%未満、Nbは0.01%未満、Bは
0.0003%未満、希土類元素は合計で0.001%
未満、Caは0.0001%未満、Mgは0.0001
%未満で、更に、鋼管の横断面において内外周からそれ
ぞれ深さ200μmの位置までの領域におけるC含有量
の平均値がいずれも0.4×C〜0.9×C%(但し、
Cは鋼管のC含有量)であることを特徴とする被削性に
優れた軸受要素部品用の鋼管。
(5) C: 0.75 to 1.2 by weight%
%, Si: 0.1 to 1.5%, Mn: 0.2 to 1.5
%, Cr: 0.2 to 2.0% and Al: 0.003 to
Contains 0.05%, the balance from Fe and unavoidable impurities
Therefore, P in the impurities is 0.02% or less, and S is 0.015.
% Or less, N is 0.007% or less, and O (oxygen) is 0.0
0 15% or less, Ti 0.002% is less, Cu 0.0
Less than 5%, Ni less than 0.2%, Mo less than 0.05%
Full, V is less than 0.05%, Nb is less than 0.01%, B is
Less than 0.0003%, total rare earth elements 0.001%
Less, Ca less than 0.0001%, Mg 0.0001
% From the inner and outer circumferences in the cross section of the steel pipe
C content in the area up to the depth of 200 μm
Average value of 0.4 × C to 0.9 × C% (however,
C is the content of C in the steel pipe)
Steel pipe for excellent bearing element parts.

【0016】(6)重量%で、C:0.75〜1.2
%、Si:0.1〜1.5%、Mn:0.2〜1.5
%、Cr:0.2〜2.0%およびAl:0.003〜
0.05%を含有するとともに、Cu:0.05〜2.
0%、Ni:0.2〜4.0%、Mo:0.05〜0.
5%、V:0.05〜0.4%、Nb:0.01〜0.
1%、B:0.0003〜0.003%以下、希土類元
素:合計で0.001〜0.01%、Ca:0.000
1〜0.003%およびMg:0.0001〜0.00
3%のうちの1種以上を含有し、残部はFe及び不可避
不純物からなり、不純物中のTiは0.002%以下、
Pは0.02%以下、Sは0.015%以下、Nは0.
007%以下、O(酸素)は0.0015%以下で、更
に、鋼管の横断面において内外周からそれぞれ深さ20
0μmの位置までの領域におけるC含有量の平均値がい
ずれも0.4×C〜0.9×C%(但し、Cは鋼管のC
含有量)であることを特徴とする被削性に優れた軸受要
素部品用の鋼管。
(6) C: 0.75 to 1.2 by weight%
%, Si: 0.1 to 1.5%, Mn: 0.2 to 1.5
%, Cr: 0.2 to 2.0% and Al: 0.003 to
0.05% and Cu: 0.05-2.
0%, Ni: 0.2-4.0%, Mo: 0.05-0.
5%, V: 0.05 to 0.4%, Nb: 0.01 to 0.
1%, B: 0.0003 to 0.003% or less, rare earth element
Elementary: 0.001-0.01% in total, Ca: 0.000
1 to 0.003% and Mg: 0.0001 to 0.00
Contains at least one of 3%, the balance Fe and unavoidable
It consists of impurities, and Ti in the impurities is 0.002% or less,
P is 0.02% or less, S is 0.015% or less, and N is 0.
007% or less, O (oxygen) is 0.0015% or less,
In the transverse section of the steel pipe, a depth of 20
Average value of C content in the area up to 0 μm
The deviation is 0.4 × C to 0.9 × C% (however, C is the C of the steel pipe)
The content of the bearing is superior to the machinability.
Steel pipe for raw parts.

【0017】なお、本発明でいう線材、棒鋼及び鋼管の
「横断面」とは、線材、棒鋼及び鋼管の圧延方向に垂直
に切断した面をいう。又、「(線材、棒鋼や鋼管の)外
周から深さ200μmの位置までの領域におけるC含有
量の平均値」とは、例えば波長分散型の電子線マイクロ
アナライザーを用いて線材、棒鋼や鋼管の横断面外周部
(表層部近傍)のC含有量の線分析を行った場合の、外
周から20μm毎の深さの位置におけるC含有量の平均
値を指す。同様に、「(鋼管の)内周から深さ200μ
mの位置までの領域におけるC含有量の平均値」とは、
例えば波長分散型の電子線マイクロアナライザーを用い
て鋼管の横断面内周部(内表層部近傍)のC含有量の線
分析を行った場合の、内周から20μm毎の深さの位置
におけるC含有量の平均値を指す。
The "cross section" of the wire rod, the steel bar and the steel pipe in the present invention means a surface of the wire rod, the steel bar and the steel pipe cut perpendicularly to the rolling direction. Further, "the average value of the C content in the region from the outer periphery (of the wire rod, steel bar or steel pipe) to the position of depth 200 μm" means, for example, that of the wire rod, steel bar or steel pipe using a wavelength dispersion type electron beam microanalyzer. This indicates the average value of the C content at a position at a depth of 20 μm from the outer circumference when a line analysis of the C content in the outer peripheral portion (near the surface layer portion) of the cross section is performed. Similarly, “from the inner circumference (of the steel pipe) to a depth of 200μ
The average value of C content in the area up to the position of m "
For example, when line analysis of the C content in the inner peripheral portion (near the inner surface layer portion) of the steel pipe is performed using a wavelength-dispersive electron beam microanalyzer, the C content at the position of every 20 μm from the inner periphery is analyzed. It means the average value of the content.

【0018】本発明者らは、線材、棒鋼及び鋼管の球状
化焼鈍後の組織、なかでも内外表層部組織が被削性に及
ぼす影響について調査・研究を重ね、その結果、下記の
知見を得た。
The present inventors conducted extensive research and studies on the effects of the spheroidizing annealing of wire rods, steel bars and steel pipes, especially the internal and external surface layer structures on machinability, and as a result, obtained the following findings. It was

【0019】(a)軸受用鋼の旋削加工においては、被
加工材の表面部組織(表層部組織)が切削速度と工具寿
命に大きく影響する。又、突っ切り加工の場合において
も、工具と最初に接触する線材、棒鋼及び鋼管の表層部
組織が工具寿命に大きく影響する。
(A) In the turning of bearing steel, the surface structure (surface structure) of the work material has a great influence on the cutting speed and the tool life. Further, even in the case of the cut-off processing, the surface material of the wire rod, the steel bar and the steel pipe which first come into contact with the tool has a great influence on the tool life.

【0020】(b)表層部を適当量脱炭させて硬質なセ
メンタイトの組織割合を減少させれば、切削抵抗が小さ
くなって被削性を著しく高めることができる。軸受用鋼
の旋削加工では、表層部を厚さで少なくとも200μm
切削するため、脱炭させる領域を表層部から深さ200
μmの位置までとすれば、製品特性には何ら影響がな
い。
(B) If the surface layer portion is decarburized by an appropriate amount to reduce the ratio of hard cementite structure, the cutting resistance becomes small and the machinability can be remarkably enhanced. When turning bearing steel, the surface layer should have a thickness of at least 200 μm.
For cutting, the area to be decarburized from the surface layer to a depth of 200
The product characteristics are not affected at all up to the μm position.

【0021】(c)表層部が軟質なフェライト相を主体
とする組織である場合、切削抵抗が上昇するので却って
被削性が低下してしまう。このため、鋼材の表層部に軟
質のフェライト組織を存在させることにより冷間での曲
げ加工性や鍛造性を向上させようとする特開昭56−5
5520号公報や特開平8−109437号公報で提案
されている技術は、これを切削加工に適用しても、切削
性を高めることはできない。
(C) In the case where the surface layer has a structure mainly composed of a soft ferrite phase, the cutting resistance is increased and the machinability is rather deteriorated. Therefore, it is attempted to improve cold bending workability and forgeability by allowing a soft ferrite structure to exist in the surface layer of a steel material.
The technology proposed in Japanese Patent No. 5520 and Japanese Patent Application Laid-Open No. 8-109437 cannot improve the machinability even if it is applied to the cutting work.

【0022】(d)表層部を適当量脱炭させて硬質なセ
メンタイトの組織割合を減少させ、しかも、表層部をフ
ェライト相主体の組織にしないためには、軸受要素部品
用の線材、棒鋼の外周近傍、鋼管の内外周近傍の炭素含
有量が適正な範囲にあればよい。
(D) In order to reduce the proportion of hard cementite structure by decarburizing the surface layer portion and not to make the surface layer portion mainly composed of ferrite phase, in order to prevent the surface layer portion from having a structure mainly composed of ferrite phase, the wire rod for the bearing element and the steel bar It suffices if the carbon content in the vicinity of the outer circumference and in the vicinity of the inner and outer circumferences of the steel pipe is within an appropriate range.

【0023】(e)切削加工は、主に鋼材表層部を含ん
だ状態で行われるため、表層部が上記(d)を満足して
おりさえすれば、内部の領域には関係なく被削性を高め
ることができ、したがって、切削速度の向上と工具寿命
の延長が可能となる。
(E) Since the cutting process is mainly performed in a state including the steel material surface layer portion, as long as the surface layer portion satisfies the above (d), machinability is irrelevant regardless of the internal region. Therefore, the cutting speed can be improved and the tool life can be extended.

【0024】本発明は、上記の知見に基づいて完成され
たものである。
The present invention has been completed based on the above findings.

【0025】[0025]

【発明の実施の形態】以下、本発明について詳しく説明
する。なお、化学成分の含有量の「%」は「重量%」を
意味する。 (A)線材、棒鋼及び鋼管の化学組成 C:0.75〜1.2% 焼入れと低温での焼戻しによる熱処理を行って軸受用鋼
材(軸受要素部品)に所望の機械的性質を付与させる
が、Cの含有量が0.75%未満では前記焼入れ・焼戻
し後の硬度が低く、所望の転動疲労寿命(後述の実施例
における転動疲労試験で、1×10 以上の転動疲労
寿命)が得られない。一方、Cの含有量が1.2%を超
えると、鋼の凝固開始温度が低下して熱間加工時、なか
でも熱間製管時に割れや疵が多発するし、鋼の凝固時に
巨大な炭化物が生成しやすくなるので、長時間の均質化
熱処理を行わない場合には目標とする転動疲労寿命が得
られない。したがって、Cの含有量を0.75〜1.2
%とした。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. In addition, "%" of the content of a chemical component means "weight%." (A) Chemical composition C of wire rod, steel bar and steel pipe C: 0.75 to 1.2% Heat treatment by quenching and tempering at low temperature is performed to impart desired mechanical properties to the bearing steel material (bearing element part). If the C and C contents are less than 0.75%, the hardness after quenching and tempering is low, and the desired rolling fatigue life (1 × 10 7 or more rolling fatigue life in the rolling fatigue test in the examples described later ) Cannot be obtained. On the other hand, when the content of C exceeds 1.2%, the solidification start temperature of the steel lowers, and during hot working, cracks and flaws frequently occur during hot pipe forming, and a huge amount of solidification occurs during steel solidification. Since carbides are easily generated, the target rolling fatigue life cannot be obtained unless the homogenizing heat treatment is performed for a long time. Therefore, the content of C is 0.75 to 1.2.
%.

【0026】Si:0.1〜1.5% Siは、転動疲労寿命を高めるのに有効な元素であるほ
か、脱酸剤として必要な元素でもある。しかし、その含
有量が0.1%未満では前記の効果が得難い。なお、S
iの含有量が0.4%以上になると被削性向上効果も大
きくなる。一方、Siの含有量が0.8%を超えると脱
スケール性が劣化しはじめ、特に1.5%を超えると、
熱間圧延後や球状化焼鈍後に脱スケールするために長時
間を要するので生産性の大幅な低下を招く。したがっ
て、Siの含有量を0.1〜1.5%とした。Si含有
量の望ましい範囲は0.4〜0.8%である。
Si: 0.1 to 1.5% Si is an element effective for increasing the rolling fatigue life and also an element necessary as a deoxidizing agent. However, if the content is less than 0.1%, it is difficult to obtain the above effects. In addition, S
When the content of i is 0.4% or more, the machinability improving effect also becomes large. On the other hand, when the Si content exceeds 0.8%, the descaling property begins to deteriorate, and particularly when it exceeds 1.5%,
Since it takes a long time to descale after hot rolling or spheroidizing annealing, the productivity is greatly reduced. Therefore, the Si content is set to 0.1 to 1.5%. The desirable range of Si content is 0.4 to 0.8%.

【0027】Mn:0.2〜1.5% Mnは、鋼の焼入れ性を向上させると同時に、Sによる
熱間脆性の防止に必要な元素である。これらの効果を発
揮させるためにはMnを0.2%以上含有させる必要が
ある。一方、Mnの含有量が1.0%を超えると被削性
が低下し始め、1.5%を超えると大幅に被削性が低下
し、切削効率の低下、工具寿命の低下を招く。したがっ
て、Mn含有量を0.2〜1.5%とした。Mnの含有
量は0.2〜1.0%とすることが好ましい。
Mn: 0.2-1.5% Mn is an element necessary for improving the hardenability of steel and at the same time preventing hot brittleness due to S. In order to exert these effects, it is necessary to contain Mn in an amount of 0.2% or more. On the other hand, if the Mn content exceeds 1.0%, the machinability begins to decrease, and if it exceeds 1.5%, the machinability decreases significantly, leading to a reduction in cutting efficiency and a reduction in tool life. Therefore, the Mn content is set to 0.2 to 1.5%. The Mn content is preferably 0.2 to 1.0%.

【0028】Cr:0.2〜2.0% Crは、セメンタイト中に濃化しやすい元素で、オース
テナイト中でのセメンタイトの安定性が増し、球状化焼
鈍の短時間化、耐摩耗性の向上が可能である。しかし、
その含有量が0.2%未満では前記の効果が得難い。一
方、1.6%を超えると被削性が低下し始め、2.0%
を超えると大幅に被削性が低下し、切削効率の低下、工
具寿命の低下を招く。したがって、Cr含有量を0.2
〜2.0%とした。Cr含有量の望ましい範囲は0.2
〜1.6%である。
Cr: 0.2 to 2.0% Cr is an element that easily concentrates in cementite, which increases the stability of cementite in austenite, shortens spheroidizing annealing, and improves wear resistance. It is possible. But,
If the content is less than 0.2%, it is difficult to obtain the above effects. On the other hand, if it exceeds 1.6%, the machinability will start to deteriorate and 2.0%
If it exceeds, the machinability is significantly reduced, leading to a reduction in cutting efficiency and a reduction in tool life. Therefore, the Cr content is 0.2
˜2.0%. Desirable range of Cr content is 0.2
~ 1.6%.

【0029】Al:0.003〜0.05 Alは脱酸作用を有するが、この効果を確実に得るに
、0.003%以上の含有量が必要である。しかしそ
の一方で、Alは非金属系介在物を形成して転動疲労寿
命を低下させてしまう。特にその含有量が0.05%を
超えると、粗大な非金属系介在物を形成しやすくなるの
で転動疲労寿命の低下が著しくなり、所望の転動疲労寿
命(後述の実施例における転動疲労試験で、1×10
以上の転動疲労寿命)が得られなくなる。したがっ
て、Alの含有量は0.003〜0.05%とした。
[0029] Al: has a 0.003 to 0.05% Al is acting deoxidation, in order to ensure this effect is 0. A content of 003% or more is required . On the other hand, however, Al forms non-metallic inclusions and reduces rolling contact fatigue life. In particular, if the content exceeds 0.05%, coarse nonmetallic inclusions are likely to be formed, so that the rolling fatigue life is significantly reduced, and the desired rolling fatigue life (rolling fatigue life in Examples described later 1 × 10 7 in fatigue test
The above rolling fatigue life) cannot be obtained. Therefore, the content of Al is set to 0.003 to 0.05 % .

【0030】Cu:2.0%以下 Cuは添加しなくてもよい。添加すれば耐食性を高める
作用がある。この効果を確実に得るには、Cuは0.0
5%以上の含有量とすることが好ましい。しかし、その
含有量が2.0%を超えると結晶粒界に偏析して鋼塊の
分塊圧延や線材の熱間圧延など熱間加工時における割れ
や疵の発生が顕著になる。したがって、積極的に添加す
る場合のCuの含有量は0.05〜2.0%とするのが
よい
Cu: 2.0% or less Cu may not be added. If added, it has the effect of enhancing corrosion resistance. To ensure this effect, Cu is 0.0
The content is preferably 5% or more. However, if the content exceeds 2.0%, segregation occurs at the grain boundaries, and cracks and flaws become prominent during hot working such as slab rolling of steel ingots and hot rolling of wire rods. Therefore, add positively
The content of Cu in the case that has to 2.0% 0.05
Good .

【0031】Ni:4.0%以下 Niは添加しなくてもよい。添加すれば、焼入れ後のマ
ルテンサイト中に固溶して靱性を高める作用を有する。
この効果を確実に得るには、Niは0.2%以上の含有
量とすることが好ましい。しかし、4.0%を超えて含
有させても、前記の効果は飽和し、コストが嵩むばかり
である。したがって、積極的に添加する場合のNiの含
有量は0.2〜を4.0%とするのがよい
Ni: 4.0% or less Ni may not be added. If added, it has a function of increasing the toughness by forming a solid solution in martensite after quenching.
To ensure this effect, the Ni content is preferably 0.2% or more. However, even if the content exceeds 4.0%, the above effect is saturated and the cost is increased. Therefore, the content of Ni to be added is aggressively preferably set to 4.0% to 0.2.

【0032】Mo:0.5%以下 Moも添加しなくてもよい。添加すれば、焼入れ後のマ
ルテンサイト中に固溶して、転動疲労寿命を高める作用
がある。この効果を確実に得るには、Moは0.05%
以上の含有量とすることが好ましい。しかし、その含有
量が0.5%を超えると、焼入れ性が高くなり過ぎて熱
間圧延後にマルテンサイトが生成しやすくなり、割れが
発生しやすくなる。したがって、積極的に添加する場合
Moの含有量は0.05〜0.5%とするのがよい
Mo: 0.5% or less Mo may not be added. If added, it forms a solid solution in the martensite after quenching, and has the effect of increasing the rolling fatigue life. To ensure this effect, Mo is 0.05%
The above content is preferable. However, if the content exceeds 0.5%, the hardenability becomes too high, martensite is likely to be formed after hot rolling, and cracking is likely to occur. Therefore, when actively adding
The content of Mo is preferably set to 0.5% 0.05.

【0033】V:0.4%以下 Vは添加しなくてもよい。添加すれば、オーステナイト
結晶粒を微細化させ、靱性を高める作用を有する。この
効果を確実に得るには、Vは0.05%以上の含有量と
することが好ましい。しかし、0.4%を超えて含有さ
せても前記の効果は飽和し、コストが嵩むばかりであ
る。したがって、積極的に添加する場合のVの含有量
0.05〜0.4%とするのがよい
V: 0.4% or less V may not be added. If added, it has the effect of refining the austenite crystal grains and increasing the toughness. In order to reliably obtain this effect, it is preferable that the content of V be 0.05% or more. However, even if the content exceeds 0.4%, the above effect is saturated and the cost is increased. Therefore, the content of V when positively added is
It is preferable to set it to 0.05 to 0.4%.

【0034】Nb:0.1%以下 Nbは添加しなくてもよい。添加すれば、オーステナイ
ト結晶粒を微細化させ、靱性を高める作用を有する。こ
の効果を確実に得るには、Nbは0.01%以上の含有
量とすることが好ましい。しかし、0.1%を超えて含
有させても前記の効果は飽和し、コストが嵩むばかりで
ある。したがって、積極的に添加する場合のNbの含有
は0.01〜0.1%とするのがよい
Nb: 0.1% or less Nb need not be added. If added, it has the effect of refining the austenite crystal grains and increasing the toughness. In order to reliably obtain this effect, the Nb content is preferably 0.01% or more. However, even if the content exceeds 0.1%, the above effect is saturated and the cost is increased. Therefore, the content of Nb to be added is aggressively preferably set to 0.1% 0.01.

【0035】B:0.003%以下 Bも添加しなくてもよい。添加すれば、セメンタイト中
に固溶してセメンタイトを安定化させ、球状化焼鈍の短
時間化を可能にし、更に、耐摩耗性を向上させる。こう
した効果を確実に得るには、Bは0.0003%以上の
含有量とすることが好ましい。しかし、その含有量が
0.003%を超えると、粗大なセメンタイトを生成し
やすくなり、所望の転動疲労寿命(後述の実施例におけ
る転動疲労試験で、1×10 以上の転動疲労寿命)
が得られない。したがって、積極的に添加する場合の
の含有量は0.0003〜0.003%とするのがよ
B: 0.003% or less B may not be added. If added, it forms a solid solution in cementite and stabilizes cementite, enables spheroidizing annealing in a short time, and further improves wear resistance. In order to surely obtain such an effect, the content of B is preferably 0.0003% or more. However, if the content exceeds 0.003%, coarse cementite is likely to be generated, and a desired rolling fatigue life (1 × 10 7 or more rolling fatigue in a rolling fatigue test in Examples described later is performed. lifespan)
Can't get Therefore, B when positively added
The content of that and 0.0003 to 0.003%
Yes .

【0036】希土類元素:合計で0.01%以下 希土類元素も添加しなくてもよい。添加すれば、熱間加
工性を高める作用を有する。この効果を確実に得るに
は、希土類元素の含有量を合計で0.001%以上とす
ることが好ましい。しかし、希土類元素を合計で0.0
1%を超えて含有させても前記の効果は飽和し、コスト
が嵩むばかりである。したがって、積極的に添加する場
合の希土類元素の含有量合計で0.001〜0.01
とするのがよい
Rare earth element: 0.01% or less in total Rare earth element may not be added. If added, it has the effect of enhancing hot workability. In order to reliably obtain this effect, the total content of rare earth elements is preferably 0.001% or more. However, the total amount of rare earth elements is 0.0
Even if the content exceeds 1%, the above effect is saturated and the cost is increased. Therefore, when adding positively
The total content of rare earth elements is 0.001 to 0. 01
It is good to set it as %.

【0037】Ca:0.003%以下 Caは添加しなくてもよい。添加すれば、熱間加工性を
高める作用を有する。この効果を確実に得るには、Ca
は0.0001%以上の含有量とすることが好ましい。
しかし、Caを0.003%を超えて含有させても前記
の効果は飽和し、コストが嵩むばかりである。したがっ
て、積極的に添加する場合のCaの含有量は0.000
1〜0.003%とするのがよい
Ca: 0.003% or less Ca may not be added. If added, it has the effect of enhancing hot workability. To ensure this effect, Ca
Is preferably 0.0001% or more.
However, even if Ca is contained in an amount of more than 0.003%, the above effect is saturated and the cost is increased. Therefore, the content of Ca when added positively is 0.000
It is preferable to set it to 1 to 0.003%.

【0038】Mg:0.003%以下 Mgも添加しなくてもよい。添加すれば、熱間加工性を
高める作用を有する。この効果を確実に得るには、Mg
は0.0001%以上の含有量とすることが好ましい。
しかし、Mgを0.003%を超えて含有させても前記
の効果は飽和し、コストが嵩むばかりである。したがっ
て、積極的に添加する場合のMgの含有量は0.000
1〜0.003%とするのがよい
Mg: 0.003% or less It is not necessary to add Mg. If added, it has the effect of enhancing hot workability. To ensure this effect, Mg
Is preferably 0.0001% or more.
However, even if Mg is contained in an amount of more than 0.003%, the above effect is saturated and the cost is increased. Therefore, the content of Mg when positively added is 0.000
It is preferable to set it to 1 to 0.003%.

【0039】なお、以上に説明したCuからMgまでの
9つの任意添加成分は、必要に応じて、後述の実施例に
示すように、1種以上を積極的に添加する。
In addition, from Cu to Mg described above
The nine optional additives are added to the examples described later, if necessary.
As shown, one or more are added positively.

【0040】本発明においては、不純物元素としてのT
i、P、S、N及びO(酸素)の含有量を下記のとおり
に制限する。
In the present invention, T as an impurity element
The contents of i, P, S, N and O (oxygen) are limited as follows.

【0041】Ti:0.002%以下 Tiは、Nと結合してTiNを形成し、転動疲労寿命を
低下させてしまう。特にその含有量が0.002%を超
えると、転動疲労寿命の低下が著しくなり、所望の転動
疲労寿命(後述の実施例における転動疲労試験で、1×
10 以上の転動疲労寿命)が得られない。したがっ
て、Tiの含有量を0.002%以下とした。なお、不
純物元素としてのTiの含有量はできるだけ少なくする
ことが望ましい。
Ti: 0.002% or less Ti combines with N to form TiN and reduces the rolling fatigue life. In particular, when the content exceeds 0.002%, the rolling fatigue life is remarkably reduced, and the desired rolling fatigue life (1 × in the rolling fatigue test in Examples described later) is obtained.
A rolling fatigue life of 10 7 or more) cannot be obtained. Therefore, the content of Ti is set to 0.002% or less. It is desirable that the content of Ti as an impurity element be as small as possible.

【0042】P:0.02%以下 Pは粒界に偏析して転動疲労寿命を低下させてしまう。
特に、その含有量が0.02%を超えると転動疲労寿命
の低下が著しくなり、所望の転動疲労寿命(後述の実施
例における転動疲労試験で、1×10 以上の転動疲
労寿命)が得られなくなる。したがって、Pの含有量を
0.02%以下とした。
P: 0.02% or less P segregates at the grain boundaries and reduces rolling contact fatigue life.
In particular, when the content exceeds 0.02%, the rolling fatigue life is significantly reduced, and a desired rolling fatigue life (1 × 10 7 or more rolling fatigue in a rolling fatigue test in Examples described later is performed. Life) will not be obtained. Therefore, the content of P is set to 0.02% or less.

【0043】S:0.015%以下 Sは、Mnと結合してMnSを形成し、転動疲労寿命を
低下させてしまう。特にその含有量が0.015%を超
えると、粗大なMnSを形成しやすくなるので転動疲労
寿命の低下が著しくなり、所望の転動疲労寿命が得られ
ない。したがって、Sの含有量を0.015%以下とし
た。
S: 0.015% or less S combines with Mn to form MnS and reduces the rolling fatigue life. In particular, if the content exceeds 0.015%, coarse MnS is likely to be formed, so that the rolling fatigue life is significantly reduced, and the desired rolling fatigue life cannot be obtained. Therefore, the content of S is set to 0.015% or less.

【0044】N:0.007%以下 Nは、TiやAlと結合してTiNやAlNを形成しや
すく、N含有量が多くなって粗大なTiNやAlNが形
成されると、転動疲労寿命が低下してしまう。特にその
含有量が0.007%を超えると、転動疲労寿命の低下
が著しくなり、所望の転動疲労寿命(後述の実施例にお
ける転動疲労試験で、1×10 以上の転動疲労寿
命)が得られない。したがって、Nの含有量を0.00
7%以下とした。一方、TiやAlと化合物を形成しな
い所謂「フリーN」が多く存在すると、被削性が低下し
てしまうので、不純物元素としてのNの含有量をできる
限り少なくして、工具寿命改善のために0.005%以
下とすることが望ましい。
N: 0.007% or less N easily combines with Ti or Al to form TiN or AlN, and when the N content increases and coarse TiN or AlN is formed, rolling fatigue life Will decrease. In particular, when the content exceeds 0.007%, the rolling fatigue life is significantly reduced, and a desired rolling fatigue life (1 × 10 7 or more rolling fatigue in a rolling fatigue test in Examples described later is performed. Life) cannot be obtained. Therefore, the content of N is 0.00
It was set to 7% or less. On the other hand, if a large amount of so-called "free N" that does not form a compound with Ti or Al is present, the machinability will decrease. Therefore, the content of N as an impurity element should be minimized to improve the tool life. Further, it is desirable to set it to 0.005% or less.

【0045】O(酸素):0.0015%以下 Oは、酸化物系介在物を形成し、転動疲労寿命を低下さ
せてしまう。特にその含有量が0.0015%を超える
と転動疲労寿命の低下が著しくなり、所望の転動疲労寿
命(後述の実施例における転動疲労試験で、1×10
以上の転動疲労寿命)が得られない。したがって、O
の含有量を0.0015%以下とした。なお、不純物元
素としてのO含有量はできる限り少なくすることが望ま
しい。 (B)線材、棒鋼及び鋼管の横断面における炭素含有量
分布 本発明においては、線材、棒鋼の横断面において、外周
から深さ200μmの位置までの領域におけるC含有量
の平均値、及び、鋼管の横断面において、内外周からそ
れぞれ深さ200μmの位置までの領域におけるC含有
量の平均値を、いずれも0.4×C〜0.9×C%(C
は対象とする線材、棒鋼と鋼管のC含有量)に規定す
る。これは、下記の理由による。
O (oxygen): 0.0015% or less O forms oxide inclusions and reduces rolling fatigue life. In particular, when the content exceeds 0.0015%, the rolling fatigue life is remarkably reduced, and the desired rolling fatigue life (1 × 10 7 in the rolling fatigue test in Examples described later) is achieved.
The above rolling fatigue life) cannot be obtained. Therefore, O
Content was 0.0015% or less. It should be noted that it is desirable to reduce the O content as an impurity element as much as possible. (B) Carbon content distribution in cross section of wire rod, steel bar and steel pipe In the present invention, in the cross section of wire rod, steel bar, average value of C content in the region from the outer periphery to the position of 200 μm in depth, and the steel pipe In the cross section of, the average value of the C content in each of the regions from the inner and outer circumferences to the position of 200 μm in depth is 0.4 × C to 0.9 × C% (C
Is specified in the target wire rod, steel bar and steel pipe C content). This is for the following reason.

【0046】線材、棒鋼や鋼管を切削加工、なかでも旋
削や突っ切りで加工する場合、線材、棒鋼や鋼管の長手
方向を回転軸として回転させながら加工を行う。このた
め、旋削加工の場合は、常に表面層つまり表層部を含ん
だ状態で切削が行われることになる。又、突っ切り加工
の場合は、加工の初期段階は常に表層部の切削になる。
したがって、旋削加工、突っ切り加工のいずれの場合に
も、表層部を切削しやすい状態にしておきさえすれば、
良好な被削性が確保できる。
When a wire rod, a steel bar or a steel pipe is cut, especially by turning or parting, the wire rod, the steel bar or the steel pipe is rotated while the longitudinal direction of the wire rod, the steel bar or the steel pipe is rotated. Therefore, in the case of turning, cutting is always performed in a state including the surface layer, that is, the surface layer portion. Further, in the case of the cut-off processing, the surface layer portion is always cut in the initial stage of the processing.
Therefore, in both cases of turning and parting off, if the surface layer is easy to cut,
Good machinability can be secured.

【0047】一方、切削加工、なかでも旋削加工によっ
て除去される部分は、少ない場合表層部の200μm、
つまり外周や内周からの深さで200μmであるので、
切削加工後の軸受要素部品に所望の特性を確保させるに
は、それより深い部分の化学組成(C含有量)は「線
材、棒鋼又は鋼管のC含有量」と同じにする必要があ
る。したがって、対象が線材、棒鋼の場合には、外周か
ら深さ200μmの位置までの領域についての脱炭の程
度を、又、対象が鋼管の場合には、内外周からそれぞれ
深さ200μmの位置までの領域についての脱炭の程度
を規定すればよい。以下の説明においては、線材、棒鋼
の横断面における「外周から深さ200μmの位置まで
の領域」と鋼管の横断面における「内外周からそれぞれ
深さ200μmの位置までの領域」とをあわせて「表層
部領域」ということもある。
On the other hand, the part to be removed by cutting, especially turning is 200 μm in the surface layer,
That is, since the depth from the outer or inner circumference is 200 μm,
In order to ensure the desired characteristics of the bearing element component after cutting, the chemical composition (C content) of the deeper portion must be the same as the "C content of the wire rod, steel bar or steel pipe". Therefore, when the target is a wire rod or steel bar, the degree of decarburization in the region from the outer circumference to a position of 200 μm in depth, and when the target is a steel pipe, from the inner and outer circumferences to a position of 200 μm in depth, respectively. The degree of decarburization in the area of 1 may be specified. In the following description, the "region from the outer periphery to the position of 200 μm in depth" in the cross section of the wire rod and the steel bar and the "region from the inner and outer periphery to the position of 200 μm in depth" in the cross section of the steel pipe will be combined. It may also be referred to as "surface layer area".

【0048】本発明は、前記の「表層部領域」、つまり
外周や内周からの深さで200μmの位置までの領域を
適当量脱炭させて、その領域における硬質なセメンタイ
トの組織割合を減少させ、しかも、フェライト相主体の
組織にしないことによって、被削性を高めることを大き
な特徴とする。前記領域におけるC含有量の平均値が
0.9×C%以下の場合に、硬質なセメンタイトの組織
割合が減少して切削抵抗が低下するので、被削性を大き
く高めることができる。一方、前記領域におけるC含有
量の平均値が0.4×C%未満の場合には、「表層部領
域」がフェライト相主体の組織になって切削抵抗が上昇
するので却って被削性が低下するし、この領域より深い
部分のC含有量の減少(脱炭)を防止することも困難に
なる。したがって、「表層部領域」におけるC含有量の
平均値を0.4×C〜0.9×C%とした。なお、工具
寿命を延ばして被削性を一層高めるには、前記領域にお
けるC含有量の平均値を0.4×C〜0.7×C%にす
ることが好ましい。
In the present invention, the above-mentioned "surface layer region", that is, the region up to the position of 200 μm in depth from the outer or inner periphery is decarburized by an appropriate amount to reduce the hard cementite structure ratio in that region. In addition, the main feature is that machinability is enhanced by not forming a structure mainly composed of a ferrite phase. When the average value of the C content in the region is 0.9 × C% or less, the hard cementite structure ratio decreases and the cutting resistance decreases, so that the machinability can be greatly improved. On the other hand, when the average value of the C content in the region is less than 0.4 × C%, the “surface layer region” has a structure mainly composed of the ferrite phase and the cutting resistance increases, so that the machinability is rather deteriorated. However, it is difficult to prevent the reduction (decarburization) of the C content in the portion deeper than this region. Therefore, the average value of the C content in the “surface layer region” is set to 0.4 × C to 0.9 × C%. In addition, in order to extend the tool life and further improve the machinability, it is preferable that the average value of the C content in the region is 0.4 × C to 0.7 × C%.

【0049】ここで、「C」が「線材、棒鋼、鋼管のC
含有量」を指すことは既に述べたとおりであり、例え
ば、とりべ分析値を意味する。又、「(線材、棒鋼や鋼
管の)外周から深さ200μmの位置までの領域におけ
るC含有量の平均値」が、例えば波長分散型の電子線マ
イクロアナライザーを用いて線材、棒鋼や鋼管の横断面
外周部(表層部近傍)のC含有量の線分析を行った場合
の、外周から20μm毎の深さの位置におけるC含有量
の平均値を指し、「(鋼管の)内周から深さ200μm
の位置までの領域におけるC含有量の平均値」が、同様
に、例えば波長分散型の電子線マイクロアナライザーを
用いて鋼管の横断面内周部(内表層部近傍)のC含有量
の線分析を行った場合の、内周から20μm毎の深さの
位置におけるC含有量の平均値を指すことは既に述べた
とおりである。なお、表層部のC含有量は2次イオン質
量分析法によって求めることもできる。
Here, "C" is "C of wire rod, steel bar, and steel pipe."
The term "content" is as described above, and means, for example, a ladle analysis value. In addition, “the average value of C content in the region from the outer circumference (of the wire rod, steel bar or steel pipe) to the position of 200 μm in depth” is, for example, using a wavelength-dispersive electron beam microanalyzer When the line content of the C content in the outer peripheral part (near the surface layer part) is analyzed, it means the average value of the C content at the position of each depth of 20 μm from the outer periphery, and it means “from the inner periphery (of the steel pipe) to the depth. 200 μm
Similarly, the "average value of C content in the region up to the position of" is similarly analyzed by, for example, a line analysis of the C content of the inner peripheral portion (in the vicinity of the inner surface layer portion) of the cross section of the steel pipe using a wavelength dispersive electron beam microanalyzer. As described above, the average value of the C content at the depths of 20 μm from the inner circumference in the case of performing is described above. The C content of the surface layer portion can also be determined by secondary ion mass spectrometry.

【0050】線材、棒鋼や鋼管の「表層部領域」におけ
るC含有量の平均値を0.4×C〜0.9×C%とする
には、脱炭層がほとんどない熱間圧延線材、熱間圧延棒
鋼や熱間圧延鋼管を光輝炉を用いて球状化焼鈍する場
合、例えば、RXガス(N、H 、COを主成分と
するガス)とNXガス(N を主成分とし、微量のC
O、CO を含むガス)によって光輝炉内の雰囲気を
調整し、(COの分圧) /(CO の分圧)を8
0〜120にして、鋼材(線材、棒鋼、鋼管)を770
〜790℃に加熱して2〜6時間保持した後、5〜15
℃/時間の冷却速度で680〜650℃まで冷却すれば
よい。又、熱間圧延線材、熱間圧延棒鋼や熱間圧延鋼管
に脱炭層がある場合には、その度合いに応じて炉の雰囲
気、つまり上記の(COの分圧) /(CO の分
圧)を120より大きくするように変更すればよい。
In order to make the average value of C content in the "surface layer region" of a wire rod, steel bar or steel pipe 0.4 x C to 0.9 x C%, there is almost no decarburized layer. When spheroidizing annealing a hot-rolled steel bar or a hot-rolled steel tube using a bright furnace, for example, RX gas (gas containing N 2 , H 2 , and CO as the main components) and NX gas (containing N 2 as the main component, Trace C
The atmosphere in the bright furnace is adjusted by (a gas containing O and CO 2 ), and the (CO partial pressure) 2 / (CO 2 partial pressure) is adjusted to 8
0 to 120 and steel material (wire rod, steel bar, steel pipe) 770
After heating to ~ 790 ° C and holding for 2-6 hours, then 5-15
It may be cooled to 680 to 650 ° C at a cooling rate of ° C / hour. When the hot-rolled wire rod, hot-rolled steel bar or hot-rolled steel pipe has a decarburized layer, the furnace atmosphere, that is, (CO partial pressure) 2 / (CO 2 The pressure may be changed to be larger than 120.

【0051】軸受要素部品用の線材、棒鋼や鋼管の組織
については特に規定しないが、セメンタイトを主体とす
る炭化物の形状や粒径は被削性に影響を及ぼし、炭化物
の形状が球状で、しかも粒径が大きい方が被削性が良
い。しかし、後述の実施例の表2、表3及び表4に示す
ように、球状化率90%以上で被削性改善効果はほぼ飽
和するので、線材、棒鋼や鋼管における炭化物の球状化
率は90%以上であることが望ましい。線材、棒鋼や鋼
管における炭化物の球状化率を90%以上にするには、
例えば、熱間圧延した線材、棒鋼や鋼管を770〜79
0℃に加熱して2〜6時間保持した後、5〜15℃/時
間の冷却速度で680〜650℃まで冷却すればよい。
なお、上記の炭化物の球状化率とは、顕微鏡観察したと
き、「その視野における炭化物(セメンタイト)に対し
ての「長径/短径」が2未満である炭化物の割合
(%)」を意味する。球状化処理した炭化物の平均粒径
が0.4μm以上であれば工具寿命が一層長くなる。
Although the structure of the wire rod for the bearing element parts, the steel bar and the steel pipe is not particularly specified, the shape and grain size of the carbide mainly composed of cementite affect the machinability, and the shape of the carbide is spherical, and The larger the particle size, the better the machinability. However, as shown in Tables 2, 3, and 4 of Examples described below, the machinability improving effect is almost saturated at a spheroidization rate of 90% or more, so that the spheroidization rate of the carbide in the wire rod, steel bar or steel pipe is It is preferably 90% or more. To increase the spheroidization rate of carbides in wire rods, steel bars and steel pipes to 90% or more,
For example, hot-rolled wire rods, steel bars and steel pipes are 770-79.
After heating to 0 ° C. and holding for 2 to 6 hours, it may be cooled to 680 to 650 ° C. at a cooling rate of 5 to 15 ° C./hour.
The spheroidization rate of the above-mentioned carbides means the “ratio (%) of the carbides whose“ major axis / minor axis ”is less than 2 with respect to the carbides (cementite) in the field of view” when observed under a microscope. . If the average particle size of the spheroidized carbide is 0.4 μm or more, the tool life becomes longer.

【0052】前記(A)項に記載の化学組成と本(B)
項に記載の炭素含有量の分布を有する線材、棒鋼や鋼管
は、通常の方法で冷間鍛造、冷間抽伸や切削などの加工
を施され、更に、焼入れと低温での焼戻しによる熱処理
を受けて所望の機械的性質を有する軸受要素部品に仕上
げられてから、精密機械部品である最終製品としての軸
受に組み立てられる。
The chemical composition and the book (B) described in the item (A).
The wire rods, steel bars and steel pipes having the distribution of carbon content described in the item are subjected to processing such as cold forging, cold drawing and cutting in a usual method, and further subjected to heat treatment by quenching and tempering at low temperature. And then finished into bearing element parts having desired mechanical properties, and then assembled into bearings as final products which are precision machine parts.

【0053】以下、実施例により本発明を更に詳しく説
明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0054】[0054]

【実施例】表1に示す化学組成を有する鋼A〜Rを30
0kg真空炉を用いて溶製した。表1における鋼B〜
F、H及びO〜Rは化学組成が前項(A)を満足するも
のであり、一方、鋼A、G及びI〜Nは成分のいずれか
が前項(A)の本発明で規定する含有量の範囲から外れ
た比較例である。なお、化学組成が前項(A)を満足す
るもののうち、鋼CはJIS G 4805で規格化されたSUJ
2に相当する鋼である。
EXAMPLE 30 steels A to R having the chemical compositions shown in Table 1 were used.
It was melted using a 0 kg vacuum furnace. Steel B in Table 1
F, H, and OR have chemical compositions satisfying the above-mentioned item (A), while steels A, G, and I-N have the content of any of the components specified in the present invention of the above-mentioned item (A). It is a comparative example out of the range. In addition, among those whose chemical composition satisfies the above (A), Steel C is SUJ standardized by JIS G 4805.
Steel equivalent to 2.

【0055】[0055]

【表1】 [Table 1]

【0056】次いで、これらの鋼を通常の方法で熱間鍛
造して直径40mmの丸棒にし、次いで、直径35mm
まで機械研削して脱炭層を完全に除去した。この後、上
記の直径35mmの丸棒を、それぞれ雰囲気調整した電
気炉を用いて、球状化焼鈍を行った。なお、炉中雰囲気
はCO、H 、N 及びCO で構成し、(CO
の分圧) /(CO の分圧)を変えることで、外
周部のC含有量を調整した。
Then, these steels were hot forged by a conventional method into a round bar having a diameter of 40 mm, and then a diameter of 35 mm.
Mechanically ground to completely remove the decarburized layer. After that, the round bar having a diameter of 35 mm was subjected to spheroidizing annealing using an electric furnace whose atmosphere was adjusted. The atmosphere in the furnace is composed of CO, H 2 , N 2 and CO 2 , and (CO
The partial pressure of 2 ) / (the partial pressure of CO 2 ) was changed to adjust the C content in the outer peripheral portion.

【0057】球状化焼鈍の熱処理条件(ヒートパター
ン)は下記の3条件である。このうち、従来の焼鈍処理
のヒートパターンに相当するものは「条件X」で、78
0℃に加熱後660℃まで冷却するのに要する時間は1
2時間である。「条件Y」の場合、前記時間は24時間
で、「条件Z」の場合、前記時間は3時間である。
The heat treatment conditions (heat pattern) for spheroidizing annealing are the following three conditions. Among these, the one corresponding to the heat pattern of the conventional annealing treatment is “condition X”,
The time required to cool to 660 ° C after heating to 0 ° C is 1
2 hours. In the case of "condition Y", the time is 24 hours, and in the case of "condition Z", the time is 3 hours.

【0058】条件X:780℃に加熱して2時間保持し
た後、10℃/時間の冷却速度で660℃まで冷却。 条件Y:780℃に加熱して5時間保持した後、5℃/
時間の冷却速度で660℃まで冷却。 条件Z:780℃に加熱して20分保持した後、40℃
/時間の冷却速度で660℃まで冷却。
Condition X: Heating to 780 ° C. and holding for 2 hours, then cooling to 660 ° C. at a cooling rate of 10 ° C./hour. Condition Y: After heating to 780 ° C. and holding for 5 hours, 5 ° C. /
Cool to 660 ° C at a cooling rate of time. Condition Z: After heating to 780 ° C. and holding for 20 minutes, 40 ° C.
Cooling to 660 ° C at a cooling rate of / hour.

【0059】又、電気炉の雰囲気条件は下記の4条件で
ある。 条件1:(COの分圧) /(COの分圧)=40
0。 条件2:(COの分圧) /(COの分圧)=20
0。 条件3:(COの分圧) /(COの分圧)=10
0。 条件4:(COの分圧) /(COの分圧)=1
0。
The atmospheric conditions of the electric furnace are the following four conditions. Condition 1: (partial pressure of CO) 2 / (partial pressure of CO 2 ) = 40
0. Condition 2: (CO partial pressure) 2 / (CO 2 partial pressure) = 20
0. Condition 3: (CO partial pressure) 2 / (CO 2 partial pressure) = 10
0. Condition 4: (CO partial pressure) 2 / (CO 2 partial pressure) = 1
0.

【0060】球状化焼鈍後の丸棒から横断サンプルを採
取し、その外周部(表層部近傍)のC含有量を測定し
た。すなわち、波長分散型の電子線マイクロアナライザ
ーを用いて、C量の線分析を行い、外周から20μm毎
に深さ200μmの位置までのC含有量を測定チャート
から読み取り、この各点の平均値を求めることで、外周
から深さ200μmの位置までの領域におけるC含有量
の平均値を得た。
A transverse sample was taken from the round bar after the spheroidizing annealing, and the C content in the outer peripheral portion (in the vicinity of the surface layer portion) was measured. That is, using a wavelength-dispersive electron probe microanalyzer, perform a linear analysis of the C content, read the C content from the outer periphery to a position of a depth of 200 μm every 20 μm from the measurement chart, and calculate the average value of these points. By determining, the average value of C content in the region from the outer periphery to the position of 200 μm in depth was obtained.

【0061】又、球状化焼鈍後の炭化物の球状化率と平
均粒径を測定した。すなわち、丸棒の横断面方向に試料
を切り出して、通常の方法で、研磨、腐食を行った後、
走査型電子顕微鏡を用いて各試料の中心部から「R/
2」部(Rは丸棒の半径)の位置を倍率5000倍で1
0視野撮影し、この写真を通常の方法で画像解析して球
状化率を調査した。なお、既に述べたように、球状化率
とは、「その視野における炭化物(セメンタイト)に対
しての「長径/短径」が2未満である炭化物の割合
(%)」をいう。
Further, the spheroidization rate and average particle size of the carbide after spheroidization annealing were measured. That is, a sample is cut out in the cross-sectional direction of the round bar, and after polishing and corrosion are performed by a usual method,
From the center of each sample using a scanning electron microscope, "R /
Position 2 "(where R is the radius of the round bar) at a magnification of 5000
The 0 field of view was photographed, and the spheroidization rate was investigated by image analysis of this photograph by a usual method. Note that, as described above, the spheroidization rate refers to "a ratio (%) of carbides in which" major axis / minor axis "is less than 2 with respect to carbides (cementite) in the visual field.

【0062】又、前記の写真を用いた画像解析から各炭
化物の平均断面積を求め、炭化物の形状を球(したがっ
て、写真上では円)と仮定して直径を求め、これを炭化
物の平均粒径とした。
Further, the average cross-sectional area of each carbide is obtained from the image analysis using the above photograph, the diameter is obtained by assuming that the shape of the carbide is a sphere (hence, a circle on the photograph), and this is the average grain size of the carbide. The diameter.

【0063】球状化焼鈍した丸棒の切削試験も行った。
すなわち、前記の球状化焼鈍した丸棒を通常の方法で酸
洗してスケールを除去した後、工具にJIS規格のSK
H4の三角チップを用い、無潤滑、周速50m/分、切
り込み量0.5mm、送り0.25mm/rev.の条
件で旋削加工して工具寿命を調査し、被削性の指標とし
た。なお、工具寿命は前記条件で丸棒の表層部を旋削加
工した場合に、工具に摩耗や欠けが発生して切削不能と
なるまでの加工時間とした。
A cutting test was also performed on a round bar that had been spheroidized and annealed.
That is, the spheroidized and annealed round bar is pickled by a usual method to remove the scale, and then the SK of JIS standard is applied to the tool.
Using a H4 triangular tip, no lubrication, peripheral speed 50 m / min, depth of cut 0.5 mm, feed 0.25 mm / rev. The tool life was investigated by turning under the above conditions and used as an index of machinability. The tool life was defined as the processing time until the tool became worn or chipped and could not be cut when the surface layer of the round bar was turned under the above conditions.

【0064】被削性の目標は下記(イ)及び(ロ)の両
方の条件を満足することとした。
The target of machinability was to satisfy both the following conditions (a) and (b).

【0065】(イ)各鋼について、熱処理条件X、雰囲
気条件1で球状化焼鈍した丸棒の工具寿命を基準とし、
これよりも20%以上工具寿命が長いこと。なお、この
(イ)の条件から、各鋼について丸棒を熱処理条件X、
雰囲気条件1で球状化焼鈍した場合は、被削性の目標を
満足しないと評価する。
(A) With respect to each steel, the tool life of the round bar annealed under the heat treatment condition X and the atmosphere condition 1 is used as a reference,
20% or more longer tool life than this. From the condition (a), the round bar for each steel was subjected to the heat treatment condition X,
When the spheroidizing annealing is performed under the atmospheric condition 1, it is evaluated that the machinability target is not satisfied.

【0066】(ロ)JIS G 4805で規格化されたSUJ2
鋼に相当する鋼Cの丸棒を、熱処理条件X、雰囲気条件
1で球状化焼鈍した場合の工具寿命を基準に、これより
も20%以上工具寿命が長いこと。つまり、後述の表2
の試験番号13の工具寿命4.1分より20%以上長い
工具寿命(具体的には4.92分以上の工具寿命)であ
ること。
(B) SUJ2 standardized by JIS G 4805
The tool life is 20% or more longer than the tool life when a round bar of steel C corresponding to steel is spheroidized and annealed under heat treatment condition X and atmosphere condition 1. That is, Table 2 described later
The tool life is 20% or more longer than the tool life of 4.1 minutes of the test number 13 (specifically, the tool life is 4.92 minutes or more).

【0067】更に、切削加工した各試験番号の丸棒か
ら、機械加工により直径12mm、長さ22mmの試験
片を切り出し、この試験片を焼入れ、焼戻し処理(82
0℃で30分保持してから油焼入れし、160℃で1時
間焼戻し)して転動疲労試験に供した。すなわち、円筒
型の転動疲労試験機を用いて、潤滑油に#68タービン
油を使用して、ヘルツ最大接触応力が600kgf/m
、試験片負荷回数が46000回/分の条件で転
動疲労試験を行った。各鋼について試験片は10個ずつ
とし、10個の試験片の中で最初に表面剥離をおこした
ときの回転数を「転動疲労寿命」とした。転動疲労寿命
が1.0×10 以上の場合に転動疲労特性に優れて
いると評価した。
Further, a test piece having a diameter of 12 mm and a length of 22 mm was cut out from the cut round bar of each test number by machining, and the test piece was quenched and tempered (82
It was held at 0 ° C. for 30 minutes, oil-quenched, and then tempered at 160 ° C. for 1 hour) and subjected to a rolling fatigue test. That is, using a cylindrical rolling fatigue tester, using # 68 turbine oil as the lubricating oil, the Hertz maximum contact stress was 600 kgf / m.
A rolling fatigue test was conducted under the conditions of m 2 and a test piece load frequency of 46000 cycles / minute. For each steel, 10 test pieces were provided, and the number of rotations when the surface was first peeled from the 10 test pieces was defined as "rolling fatigue life". When the rolling fatigue life was 1.0 × 10 7 or more, the rolling fatigue property was evaluated as excellent.

【0068】表2〜5に、球状化焼鈍後の外周から深さ
200μmの位置までの領域におけるC含有量の平均値
(各表においては、「外周部のC含有量の平均値」と記
載)、炭化物の球状化率と平均粒径、旋削加工での工具
寿命、転動疲労寿命の各調査結果をまとめて示す。
Tables 2 to 5 show the average value of C content in the region from the outer periphery to the position of 200 μm in depth after spheroidizing annealing (in each table, “average value of C content in outer peripheral portion”). ), The spheroidization rate and average grain size of carbide, tool life in turning, and rolling fatigue life.

【0069】[0069]

【表2】 [Table 2]

【0070】[0070]

【表3】 [Table 3]

【0071】[0071]

【表4】 [Table 4]

【0072】[0072]

【表5】 [Table 5]

【0073】表2〜5から明らかなように、比較例の鋼
A及び鋼J〜Nを用いた試験番号の場合、つまり、C含
有量が0.75%を下回る鋼Aを用いた試験番号1〜
6、Al含有量が0.05%を上回る鋼Jを用いた試験
番号55〜60、Ti含有量が0.002%を上回る鋼
Kを用いた試験番号61〜66、P含有量とS含有量が
それぞれ0.02%と0.015%を上回る鋼Lを用い
た試験番号67〜72、N含有量が0.007%を上回
る鋼Mを用いた試験番号73〜78、及び、O含有量が
0.0015%を上回る鋼Nを用いた試験番号79〜8
4は、転動疲労寿命が1.0×10 回に達しなてい
ない。上記のうち試験番号1、55、61、67、73
及び79は、外周から200μm深さの位置までの領域
におけるC含有量の平均値が0.9×C%を上回るた
め、工具寿命も目標の値に達していない。又、試験番号
4、58、64、70、76及び82は、外周から20
0μm深さの位置までの領域におけるC含有量の平均値
が0.4×C%を下回るため、工具寿命も目標の値に達
していない。
As is clear from Tables 2 to 5, in the case of the test numbers using the steels A and J to N of the comparative examples, that is, the test numbers using the steel A having a C content of less than 0.75%. 1 to
6, test numbers 55 to 60 using steel J having an Al content exceeding 0.05%, test numbers 61 to 66 using steel K having a Ti content exceeding 0.002%, P content and S content Test Nos. 67 to 72 using steel L whose amounts exceed 0.02% and 0.015%, test Nos. 73 to 78 using steel M whose N content exceeds 0.007%, and O-containing Test No. 79-8 with steel N whose amount exceeds 0.0015%
No. 4 did not reach the rolling fatigue life of 1.0 × 10 7 times. Of the above, test numbers 1, 55, 61, 67, 73
In Nos. 79 and 79, the average value of the C content in the region from the outer periphery to the position at a depth of 200 μm exceeds 0.9 × C%, and therefore the tool life has not reached the target value. Also, test numbers 4, 58, 64, 70, 76 and 82 are 20 from the outer circumference.
Since the average C content in the region up to the depth of 0 μm is less than 0.4 × C%, the tool life has not reached the target value.

【0074】比較例の鋼G及び鋼Iを用いた試験番号の
場合、つまり、Mn含有量が1.5%を上回る鋼Gを用
いた試験番号37〜42、及び、Cr含有量が2.0%
を超える鋼Iを用いた試験番号49〜54は、工具寿命
が目標の値に達していない。
In the case of the test numbers using the steels G and I of the comparative example, that is, the test numbers 37 to 42 using the steel G having a Mn content exceeding 1.5%, and the Cr content of 2. 0%
Test Nos. 49 to 54 using Steel I having a hardness of more than 1 do not reach the target value of the tool life.

【0075】化学組成が本発明で規定する含有量の範囲
内にある鋼であっても、試験番号7、13、19、2
5、31、43、85、91、95及び99は、外周か
ら200μm深さの位置までの領域におけるC含有量の
平均値が0.9×C%を上回るため、工具寿命が目標の
値に達していない。又、試験番号10、16、22、2
8、34、46、88、94、98及び102は、外周
から200μm深さの位置までの領域におけるC含有量
の平均値が0.4×C%を下回るため、やはり工具寿命
が目標の値に達していない。
Even if the steel has a chemical composition within the content range specified in the present invention, test numbers 7, 13, 19, 2
For 5, 31, 43, 85, 91, 95 and 99, the average C content in the region from the outer periphery to the position at a depth of 200 μm exceeds 0.9 × C%, so the tool life becomes the target value. Has not reached. Also, test numbers 10, 16, 22, 2
Nos. 8, 34, 46, 88, 94, 98 and 102 have an average C content of less than 0.4 × C% in the region from the outer periphery to the position of 200 μm depth, and therefore the tool life is still the target value. Has not reached.

【0076】上記の比較例に対し、本発明で規定する条
件を満たす本発明例の場合には、各鋼について丸棒を熱
処理条件X、雰囲気条件1で球状化焼鈍した場合に比べ
て工具寿命が20%以上長く、更に、工具寿命は4.9
2分以上で被削性の目標を満足し、しかも、転動疲労寿
命は1.0×10 回を上回っている。
In contrast to the above comparative example, in the case of the present invention satisfying the conditions specified in the present invention, the tool life was longer than that in the case where the round bar of each steel was spheroidized and annealed under the heat treatment condition X and the atmosphere condition 1. Is longer than 20%, and the tool life is 4.9.
The machinability target is satisfied in 2 minutes or more, and the rolling fatigue life exceeds 1.0 × 10 7 times.

【0077】[0077]

【発明の効果】本発明の線材、棒鋼及び鋼管は被削性に
優れ、更に、転動疲労寿命も長いので、ボール、コロ、
ニードル、シャフト、レースなど軸受要素部品の素材と
して利用することができる。
The wire rod, steel bar and steel pipe of the present invention are excellent in machinability and have a long rolling contact fatigue life.
It can be used as a material for bearing element parts such as needles, shafts and races.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.75〜1.2%、S
i:0.1〜1.5%、Mn:0.2〜1.5%、C
r:0.2〜2.0%およびAl:0.003〜0.0
5%を含有し、残部はFe及び不可避不純物からなり、
不純物中のPは0.02%以下、Sは0.015%以下
は、Nは0.007%以下、O(酸素)は0.0015
%以下、Tiは0.002%以下、Cuは0.05%未
満、Niは0.2%未満、Moは0.05%未満、Vは
0.05%未満、Nbは0.01%未満、Bは0.00
03%未満、希土類元素は合計で0.001%未満、C
aは0.0001%未満、Mgは0.0001%未満
で、更に、鋼線材の横断面において外周から深さ200
μmの位置までの領域におけるC含有量の平均値が0.
4×C〜0.9×C%(但し、Cは鋼線材のC含有量)
であることを特徴とする被削性に優れた軸受要素部品用
の鋼線材。
1. C: 0.75 to 1.2% by weight, S
i: 0.1-1.5%, Mn: 0.2-1.5%, C
r: 0.2-2.0%And Al: 0.003 to 0.0
5%And the balance consists of Fe and unavoidable impurities,
In impuritiesP is 0.02% or less, S is 0.015% or less
, N is 0.007% or less, O (oxygen) is 0.0015
% Or less, Ti 0.002% or less, Cu 0.05% or less
Full, Ni less than 0.2%, Mo less than 0.05%, V
Less than 0.05%, Nb less than 0.01%, B 0.00
Less than 03%, total rare earth elements less than 0.001%, C
a is less than 0.0001%, Mg is less than 0.0001%
In addition, a depth of 200 from the outer periphery in the cross section of the steel wire rod.
The average value of C content in the region up to the position of μm is 0.
4 x C to 0.9 x C% (where C is the C content of the steel wire)
For bearing element parts with excellent machinability
Steel wire rod.
【請求項2】重量%で、C:0.75〜1.2%、S
i:0.1〜1.5%、Mn:0.2〜1.5%、C
r:0.2〜2.0%およびAl:0.003〜0.0
5%を含有するとともに、Cu:0.05〜2.0%、
Ni:0.2〜4.0%、Mo:0.05〜0.5%、
V:0.05〜0.4%、Nb:0.01〜0.1%、
B:0.0003〜0.003%、希土類元素:合計で
0.001〜0.01%、Ca:0.0001〜0.0
03%およびMg:0.0001〜0.003%のうち
の1種以上を含有し、残部はFe及び不可避不純物から
なり、不純物中のTiは0.002%以下、Pは0.0
2%以下、Sは0.015%以下、Nは0.007%以
下、O(酸素)は0.0015%以下で、更に、鋼線材
の横断面において外周から深さ200μmの位置までの
領域におけるC含有量の平均値が0.4×C〜0.9×
C%(但し、Cは鋼線材のC含有量)であることを特徴
とする被削性に優れた軸受要素部品用の鋼線材
2. C: 0.75 to 1.2% by weight, S
i: 0.1-1.5%, Mn: 0.2-1.5%, C
r: 0.2 to 2.0% and Al: 0.003 to 0.0
5% and Cu: 0.05-2.0 %,
Ni: 0.2 to 4.0%, Mo: 0.05 to 0.5 %,
V: 0.05 to 0.4 %, Nb: 0.01 to 0.1 %,
B: 0.0003~ 0.003%, the rare earth elements: a total of
0.001-0.01 %, Ca: 0.0001-0.0
0.3% and Mg: out of 0.0001 to 0.003%
1 or more of , and the balance is Fe and unavoidable impurities, Ti in the impurities is 0.002% or less, P is 0.0
2% or less, S is 0.015% or less, N is 0.007% or less, O (oxygen) is 0.0015% or less, and further, at a depth of 200 μm from the outer periphery in the cross section of the steel wire . The average value of C content in the area up to the position is 0.4 × C to 0.9 ×
C% (where, C is the C content of the steel wire rod) steel wire rod for bearing element parts having excellent machinability, which is a.
【請求項3】重量%で、C:0.75〜1.2%、S
i:0.1〜1.5%、Mn:0.2〜1.5%、C
r:0.2〜2.0%およびAl:0.003〜0.0
5%を含有し、残部はFe及び不可避不純物からなり、
不純物中のPは0.02%以下、Sは0.015%以下
は、Nは0.007%以下、O(酸素)は0.0015
%以下、Tiは0.002%以下、Cuは0.05%未
満、Niは0.2%未満、Moは0.05%未満、Vは
0.05%未満、Nbは0.01%未満、Bは0.00
03%未満、希土類元素は合計で0.001%未満、C
aは0.0001%未満、Mgは0.0001%未満
で、更に、棒鋼の横断面において外周から深さ200μ
mの位置までの領域におけるC含有量の平均値が0.4
×C〜0.9×C%(但し、Cは棒鋼のC含有量)であ
ることを特徴とする被削性に優れた軸受要素部品用の
3. By weight%, C: 0.75 to 1.2%, S
i: 0.1-1.5%, Mn: 0.2-1.5%, C
r: 0.2-2.0%And Al: 0.003 to 0.0
5%And the balance consists of Fe and unavoidable impurities,
In impuritiesP is 0.02% or less, S is 0.015% or less
, N is 0.007% or less, O (oxygen) is 0.0015
% Or less, Ti 0.002% or less, Cu 0.05% or less
Full, Ni less than 0.2%, Mo less than 0.05%, V
Less than 0.05%, Nb less than 0.01%, B 0.00
Less than 03%, total rare earth elements less than 0.001%, C
a is less than 0.0001%, Mg is less than 0.0001%
And then,Steel barCross section odorOutsideLapDeep200μ
Average C content in the area up to mIs 0. Four
XC-0.9xC% (however, C isSteel barC content of)
For bearing element parts with excellent machinability characterized byrod
steel.
【請求項4】4. 重量%で、C:0.75〜1.2%、S% By weight, C: 0.75 to 1.2%, S
i:0.1〜1.5%、Mn:0.2〜1.5%、Ci: 0.1-1.5%, Mn: 0.2-1.5%, C
r:0.2〜2.0%およびAl:0.003〜0.0r: 0.2 to 2.0% and Al: 0.003 to 0.0
5%を含有するとともに、Cu:0.05〜2.0%、5% and Cu: 0.05-2.0%,
Ni:0.2〜4.0%、Mo:0.05〜0.5%、Ni: 0.2-4.0%, Mo: 0.05-0.5%,
V:0.05〜0.4%、Nb:0.01〜0.1%、V: 0.05 to 0.4%, Nb: 0.01 to 0.1%,
B:0.0003〜0.003%以下、希土類元素:合B: 0.0003 to 0.003% or less, rare earth element: compound
計で0.001〜0.01%、Ca:0.0001〜0.001-0.01% in total, Ca: 0.0001-
0.003%およびMg:0.0001〜0.003%0.003% and Mg: 0.0001 to 0.003%
のうちの1種以上を含有し、残部はFe及び不可避不純Containing one or more of the above, with the balance being Fe and unavoidable impurities.
物からなり、不純物中のTiは0.002%以下、PはMade of a material, Ti in the impurities is 0.002% or less, and P is
0.02%以下、Sは0.015%以下、Nは0.000.02% or less, S 0.015% or less, N 0.00
7%以下、O(酸素)は0.0015%以下で、更に、7% or less, O (oxygen) is 0.0015% or less, and
棒鋼の横断面において外周から深さ200μmの位置まIn the cross section of the steel bar, from the outer periphery to a position at a depth of 200 μm.
での領域におけるC含有量の平均値が0.4×C〜0.The average value of C content in the region of 0.4 × C to 0.
9×C%(但し、Cは棒鋼のC含有量)であることを特9 × C% (however, C is the C content of steel bar)
徴とする被削性に優れた軸受要素部品用の棒鋼。A steel bar for bearing element parts with excellent machinability.
【請求項5】5. 重量%で、C:0.75〜1.2%、S% By weight, C: 0.75 to 1.2%, S
i:0.1〜1.5%、Mn:0.2〜1.5%、Ci: 0.1-1.5%, Mn: 0.2-1.5%, C
r:0.2〜2.0%およびAl:0.003〜0.0r: 0.2 to 2.0% and Al: 0.003 to 0.0
5%を含有し、残部はFe及び不可避不純物からなり、5%, the balance consists of Fe and unavoidable impurities,
不純物中のPは0.02%以下、Sは0.015%以下Impurity P is 0.02% or less, S is 0.015% or less
は、Nは0.007%以下、O(酸素)は0.0015, N is 0.007% or less, O (oxygen) is 0.0015
% 以下、Tiは0.002%以下、Cuは0.05%未Below, Ti is 0.002% or less, Cu is 0.05% or less.
満、Niは0.2%未満、Moは0.05%未満、VはFull, Ni less than 0.2%, Mo less than 0.05%, V
0.05%未満、Nbは0.01%未満、Bは0.00Less than 0.05%, Nb less than 0.01%, B 0.00
03%未満、希土類元素は合計で0.001%未満、CLess than 03%, total rare earth elements less than 0.001%, C
aは0.0001%未満、Mgは0.0001%未満a is less than 0.0001%, Mg is less than 0.0001%
で、更に、鋼管の横断面において内外周からそれぞれ深In addition, in the cross section of the steel pipe,
さ200μmの位置までの領域におけるC含有量の平均Average of C content in the area up to the position of 200 μm
値がいずれも0.4×C〜0.9×C%(但し、Cは鋼All values are 0.4 x C to 0.9 x C% (where C is steel
管のC含有量)であることを特徴とする被削性に優れたExcellent machinability characterized by the C content of the pipe)
軸受要素部品用の鋼管。Steel pipe for bearing element parts.
【請求項6】6. 重量%で、C:0.75〜1.2%、S% By weight, C: 0.75 to 1.2%, S
i:0.1〜1.5%、Mn:0.2〜1.5%、Ci: 0.1-1.5%, Mn: 0.2-1.5%, C
r:0.2〜2.0%およびAl:0.003〜0.0r: 0.2 to 2.0% and Al: 0.003 to 0.0
5%を含有するとともに、Cu:0.05〜2.0%、5% and Cu: 0.05-2.0%,
Ni:0.2〜4.0%、Mo:0.05〜0.5%、Ni: 0.2-4.0%, Mo: 0.05-0.5%,
V:0.05〜0.4%、Nb:0.01〜0.1%、V: 0.05 to 0.4%, Nb: 0.01 to 0.1%,
B:0.0003〜0.003%以下、希土類元素:合B: 0.0003 to 0.003% or less, rare earth element: compound
計で0.001〜0.01%、Ca:0.0001〜0.001-0.01% in total, Ca: 0.0001-
0.003%およびMg:0.0001〜0.003%0.003% and Mg: 0.0001 to 0.003%
のうちの1種以上を含有し、残部はFe及び不可避不純Containing one or more of the above, with the balance being Fe and unavoidable impurities.
物からなり、不純物中のTiは0.002%以下、PはMade of a material, Ti in the impurities is 0.002% or less, and P is
0.02%以下、Sは0.015%以下、Nは0.000.02% or less, S 0.015% or less, N 0.00
7%以下、O(酸素)は0.0015%以下で、更に、7% or less, O (oxygen) is 0.0015% or less, and
鋼管の横断面において内外周からそれぞれ深さ200μIn the cross section of the steel pipe, the depth is 200μ from the inner and outer circumferences.
mの位置までの領域におけるC含有量の平均値がいずれWhat is the average C content in the area up to the position of m?
も0.4×C〜0.9×C%(但し、Cは鋼管のC含有0.4 × C to 0.9 × C% (however, C is the C content of the steel pipe)
量)であることを特徴とする被削性に優れた軸受要素部Amount)), which has excellent machinability
品用の鋼管。Steel pipe for products.
JP22007799A 1999-08-03 1999-08-03 Steel wire rod, steel bar and steel pipe for bearing element parts with excellent machinability Expired - Fee Related JP3405277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22007799A JP3405277B2 (en) 1999-08-03 1999-08-03 Steel wire rod, steel bar and steel pipe for bearing element parts with excellent machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22007799A JP3405277B2 (en) 1999-08-03 1999-08-03 Steel wire rod, steel bar and steel pipe for bearing element parts with excellent machinability

Publications (2)

Publication Number Publication Date
JP2001049388A JP2001049388A (en) 2001-02-20
JP3405277B2 true JP3405277B2 (en) 2003-05-12

Family

ID=16745585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22007799A Expired - Fee Related JP3405277B2 (en) 1999-08-03 1999-08-03 Steel wire rod, steel bar and steel pipe for bearing element parts with excellent machinability

Country Status (1)

Country Link
JP (1) JP3405277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588551A (en) * 2018-03-19 2018-09-28 中北大学 A kind of microalloying wear-resistant ball, preparation method and preparation system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586313B2 (en) * 2001-07-31 2010-11-24 Jfeスチール株式会社 Manufacturing method of high carbon seamless steel pipe with excellent secondary workability
WO2003069008A1 (en) * 2002-02-12 2003-08-21 The Timken Company Low carbon microalloyed steel
EP1595966B1 (en) * 2003-01-30 2012-02-22 Sumitomo Metal Industries, Ltd. Steel pipe for bearing elements, and methods for producing and cutting the same
EP2432906B1 (en) * 2009-05-20 2016-10-05 Aktiebolaget SKF Bearing component
JP5425736B2 (en) * 2010-09-15 2014-02-26 株式会社神戸製鋼所 Bearing steel with excellent cold workability, wear resistance, and rolling fatigue properties
WO2012158089A1 (en) 2011-05-17 2012-11-22 Aktiebolaget Skf Improved bearing steel
JP5736990B2 (en) * 2011-06-15 2015-06-17 Jfeスチール株式会社 Bearing material
KR101309893B1 (en) * 2011-08-01 2013-09-17 주식회사 포스코 Steel for bearing having excellent impact properties and toughness
KR101360657B1 (en) 2011-12-16 2014-02-10 주식회사 포스코 High carbon chromium bearing steel having improved fatigue life
JP5820326B2 (en) * 2012-03-30 2015-11-24 株式会社神戸製鋼所 Steel for bearings with excellent rolling fatigue characteristics and method for producing the same
JP5820325B2 (en) * 2012-03-30 2015-11-24 株式会社神戸製鋼所 Steel material for bearings excellent in cold workability and manufacturing method thereof
JP6056647B2 (en) * 2012-06-28 2017-01-11 Jfeスチール株式会社 Bearing steel manufacturing method and bearing steel obtained by the manufacturing method
JP5976581B2 (en) * 2013-03-26 2016-08-23 株式会社神戸製鋼所 Steel material for bearings and bearing parts with excellent rolling fatigue characteristics
CN107119239A (en) * 2017-04-11 2017-09-01 龙南日升昌新材料研发有限公司 Bearing steel and preparation method thereof
CN115216587B (en) * 2022-06-02 2023-11-24 大冶特殊钢有限公司 Method for improving composition and structure uniformity of large-scale cast steel ingot of high-carbon chromium bearing steel and high-carbon chromium bearing steel
CN115418560B (en) * 2022-07-20 2023-07-25 江阴兴澄特种钢铁有限公司 Steel for high-speed motor train traction motor bearing and production method thereof
CN115233109B (en) * 2022-09-23 2022-12-09 联峰钢铁(张家港)有限公司 Narrow-hardenability bearing steel and production process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588551A (en) * 2018-03-19 2018-09-28 中北大学 A kind of microalloying wear-resistant ball, preparation method and preparation system

Also Published As

Publication number Publication date
JP2001049388A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
JP3405277B2 (en) Steel wire rod, steel bar and steel pipe for bearing element parts with excellent machinability
JP3614113B2 (en) Steel material for bearing element parts with excellent machinability
JP5400089B2 (en) Bearing steel excellent in rolling fatigue life characteristics, ingot material for bearing, and production method thereof
JP6652019B2 (en) Machine structural steel and induction hardened steel parts for induction hardening
KR102561036B1 (en) steel
KR20190028781A (en) High frequency quenching steel
JP2013234354A (en) Hot-rolled steel bar or wire rod for cold forging
KR20200103821A (en) Steel for parts subjected to carburization treatment
US20140363329A1 (en) Rolled steel bar or wire rod for hot forging
JPH08127845A (en) Graphite steel,its article and its production
JPWO2020138450A1 (en) Steel material used as a material for carburized nitriding bearing parts
US9234265B2 (en) Steel for induction hardening and crankshaft manufactured using the same
US20140182414A1 (en) Steel for induction hardening and crankshaft manufactured by using the same
JP5472063B2 (en) Free-cutting steel for cold forging
JP7464822B2 (en) Steel for bearing raceways and bearing raceways
CN107429359B (en) Hot-rolled rod and wire material, component, and method for producing hot-rolled rod and wire material
WO2021201157A1 (en) Carburized bearing component
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP3579558B2 (en) Bearing steel with excellent resistance to fire cracking
JP2016084541A (en) Steel bar for case hardening and wire
JP7464821B2 (en) Steel for bearing raceways and bearing raceways
JP2003013179A (en) Round steel bar for bearing element parts superior in hot workability
JP7323850B2 (en) Steel and carburized steel parts
JPH11106863A (en) Steel for mechanical structure excellent in cold workability and its production
JP3217943B2 (en) Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3405277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees