JP2011190921A - Thrust roller bearing - Google Patents

Thrust roller bearing Download PDF

Info

Publication number
JP2011190921A
JP2011190921A JP2010060136A JP2010060136A JP2011190921A JP 2011190921 A JP2011190921 A JP 2011190921A JP 2010060136 A JP2010060136 A JP 2010060136A JP 2010060136 A JP2010060136 A JP 2010060136A JP 2011190921 A JP2011190921 A JP 2011190921A
Authority
JP
Japan
Prior art keywords
mass
race
roller bearing
thrust roller
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010060136A
Other languages
Japanese (ja)
Inventor
Takashi Ono
崇 大野
Hiromichi Takemura
浩道 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010060136A priority Critical patent/JP2011190921A/en
Publication of JP2011190921A publication Critical patent/JP2011190921A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thrust roller bearing having a lace which can prevent crack generation at bending and can secure required durability. <P>SOLUTION: Each of an outer lace 4 and an inner lace 5 is formed of alloy steel which contains 0.68 to 0.88 mass% of C, 0.01 to 0.15 mass% of Si, 0.2 to 0.7 mass% of Mn, and 0.3 to 0.7 mass% of Cr, and has an oxygen concentration of 15 ppm or below. Furthermore, quenching, carburizing quenching, and carbonitriding quenching are applied to surfaces of the outer lace 4 and the inner lace 5, and thus a surface-hardened layer having a prescribed property is formed. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、自動車のトランスミッション、カーエアコン用コンプレッサ等の電装部品、或いは一般産業用の各種機械等の回転支持部分に装着し、この回転支持部分に加わるスラスト荷重を支承する為のスラストころ軸受の改良に関する。具体的には、スラストころ軸受を構成するレースの改良に関し、加工性、及び、耐久性に優れた組成を有する鋼材により造られたレースを実現するものである。
尚、本発明の対象となるスラストころ軸受は、転動体として、外径寸法に比べて軸方向寸法が大きなニードル(針状ころ)を使用した、スラストニードル軸受も含む。従って、本明細書、及び、特許請求の範囲に記載したころには、前記ニードルも含む。
The present invention relates to a thrust roller bearing that is mounted on an electrical component such as an automobile transmission, a compressor for a car air conditioner, or a rotation support part of various machines for general industry and supports a thrust load applied to the rotation support part. Regarding improvement. Specifically, with regard to the improvement of the race that constitutes the thrust roller bearing, a race made of a steel material having a composition excellent in workability and durability is realized.
The thrust roller bearing that is an object of the present invention includes a thrust needle bearing that uses a needle (needle roller) having a larger axial dimension than the outer diameter as a rolling element. Therefore, the roller described in the present specification and claims includes the needle.

トランスミッションやトルクコンバータ、或いはカークーラ用コンプレッサ等の回転部分には、例えば図1に示す様なスラストころ軸受1を装着して、回転軸等に加わるスラスト荷重を支承している(例えば、特許文献1参照)。このスラストころ軸受1は、放射方向に配列された複数のころ2と、全体を円輪状に造られて、これら各ころ2を転動自在に保持する保持器3と、これら各ころ2を軸方向(図1の左右方向)両側から挟持する外輪レース4、及び、内輪レース5とから成る。これら外輪レース4、又は、内輪レース5が、特許請求の範囲に記載したレースに相当する。
このうちの外輪レース4は、片側面(図1の左側面)に外輪軌道6を有する円輪部7と、この円輪部7の外周縁から軸方向に関してこの外輪軌道6側に突出する状態で全周に亙り形成された円筒状の外側フランジ8とから成る。又、前記内輪レース5は、片側面(図1の右側面)に内輪軌道9を有する円輪部10と、この円輪部10の内周縁から軸方向に関して前記内輪軌道9側に突出する状態で全周に亙り形成された内側フランジ11とから成る。
For example, a thrust roller bearing 1 as shown in FIG. 1 is mounted on a rotating portion of a transmission, a torque converter, a car cooler compressor, or the like to support a thrust load applied to a rotating shaft or the like (for example, Patent Document 1). reference). The thrust roller bearing 1 includes a plurality of rollers 2 arranged in a radial direction, a cage 3 that is formed in an annular shape as a whole, and holds the rollers 2 in a freely rolling manner, and the rollers 2 are pivoted. It consists of an outer race 4 and an inner race 5 that are clamped from both sides in the direction (left-right direction in FIG. 1). The outer race 4 or the inner race 5 corresponds to the race described in the claims.
Of these, the outer race 4 has a ring portion 7 having an outer ring raceway 6 on one side surface (left side surface in FIG. 1), and a state of projecting toward the outer ring raceway 6 in the axial direction from the outer peripheral edge of the ring portion 7. And a cylindrical outer flange 8 formed over the entire circumference. The inner race 5 has a ring portion 10 having an inner ring raceway 9 on one side surface (the right side surface in FIG. 1) and a state in which the inner ring race 5 projects toward the inner ring raceway 9 in the axial direction from the inner periphery of the ring portion 10 And the inner flange 11 formed over the entire circumference.

又、前記保持器3は、それぞれが金属板により断面コ字形で全体を円環状に造られた1対の素子12a、12bを、最中状に組み合わせて成る。これら各素子12a、12bの円輪部13、13にはそれぞれ、前記各ころ2と同数のポケット14、14を放射方向に設けている。そして、この様なポケット14、14を設けた各素子12a、12b同士を、これら各ポケット14、14の位相が一致する状態で組み合わせる事により、前記保持器3を構成している。尚、この様な1対の素子12a、12bを最中状に組み合わせて成る保持器3の他、例えば合成樹脂により造られた円輪状の主部に、軸方向両側面同士を貫通する状態でポケットを設けて成る保持器も、従来から知られている。   The cage 3 is formed by combining a pair of elements 12a and 12b, each of which has a U-shaped cross section made of a metal plate and is formed in an annular shape as a whole. The same number of pockets 14 and 14 as the rollers 2 are provided in the radial direction in the ring portions 13 and 13 of the elements 12a and 12b, respectively. And the said holder | retainer 3 is comprised by combining each element 12a, 12b which provided such pockets 14 and 14 in the state in which the phases of these each pockets 14 and 14 correspond. In addition to the cage 3 formed by combining such a pair of elements 12a and 12b in the middle, for example, an annular main portion made of synthetic resin is passed through both axial side surfaces. A cage having a pocket is also known in the art.

又、同じく前記特許文献1には、図2に示す様なスラストころ軸受1aが記載されている。このスラストころ軸受1aは、放射方向に配列された複数のころ2、2をそれぞれ保持する為のポケット14、14を、保持器3aの円周方向複数個所に、径方向に関し2列に設けている。又、前記各ころ2、2を軸方向(図2の上下方向)両側から挟持する外輪レース4a、及び、内輪レース5aを設けている。このうちの、外輪レース4aは、片側面(図2の下側面)に外輪軌道6aを有する円輪部7aから成る。又、前記内輪レース5aは、片側面(図2の上側面)に内輪軌道9aを有する円輪部10aから成る。
尚、スラストころ軸受を構成するレースの構造として、前記外輪レース4、4a、及び、内輪レース5、5aの様な構造も含めて、図3の(a)〜(d)に示す様な構造のレースが、従来から知られている。
Similarly, Patent Document 1 describes a thrust roller bearing 1a as shown in FIG. This thrust roller bearing 1a is provided with pockets 14 and 14 for holding a plurality of rollers 2 and 2 arranged in the radial direction in two rows in the radial direction at a plurality of locations in the circumferential direction of the cage 3a. Yes. Further, an outer ring race 4a and an inner ring race 5a are provided to hold the rollers 2 and 2 from both sides in the axial direction (vertical direction in FIG. 2). Of these, the outer race 4a is composed of an annular portion 7a having an outer raceway 6a on one side (the lower side in FIG. 2). The inner race 5a comprises an annular portion 10a having an inner ring raceway 9a on one side (the upper side in FIG. 2).
Incidentally, as the structure of the race constituting the thrust roller bearing, the structure as shown in FIGS. 3A to 3D including the structures of the outer ring races 4, 4a and the inner ring races 5, 5a is included. The race has been known for a long time.

前記図1に示す様な、スラストころ軸受1を構成する各外輪、内輪レース4、5は、一般的に、素材である平板状の鋼板に、打抜き加工を施して円輪状の第一中間素材を得る。そして、この第一中間素材に、バーリング加工等の曲げ加工を施す事によりこれら各フランジ8、11を形成された、第二中間素材を得る。更に、この第二中間素材に対して、焼き入れ等の熱処理を施し、この第二中間素材の表面に表面硬化層を形成して必要とする硬さを確保する。この焼き入れ処理は、全体を加熱した状態で焼き入れ油に浸漬する、所謂ずぶ焼き入れ、浸炭処理を施した後に焼き入れ処理を施す浸炭焼き入れ、浸炭窒化処理を施した後に焼き入れ処理を施す浸炭窒化焼き入れ等の、各種方法を適宜選択できる。   As shown in FIG. 1, the outer ring and the inner ring races 4 and 5 constituting the thrust roller bearing 1 are generally made of a plate-shaped steel plate, which is a material, by punching it into an annular first intermediate material. Get. Then, the first intermediate material is subjected to a bending process such as a burring process to obtain a second intermediate material in which the flanges 8 and 11 are formed. Further, the second intermediate material is subjected to a heat treatment such as quenching, and a hardened surface is formed on the surface of the second intermediate material to ensure the required hardness. This quenching process is soaked in quenching oil in a heated state, so-called soaking quenching, carburizing quenching after carburizing treatment, and quenching treatment after performing carbonitriding treatment. Various methods such as carbonitriding and quenching to be applied can be appropriately selected.

又、スラストころ軸受を構成するレースの材料は、製造工程に曲げ加工を含む場合と含まない場合とで、異なる材料を用いるのが一般的である。即ち、前記図1に示した前記各外輪、内輪レース4、5の構造の様に、製造工程に前記外側、内側フランジ8、11を形成する為の曲げ加工を含む場合、高炭素クロム軸受鋼2種(SUJ2)等の、炭素含有量が多い合金鋼を用いると、前記各フランジ8、11の根元部分(図1の鎖線イ、ロで示す部分)等に割れが発生し易い。この為、前記SUJ2と比較して炭素含有量が少ない、SK85、SAE1074等の合金鋼を用いる。但し、これら合金鋼にしても、前記SUJ2程ではないが、曲げ加工の際に割れが発生する場合がある。又、前記SK85の場合、浸炭窒化処理を施しても熱処理後の品質が安定せず、残留オーステナイト量を所望の量だけ確保できない為、十分な転がり疲れ寿命を確保する事が難しい場合がある。
一方、前記図2に示した前記各外輪、内輪レース4a、5aの構造の様に、製造工程に曲げ加工を含まない場合、前記SUJ2を用いる事ができ、十分な耐久性を確保し易い。
Further, as the material of the race constituting the thrust roller bearing, different materials are generally used depending on whether or not the manufacturing process includes bending. That is, when the manufacturing process includes a bending process for forming the outer and inner flanges 8 and 11 as in the structure of the outer races and inner races 4 and 5 shown in FIG. When alloy steel having a high carbon content, such as type 2 (SUJ2), is used, cracks are likely to occur at the root portions of the flanges 8 and 11 (portions indicated by chain lines A and B in FIG. 1). For this reason, alloy steels such as SK85 and SAE1074, which have a lower carbon content than SUJ2, are used. However, even with these alloy steels, cracks may occur during bending, although not as much as the SUJ2. In the case of the SK85, the quality after the heat treatment is not stable even if the carbonitriding process is performed, and it is difficult to secure a sufficient rolling fatigue life because the desired amount of retained austenite cannot be ensured.
On the other hand, when the manufacturing process does not include bending as in the structure of the outer races and inner races 4a and 5a shown in FIG. 2, the SUJ2 can be used, and sufficient durability can be easily secured.

ところで、前記図1に示す様な前記スラストころ軸受1に長寿命化を要求される場合、前記SK85から成る前記各外輪、内輪レース4、5の構造に代えて、前記SUJ2から成る、前記図2に示す様な、平板状のレースの構造に仕様変更して対応する事が考えられる。
一方、仕様変更ができない状況の場合、前記SK85よりも炭素含有量が少なく、曲げ加工性が高いSCM415を材料に用いて、この材料から成る鋼板に、打抜き→曲げ加工を施して中間素材を得た後、この中間素材に浸炭処理等の熱処理を施して耐久性を確保する方法が用いられている。但し、この場合、割れの発生は防止できるが、前記熱処理に長時間を要する為、製造効率が低下し、加工コストが増加してしまう。
By the way, when the thrust roller bearing 1 as shown in FIG. 1 is required to have a long life, the structure of the outer ring and the inner ring races 4, 5 of the SK85 is replaced by the structure of the SUJ2. It can be considered that the specification is changed to a flat lace structure as shown in FIG.
On the other hand, when the specification cannot be changed, SCM415, which has a lower carbon content than SK85 and has high bending workability, is used as a material, and a steel plate made of this material is punched and bent to obtain an intermediate material. After that, a method is used in which the intermediate material is subjected to heat treatment such as carburizing treatment to ensure durability. However, in this case, the occurrence of cracks can be prevented, but since the heat treatment takes a long time, the production efficiency is lowered and the processing cost is increased.

又、前記図1に示す様な各外輪、内輪レース4、5の板厚は、0.6〜1.5mmが主流であり、加工性、及び、熱処理後の品質等を考慮して前記SK85が一般的に用いられている。
レースの耐久性を確保する為にこのレースの板厚を2mm以上と厚くする場合、前記SK85を使用して内輪レース5を造ると、曲げ加工前の円輪状の第一中間素材の内径φdと、曲げ加工後の第二中間素材の内径φDとに基づいて導かれる穴広げパラメータE(=φD/φd)の値が大きいと、割れが生じ易くなる。この為、焼き鈍し処理を施した後、前記曲げ加工を行う必要があり、製造効率が低下し、加工コストが増加してしまう。又、前記焼き鈍し処理の工程を省く為に、前記SK85よりも更に炭素含有量が少ない前記SCM415を材料に用いて、浸炭処理等の熱処理を施すして耐久性を確保する方法が用いられている。但し、この熱処理には長時間を要する為、製造効率が低下し、加工コストが増加してしまう。
Further, the thickness of each outer ring and inner ring races 4 and 5 as shown in FIG. 1 is mainly 0.6 to 1.5 mm, and the SK85 is considered in consideration of workability and quality after heat treatment. Is generally used.
In order to ensure the durability of the race, when the thickness of the race is increased to 2 mm or more, if the inner race 5 is made using the SK85, the inner diameter φd of the first annular intermediate material before bending and If the value of the hole expansion parameter E (= φD / φd) derived based on the inner diameter φD of the second intermediate material after bending is large, cracks are likely to occur. For this reason, after performing an annealing process, it is necessary to perform the said bending process, manufacturing efficiency will fall and processing cost will increase. In order to omit the annealing process, a method is used in which the SCM415 having a carbon content lower than that of the SK85 is used as a material and heat treatment such as carburizing is performed to ensure durability. . However, since this heat treatment takes a long time, the production efficiency is lowered and the processing cost is increased.

本発明は、上述の様な事情に鑑みて、スラストころ軸受を構成するレースを造る為の鋼材の組成を規制する事で、このレースにフランジ部を形成する為の曲げ加工の際、割れが発生する事を防止し、更に、スラストころ軸受として必要とされる耐久性を確保すべく発明したものである。   In view of the circumstances as described above, the present invention regulates the composition of the steel material for producing the race that constitutes the thrust roller bearing. The invention was invented to prevent the occurrence and to ensure the durability required as a thrust roller bearing.

本発明のスラストころ軸受は、放射方向に配列された複数のころと、金属板により円輪状に造られて、軸方向片側面をスラスト軌道面とした少なくとも1枚のレースとを備える。   The thrust roller bearing of the present invention includes a plurality of rollers arranged in a radial direction and at least one race made of a metal plate in an annular shape and having one axial side surface as a thrust raceway surface.

特に、本発明のスラストころ軸受に於いては、前記レースが、C(炭素)を0.68〜0.88質量%、Si(珪素)を0.01〜0.15質量%、Mn(マンガン)を0.2〜0.7質量%、Cr(クロム)を0.3〜0.7質量%含有すると共に、酸素濃度が15ppm以下である合金鋼製としている。尚、この合金鋼の残部は、Feと不可避不純物とである。   In particular, in the thrust roller bearing of the present invention, the race is composed of 0.68 to 0.88 mass% of C (carbon), 0.01 to 0.15 mass% of Si (silicon), and Mn (manganese). ) 0.2 to 0.7 mass%, Cr (chromium) 0.3 to 0.7 mass%, and the oxygen concentration is 15 ppm or less. The balance of the alloy steel is Fe and inevitable impurities.

又、本発明のスラストころ軸受を実施する場合に、好ましくは請求項2に記載した発明の様に、厚さを、0.4〜6.0mmとする。
又、硬さ(ビッカース硬度)を、100〜300Hvとする。
更に、表面粗さ(算術平均粗さ)を0.4μmRa以下とする。
Further, when the thrust roller bearing of the present invention is implemented, the thickness is preferably set to 0.4 to 6.0 mm as in the invention described in claim 2.
Moreover, hardness (Vickers hardness) shall be 100-300Hv.
Furthermore, the surface roughness (arithmetic average roughness) is set to 0.4 μmRa or less.

又、前述の様な請求項2に記載した発明を実施する場合に、好ましくは請求項3に記載した発明の様に、前記レースを、焼き入れ・焼き戻し処理を施す事により形成される表面硬化層を有するものとする。
又、この表面硬化層の硬さを、650〜850Hvとする。
更に、この表面硬化層の表面粗さを、0.4μmRa以下とする。
Further, when the invention described in claim 2 as described above is carried out, the surface formed by subjecting the race to quenching and tempering treatment, preferably as in the invention described in claim 3. It shall have a hardened layer.
Moreover, the hardness of this surface hardening layer shall be 650-850Hv.
Furthermore, the surface roughness of the surface hardened layer is set to 0.4 μmRa or less.

或いは、請求項4に記載した発明の様に、レースを、浸炭処理、又は、浸炭窒化処理を施した後に、焼き入れ・焼き戻し処理を施す事により形成される表面硬化層を有するものとする。
又、この表面硬化層を、Cを0.8〜1.2質量%、Nを0.05〜0.50質量%含有するものとする。
又、前記表面硬化層の硬さを、700〜900Hvとする。
又、この表面硬化層の残留オーステナイト量γRを、15〜45容量%とする。
更に、この表面硬化層の表面粗さを、0.4μmRa以下とする。
Alternatively, as in the invention described in claim 4, the race has a hardened surface layer formed by performing quenching / tempering after carburizing or carbonitriding. .
Moreover, this surface hardening layer shall contain C 0.8-1.2 mass% and N 0.05-0.50 mass%.
Moreover, the hardness of the said surface hardening layer shall be 700-900Hv.
Further, the retained austenite amount γ R of the surface hardened layer is set to 15 to 45% by volume.
Furthermore, the surface roughness of the surface hardened layer is set to 0.4 μmRa or less.

上述の様に構成する本発明のスラストころ軸受によれば、レースを構成する鋼材の組成を適切に規制する事で、曲げ加工に於いて、曲げ部分に割れが発生する事を防止し、加工性の向上を図る事ができる。
又、曲げ加工によりレース形状に成形した後、このレースの表面に適切な熱処理を施して、このレースの表面に所望の性状を備えた表面硬化層を形成する。この為、過剰な熱処理時間を要する事なく、十分な耐久性を確保できる。
以下、前記レースの材料である鋼材(合金鋼)の組成、及び、このレースに形成された表面硬化層の性状に就いて、この合金鋼の成分を規定した理由と共に説明する。
According to the thrust roller bearing of the present invention configured as described above, by appropriately regulating the composition of the steel material that constitutes the race, it is possible to prevent cracks from occurring in the bent portion during the bending process. The improvement of sex can be aimed at.
Further, after forming into a lace shape by bending, an appropriate heat treatment is applied to the surface of the lace to form a hardened surface layer having a desired property on the surface of the lace. For this reason, sufficient durability can be secured without requiring an excessive heat treatment time.
Hereinafter, the composition of the steel material (alloy steel) which is the material of the lace and the properties of the surface hardened layer formed in the lace will be described together with the reasons for defining the components of the alloy steel.

(1)レースを構成する合金鋼の組成に就いて
[Cを0.68〜0.88質量%]
Cは、レースの軌道面の転がり疲れ寿命、及び、耐摩耗性を確保する為に添加する。即ち、Cは、焼き入れによって基地に固溶し、転がり軸受の軌道面として必要な硬さを向上させる元素である。又、Cは、他の合金元素と結合して鋼中に硬い炭化物を形成させ、耐摩耗性を向上させる役割もある。但し、合金鋼中のCの添加量が0.68質量%未満であると、転がり軸受として要求される硬さを確保できない場合がある。又、表面のC濃度を向上させる為に、浸炭処理、或は浸炭窒化処理に長時間を要し、処理コストが嵩む原因になる。これに対して、Cの添加量が0.88質量%を超えると、鋼中に共晶炭化物が生成し易くなり、前記軌道面の転がり疲れ寿命が低下する可能性があるだけでなく、加工性が低下する。そこで、前記合金鋼中へのCの添加量を、0.68〜0.88質量%の範囲に規制した。
(1) On the composition of the alloy steel constituting the race [C: 0.68 to 0.88 mass%]
C is added to ensure the rolling fatigue life and wear resistance of the raceway surface. That is, C is an element that improves the hardness required as a raceway surface of a rolling bearing by solid solution in the base by quenching. C also has a role of improving wear resistance by combining with other alloy elements to form hard carbides in the steel. However, if the amount of C added in the alloy steel is less than 0.68% by mass, the hardness required for a rolling bearing may not be ensured. Further, in order to improve the C concentration on the surface, a long time is required for the carburizing process or the carbonitriding process, which causes an increase in processing cost. On the other hand, if the amount of C exceeds 0.88% by mass, eutectic carbides are likely to be generated in the steel, and the rolling fatigue life of the raceway surface may be reduced. Sex is reduced. Therefore, the amount of C added to the alloy steel is restricted to a range of 0.68 to 0.88 mass%.

[Crを0.3〜0.7質量%]
Crは、基地に固溶して、焼き入れ性、耐食性等を向上させると共に、Cと結合して鋼中に硬い炭化物を形成し、耐摩耗性を向上させる元素である。但し、前記合金鋼中へのCrの添加量が0.3質量%未満の場合には、前記の効果を十分には得られない。これに対して、このCrの添加量が0.7質量%を超えると、鋼中の共晶炭化物が大きくなり、平均結晶粒が大きくなる。この為、加工性を低下させる場合がある。そこで、前記合金鋼中へのCrの添加量を、0.3〜0.7質量%の範囲に規制した。
[Cr 0.3-0.7 mass%]
Cr is an element that dissolves in the base and improves hardenability, corrosion resistance, etc., and combines with C to form hard carbides in the steel, thereby improving wear resistance. However, when the amount of Cr added to the alloy steel is less than 0.3% by mass, the above effect cannot be obtained sufficiently. On the other hand, when the addition amount of Cr exceeds 0.7 mass%, the eutectic carbide in the steel becomes large and the average crystal grain becomes large. For this reason, workability may be reduced. Therefore, the amount of Cr added to the alloy steel is restricted to a range of 0.3 to 0.7 mass%.

[Mnを0.2〜0.7質量%]
Mnは、焼き入れ性の向上と、表面(軌道面)の残留オーステナイト量の確保との為に添加する。即ち、Mnは、基地に固溶して、焼き入れ性を向上させる効果がある。更に、Mnは、表面の残留オーステナイトの形成を助ける効果もある。但し、前記合金鋼中へのMnの添加量が0.2質量%未満の場合には、前記効果を十分には得られない。これに対して、このMnの添加量が0.7質量%を超えると、加工性が低下するだけでなく、表面(軌道面)の残留オーステナイト量が過剰になり、転がり軸受として必要な硬さを得られない。そこで、前記合金鋼中へのMnの添加量を、0.2〜0.7質量%の範囲に規制した。
[Mn is 0.2 to 0.7% by mass]
Mn is added for improving the hardenability and ensuring the amount of retained austenite on the surface (orbital surface). That is, Mn has the effect of improving the hardenability by dissolving in the base. Furthermore, Mn also has an effect of assisting formation of retained austenite on the surface. However, when the amount of Mn added to the alloy steel is less than 0.2% by mass, the above effect cannot be obtained sufficiently. On the other hand, when the amount of Mn added exceeds 0.7% by mass, not only the workability is deteriorated, but also the amount of retained austenite on the surface (the raceway surface) becomes excessive, and the hardness required as a rolling bearing I can't get it. Therefore, the amount of Mn added to the alloy steel is restricted to a range of 0.2 to 0.7% by mass.

[Siを0.01〜0.15質量%]
Siは、焼き入れによる表面(軌道面)硬さを向上させると共に、軌道面の転がり疲れ寿命を向上させ、併せて、合金鋼中の酸素量を低下させる為に添加する。即ち、Siは、基地に固溶して、焼き入れ性を向上させると共に、焼き戻し軟化抵抗性を向上させて、軌道面に必要な硬さを与える。又、基地組織を強化し、この軌道面の転がり疲れ寿命を向上させる。又、合金鋼中の酸素と反応して酸化物を生成し、この合金鋼中の酸素量を低下させる。但し、Siの添加量が0.01質量%未満の場合には、前記効果を十分には得られない。これに対して、前記合金鋼中へのSiの添加量が0.15質量%を超えると、加工性が低下する事に加えて、浸炭処理、或は浸炭窒化処理の際に、炭素の浸入を阻害する。そこで、前記合金鋼中へのSiの添加量を、0.01〜0.15質量%の範囲に規制した。
[0.01 to 0.15 mass% of Si]
Si is added to improve the surface (orbital surface) hardness by quenching, improve the rolling fatigue life of the orbital surface, and reduce the oxygen content in the alloy steel. That is, Si dissolves in the base to improve the hardenability and improve the temper softening resistance to give the raceway the necessary hardness. It also strengthens the base structure and improves the rolling fatigue life of this raceway surface. Moreover, it reacts with oxygen in the alloy steel to produce an oxide, thereby reducing the amount of oxygen in the alloy steel. However, when the addition amount of Si is less than 0.01% by mass, the above effect cannot be obtained sufficiently. On the other hand, if the amount of Si added to the alloy steel exceeds 0.15% by mass, in addition to the deterioration of workability, carbon intrusion occurs during carburizing or carbonitriding. Inhibits. Therefore, the amount of Si added to the alloy steel was regulated to a range of 0.01 to 0.15 mass%.

[酸素濃度を15ppm以下とした理由]
合金鋼中の酸素濃度が高くなると、焼入れされた軌道面に剥離の起点となる酸化物系の介在部が形成される為、転がり疲れ寿命が低下する。この為、転がり疲れ寿命の向上を図る為に、前記合金鋼中の酸素濃度を低くする事が好ましい。そこで、この酸素濃度を、15ppm以下に規制した。
[Reason for setting oxygen concentration to 15 ppm or less]
When the oxygen concentration in the alloy steel becomes high, an oxide-based intervening portion that becomes a starting point of peeling is formed on the hardened raceway surface, so that the rolling fatigue life is lowered. For this reason, it is preferable to reduce the oxygen concentration in the alloy steel in order to improve the rolling fatigue life. Therefore, this oxygen concentration was regulated to 15 ppm or less.

(2)レースの表面(軌道面)の性状に就いて
[Cの濃度を0.8〜1.2質量%]
Cは、レースに浸炭処理、又は、浸炭窒化処理を施してから軌道面の表面層部分を研磨仕上した後の状態で、この軌道面の転がり疲れ寿命を確保するのに必要な硬度を得る為に含有させる。前記表面層部分に、十分な転がり疲れ寿命を確保するのに必要な硬度を与える為には、Cを0.8質量%以上含有させる事が必要である。これに対して、1.2質量%を超えて含有させると、前記表面層部分に巨大炭化物を生成し易くなり、亀裂等の損傷が発生する起点になり易くなる。そこで、前記表面層部分のCの含有量を、0.8〜1.2質量%に規制した。尚、Cの濃度は、浸炭処理、或は浸炭窒化処理の条件を変える事により調整する。
(2) Concerning the properties of the race surface (track surface) [C concentration of 0.8 to 1.2% by mass]
C is for obtaining the hardness required to ensure the rolling fatigue life of the raceway surface in a state after the surface layer portion of the raceway surface is polished after carburizing or carbonitriding the race. To contain. In order to give the surface layer portion the hardness necessary to ensure a sufficient rolling fatigue life, it is necessary to contain 0.8 mass% or more of C. On the other hand, when the content exceeds 1.2% by mass, it becomes easy to generate giant carbides in the surface layer portion, and it becomes easy to become a starting point for damage such as cracks. Therefore, the C content in the surface layer portion was regulated to 0.8 to 1.2% by mass. The concentration of C is adjusted by changing the conditions for carburizing or carbonitriding.

[Nの濃度を0.05〜0.5質量%]
Nは、レースの表面層部分の焼き戻し抵抗性を向上させ、微細な炭・窒化物を分散析出させて強度を向上させる為に含有させる。この様な効果を得る為には、Nの含有量を0.05質量%以上とする必要がある。これに対して、Nの含有量が0.5質量%を超えると、耐摩耗性が過度に向上し、レースの仕上加工として行う研磨加工が困難になるだけでなく、前記表面層部分の脆性割れ強度も低下する。そこで、Nの含有量を、0.05〜0.5質量%に規制した。
[N concentration of 0.05 to 0.5 mass%]
N is contained in order to improve the tempering resistance of the surface layer portion of the lace and to disperse and precipitate fine carbon and nitride to improve the strength. In order to obtain such an effect, the N content needs to be 0.05% by mass or more. On the other hand, when the N content exceeds 0.5% by mass, the wear resistance is excessively improved, and not only the polishing process as the finishing process of the race becomes difficult, but also the brittleness of the surface layer portion. Crack strength also decreases. Therefore, the N content is regulated to 0.05 to 0.5% by mass.

[残留オーステナイト量を15〜45容量%]
レースの表面層部分の残留オーステナイト量は、軌道面の耐ピーリング性を向上させる為に規制する。即ち、残留オーステナイトは、粘りのある金属組織であり、この残留オーステナイトが多い事は、耐ピーリング性の向上に寄与する。但し、前記表面層部分の残留オーステナイト量が15容量%未満の場合には、耐ピーリング性を向上させる効果が小さい。これに対して、前記表面層部分の残留オーステナイト量が45容量%を超えると、軌道面の表面硬さが低下し過ぎて、この軌道面の転がり疲れ寿命が低下する可能性がある。そこで、請求項4に係る発明に関して、前記レースの表面層部分の残留オーステナイト量を15〜45容量%の範囲に規制した。尚、このレースの表面層部分の残留オーステナイト量の調整は、このレースを構成する合金鋼の組成、浸炭処理、或は浸炭窒化処理の条件、焼き入れ条件、焼き戻し条件を適宜組み合わせる事により行う。
[Residual austenite amount is 15 to 45% by volume]
The amount of retained austenite in the surface layer portion of the race is regulated in order to improve the peeling resistance of the raceway surface. That is, retained austenite is a sticky metal structure, and a large amount of retained austenite contributes to an improvement in peeling resistance. However, when the amount of retained austenite in the surface layer portion is less than 15% by volume, the effect of improving the peeling resistance is small. On the other hand, when the amount of retained austenite in the surface layer portion exceeds 45% by volume, the surface hardness of the raceway surface is excessively lowered, and the rolling fatigue life of the raceway surface may be reduced. Therefore, in the invention according to claim 4, the amount of retained austenite in the surface layer portion of the race is regulated to a range of 15 to 45% by volume. The amount of retained austenite in the surface layer portion of the race is adjusted by appropriately combining the composition of the alloy steel constituting the race, carburizing treatment, or carbonitriding conditions, quenching conditions, and tempering conditions. .

(3)レース全体としての性状に就いて
[レースの表面の硬さ]
レース表面に形成される表面硬化層(軌道面)の硬さは、軌道面の転がり疲れ寿命に影響を及ぼす因子であり、この硬さが低いと転がり疲れ寿命が低下する。但し、過度に高くすると、硬さを高める為のコストが徒に嵩むだけでなく、靱性が不足する可能性を生じる。
そこで、請求項3に係る発明に関して、表面の硬さを650〜850Hvの範囲に規制した。
又、請求項4に係る発明に関して、表面の硬さを700〜900Hvの範囲に規制した。
(3) On the properties of the entire race [Race surface hardness]
The hardness of the hardened surface layer (track surface) formed on the race surface is a factor that affects the rolling fatigue life of the raceway surface. If this hardness is low, the rolling fatigue life decreases. However, if it is excessively high, not only does the cost for increasing the hardness increase, but also the possibility of insufficient toughness arises.
Then, regarding the invention which concerns on Claim 3, the hardness of the surface was controlled in the range of 650-850Hv.
Moreover, regarding the invention which concerns on Claim 4, the hardness of the surface was controlled in the range of 700-900Hv.

[レースの表面の粗さ]
レース表面に形成される表面硬化層(軌道面)の粗さは、軌道面の転がり疲れ寿命に影響を及ぼす因子であり、この粗さが高いと転がり疲れ寿命が低下する。そこで、表面の粗さを0.4μmRa以下に規制した。
[Race surface roughness]
The roughness of the hardened surface layer (the raceway surface) formed on the race surface is a factor that affects the rolling fatigue life of the raceway surface. If this roughness is high, the rolling fatigue life decreases. Therefore, the surface roughness was regulated to 0.4 μmRa or less.

従来構造のスラストころ軸受を使用箇所に組み付けた状態で示す部分断面図。The fragmentary sectional view shown in the state which assembled | attached the thrust roller bearing of the conventional structure to the use location. 従来のスラストころ軸受の別例を示す断面図。Sectional drawing which shows another example of the conventional thrust roller bearing. 従来のレースの構造の別の4例を示す断面図。Sectional drawing which shows another four examples of the structure of the conventional race.

本発明の特徴は、スラストころ軸受を構成するレースの加工性の向上、且つ、耐久性の向上を図るべく、このレースを構成する鋼材の組成、及び、レースの表面に熱処理を施す事により形成される表面硬化層の性状を規制した点にある。前記スラストころ軸受、及び、このスラストころ軸受を構成するレースの構造に就いては、前述の図1〜3に示した構造を含め、従来から知られている各種スラストころ軸受、及び、レースと同様である為、具体的構造に就いての図示並びに説明は省略し、次に、本発明の対象となるスラストころ軸受のレースの製造方法の1例に就いて説明する。   The feature of the present invention is that the composition of the steel material constituting the race and the surface of the race are subjected to heat treatment in order to improve the workability and durability of the race constituting the thrust roller bearing. It is in the point which controlled the property of the hardened surface layer. About the structure of the said thrust roller bearing and the race which comprises this thrust roller bearing, including the structure shown in above-mentioned FIGS. 1-3, various conventionally known thrust roller bearings, and a race, Since it is the same, illustration and description of a specific structure are omitted, and next, an example of a method of manufacturing a thrust roller bearing race which is an object of the present invention will be described.

先ず、素材である平板状の鋼板に、打抜き加工を施して円輪状の第一中間素材を得た後、この円輪状の第一中間素材に、バーリング加工等の曲げ加工を施す事によりフランジを形成された、第二中間素材を得る。
次いで、この第二中間素材に対して、熱処理を施す。この熱処理は、焼き入れ→焼き戻しの順で施す所謂ずぶ焼きと言われる処理、或は、浸炭処理又は浸炭窒化処理→焼き入れ→焼き戻しを施す、所謂浸炭焼き入れ、或は、浸炭窒化焼き入れと言われる熱処理を施す。
この様な熱処理を施す事により、前記中間部材の表面に所望の性状を備えた表面硬化層を形成する。その後、この表面硬化層に研磨加工を施して、レースの完成形状に仕上げる。そして、この様にして造ったレースに、転動体であるころと、保持器とを組み合わせて、スラストころ軸受とする。
First, a flat steel plate as a material is punched to obtain a first annular intermediate material, and then the flange is formed by bending the annular first intermediate material such as burring. A formed second intermediate material is obtained.
Next, heat treatment is performed on the second intermediate material. This heat treatment is a so-called so-called sukiyaki process performed in the order of quenching → tempering, or carburizing process or carbonitriding process → quenching → tempering, so-called carburizing quenching or carbonitriding process. A heat treatment called “putting” is applied.
By performing such a heat treatment, a surface hardened layer having desired properties is formed on the surface of the intermediate member. Thereafter, this hardened surface layer is polished to finish the finished shape of the race. Then, a roller that is a rolling element and a cage are combined with the race made in this manner to form a thrust roller bearing.

上述したずぶ焼きによる熱処理を行う場合、焼き入れは、800〜880℃で保持し、油冷によって行う。焼き戻しは、160〜250℃で保持し、炉冷、或は空冷によって行う。
又、前記浸炭焼き入れ、又は、浸炭窒化焼き入れによる熱処理を行う場合、浸炭処理は、RXガス、及び、エンリッチガスの混合ガスを雰囲気に用いて、800〜880℃で、
20〜90分間保持した後、空冷或は油冷する事によって行う。一方、前記浸炭窒化処理の条件は、RXガス、エンリッチガス、及び、アンモニアガスの混合ガスを雰囲気に用いて、800〜880℃で、20〜90分間保持した後、空冷或は油冷する事によって行う。その後の焼き入れは、800〜880℃で保持し、油冷によって行う。焼き戻しは、160〜250℃で保持し、炉冷或は空冷によって行う。
In the case of performing the above-described heat treatment by sukiyaki, quenching is performed at 800 to 880 ° C. and oil cooling. Tempering is performed at a temperature of 160 to 250 ° C. and furnace cooling or air cooling.
Moreover, when performing the heat treatment by the carburizing quenching or carbonitriding quenching, the carburizing treatment is performed at 800 to 880 ° C. using a mixed gas of RX gas and enriched gas as an atmosphere.
After holding for 20 to 90 minutes, it is performed by air cooling or oil cooling. On the other hand, the carbonitriding process is performed by using a mixed gas of RX gas, enriched gas, and ammonia gas as an atmosphere, holding at 800 to 880 ° C. for 20 to 90 minutes, and then cooling with air or oil. Do by. The subsequent quenching is carried out by holding at 800 to 880 ° C. and oil cooling. Tempering is performed at a temperature of 160 to 250 ° C. and furnace cooling or air cooling.

本発明の効果を確認する為に行った実験に就いて説明する。本実験は、表1に示す様な組成の合金鋼に曲げ加工を施し、発生した割れの回数を確認する為の実験である。又、本実験は、後述の表1に示す、本発明の技術的範囲に属する実施例1〜6、及び、本発明の技術的範囲に属さない比較例1〜8の14種類の合金鋼を試料とした。尚、これら各試料を構成する鋼材のうち、比較例1はSK85、比較例2はSUJ2、比較例3はSCM415、比較例4はSAE1070、比較例5はSPCCである。
実験により製造するレースは以下の条件とした。
「製造するレースの条件」
対象スラストころ軸受:内径φ50×外径φ100
フランジ形成前の内径(φd):35mm
フランジ形成後の内径(φD):50mm
フランジ高さ(h):5.0mm
板厚(t):2.0mm
穴広げパラメータ(E):1.43
この穴広げパラメータEとは、前述した様に、割れ発生の目安となるもので、E=φD/φdの計算式により導かれる値であるが、このパラメータEが大きいと、割れが発生し易い傾向にある。
An experiment conducted for confirming the effect of the present invention will be described. This experiment is an experiment for bending the alloy steel having the composition shown in Table 1 and confirming the number of cracks generated. In addition, this experiment was conducted using 14 kinds of alloy steels of Examples 1 to 6 belonging to the technical scope of the present invention and Comparative Examples 1 to 8 not belonging to the technical scope of the present invention shown in Table 1 described later. A sample was used. Of the steel materials constituting these samples, Comparative Example 1 is SK85, Comparative Example 2 is SUJ2, Comparative Example 3 is SCM415, Comparative Example 4 is SAE1070, and Comparative Example 5 is SPCC.
The race manufactured by the experiment was performed under the following conditions.
“Conditions for manufacturing races”
Target thrust roller bearing: Inner diameter φ50 × Outer diameter φ100
Inner diameter before flange formation (φd): 35 mm
Inner diameter after flange formation (φD): 50 mm
Flange height (h): 5.0 mm
Plate thickness (t): 2.0mm
Hole expansion parameter (E): 1.43
As described above, the hole expansion parameter E is a guideline for occurrence of cracks, and is a value derived from the equation E = φD / φd. If the parameter E is large, cracks are likely to occur. There is a tendency.

Figure 2011190921
Figure 2011190921

この表1に示す様に、本発明の技術的範囲に属する実施例1〜6の各試料は、Siを0.15質量%以下としており、且つ、Cを0.88質量%以下とした為、延性が高くなり、10回の実験中に割れが1回も発生しなかった。尚、実験回数を100回に増やした場合にも、割れは発生しなかった。
又、比較例5〜8の各試料は、Siが0.15質量%以下であった為、割れが発生しなかった。尚、これら各資料は、割れは発生していないが、後述する実施例2の疲労試験の結果を示す表2から分かる様に、十分な転がり疲れ寿命を得る事ができない場合が多い。
一方、比較例1、2、4の試料は、C、及び、Siが多く延性が低い為、割れが発生し易かった。又、比較例3の試料は、Cは0.15質量%と少ないが、Siが0.2質量%と多い為、割れが発生した。
As shown in Table 1, each sample of Examples 1 to 6 belonging to the technical scope of the present invention had Si of 0.15 mass% or less and C was 0.88 mass% or less. The ductility was increased and no cracks occurred during 10 experiments. Even when the number of experiments was increased to 100, no cracks occurred.
Moreover, since Si was 0.15 mass% or less in each sample of Comparative Examples 5 to 8, no crack was generated. In addition, although these materials do not generate cracks, as can be seen from Table 2 showing the results of the fatigue test of Example 2 described later, there are many cases where a sufficient rolling fatigue life cannot be obtained.
On the other hand, the samples of Comparative Examples 1, 2, and 4 were prone to cracking because of the large amount of C and Si and low ductility. In the sample of Comparative Example 3, although C was as small as 0.15% by mass, Si was as large as 0.2% by mass, so that cracking occurred.

前記表1に示した実施例1〜6、及び、比較例1〜8の各試料を材料として、これら各材料からなる鋼板に、前述した打抜き加工→曲げ加工を施してレースの形状に成形した中間素材を得た後、熱処理を施してレースを作製し、本実験の試料とした。
又、この熱処理は、以下の2種類の方法で行った。
「熱処理(1)の条件」
前述した様に、焼き入れは、800〜880℃で保持し、油冷によって行った。次いで、160〜250℃で焼き戻しを行った。
「熱処理(2)の条件」
前述した方法で浸炭窒化処理を行った後、冷却後に800〜880℃で焼き入れを行った。次いで、160℃〜250℃で焼き戻しを行った。
尚、前記熱処理により前記各レースの表面に形成された表面硬化層の硬さ、炭素濃度、窒素濃度、残留オーステナイト量は表2に示す様になった。
Using the samples of Examples 1 to 6 and Comparative Examples 1 to 8 shown in Table 1 as materials, the steel plate made of these materials was subjected to the punching process → bending process described above and formed into a lace shape. After obtaining the intermediate material, heat treatment was performed to produce a race, which was used as a sample for this experiment.
The heat treatment was performed by the following two methods.
"Conditions for heat treatment (1)"
As described above, quenching was carried out by holding at 800 to 880 ° C. and oil cooling. Subsequently, tempering was performed at 160 to 250 ° C.
“Conditions for heat treatment (2)”
After carbonitriding by the method described above, quenching was performed at 800 to 880 ° C. after cooling. Subsequently, tempering was performed at 160 ° C to 250 ° C.
Table 2 shows the hardness, carbon concentration, nitrogen concentration, and retained austenite amount of the surface hardened layer formed on the surface of each race by the heat treatment.

この様にして製造した2枚のレースと、ころと、保持器とを組み合わせて、呼び番号がFH506502であるスラストころ軸受(内径=65mm、外径=85mm、軸方向厚さ=4.81mm、レース板厚=2mm、フランジ高さ=0.81mm)を造り、これら各スラストころ軸受に対して、下記の条件で転がり疲労試験を行い、転がり疲れ寿命を求めた。
「疲労試験の条件」
荷重(P/C):0.4
回転速度:6000min-1
潤滑油:ATF
潤滑油温度:120℃
計算寿命LCAL:60時間(hr)
異物の硬さ:600〜800Hv
異物の大きさ:100μm
尚、異物は、浸炭窒化処理の場合のみ混入させた。
A thrust roller bearing having an identification number of FH506502 (inner diameter = 65 mm, outer diameter = 85 mm, axial thickness = 4.81 mm, combining two races manufactured in this way, rollers, and a cage. A race plate thickness = 2 mm and a flange height = 0.81 mm) were produced, and a rolling fatigue test was performed on each of these thrust roller bearings under the following conditions to obtain a rolling fatigue life.
"Fatigue test conditions"
Load (P / C): 0.4
Rotational speed: 6000 min -1
Lubricating oil: ATF
Lubricating oil temperature: 120 ° C
Calculated life L CAL : 60 hours (hr)
Hardness of foreign matter: 600 to 800 Hv
Foreign material size: 100 μm
Foreign matter was mixed only in the case of carbonitriding.

この様な条件で行った疲労試験の結果を、次の表2に示す。

Figure 2011190921
The results of fatigue tests performed under such conditions are shown in Table 2 below.
Figure 2011190921

前記熱処理(1)を施した、本発明の技術的範囲に属する実施例1〜6の場合、異物の混入がなく、高温下での試験ではあるが、前記表1に示す様に、酸素濃度が15ppm以下である為、前記計算寿命LCAL(60時間)の1.5倍以上の転がり疲れ寿命を得られた。
又、前記各実施例1〜6のうち、表面硬化層の硬さが700Hv以上である実施例2〜6の場合、前記計算寿命LCAL(60時間)の2倍以上と、更に良好な転がり疲れ寿命を得られた。
In the case of Examples 1 to 6 that were subjected to the heat treatment (1) and belong to the technical scope of the present invention, there was no contamination with foreign matter, and although the test was performed at a high temperature, as shown in Table 1, the oxygen concentration Is 15 ppm or less, a rolling fatigue life of 1.5 times or more of the calculated life L CAL (60 hours) was obtained.
Further, among Examples 1 to 6, in the case of Examples 2 to 6 where the hardness of the surface hardened layer is 700 Hv or more, the rolling is even more favorable as being twice or more of the calculated life L CAL (60 hours). A fatigue life was obtained.

一方、比較例1、4は、前記表1に示す様に酸素濃度は高いが、表面硬化層の硬さが良好である為、前記計算寿命LCAL(60時間)とほぼ等しい転がり疲れ寿命を得られた。
又、比較例7、8は、前記表1に示す様に酸素濃度が低い為、前記計算寿命LCAL(60時間)よりも長い転がり疲れ寿命を得られた。又、比較例3、5、6は、表面硬化層の硬さが十分でない為、前記計算寿命LCAL(60時間)よりも短い転がり疲れ寿命であった。尚、比較例2は、SUJ2である為、表面硬化層の硬さが十分であり、長寿命であった。
On the other hand, in Comparative Examples 1 and 4, the oxygen concentration is high as shown in Table 1, but the hardness of the surface hardened layer is good, so that the rolling fatigue life is almost equal to the calculated life L CAL (60 hours). Obtained.
In Comparative Examples 7 and 8, since the oxygen concentration was low as shown in Table 1, a rolling fatigue life longer than the calculated life L CAL (60 hours) was obtained. In Comparative Examples 3, 5, and 6, since the hardness of the surface hardened layer was not sufficient, the rolling fatigue life was shorter than the calculated life L CAL (60 hours). In addition, since the comparative example 2 is SUJ2, the hardness of the surface hardened layer was sufficient and the life was long.

又、前記熱処理(2)を施した、本発明の技術的範囲に属する実施例1〜6の場合、浸炭窒化処理を施す事で、Nが固溶されて前記表面硬化層の硬さ、及び、残留オーステナイト量が多くなる為、前記異物が混入された条件下でも、前記計算寿命LCAL(60時間)よりも十分に長い転がり疲れ寿命を得られた。特に、実施例1、2、4〜6の様に、残留オーステナイト量が20〜40容量%の範囲だと、十分な転がり疲れ寿命を得られる場合が多い。 Moreover, in the case of Examples 1-6 which performed the said heat processing (2) and belong to the technical scope of this invention, by performing a carbonitriding process, N is dissolved and the hardness of the said surface hardening layer, and Since the amount of retained austenite increases, a rolling fatigue life sufficiently longer than the calculated life L CAL (60 hours) can be obtained even under the condition where the foreign matter is mixed. In particular, when the amount of retained austenite is in the range of 20 to 40% by volume as in Examples 1, 2, 4 to 6, a sufficient rolling fatigue life is often obtained.

一方、比較例1、5、7、8は、マトリックスへのCの溶け込みが十分ではなく残留オーステナイト量が少ない為、前記計算寿命LCAL(60時間)よりも短い転がり疲れ寿命であった。又、比較例3、4、6は、前記表面硬化層の硬さ、及び、残留オーステナイト量は多いが、マトリックスが強化されていない為、高温での異物が混入した条件下では、軌道面に圧痕が発生し易く、十分な転がり疲れ寿命を得られなかった。尚、比較例2は、SUJ2に浸炭窒化処理を施したものである為、表面硬化層の硬さが十分であり、長寿命であった。 On the other hand, Comparative Examples 1, 5, 7, and 8 had a rolling fatigue life shorter than the calculated life L CAL (60 hours) because C was not sufficiently dissolved in the matrix and the amount of retained austenite was small. In Comparative Examples 3, 4, and 6, although the hardness of the surface hardened layer and the amount of retained austenite are large, the matrix is not strengthened. Indentation was likely to occur, and sufficient rolling fatigue life could not be obtained. In Comparative Example 2, since SUJ2 was carbonitrided, the hardness of the surface hardened layer was sufficient and the life was long.

前述の様な条件で行った、疲労試験の結果を示す前記表2から分かる様に、本発明の技術的範囲に属する、即ち、レースを構成する合金鋼の組成、酸素濃度、表面硬化層の硬さ、炭素濃度、窒素濃度、残留オーステナイト量の何れもが本発明で規定する範囲内である実施例1〜6は、前記計算寿命LCAL(60時間)と比較して長い転がり疲れ寿命を得る事ができる。
これに対して、比較例1〜6の様に、何れかの要素が本発明の技術的範囲から外れる場合、曲げ加工性の低下、又は、転がり疲れ寿命の低下が生じる。前記実施例1の結果だけを見れば、前記表1に示す、比較例5〜8の試料には、割れが発生していない為、良好な加工性を有するが、前記実施例2の結果を示す表2から分かる様に、十分な転がり疲れ寿命を得られない場合が多い。又、表2に示す比較例2は、十分な転がり疲れ寿命を得られているが、表1から分かる様に、曲げ加工性は低い。
As can be seen from Table 2 showing the results of the fatigue test conducted under the conditions as described above, it belongs to the technical scope of the present invention, that is, the composition of the alloy steel constituting the race, the oxygen concentration, and the surface hardened layer. Examples 1 to 6 in which all of the hardness, carbon concentration, nitrogen concentration, and retained austenite amount are within the range defined by the present invention have a longer rolling fatigue life than the calculated life L CAL (60 hours). I can get it.
On the other hand, when any element deviates from the technical scope of the present invention as in Comparative Examples 1 to 6, a decrease in bending workability or a decrease in rolling fatigue life occurs. If only the result of the said Example 1 is seen, since the sample of Comparative Examples 5-8 shown in the said Table 1 does not have a crack, it has favorable workability, but the result of the said Example 2 is shown. As can be seen from Table 2 shown, sufficient rolling fatigue life cannot often be obtained. Further, Comparative Example 2 shown in Table 2 has a sufficient rolling fatigue life, but as can be seen from Table 1, the bending workability is low.

この様に、本発明のスラストころ軸受のレースによれば、このレースの組成を規制する事で、曲げ加工性の向上を図る事ができる。更に、熱処理を施して表面硬化層を形成し、この表面硬化層の性状を規制している為、スラストころ軸受の長寿命化を図る事ができる。   As described above, according to the thrust roller bearing race of the present invention, it is possible to improve the bending workability by regulating the composition of the race. Furthermore, since the surface hardened layer is formed by heat treatment and the properties of the surface hardened layer are regulated, the life of the thrust roller bearing can be extended.

本発明は、前述の図1に示した様なスラストころ軸受に限らず、機械装置等の回転支持部に組み込まれる各種転がり軸受に適用できる。例えば、複列玉軸受、スラスト玉軸受、(単列或は複列)ラジアル円すいころ軸受、スラスト円すいころ軸受、自動調心ころ軸受等が対象となり得る。   The present invention is not limited to the thrust roller bearing as shown in FIG. 1 described above, but can be applied to various types of rolling bearings incorporated in a rotation support portion of a mechanical device or the like. For example, double row ball bearings, thrust ball bearings, (single row or double row) radial tapered roller bearings, thrust tapered roller bearings, and self-aligning roller bearings can be targeted.

1、1a スラストころ軸受
2 ころ
3、3a 保持器
4、4a 外輪レース
5、5a 内輪レース
6、6a 外輪軌道
7、7a 円輪部
8 外側フランジ
9、9a 内輪軌道
10、10a 円輪部
11 内側フランジ
12a、12b 素子
13 円輪部
14 ポケット
DESCRIPTION OF SYMBOLS 1, 1a Thrust roller bearing 2 Roller 3, 3a Cage 4, 4a Outer ring race 5, 5a Inner ring race 6, 6a Outer ring raceway 7, 7a Ring portion 8 Outer flange 9, 9a Inner ring raceway 10, 10a Ring portion 11 Inside Flange 12a, 12b Element 13 Ring portion 14 Pocket

特開2006−194292号公報JP 2006-194292 A

Claims (4)

放射方向に配列された複数のころと、金属板により円輪状に造られて、軸方向片側面をスラスト軌道面とした少なくとも1枚のレースとを備えたスラストころ軸受に於いて、このレースは、Cを0.68〜0.88質量%、Siを0.01〜0.15質量%、Mnを0.2〜0.7質量%、Crを0.3〜0.7質量%含有すると共に、酸素濃度が15ppm以下である合金鋼製である事を特徴とするスラストころ軸受。   A thrust roller bearing comprising a plurality of rollers arranged in a radial direction and at least one race made of a metal plate in a ring shape and having one axial side surface as a thrust raceway surface. C, 0.68 to 0.88 mass%, Si 0.01 to 0.15 mass%, Mn 0.2 to 0.7 mass%, and Cr 0.3 to 0.7 mass% A thrust roller bearing characterized by being made of alloy steel having an oxygen concentration of 15 ppm or less. レースが、厚さが0.4〜6.0mmであり、硬さが100〜300Hvであり、表面粗さが0.4μmRa以下である、請求項1に記載したスラストころ軸受。   The thrust roller bearing according to claim 1, wherein the race has a thickness of 0.4 to 6.0 mm, a hardness of 100 to 300 Hv, and a surface roughness of 0.4 μmRa or less. レースが、焼き入れ・焼き戻し処理を施す事により形成される表面硬化層を有し、この表面硬化層の硬さが650〜850Hvであり、表面粗さが0.4μmRa以下である、請求項2に記載したスラストころ軸受。   The lace has a surface hardened layer formed by performing quenching and tempering treatment, the hardness of the surface hardened layer is 650 to 850 Hv, and the surface roughness is 0.4 μmRa or less. 2. Thrust roller bearing described in 2. レースが、浸炭処理、又は、浸炭窒化処理を施した後に、焼き入れ・焼き戻し処理を施す事により形成される表面硬化層を有し、この表面硬化層がCを0.8〜1.2質量%、Nを0.05〜0.50質量%含有すると共に、硬さが700〜900Hvであり、残留オーステナイト量γRが15〜45容量%であり、表面粗さが0.4μmRa以下である、請求項2に記載したスラストころ軸受。 The lace has a surface hardened layer formed by performing a quenching and tempering treatment after carburizing or carbonitriding, and this surface hardened layer has a C of 0.8 to 1.2. In addition to containing 0.05 to 0.50 mass% of N, the hardness is 700 to 900 Hv, the retained austenite amount γ R is 15 to 45 vol%, and the surface roughness is 0.4 μmRa or less. The thrust roller bearing according to claim 2, wherein the thrust roller bearing is provided.
JP2010060136A 2010-03-17 2010-03-17 Thrust roller bearing Withdrawn JP2011190921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060136A JP2011190921A (en) 2010-03-17 2010-03-17 Thrust roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060136A JP2011190921A (en) 2010-03-17 2010-03-17 Thrust roller bearing

Publications (1)

Publication Number Publication Date
JP2011190921A true JP2011190921A (en) 2011-09-29

Family

ID=44796053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060136A Withdrawn JP2011190921A (en) 2010-03-17 2010-03-17 Thrust roller bearing

Country Status (1)

Country Link
JP (1) JP2011190921A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388625A (en) * 2012-05-11 2013-11-13 谢夫勒科技股份两合公司 Special rolling bearing device for radial rolling bearing
US9695875B2 (en) 2013-07-17 2017-07-04 Roller Bearing Company Of America, Inc. Top drive bearing for use in a top drive system, and made of non-vacuum arc remelted steel configured to achieve an extended life cycle at least equivalent to a life factor of three for a vacuum arc remelted steel
CN108869534A (en) * 2017-05-12 2018-11-23 株式会社捷太格特 Thrust roller bearing
DE102022116675A1 (en) 2022-07-05 2024-01-11 Schaeffler Technologies AG & Co. KG Rolling body cage and axial bearing with a rolling body cage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294451A (en) * 1989-05-10 1990-12-05 Daido Steel Co Ltd Bearing steel for cold working
JP2005226683A (en) * 2004-02-10 2005-08-25 Nsk Ltd Thrust needle roller bearing
JP2007056940A (en) * 2005-08-23 2007-03-08 Nsk Ltd Thrust needle roller bearing
JP2009168066A (en) * 2008-01-11 2009-07-30 Ntn Corp Thrust roller bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294451A (en) * 1989-05-10 1990-12-05 Daido Steel Co Ltd Bearing steel for cold working
JP2005226683A (en) * 2004-02-10 2005-08-25 Nsk Ltd Thrust needle roller bearing
JP2007056940A (en) * 2005-08-23 2007-03-08 Nsk Ltd Thrust needle roller bearing
JP2009168066A (en) * 2008-01-11 2009-07-30 Ntn Corp Thrust roller bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388625A (en) * 2012-05-11 2013-11-13 谢夫勒科技股份两合公司 Special rolling bearing device for radial rolling bearing
US9695875B2 (en) 2013-07-17 2017-07-04 Roller Bearing Company Of America, Inc. Top drive bearing for use in a top drive system, and made of non-vacuum arc remelted steel configured to achieve an extended life cycle at least equivalent to a life factor of three for a vacuum arc remelted steel
CN108869534A (en) * 2017-05-12 2018-11-23 株式会社捷太格特 Thrust roller bearing
DE102022116675A1 (en) 2022-07-05 2024-01-11 Schaeffler Technologies AG & Co. KG Rolling body cage and axial bearing with a rolling body cage

Similar Documents

Publication Publication Date Title
JP4810157B2 (en) Rolling bearing
JP2013164093A (en) Manufacturing method of race for thrust needle bearing
WO2010067872A1 (en) Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
JP2009192071A (en) Roller bearing
JP5728844B2 (en) Rolling bearing
JP4998054B2 (en) Rolling bearing
JP6725235B2 (en) Rolling sliding member, manufacturing method thereof, and rolling bearing
JP2011190921A (en) Thrust roller bearing
JP2012031456A (en) Rolling bearing
JP5076274B2 (en) Rolling bearing
JP4968106B2 (en) Rolling bearing
WO2022202922A1 (en) Track wheel and shaft
JP5991026B2 (en) Manufacturing method of rolling bearing
JP2009204076A (en) Rolling bearing
JP5668283B2 (en) Manufacturing method of rolling sliding member
JP2010031307A (en) Roller bearing
JP2008232212A (en) Rolling device
JP2009250371A (en) Rolling bearing for hydrogen gas compressor
JP2005337361A (en) Roller bearing
JP2010001521A (en) Shaft and pinion shaft
JP2009191280A (en) Roller bearing and manufacturing method therefor
JP5119717B2 (en) Method for manufacturing rolling bearing component and rolling bearing
JP2006183845A (en) Rolling bearing
JP2005337362A (en) Full type roller bearing
JP7212100B2 (en) rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120815

A977 Report on retrieval

Effective date: 20130625

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130709

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130903