JP5991026B2 - Manufacturing method of rolling bearing - Google Patents

Manufacturing method of rolling bearing Download PDF

Info

Publication number
JP5991026B2
JP5991026B2 JP2012119812A JP2012119812A JP5991026B2 JP 5991026 B2 JP5991026 B2 JP 5991026B2 JP 2012119812 A JP2012119812 A JP 2012119812A JP 2012119812 A JP2012119812 A JP 2012119812A JP 5991026 B2 JP5991026 B2 JP 5991026B2
Authority
JP
Japan
Prior art keywords
treatment
mass
rolling
rolling bearing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012119812A
Other languages
Japanese (ja)
Other versions
JP2013245764A (en
Inventor
紘樹 山田
紘樹 山田
宇山 英幸
英幸 宇山
雅子 堤
雅子 堤
祐介 森藤
祐介 森藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012119812A priority Critical patent/JP5991026B2/en
Publication of JP2013245764A publication Critical patent/JP2013245764A/en
Application granted granted Critical
Publication of JP5991026B2 publication Critical patent/JP5991026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Description

この発明は、例えば風力発電装置(風車)の主軸、或いは、変速機、建設機械、産業用ロボット等を構成する回転軸等、各種回転機械装置の回転部材を回転自在に支持する為の転がり軸受の改良に関する。具体的には、組織変化(白色組織変化)に基づく剥離の発生を抑えて、使用条件が厳しい場合でも十分な耐久性を確保できる転がり軸受の実現を図るものである。特に、本発明は、転動体の直径が30mm以上となる様な、比較的大型の転がり軸受に適用した場合に顕著な効果を発揮する。   The present invention relates to a rolling bearing for rotatably supporting rotating members of various rotating machine devices such as a main shaft of a wind turbine generator (windmill) or a rotating shaft constituting a transmission, a construction machine, an industrial robot, etc. Regarding improvements. Specifically, it is intended to realize a rolling bearing capable of suppressing the occurrence of peeling based on a structural change (white structural change) and ensuring sufficient durability even under severe use conditions. In particular, the present invention exhibits a remarkable effect when applied to a relatively large rolling bearing in which the diameter of the rolling element is 30 mm or more.

風力発電装置を構成する主軸の回転支持部等、各種回転機械装置の回転支持部に、例えば図4に示す様なラジアル玉軸受1が組み込まれている。このラジアル玉軸受1は、内周面に外輪軌道2を有する外輪3と、外周面に内輪軌道4を有する内輪5と、これら外輪軌道2と内輪軌道4との間に設けた、それぞれが転動体である複数個の玉6、6とを備える。これら各玉6、6は、円周方向に等間隔に配置された状態で、保持器7により、転動自在に保持されている。又、大きなラジアル荷重が加わる回転支持部には、例えば図5に示す様な、転動体として円すいころを使用したラジアル円すいころ軸受8が組み込まれている。このラジアル円すいころ軸受8は、内周面に円すい凹面状の外輪軌道2aを有する外輪3aと、外周面に円すい凸面状の内輪軌道4aを有する内輪5aと、これら外輪軌道2aと内輪軌道4aとの間に、保持器7aに保持された状態で転動自在に設けられた、それぞれが転動体である複数の円すいころ9、9とを備える。又、前記内輪5aの外周面両端部のうち、大径側端部には大径側鍔部10を、小径側端部には小径側鍔部11を、それぞれ形成している。尚、この小径側鍔部11は省略する場合もある。この様なラジアル玉軸受1及びラジアル円すいころ軸受8は、例えば前記外輪3、3aをハウジングに内嵌固定すると共に、前記内輪5、5aを回転軸に外嵌固定する事により、この回転軸を前記ハウジングに対し、回転自在に支持する。   For example, a radial ball bearing 1 as shown in FIG. 4 is incorporated in a rotation support portion of various rotary machine devices such as a rotation support portion of a main shaft constituting the wind power generator. The radial ball bearing 1 includes an outer ring 3 having an outer ring raceway 2 on an inner peripheral surface, an inner ring 5 having an inner ring raceway 4 on an outer peripheral surface, and an outer ring raceway 2 and an inner ring raceway 4 provided between the outer ring raceway 2 and the inner ring raceway 4. A plurality of balls 6 and 6 which are moving bodies are provided. These balls 6, 6 are held by a cage 7 so as to be able to roll while being arranged at equal intervals in the circumferential direction. Further, a radial tapered roller bearing 8 using a tapered roller as a rolling element as shown in FIG. 5, for example, is incorporated in the rotation support portion to which a large radial load is applied. The radial tapered roller bearing 8 includes an outer ring 3a having a conical concave outer ring raceway 2a on an inner peripheral surface, an inner ring 5a having a conical convex inner ring raceway 4a on an outer peripheral surface, the outer ring raceway 2a and the inner ring raceway 4a. Are provided with a plurality of tapered rollers 9, 9 each being a rolling element provided so as to be able to roll while being held by the cage 7 a. Further, out of both ends of the outer peripheral surface of the inner ring 5a, a large-diameter side flange 10 is formed at the large-diameter end, and a small-diameter flange 11 is formed at the small-diameter end. The small diameter side flange 11 may be omitted. Such a radial ball bearing 1 and a radial tapered roller bearing 8 are configured such that, for example, the outer rings 3 and 3a are fitted and fixed to the housing, and the inner rings 5 and 5a are fitted and fixed to the rotating shaft. The housing is rotatably supported.

この様なラジアル玉軸受1及びラジアル円すいころ軸受8を含め、1対の軌道輪と複数個の転動体とを組み合わせて成る転がり軸受の場合、使用に伴って互いに転がり接触する何れかの面が、転がり疲れによって剥離し、寿命に達する事が広く知られている。この様な剥離の態様として、転がり軸受の構成各部材を構成する金属材料の内部に含まれる非金属介在物(酸化物系やTiN系の非金属介在物)を起点として亀裂が生じ、剥離に至る場合(内部起点型剥離)や、異物混入に基づく圧痕を起点として亀裂が生じ、剥離に至る場合(圧痕起点型剥離)がある。   In the case of a rolling bearing formed by combining a pair of race rings and a plurality of rolling elements, including such a radial ball bearing 1 and a radial tapered roller bearing 8, any of the surfaces that are in rolling contact with each other in use. It is widely known that it peels off due to rolling fatigue and reaches the end of its life. As a form of such peeling, cracks are generated starting from non-metallic inclusions (oxide-based or TiN-based non-metallic inclusions) contained in the metal material constituting each component of the rolling bearing. There are cases in which cracks are generated starting from an indentation based on the mixing of foreign matters (internal origin type peeling) and peeling is caused (indentation starting type peeling).

更に、使用条件の厳しい一部の用途では、軌道面或いは転動面の表面下(最大剪断応力位置近傍)の金属組織が白色に変化し、当該部分を起点として亀裂が生じ、剥離に至る場合もある。この様な金属組織の変化に基づく剥離(以下「組織変化型剥離」と呼ぶ)の発生原因は、完全には解明するに至っていないが、現在では、潤滑剤が分解された際に発生する水素(水素原子)が鋼中に侵入し水素脆性を引き起こす事により、組織変化の発生を促進し、剥離に至ると考えられている。   Furthermore, in some applications where the conditions of use are severe, the metal structure under the surface of the raceway or rolling surface (near the maximum shear stress position) turns white and cracks occur from that part, leading to delamination. There is also. The cause of such delamination based on changes in the metal structure (hereinafter referred to as “structural change-type delamination”) has not been fully elucidated, but at present, hydrogen generated when the lubricant is decomposed. It is considered that (hydrogen atom) penetrates into steel and causes hydrogen embrittlement, thereby promoting the occurrence of structural change and leading to peeling.

この様な組織変化型剥離の発生を抑えて、転がり疲れ寿命を向上させる技術として特許文献1、2には、転がり軸受に封入するグリースの成分を改良する事により、或いは、グリースを使用する事を前提として、軌道輪或いは各転動体の表面に防錆油を塗布する事により、水素の発生及び水素の侵入を抑制する事を意図した発明が記載されている。しかしながら、転がり軸受の用途によっては、グリースを使用できず、潤滑油を使用しなければならない場合がある。この為、前記特許文献1、2に記載された従来技術を適用できない場合がある。特に、風力発電装置を構成する主軸の回転支持部等に組み込む、転動体の直径が30mm以上となる様な、比較的大型の転がり軸受の場合には、潤滑剤として、グリースよりも潤滑油を使用する頻度が高い。この様な場合には、前記特許文献1、2に記載された技術を適用できない場合が多い。更に、比較的大型の転がり軸受では、油膜形成を行い易くする為、或いは摩耗防止等の目的から、ポリアルキレングリコール系等の合成油や、鉱油中に摩耗防止剤等の添加剤を加えた、特殊な潤滑油を使用する場合が多い。そして、この様な特殊な潤滑油には、その種類によっては、一般的に用いられる潤滑油に比べて、鋼中への水素の侵入量が多くなり、組織変化の発生を促進するものがある。   Patent Documents 1 and 2 describe techniques for improving the rolling fatigue life by suppressing the occurrence of such structure change-type peeling by improving the components of grease sealed in rolling bearings or using grease. As a premise, there is described an invention intended to suppress generation of hydrogen and entry of hydrogen by applying a rust preventive oil to the surface of the raceway or each rolling element. However, depending on the application of the rolling bearing, grease may not be used and lubricating oil may have to be used. For this reason, the prior art described in Patent Documents 1 and 2 may not be applicable. In particular, in the case of a relatively large rolling bearing with a rolling element having a diameter of 30 mm or more, which is incorporated in the rotation support portion of the main shaft constituting the wind power generator, lubricating oil is used as a lubricant rather than grease. It is used frequently. In such a case, the techniques described in Patent Documents 1 and 2 are often not applicable. Furthermore, in a relatively large rolling bearing, for the purpose of facilitating the formation of an oil film or for the purpose of preventing wear, additives such as anti-wear agents are added to synthetic oils such as polyalkylene glycols and mineral oil, Often special lubricants are used. Such special lubricating oils, depending on their types, have a greater amount of hydrogen penetration into the steel than commonly used lubricating oils, and promote the occurrence of structural changes. .

しかも、転動体の直径が30mm以上の転がり軸受は、軌道輪と転動体の接触面積が大きい為、転がり接触部に油膜が安定して形成されにくくなり、局所的に金属接触が生じ易くなる。そして、金属接触に起因して、潤滑油が分解して水素が発生し易くなり、発生した水素が軌道輪及び転動体を構成する合金鋼に侵入して、前述した様な組織変化型剥離を発生し易くなる。又、歯車で動力を伝達する変速機の回転軸で、この回転軸に作用するトルクの方向が一時的に、或いは頻繁に変化する様な回転支持部分では、回転方向が変化する瞬間に、転動体の転動面と軌道輪の軌道面との間に大きな滑りが発生する。この為、転がり接触部の油膜切れに基づく金属接触が生じる事に起因して、潤滑油が分解して水素が発生し易くなり、発生した水素が軌道輪及び転動体を構成する合金鋼中に侵入し易くなる。従って、上述の様な回転支持部に組み込む、大型の転がり軸受では、潤滑油の使用に伴う組織変化型剥離の問題が顕著になり易い。   In addition, in a rolling bearing having a rolling element with a diameter of 30 mm or more, the contact area between the race and the rolling element is large, so that an oil film is hardly formed stably on the rolling contact portion, and local metal contact is likely to occur. Then, due to the metal contact, the lubricating oil decomposes and hydrogen is likely to be generated, and the generated hydrogen penetrates into the alloy steel constituting the race and the rolling elements, and the structure change type peeling as described above is performed. It tends to occur. Also, in the rotation support part where the direction of the torque acting on the rotation shaft changes temporarily or frequently on the rotation shaft of the transmission that transmits power by gears, the rotation is changed at the moment when the rotation direction changes. A large slip occurs between the rolling surface of the moving body and the raceway surface of the raceway. For this reason, due to the occurrence of metal contact due to the oil film breakage at the rolling contact portion, the lubricating oil decomposes and hydrogen is easily generated, and the generated hydrogen is contained in the alloy steel constituting the race and rolling elements. It becomes easy to invade. Therefore, in the large-sized rolling bearing incorporated in the rotation support portion as described above, the problem of the structure change type peeling due to the use of the lubricating oil is likely to be remarkable.

又、特許文献3には、Cr及びMoを多量に添加した合金鋼に、浸炭処理又は浸炭窒化処理を施して、水素による組織変化型剥離を遅延させる発明が記載されている。但し、CrやMo等の様な、炭化物生成元素の含有量が多くなると、熱処理条件によっては、浸炭処理及び浸炭窒化処理時に、表面のC濃度が、1.5%以上と高くなり易い。そして、高くなった場合には、ネット状炭化物と呼ばれる巨大な炭化物が、マルテンサイト組織以前の元来のオーステナイト粒界である、旧オーステナイト粒界に沿って生成され易くなる。この様なネット状炭化物が生成されると、このネット状炭化物に沿って、亀裂の発生や伝播が起こり易くなり、靱性が著しく低下してしまう。この為、高靭性を要求される、比較的大型の転がり軸受には、前記特許文献3に記載された技術を適用できない場合がある。   Patent Document 3 describes an invention in which a structural change type peeling due to hydrogen is delayed by subjecting an alloy steel to which a large amount of Cr and Mo is added to carburizing or carbonitriding. However, when the content of carbide generating elements such as Cr and Mo increases, the surface C concentration tends to be as high as 1.5% or more during carburizing and carbonitriding depending on the heat treatment conditions. And when it becomes high, it becomes easy to produce | generate the huge carbide called a net-like carbide along the former austenite grain boundary which is the original austenite grain boundary before a martensitic structure. When such a net-like carbide is generated, cracks are easily generated and propagated along the net-like carbide, and the toughness is significantly reduced. For this reason, the technique described in Patent Document 3 may not be applied to a relatively large rolling bearing that requires high toughness.

又、特許文献4には、Vを添加した鋼に、浸炭焼き入れ処理又は浸炭窒化焼き入れ処理を施す事により、微細なV系炭化物を析出させた軸受鋼を用いる事で、水素による組織変化型剥離を遅延させる発明が記載されている。但し、Vは高価な元素であり、Vを含有する合金鋼もコストが嵩む為、低コスト化が難しい。しかも、浸炭処理時又は浸炭窒化処理時に、旧オーステナイトの結晶粒径が粗大になって、この旧オーステナイトの粒界破壊により、疲労強度の確保が難しくなると言う問題がある。   Further, in Patent Document 4, the structure change caused by hydrogen is achieved by using bearing steel in which fine V-based carbides are precipitated by subjecting steel to which V is added to carburizing quenching or carbonitriding to quenching. An invention for delaying mold release is described. However, V is an expensive element, and the alloy steel containing V is also expensive, so it is difficult to reduce the cost. In addition, the crystal grain size of the prior austenite becomes coarse during the carburizing process or the carbonitriding process, and there is a problem that it is difficult to ensure fatigue strength due to the grain boundary fracture of the prior austenite.

更に、特許文献5には、組織変化の発生を抑制すると共に、亀裂が深さ方向に進展する事を抑制して、厳しい使用条件下でも長寿命化を図れる転がり軸受を実現する為の発明が記載されている。前記特許文献5に記載された発明は、外輪と内輪と各転動体とのうちの何れかの部材を、水素の侵入を遅延できるCrを2.5〜5.0質量%含有し、芯部での硬さを抑え、破壊靱性値を高く確保する事を意図している。この為に、前記特許文献5に記載された発明の場合には、前記何れかの部材を、Cを0.15〜0.30質量%、Si、Mn、Mo、Ni、Cu、S、P、Al、N、Ti、Oを適正量含有する合金鋼製とする。そして、浸炭窒化処理或いは浸炭処理、及び、焼き入れ焼き戻し処理により、前記何れかの部材の転がり接触面から所定深さX位置でのC+N濃度、硬さ、残留オーステナイト量を適正値にする。   Furthermore, Patent Document 5 discloses an invention for realizing a rolling bearing that suppresses the occurrence of structural changes and suppresses cracks from progressing in the depth direction, thereby extending the life even under severe use conditions. Have been described. The invention described in Patent Document 5 includes any member of the outer ring, the inner ring, and each of the rolling elements, containing 2.5 to 5.0% by mass of Cr that can delay the penetration of hydrogen, and a core part. It is intended to reduce the hardness of the steel and ensure a high fracture toughness value. For this reason, in the case of the invention described in the above-mentioned Patent Document 5, any one of the above members is formed by adding 0.15 to 0.30% by mass of C, Si, Mn, Mo, Ni, Cu, S, P , Made of alloy steel containing appropriate amounts of Al, N, Ti and O. Then, the C + N concentration, the hardness, and the amount of retained austenite at a predetermined depth X position from the rolling contact surface of any one of the members are adjusted to appropriate values by carbonitriding or carburizing and quenching and tempering.

この様な特許文献5に記載された発明の場合、先に述べた特許文献1〜4に記載される等により知られた、従前の技術に比べれば、耐水素脆性を向上させて、組織変化の発生を抑制すると共に、亀裂が深さ方向に進展する事を抑制して、厳しい使用条件下でも長寿命化を図れる。但し、風力発電装置の主軸の回転支持部用の如く、極めて長期間(例えば20〜30年)に亙りメンテナンスフリーの状態で使用される、極めて厳しい条件下で使用される転がり軸受の場合には、より優れた耐久性の確保が望まれる。   In the case of the invention described in Patent Document 5 as described above, the hydrogen embrittlement resistance is improved and the structure is changed as compared with the conventional techniques known from Patent Documents 1 to 4 described above. In addition to suppressing the occurrence of cracks, it is possible to prevent the cracks from progressing in the depth direction, thereby extending the life even under severe use conditions. However, in the case of a rolling bearing used under extremely severe conditions, such as for a rotation support part of a main shaft of a wind turbine generator, used in a maintenance-free state for an extremely long time (for example, 20 to 30 years). Therefore, it is desired to ensure better durability.

特開2002−327758号公報JP 2002-327758 A 特開2003−106338号公報JP 2003-106338 A 特開2005−314794号公報JP 2005-314794 A 特開2008−280583号公報JP 2008-280583 A 特開2010−196107号公報JP 2010-196107 A

本発明は、上述の様な事情に鑑みて、水素侵入に基づく組織変化の発生をより効果的に抑制して、より一層の長寿命化を図れ、厳しい使用条件下に於いても安定した運転が可能な回転支持部を構成できる転がり軸受を実現すべく発明したものである。   In view of the circumstances as described above, the present invention more effectively suppresses the occurrence of structural changes due to hydrogen intrusion, can further extend the life, and can operate stably even under severe use conditions. The present invention has been invented to realize a rolling bearing capable of constituting a rotating support portion capable of rotating.

本発明の対象となる転がり軸受は、第一、第二の両軌道輪と、複数個の転動体とを備える。
このうちの第一の軌道輪は、何れかの面に第一の軌道面を有する。
又、前記第二の軌道輪は、前記第一の軌道面と対向する面に第二の軌道面を有する。
更に、前記各転動体は、これら第一、第二の両軌道面同士の間に、転動自在に設けられている。
A rolling bearing that is an object of the present invention includes both first and second race rings and a plurality of rolling elements.
Of these, the first race ring has the first raceway surface on any surface.
Further, the second race ring has a second raceway surface on a surface facing the first raceway surface.
Furthermore, each said rolling element is provided between these 1st, 2nd track surfaces so that rolling is possible.

特に、本発明の転がり軸受の製造方法の場合には前記第一の軌道輪と前記第二の軌道輪と前記各転動体とのうちの少なくとも1種の部材を、C(炭素)を0.10〜0.30質量%、Si(珪素)を0.2〜0.5質量%、Mn(マンガン)を0.2〜1.2質量%、Cr(クロム)を2.2〜4.5質量%、Mo(モリブデン)を0.1〜1.0質量%、それぞれ含有し、残りをFe(鉄)と不可避不純物とした鉄系合金(合金鋼)製とする。 In particular, at least one member of said second bearing ring and the first bearing ring in the case of the manufacturing method of the rolling bearings of the present invention and the the rolling elements, C (carbon) 0 .10 to 0.30 mass%, Si (silicon) 0.2 to 0.5 mass%, Mn (manganese) 0.2 to 1.2 mass%, and Cr (chromium) 2.2 to 4. It is made of an iron-based alloy (alloy steel) containing 5% by mass and 0.1 to 1.0% by mass of Mo (molybdenum), and the remainder being Fe (iron) and inevitable impurities.

尚、本発明の対象となる転がり軸受の場合には、表面に浸炭層又は浸炭窒化層を設け、表面から50μmの深さ位置のC濃度を1.5〜2.0質量%とする事ができる。且つ、この深さ位置での炭化物の最大粒径を10μm以下、旧オーステナイトの粒径を20μm以下とする
、好ましくは、前記少なくとも1種の部材中の、表面から50μm位置の残留オーステナイト量を、30〜60容量%とする。
In the case of subject to the rolling bearing of the present invention, only setting the carburized layer or carbonitrided layer on the surface, the C concentration in the depth position of 50μm from the surface that the 1.5 to 2.0 mass% Can do . And, following 10μm maximum grain size of carbides at this depth position, the particle size of the prior austenite to 20μm or less.
Also, good Mashiku the prior SL in at least one of the members, the amount of retained austenite from the surface 50μm position, 30 to 60 volume%.

又、本発明の転がり軸受の製造方法の発明の場合には、先ず、前記組成を有する合金鋼製の素材を加工して中間素材とする。
その後、この中間素材に、図1に示す様な熱処理を施す。この熱処理では、先ず、図1のa範囲でこの中間素材を900〜1000℃に加熱保持した状態で、所定時間(例えば12〜20時間)保持する事により、浸炭処理又は浸炭窒化処理を施す。浸炭処理を施す場合にはCを多く含むガス雰囲気中で、浸炭窒化処理を施す場合にはC及びNを多く含むガス雰囲気中で、それぞれ行う事は勿論である。次いで、図1のb範囲で、この浸炭処理又は浸炭窒化処理時の温度よりも10℃以上高い温度で所定時間(例えば1〜3時間)保持する、拡散処理を施す。尚、この拡散処理の処理温度が1010℃を超えると、旧オーステナイト粒径が粗大化し易くなるので、好ましくは、前記処理温度を1010℃以下に抑える。
上述の様な拡散処理を行ったならば、次いで、図1のc範囲で800〜880℃で所定時間(例えば1〜3時間)保持してから、室温まで急冷する(例えば焼き入れ油中に浸漬する油冷を施す)。その後、図1のd範囲で800〜880℃で所定時間(例えば1〜2時間)保持してから室温まで急冷(油冷)する、焼き入れ処理を施す。次いで、図1のe範囲で160〜200℃に加温した状態で所定時間(例えば1〜3時間)保持する、焼き戻し処理を施してから炉中又は炉外の空気中で冷却(徐冷)する。
そして、前記少なくとも1種の部材の表面に浸炭層又は浸炭窒化層を設けると共に、この部材の表面から50μm位置で、C濃度を1.5質量%以上とし、且つ、炭化物の最大粒径を10μm以下、旧オーステナイト粒径を20μm以下とする。
Moreover, in the case of the invention of the method for manufacturing a rolling bearing according to the present invention , first, an alloy steel material having the above composition is processed to obtain an intermediate material.
Thereafter, the intermediate material is subjected to heat treatment as shown in FIG. In this heat treatment, first, carburizing treatment or carbonitriding treatment is performed by holding the intermediate material in a state of being heated and maintained at 900 to 1000 ° C. within a range of FIG. 1 for a predetermined time (for example, 12 to 20 hours). Of course, when carburizing is performed, it is performed in a gas atmosphere containing a large amount of C, and when carbonitriding is performed, it is performed in a gas atmosphere containing a large amount of C and N, respectively. Next, in the range b of FIG. 1, a diffusion treatment is performed in which the temperature is maintained at a temperature higher by 10 ° C. or more than the temperature during the carburizing or carbonitriding treatment for a predetermined time (for example, 1 to 3 hours). If the treatment temperature of this diffusion treatment exceeds 1010 ° C., the prior austenite grain size tends to be coarsened. Therefore, the treatment temperature is preferably suppressed to 1010 ° C. or less.
Once the diffusion treatment as described above has been performed, it is then held at 800 to 880 ° C. for a predetermined time (for example, 1 to 3 hours) in the range of c in FIG. Apply oil cooling to immerse). Thereafter, a quenching process is performed in which the temperature is kept at 800 to 880 ° C. for a predetermined time (for example, 1 to 2 hours) in the range d of FIG. Next, in a range e shown in FIG. 1, in a state heated to 160 to 200 ° C., hold for a predetermined time (for example, 1 to 3 hours), and after tempering, cool in the furnace or outside the furnace (slow cooling) )
Then, a carburized layer or a carbonitrided layer is provided on the surface of the at least one member, and at a position of 50 μm from the surface of the member, the C concentration is 1.5% by mass or more, and the maximum particle size of the carbide is 10 μm. Hereinafter, the prior austenite grain size is set to 20 μm or less.

上述した様な本発明の転がり軸受の製造方法の発明を実施する場合に、例えば請求項に記載した発明の如く、図2に示す様に、前記浸炭処理又は浸炭窒化処理後で前記拡散処理の前に、この図2のf範囲で、前記合金鋼のA1変態点以下の温度である、620〜700℃で所定時間(例えば4〜12時間)保持してから炉中又は炉外の空気中で常温まで冷却(徐冷)する工程を設定する事もできる。
更に、上述した様な本発明の転がり軸受の製造方法の発明を実施する場合に、好ましくは、請求項に記載した発明の様に、前記少なくとも1種の部材中の、表面から50μm位置の残留オーステナイト量を、30〜60容量%とする。
When carrying out the invention of a method of manufacturing a rolling bearing of the above such present invention, for example, as the invention described in claim 2, as shown in FIG. 2, the diffusion treatment after the carburizing or carbonitriding 2, within the range f of FIG. 2, the air in the furnace or outside the furnace is maintained at 620 to 700 ° C., which is a temperature below the A1 transformation point of the alloy steel, for a predetermined time (for example, 4 to 12 hours). A process of cooling to room temperature (slow cooling) can be set.
Further, when carrying out the invention of the rolling bearing manufacturing method of the present invention as described above, preferably, as in the invention described in claim 3 , the at least one member is located at a position of 50 μm from the surface. The amount of retained austenite is 30 to 60% by volume.

尚、本発明を実施する場合に関して、転がり軸受の構成部材である、前記第一、第二の両軌道輪と前記各転動体とのうちの何れの部材に本発明を適用するかに就いては、転がり軸受の構造及びサイズ(軸受名番)及び使用条件を勘案して決定する。具体的には、最も耐久性が劣る(最も剥離し易い部材)に就いて、本発明を適用すれば、転がり軸受全体としての耐久性を向上させられる。但し、そのままでは(本発明を適用しない場合には)最も耐久性が劣る部材に就いて本発明を適用して当該部材の耐久性を向上させた結果、他の部材の耐久性が当該部材の耐久性よりも劣ってしまう様な場合には、2種類以上の部材、更には総ての部材に就いて本発明を適用する事もできる。   In the case of carrying out the present invention, the present invention is applied to any of the first and second race rings and the respective rolling elements, which are constituent members of a rolling bearing. Is determined in consideration of the structure and size of the rolling bearing (bearing name number) and operating conditions. Specifically, the durability of the entire rolling bearing can be improved by applying the present invention to the most inferior durability (the most easily peelable member). However, as a result of improving the durability of the member by applying the present invention to the member with the lowest durability as it is (when the present invention is not applied), the durability of the other member is When it is inferior to durability, the present invention can be applied to two or more kinds of members, and further to all members.

上述の様に構成する本発明の転がり軸受の製造方法により造られた転がり軸受によれば、極めて厳しい条件下で使用される転がり軸受の場合でも、優れた耐久性を確保できる。即ち、本発明の場合には、転がり軸受の構成部材の表層部分の炭化物を、図3の(A)に示す様に微細化している(最大粒径を10μm以下に抑えている)。この為、この構成部材の破壊靭性を十分に大きくできると共に、組織変化型剥離に対しても、前述した特許文献5に記載された発明に対して、更なる耐久性向上効果を得られる。即ち、本発明の場合には、前記図3の(A)と、従来の場合を示した同図の(B)とを比較すれば明らかな通り、前記構成部材の表層部分に微細な炭化物が多量に存在するので、この炭化物による水素のトラップ効果が優れたものとなる。要するに、前記構成部材の表層部分に、極めて多数の水素トラップサイトが存在し、その表面積の合計が広い状態となり、この構成部材内部への水素原子の侵入防止効果が非常に優れたものとなる。この結果、前記構成部材を構成する合金鋼中への水素の侵入に伴う組織変化(白色組織変化)を十分に抑えて、組織変化型剥離の発生を抑え、使用条件が厳しい場合でも十分な耐久性を確保できる。 According to the rolling bearing manufactured by the manufacturing method of the rolling bearing of the present invention configured as described above, excellent durability can be ensured even in the case of a rolling bearing used under extremely severe conditions. That is, in the case of the present invention, the carbide in the surface layer portion of the component of the rolling bearing is refined as shown in FIG. 3A (the maximum particle size is suppressed to 10 μm or less). For this reason, the fracture toughness of this constituent member can be sufficiently increased, and a further durability improvement effect can be obtained with respect to the invention described in Patent Document 5 described above with respect to the structure change type peeling. That is, in the case of the present invention, fine carbides are formed on the surface layer portion of the constituent member, as is clear from comparison of FIG. 3A and FIG. 3B showing the conventional case. Since it exists in a large amount, the trapping effect of hydrogen by this carbide is excellent. In short, an extremely large number of hydrogen trap sites are present in the surface layer portion of the component member, and the total surface area thereof is large, and the effect of preventing the entry of hydrogen atoms into the component member becomes very excellent. As a result, the structure change (white structure change) due to the penetration of hydrogen into the alloy steel that constitutes the component is sufficiently suppressed, the occurrence of structure change-type peeling is suppressed, and even when the usage conditions are severe, sufficient durability Can be secured.

そして、本発明の製造方法によれば、上述の様な、表面部分の炭化物を微細化した転がり軸受の構成部材を、安定して造れる。即ち、本発明の製造方法の場合には、この構成部材を、前述の様な組成を有する合金鋼製の中間素材に、所定の条件で浸炭処理又は浸炭窒化処理を施してから、この浸炭処理又は浸炭窒化処理よりも高い温度で拡散処理を施す事で、表面付近に生成された大きな炭化物を基地組織へと十分に溶かし込める。又、その後、800〜880℃に保持した状態から急冷する事で、ネット状炭化物の生成を抑制すると共に、基地組織から析出するCにより、均一で微細な炭化物を得る事ができる。更に、その後、800〜880℃で焼き入れを行う事により、上述した一連の処理により粗大になった、旧オーステナイトの粒径を正常な大きさに戻す事ができる。   And according to the manufacturing method of this invention, the structural member of the rolling bearing which refined the carbide | carbonized_material of the surface part as mentioned above can be manufactured stably. That is, in the case of the manufacturing method of the present invention, this component member is subjected to carburizing treatment or carbonitriding treatment under a predetermined condition on an alloy steel intermediate material having the above-described composition, and then the carburizing treatment. Alternatively, by performing diffusion treatment at a temperature higher than that of carbonitriding, large carbides generated near the surface can be sufficiently dissolved into the base structure. Further, by rapidly cooling from the state maintained at 800 to 880 ° C., formation of net carbide can be suppressed, and uniform and fine carbide can be obtained by C precipitated from the base structure. Furthermore, by subsequently quenching at 800 to 880 ° C., the grain size of the prior austenite that has become coarse by the above-described series of treatments can be returned to a normal size.

次に、本発明で、前記転がり軸受の構成部材のうち、前記組織変化を抑えるべき構成部材を構成する合金鋼の組成、並びに熱処理条件を、前述の様に規制した理由に就いて説明する。
先ず、合金鋼の組成を規制した理由に就いて説明する。
[C:0.10〜0.30質量%]
Cは、焼き入れによって合金鋼の基地組織に固溶し、その硬さを向上させる元素である。そこで、前記構成部材に必要な硬さを付与する為に添加する。
Cの含有量が0.10質量%未満の場合には、例え、後から浸炭処理又は浸炭窒化処理を施したとしても、前記構成部材の芯部(浸炭処理又は浸炭窒化処理により硬化する表面層よりも深い部分で、深さの増大に伴って硬度が下がり切り、深さの変化に拘らず硬度が一定となった部分)の硬度が不足して、前記構成部材として必要な剛性を確保する事が難しくなる。
これに対して、Cの含有量が0.30質量%を超えると、前記構成部材の硬度が全体として高くなり過ぎる。転がり軸受の構成部材は、相手部材と転がり接触する表面部分の硬度は十分に高くする必要があるが、芯部に関する限り、過度に高くせずに、靭性を確保する事が重要になる。Cの含有量が0.30質量%を超えると、前記芯部に必要とされる靭性を確保する事が難しくなる。
そこで、前記合金鋼中のCの含有量を0.10〜0.30質量%の範囲に規制する。
Next, in the present invention, the reason why the composition of the alloy steel and the heat treatment conditions constituting the structural member to suppress the structural change among the structural members of the rolling bearing will be described as described above.
First, the reason for regulating the composition of the alloy steel will be described.
[C: 0.10 to 0.30 mass%]
C is an element that dissolves in the base structure of the alloy steel by quenching and improves its hardness. Therefore, it is added to impart the necessary hardness to the constituent members.
When the content of C is less than 0.10% by mass, even if carburizing or carbonitriding is performed later, the core of the component (surface layer that is hardened by carburizing or carbonitriding) In the deeper portion, the hardness decreases as the depth increases, and the hardness of the portion where the hardness is constant regardless of the change in depth) is insufficient, ensuring the necessary rigidity as the component Things get harder.
On the other hand, if the C content exceeds 0.30% by mass, the hardness of the constituent members as a whole becomes too high. The component of the rolling bearing needs to have a sufficiently high hardness at the surface portion that is in rolling contact with the counterpart member. However, as far as the core portion is concerned, it is important to ensure toughness without excessively increasing the hardness. If the C content exceeds 0.30% by mass, it becomes difficult to ensure the toughness required for the core.
Therefore, the C content in the alloy steel is restricted to a range of 0.10 to 0.30 mass%.

[Si:0.2〜0.5質量%]
Siは、合金鋼の基地組織に固溶して焼き入れ性を向上させる。又、基地組織のマルテンサイトを安定化させ、水素による組織変化を遅延させて、前記構成部材の寿命を延長させる効果がある為に添加する。
Siの含有量が0.2質量%未満の場合には、前記焼き入れ性向上効果、及び、前記組織変化遅延効果を十分に得られない。
これに対して、Siの含有量が0.5質量%を超えると、浸炭性及び浸炭窒化性が低下し易くなる。
そこで、前記合金鋼中のSiの含有量を、0.2〜0.5質量%の範囲に規制した。
[Si: 0.2 to 0.5% by mass]
Si dissolves in the base structure of the alloy steel and improves the hardenability. Further, it is added because it has the effect of stabilizing the martensite of the base structure, delaying the structural change due to hydrogen, and extending the life of the constituent members.
When the Si content is less than 0.2% by mass, the effect of improving the hardenability and the effect of delaying the structure change cannot be sufficiently obtained.
On the other hand, when the Si content exceeds 0.5% by mass, the carburizing property and the carbonitriding property are likely to deteriorate.
Therefore, the content of Si in the alloy steel is regulated to a range of 0.2 to 0.5 mass%.

[Mn:0.2〜1.2質量%]
Mnは、合金鋼の基地組織に固溶して焼き入れ性を向上させる。又、基地組織中のマルテンサイトを安定化させ、水素による組織変化を遅延させて、合金鋼により造られた構成部材の寿命を延長させる効果を有する。更に、熱処理後に残留オーステナイトを生成し易くする効果も有する。生成された残留オーステナイトは、合金鋼中の水素の拡散及び集積を遅延させる為、水素による組織変化が局所的に生じるのを遅延させ、前記合金鋼により造られた構成部材の寿命を延長させる効果を有する。
Mnの含有量が0.20質量%未満の場合には、上述した、組織変化を遅延させる等の効果を十分には得られない。
これに対して、Mnの含有量が1.20質量%を超えると、旧オーステナイト粒径が粗大化したり、残留オーステナイト量が過剰となる。旧オーステナイト粒径の粗大化は、靭性の低下や転がり疲れ寿命の低下の原因となる。又、オーステナイトはマルテンサイトに変態する際に膨張するので、残留オーステナイト量の過剰も、前記合金鋼により造られた構成部材の、形状及び寸法の安定性を阻害する事に繋がる。
そこで、前記合金鋼中のMnの含有量を、0.2〜1.2質量%の範囲に規制する。
尚、Mnの含有量がこの範囲内であっても、Mnの含有量が多い程、旧オーステナイト粒径が粗大化する傾向がある。従って、好ましくは、請求項4に記載した発明の様に、浸炭処理又は浸炭窒化処理の後に、620〜700℃の温度で所定時間保持してから炉中で(炉冷により)、又は炉外空気中で(炉外空冷により)、常温まで冷却する事により、結晶粒を均一に微細化させる。
[Mn: 0.2 to 1.2% by mass]
Mn is dissolved in the base structure of the alloy steel to improve the hardenability. Moreover, it has the effect of stabilizing the martensite in the base structure, delaying the structural change due to hydrogen, and extending the life of the structural member made of alloy steel. Furthermore, it has the effect of making it easy to produce retained austenite after heat treatment. The produced retained austenite delays the diffusion and accumulation of hydrogen in the alloy steel, thereby delaying the local occurrence of structural changes due to hydrogen and extending the life of components made of the alloy steel. Have
When the content of Mn is less than 0.20% by mass, the above-described effects such as delaying the tissue change cannot be obtained sufficiently.
On the other hand, when the Mn content exceeds 1.20% by mass, the prior austenite grain size becomes coarse or the residual austenite amount becomes excessive. The coarsening of the prior austenite grain size causes a decrease in toughness and a decrease in rolling fatigue life. In addition, since austenite expands when transformed into martensite, an excessive amount of retained austenite also leads to an inhibition of the shape and dimensional stability of the components made of the alloy steel.
Therefore, the Mn content in the alloy steel is restricted to a range of 0.2 to 1.2% by mass.
Even if the Mn content is within this range, the older the austenite grain size tends to become larger as the Mn content increases. Therefore, preferably, as in the invention described in claim 4, after carburizing treatment or carbonitriding treatment, after holding for a predetermined time at a temperature of 620 to 700 ° C., in the furnace (by furnace cooling) or outside the furnace The crystal grains are uniformly refined by cooling to room temperature in the air (by air cooling outside the furnace).

[Cr:2.2〜4.5質量%]
Crは、Cと結合して炭化物を形成する元素であり、前記構成部材を構成する合金鋼中への水素の侵入に伴う組織変化を抑える為の水素トラップサイトとして機能する炭化物を、より多く存在させる為に重要である。この様な炭化物を生成する機能は、炭化物生成元素であるCr(及び次述するMo)の含有量が多くなる程顕著になる。又、Crは、炭化物と、基地組織のマルテンサイトとを安定化させる機能も有する。この為、水素による組織変化が、より遅延されて、前記構成部材の寿命を延長させる効果を奏する。更に、Crは、合金鋼の基地組織に固溶して、焼き入れ性を向上させ、前記構成部材に必要とされる表面硬度を高める機能も果たす。
Crの含有量が2.2質量%未満の場合には、前記組織変化を遅延させる等の効果を十分に得られないだけでなく、生成された炭化物を微細化する(最大粒径を10μm以下に抑える)効果も、十分には得られない。
これに対して、Crの含有量が4.5質量%を超えると、浸炭性及び浸炭窒化性が低下し易くなり、前記構成部材の表面硬度を十分に確保する事が難しくなる。又、Crは高価な元素であるから、過剰に添加すると、合金鋼の調達コストを徒に高くする。しかも、過剰に添加した場合には、焼き入れ温度を高くしないと所定の硬さを得られなくなる為、前記構成部材の生産性を低下させてしまう。
そこで、前記合金鋼中へのCrの含有量を、2.2〜4.5質量%の範囲に規制する。
[Cr: 2.2 to 4.5% by mass]
Cr is an element that combines with C to form carbides, and there are more carbides that function as hydrogen trap sites to suppress structural changes associated with hydrogen intrusion into the alloy steel that constitutes the constituent members. It is important to make it. The function of generating such carbides becomes more prominent as the content of Cr (and Mo described below), which is a carbide generating element, increases. Cr also has a function of stabilizing carbide and martensite of the base structure. For this reason, the structure change by hydrogen is delayed more and there exists an effect which extends the lifetime of the said structural member. Furthermore, Cr also functions as a solid solution in the base structure of the alloy steel to improve the hardenability and increase the surface hardness required for the constituent members.
When the content of Cr is less than 2.2% by mass, not only the effect of delaying the structural change cannot be obtained sufficiently, but the generated carbide is refined (the maximum particle size is 10 μm or less). The effect of suppressing it to a sufficient level cannot be obtained.
On the other hand, when the Cr content exceeds 4.5% by mass, the carburizing property and the carbonitriding property are liable to be lowered, and it is difficult to sufficiently secure the surface hardness of the constituent member. Moreover, since Cr is an expensive element, if it is added excessively, the procurement cost of the alloy steel is increased. In addition, when added excessively, a predetermined hardness cannot be obtained unless the quenching temperature is increased, so that the productivity of the constituent members is lowered.
Therefore, the Cr content in the alloy steel is restricted to a range of 2.2 to 4.5 mass%.

[Mo:0.1〜1.0質量%]
Moは、上述したCrと同様に、Cと結合して炭化物を形成する元素であり、前記水素トラップサイトとして機能する炭化物をより多く存在させる為に重要である。又、Moは、炭化物と、基地組織のマルテンサイト及びオーステナイトとを安定化させる。この為、Moを添加する事により、水素による組織変化が遅延されて、前記構成部材の寿命を延長する事ができる。更に、Moは、合金鋼の基地組織に固溶して、焼き入れ性、及び、焼き戻し軟化抵抗性を向上させる為、焼き入れ後の表面硬度を高くできる。
Moの含有量が0.1質量%未満の場合には、前記組織変化を遅延させる等の効果が十分に得られないだけでなく、生成された炭化物を微細化する効果も、十分には得られない。
これに対して、Moの含有量が1.0質量%を超えると、合金鋼の被削性が低下する等により、前記構成部材の生産性が低下する。しかも、Moは高価な元素であるから、過剰に添加すると、合金鋼の調達コストを徒に高くする。
そこで、前記合金鋼中へのMoの含有量を、0.1〜1.0質量%の範囲に規制する。
[Mo: 0.1 to 1.0% by mass]
Mo, like Cr described above, is an element that forms a carbide by combining with C, and is important for making more carbide functioning as the hydrogen trap site. Mo also stabilizes carbides and the base structure martensite and austenite. For this reason, by adding Mo, the structural change by hydrogen is delayed and the lifetime of the said structural member can be extended. Furthermore, since Mo dissolves in the base structure of the alloy steel and improves the hardenability and temper softening resistance, the surface hardness after quenching can be increased.
When the Mo content is less than 0.1% by mass, not only the effect of delaying the structural change cannot be obtained sufficiently, but also the effect of refining the generated carbide can be sufficiently obtained. I can't.
On the other hand, when the Mo content exceeds 1.0% by mass, the machinability of the alloy steel decreases, and the productivity of the constituent members decreases. And since Mo is an expensive element, when it adds excessively, the procurement cost of alloy steel will raise easily.
Therefore, the Mo content in the alloy steel is restricted to a range of 0.1 to 1.0% by mass.

次に、上述の様な組成を有する合金鋼の熱処理条件を規制した理由に就いて説明する。
[浸炭処理又は浸炭窒化処理:900〜1000℃で12〜20時間]
浸炭処理又は浸炭窒化処理は、前記構成部材の表面硬度を高めて、この構成部材の転がり疲れ寿命を確保する為に施す。
処理温度が900℃未満では、CやNの拡散速度を十分に確保できず、処理時間が徒に長くなって、前記構成部材の生産性を低下する。
これに対して、処理温度が1000℃を超えると、旧オーステナイト粒が粗大化して、靭性の低下や転がり疲れ寿命低下の原因となる。
そこで、浸炭処理又は浸炭窒化処理の処理温度を900〜1000℃の範囲に規制する。
この処理温度に保持する時間に関しては、前記構成部材の形状及び大きさ(特に、表面積と厚さとの関係)に応じて、最適な浸炭又は浸炭窒化の深さとなる条件を選択する。本発明は、前述した様に、転動体の直径が30mm以上となる様な比較的大型の転がり軸受に適用した場合に有効であるから、上述した温度範囲で処理する場合には、12〜20時間の範囲で行えば、所望の浸炭層又は浸炭窒化層を得られる。
前記処理時間が12時間未満の場合には、得られる浸炭層又は浸炭窒化層の厚さが不十分となり、前記構成部材の転がり疲れ寿命を十分に確保できない。
これに対して、前記処理時間が20時間を越えると、浸炭層又は浸炭窒化層の厚さに対して芯部の領域(厚さ、幅、又は直径)が小さくなり(浸炭層又は浸炭窒化層の厚さが過大となり)、靭性確保が難しくなる。
そこで、前記処理時間を12〜20時間の範囲に規制する。
但し、小型の転がり軸受用の構成部材を処理する場合には、前記処理時間を12時間未満とする事もできる。これに対して、超大型の転がり軸受用の構成部材を処理する場合には、前記処理時間を、20時間を越えて長くする事もできる。
前記浸炭処理又は浸炭窒化処理を実施する場合に、炉内に送り込むガスの種類及び濃度に就いては、最適なC量又はC+N量を得る為に調整する。具体的には、プロパンやブタン等の炭化水素系ガスの流量を制御する事で浸炭層又は浸炭窒化層中のC濃度を、アンモニアガスの流量を制御する事で浸炭窒化層中のN濃度を、それぞれ調整する。この点に関しては、浸炭処理又は浸炭窒化処理の技術分野で周知の技術であるから、詳しい説明は省略する。
Next, the reason why the heat treatment conditions of the alloy steel having the above composition are regulated will be described.
[Carburizing treatment or carbonitriding treatment: 900 to 1000 ° C. for 12 to 20 hours]
Carburizing treatment or carbonitriding treatment is performed in order to increase the surface hardness of the constituent member and ensure the rolling fatigue life of the constituent member.
When the processing temperature is less than 900 ° C., a sufficient diffusion rate of C and N cannot be ensured, and the processing time becomes longer and the productivity of the constituent members is lowered.
On the other hand, when the processing temperature exceeds 1000 ° C., the prior austenite grains become coarse, which causes a decrease in toughness and a decrease in rolling fatigue life.
Therefore, the processing temperature of the carburizing process or the carbonitriding process is restricted to a range of 900 to 1000 ° C.
With respect to the time for holding at this processing temperature, an optimum carburizing or carbonitriding depth is selected according to the shape and size of the component (particularly, the relationship between the surface area and thickness). As described above, the present invention is effective when applied to a relatively large rolling bearing in which the diameter of the rolling element is 30 mm or more. If it is performed within a time range, a desired carburized layer or carbonitrided layer can be obtained.
When the treatment time is less than 12 hours, the thickness of the obtained carburized layer or carbonitrided layer becomes insufficient, and the rolling fatigue life of the component cannot be sufficiently secured.
On the other hand, when the treatment time exceeds 20 hours, the core region (thickness, width, or diameter) becomes smaller than the thickness of the carburized layer or carbonitrided layer (carburized layer or carbonitrided layer). Toughness is difficult to secure.
Therefore, the processing time is restricted to a range of 12 to 20 hours.
However, when processing components for small rolling bearings, the processing time can be less than 12 hours. On the other hand, when processing a component for an ultra-large rolling bearing, the processing time can be extended beyond 20 hours.
When performing the carburizing process or the carbonitriding process, the type and concentration of the gas fed into the furnace are adjusted in order to obtain an optimal amount of C or C + N. Specifically, the C concentration in the carburized layer or carbonitriding layer is controlled by controlling the flow rate of hydrocarbon gas such as propane or butane, and the N concentration in the carbonitriding layer is controlled by controlling the flow rate of ammonia gas. , Adjust each. Since this is a technique well-known in the technical field of carburizing or carbonitriding, detailed description is omitted.

[拡散処理:浸炭処理又は浸炭窒化処理時の温度よりも10℃以上高い温度で1〜3時間保持]
拡散処理は、本発明の特徴となる重要な要件であり、この拡散処理を行う事により、浸炭処理又は浸炭窒化処理時に前記構成部材の表面付近に過剰に析出した炭化物を基地組織のオーステナイト中に固溶させる。固溶したCは、この基地組織内に均等に分布する。そして、前記拡散処理後に行う各熱処理でも、均一で微細な炭化物を得る事が可能となる。
この様な拡散処理は、前記浸炭処理又は浸炭窒化処理の後、この浸炭処理又は浸炭窒化処理時の温度よりも10℃以上高い温度で1〜3時間行う。
前記浸炭処理又は浸炭窒化処理から拡散処理への温度上昇量が10℃未満の場合には、十分な炭化物の溶け込み効果を得られず、表層部分の炭化物を十分に微細化する事が難しくなる。これに対して、前記拡散処理温度が1010℃を超えると、旧オーステナイト粒の粗大化が起こり易くなる。そこで、この拡散処理温度は、好ましくは、1010℃以下に抑える。
この様な拡散処理に於ける、浸炭処理又は浸炭窒化処理の温度よりも10℃以上高い温度の保持時間に就いては、前記構成部材の形状及び大きさ(特に、表面積と厚さとの関係)に応じて適切に規制する。本発明は、前述した様に、転動体の直径が30mm以上となる様な比較的大型の転がり軸受に適用した場合に有効であるから、保持時間を1〜3時間とすれば、均一で微細な炭化物を得られる。
但し、小型の転がり軸受用の構成部材を処理する場合には、前記保持時間を1時間未満とする事もできる。これに対して、超大型の転がり軸受用の構成部材を処理する場合には、前記処理時間を、3時間を越えて長くする事もできる。
[Diffusion treatment: Hold for 1 to 3 hours at a temperature 10 ° C. or higher than the temperature during carburizing or carbonitriding]
Diffusion treatment is an important requirement that characterizes the present invention, and by carrying out this diffusion treatment, carbides excessively precipitated near the surface of the component member during carburizing treatment or carbonitriding treatment are contained in the austenite of the base structure. Solid solution. The solid solution C is evenly distributed in the base organization. Even in each heat treatment performed after the diffusion treatment, uniform and fine carbides can be obtained.
Such a diffusion treatment is performed for 1 to 3 hours after the carburizing treatment or carbonitriding treatment at a temperature higher by 10 ° C. or more than the temperature during the carburizing treatment or carbonitriding treatment.
When the amount of temperature increase from the carburizing process or carbonitriding process to the diffusion process is less than 10 ° C., a sufficient carbide penetration effect cannot be obtained, and it becomes difficult to sufficiently refine the carbide in the surface layer portion. On the other hand, when the diffusion treatment temperature exceeds 1010 ° C., coarsening of prior austenite grains easily occurs. Therefore, this diffusion treatment temperature is preferably suppressed to 1010 ° C. or lower.
In such a diffusion process, regarding the holding time at a temperature of 10 ° C. or more higher than the temperature of the carburizing process or carbonitriding process, the shape and size of the component (particularly, the relationship between the surface area and the thickness). Regulate accordingly. As described above, the present invention is effective when applied to a relatively large rolling bearing with a rolling element having a diameter of 30 mm or more. Therefore, if the holding time is 1 to 3 hours, it is uniform and fine. Can be obtained.
However, when processing components for small rolling bearings, the holding time can be less than 1 hour. On the other hand, when processing the structural member for a very large rolling bearing, the processing time can be extended beyond 3 hours.

上述の様な拡散処理は、前述の図1に記載した様に、前記浸炭処理又は浸炭窒化処理後にそのまま続けて行う事もできるし、やはり前述の図2にf範囲として記載した様に、前記浸炭処理又は浸炭窒化処理後で前記拡散処理の前に、前記合金鋼のA1変態点以下の温度である、620〜700℃で所定時間(好ましくは4〜12時間)保持してから炉中(炉冷により)で、又は炉外空気中で(炉外空冷により)、常温まで冷却(徐冷)する工程を設定する事もできる。即ち、浸炭処理又は浸炭窒化処理の温度が高く、高温から冷却する場合や、前述した様にMnの含有量が多い場合等は、旧オーステナイト粒径の粗大化が起こり易く、金属組織にむらが生じる場合がある。
上述の様な拡散処理工程を設定すれば、オーステナイトからセメンタイト、パーライト、フェライトへの変態処理を完全に完了させる事ができる為、旧オーステナイト粒径を均一に微細化する事ができる。前記拡散処理の最適な処理温度は合金成分により異なるが、620℃未満の場合や700℃を超える場合には、処理時間が長くなり、生産性を阻害する。
The diffusion treatment as described above can be carried out as it is after the carburizing treatment or carbonitriding treatment as described in FIG. 1 as described above, and again as described in the f range in FIG. After the carburizing treatment or carbonitriding treatment and before the diffusion treatment, the alloy steel is held at 620 to 700 ° C., which is a temperature not higher than the A1 transformation point, for a predetermined time (preferably 4 to 12 hours), and then in the furnace ( A step of cooling (gradual cooling) to room temperature can be set by furnace cooling) or in air outside the furnace (by air cooling outside the furnace). That is, when the temperature of the carburizing process or carbonitriding process is high and cooling from a high temperature, or when the Mn content is large as described above, the prior austenite grain size is likely to become coarse, and the metal structure is uneven. May occur.
By setting the diffusion treatment step as described above, the transformation treatment from austenite to cementite, pearlite, and ferrite can be completely completed, so that the prior austenite grain size can be uniformly refined. Although the optimal processing temperature of the said diffusion process changes with alloy components, when it is less than 620 degreeC or exceeds 700 degreeC, processing time becomes long and productivity is inhibited.

何れの場合でも、拡散処理後は、800〜880℃で所定時間(例えば1〜3時間)保持してから、室温まで急冷する(例えば焼き入れ油中に浸漬する油冷を施す)。この工程のうち、800〜880℃に保持する工程は、続いて行う冷却時に基地組織からCが析出する事を抑え、又、析出したCに関しても、均一で微細な炭化物とすると共に、旧オーステナイト粒径の粗大化を抑制し、更に、急冷(油冷)時の割れを抑制する為に行う。拡散処理後の保持温度が800℃未満の場合には、基地組織から析出するCによる炭化物の成長が起こり、拡散処理の効果が十分に得られない。要するに、基地組織から析出するCによる表層部分の炭化物を十分に微細化する事が難しくなる。これに対して、前記温度上昇量が880℃を超えると、旧オーステナイト粒径の粗大化を抑制する効果を十分に得られず、この旧オーステナイトの粒界破壊により、疲労強度や靭性の確保が難しくなる。
上述の様に、拡散処理後に800〜880℃に保持する保持時間に就いても、前記構成部材の形状及び大きさ(特に、表面積と厚さとの関係)に応じて適切に規制し、前述の様な比較的大型の転がり軸受に適用する場合には保持時間を1〜3時間とする。
但し、小型の転がり軸受用の構成部材を処理する場合には、前記保持時間を1時間未満とする事もできるし、超大型の転がり軸受用の構成部材を処理する場合には、前記処理時間を、3時間を越えて長くする事もできる。
In any case, after the diffusion treatment, hold at 800 to 880 ° C. for a predetermined time (for example, 1 to 3 hours), and then rapidly cool to room temperature (for example, apply oil cooling immersed in quenching oil). Of these steps, the step of maintaining the temperature at 800 to 880 ° C. suppresses the precipitation of C from the base structure during the subsequent cooling, and the precipitated C is also made uniform and fine carbide, and the former austenite This is performed in order to suppress the coarsening of the particle size and to further prevent cracking during rapid cooling (oil cooling). When the holding temperature after the diffusion treatment is lower than 800 ° C., carbide growth due to C precipitated from the base structure occurs, and the effect of the diffusion treatment cannot be sufficiently obtained. In short, it becomes difficult to sufficiently refine the carbide in the surface layer portion due to C precipitated from the base structure. On the other hand, if the temperature rise exceeds 880 ° C., the effect of suppressing the coarsening of the prior austenite grain size cannot be obtained sufficiently, and the grain boundary fracture of the prior austenite can ensure fatigue strength and toughness. It becomes difficult.
As described above, even when the holding time is maintained at 800 to 880 ° C. after the diffusion treatment, it is appropriately regulated according to the shape and size (particularly, the relationship between the surface area and the thickness) of the structural member, When applied to such a relatively large rolling bearing, the holding time is 1 to 3 hours.
However, when processing components for small rolling bearings, the holding time can be less than 1 hour, and when processing components for ultra-large rolling bearings, the processing time can be reduced. Can be made longer than 3 hours.

[焼き入れ処理:800〜880℃で1〜2時間保持してから室温まで急冷]
この焼き入れ処理は、前記構成部材の表面硬度を高くする為に行うもので、この構成部材を800〜880℃の温度に1〜2時間保持した後、焼き入れ油中に浸漬(油冷)する事により行う。焼き入れ温度が800℃未満の場合には、焼き入れ後の表面硬度が不足して、十分な転がり疲れ寿命を確保する事が難しくなる。これに対して、焼き入れ温度が880℃を超えると、前記構成部材中の残留オーステナイト量が過剰になったり、旧オーステナイト粒の粗大化が生じたりして、前記構成部材に必要とされる疲労強度や靭性の確保が難しくなる。そこで、焼き入れ温度を800〜880℃の範囲に規制する。
尚、処理時間に関しては、前記構成部材の形状及び大きさに応じて適切に規制する。
[Quenching treatment: Hold at 800 to 880 ° C. for 1 to 2 hours and then rapidly cool to room temperature]
This quenching treatment is performed in order to increase the surface hardness of the constituent member. After holding the constituent member at a temperature of 800 to 880 ° C. for 1 to 2 hours, it is immersed in quenching oil (oil cooling). It is done by doing. When the quenching temperature is less than 800 ° C., the surface hardness after quenching is insufficient, and it becomes difficult to ensure a sufficient rolling fatigue life. On the other hand, if the quenching temperature exceeds 880 ° C., the amount of retained austenite in the constituent member becomes excessive, or coarsening of prior austenite grains occurs, and fatigue required for the constituent member It becomes difficult to ensure strength and toughness. Therefore, the quenching temperature is restricted to a range of 800 to 880 ° C.
In addition, regarding processing time, it regulates appropriately according to the shape and magnitude | size of the said structural member.

[焼き戻し処理:160〜200℃に加温した状態で1〜3時間保持]
この焼き戻し処理は、前記構成部材に必要とされる靭性を確保する為に行うもので、この構成部材を160〜200℃の温度に1〜3時間保持した後、空冷或いは炉冷する事により行う。焼き戻し温度が160℃未満の場合には、必要とされる靭性の確保が難しくなる事に加えて、合金鋼の組織が水素に対して敏感となり、水素による組織変化が生じ易くなる。これに対して、200℃を超えると、残留オーステナイト量が低下し、水素による組織変化を遅延させる効果を十分に得られなくなる。そこで、焼き戻し温度を160〜200℃の範囲に規制する。
尚、処理時間に関しては、前記構成部材の形状及び大きさに応じて適切に規制する。
[Tempering treatment: held for 1 to 3 hours in a state heated to 160 to 200 ° C.]
This tempering process is performed in order to ensure the toughness required for the structural member. After maintaining the structural member at a temperature of 160 to 200 ° C. for 1 to 3 hours, air cooling or furnace cooling is performed. Do. When the tempering temperature is less than 160 ° C., it becomes difficult to ensure the required toughness, and the structure of the alloy steel becomes sensitive to hydrogen, and the structure changes easily due to hydrogen. On the other hand, when it exceeds 200 ° C., the amount of retained austenite decreases, and the effect of delaying the structural change due to hydrogen cannot be sufficiently obtained. Therefore, the tempering temperature is regulated to a range of 160 to 200 ° C.
In addition, regarding processing time, it regulates appropriately according to the shape and magnitude | size of the said structural member.

[表面から深さ50μm位置のC量(C濃度)及び表層部の炭化物の大きさ:1.5〜2.0質量%、10μm以下]
この条件は、転がり軸受の運転時に前記構成部材中に侵入した水素原子をトラップして、この構成部材に組織変化型剥離が発生するのを抑える為に重要である。
即ち、この組織変化型剥離の原因となる水素は、潤滑剤(潤滑油)の分解により発生して、前記構成部材の表面(軌道面又は転動面)から合金鋼中に侵入し拡散する。そして、この合金鋼中に拡散した水素は、剪断応力の最も高い位置に局所的に集積して、組織変化を加速させて剥離へと至る。
一方、窒化物や炭化物は水素原子をトラップする為、前記表面から深さ50μm位置、即ち、表面付近に窒化物や炭化物を形成する事によって、表面から侵入する水素が、内部の(深さ50μmよりも深部の)、剪断応力が最も高い位置に拡散する事を抑える(表面部分に水素をトラップする)効果がある。
本発明の場合には、このうちの炭化物によるトラップ効果を十分に得る為に、前記C量と炭化物の大きさとを規定している。即ち、このトラップ効果は、前述した浸炭処理又は浸炭窒化処理後のC量が多く、微細な炭化物が多量に析出している(全炭化物の表面積の合計が広い)程高くなり、水素による組織変化を十分に抑制できる。
そこで、本発明の場合には、表面から深さ50μm位置のC量を1.5%以上とする。
但し、浸炭処理又は浸炭窒化処理後のC量が、1.5%以上と高い場合には、従来の熱処理方法では、基地組織内に溶け込み切れないCが炭化物として析出して成長し、炭化物の粒径が大きくなってしまう。前述した様に、粒径の大きな炭化物が、旧オーステナイト粒界に沿って多量に生成されて、ネット状炭化物と呼ばれる状態になると、炭化物に沿って亀裂の発生や伝播が容易に起こり、靭性が著しく低下してしまう。
特に本発明で転がり軸受の構成部材を造る合金鋼は、Crの含有量が2.2〜4.5質量%、Moの含有量が0.1〜1.0質量%と、炭化物生成元素が多量に含まれている為、炭化物が大きくなり易い。
これに対して本発明の場合には、前記拡散処理を施す事により、前記炭化物生成元素を多量に含む合金鋼を使用し、浸炭処理又は浸炭窒化処理後のC量が1.5%以上になる場合でも、大きな炭化物がなく、微細な炭化物を均一に生成可能とした。即ち、前記拡散処理を施さない場合には、図3の(B)に示す様に、合金鋼中に粒径の大きな炭化物(ネット状炭化物)が生成されるのに対して、前記拡散処理を施す事により、図3の(A)に示す様に、微細且つ均一な炭化物を多数生成可能とした。前述した様に、この様な微細且つ均一な炭化物は、優れた水素トラップ効果を奏する。そして、水素による組織変化型剥離を抑えて、前記構成部材の耐久性向上を図れる。
この様な効果は、炭化物の総量が同じである場合には、各炭化物の粒径が小さい程優れたものとなる。具体的には、各炭化物の粒径の最大値が10μm以下の場合に、従来に比べて顕著な効果を得られる。言い換えれば、最大粒径が10μmを越える様な、大きな炭化物が多量に生成されると、上述した効果は得られない。尚、以上の説明から明らかな通り、炭化物の粒径は小さい程好ましいので、この粒径の最小値は、特に規制しない。
[The amount of C (C concentration) at a depth of 50 μm from the surface and the size of carbide on the surface layer: 1.5 to 2.0 mass%, 10 μm or less]
This condition is important for trapping the hydrogen atoms that have entered the component member during the operation of the rolling bearing and suppressing the occurrence of structure change type separation on the component member.
That is, the hydrogen that causes the structure change type peeling is generated by the decomposition of the lubricant (lubricating oil), penetrates into the alloy steel from the surface (the raceway surface or the rolling surface) of the constituent member, and diffuses. Then, the hydrogen diffused in the alloy steel locally accumulates at the position where the shear stress is the highest, and accelerates the structural change to lead to peeling.
On the other hand, since nitrides and carbides trap hydrogen atoms, the formation of nitrides and carbides at a depth of 50 μm from the surface, that is, the formation of nitrides and carbides in the vicinity of the surface allows the hydrogen that penetrates from the surface to enter the inside (depth 50 μm It has the effect of suppressing the diffusion to the position where the shear stress is highest (trapping hydrogen on the surface portion).
In the case of the present invention, in order to sufficiently obtain the trap effect of the carbides among these, the amount of C and the size of the carbides are defined. That is, the trap effect increases as the amount of C after the carburizing or carbonitriding process described above increases, and a large amount of fine carbides are precipitated (the total surface area of all the carbides is wide). Can be sufficiently suppressed.
Therefore, in the case of the present invention, the C content at a depth of 50 μm from the surface is set to 1.5% or more.
However, when the amount of C after carburizing or carbonitriding is as high as 1.5% or more, in the conventional heat treatment method, C that cannot be completely dissolved in the base structure precipitates and grows as a carbide. The particle size becomes large. As described above, when a large amount of carbide is generated along the prior austenite grain boundary and becomes a state called net-like carbide, cracks are easily generated and propagated along the carbide, and the toughness is increased. It will drop significantly.
In particular, the alloy steel that forms the component of the rolling bearing in the present invention has a Cr content of 2.2 to 4.5 mass%, a Mo content of 0.1 to 1.0 mass%, and a carbide generating element. Since it is contained in a large amount, carbide tends to be large.
On the other hand, in the case of the present invention, by performing the diffusion treatment, an alloy steel containing a large amount of the carbide generating element is used, and the amount of C after carburizing or carbonitriding is 1.5% or more. Even in this case, there is no large carbide, and fine carbide can be generated uniformly. That is, when the diffusion treatment is not performed, as shown in FIG. 3B, a carbide having a large particle size (net-like carbide) is generated in the alloy steel, whereas the diffusion treatment is performed. By applying, a large number of fine and uniform carbides can be generated as shown in FIG. As described above, such a fine and uniform carbide exhibits an excellent hydrogen trap effect. And the structure change type peeling by hydrogen can be suppressed and the durability of the said structural member can be improved.
Such an effect becomes more excellent as the particle size of each carbide is smaller when the total amount of carbide is the same. Specifically, when the maximum value of the particle size of each carbide is 10 μm or less, a remarkable effect can be obtained as compared with the conventional case. In other words, the effects described above cannot be obtained if large carbides having a maximum particle size exceeding 10 μm are produced in large quantities. As is clear from the above description, the smaller the particle size of the carbide, the better. Therefore, the minimum value of the particle size is not particularly restricted.

[表面から深さ50μm位置の残留オーステナイト量:30〜60容量%]
この部分の残留オーステナイトは、応力集中部に水素が局所的に集積するのを遅延させ、水素による組織変化型剥離を抑えて、前記構成部材の耐久性向上を図る為に、多量に存在させる。
即ち、金属組織中の残留オーステナイトは、合金鋼の基地組織であるマルテンサイトと結晶構造が異なっており、その結晶構造により水素の拡散定数を低下させる効果を有する。従って、前記表面から深さ50μm位置までの残留オーステナイト量を多くすれば、表面から侵入してくる水素の拡散速度を低下させる事ができて、前記組織変化型剥離の抑制により、前記構成部材の耐久性向上を図れる。
この様な効果は、前記位置での残留オーステナイト量が30容量%未満の場合には十分には得られない。これに対して、前記位置での残留オーステナイト量が60容量%を超えると、前記構成部材の、形状及び寸法の安定性を阻害する事に繋がる。即ち、前述した様に、オーステナイトはマルテンサイトに変態する際に膨張するので、残留オーステナイト量が過剰な場合には、前記構成部材の形状及び寸法の安定性の確保が難しくなる。
そこで、前記位置での残留オーステナイト量を、30〜60容量%の範囲に規制した。
尚、この位置での残留オーステナイト量は、合金鋼の成分を規制すると共に、C量又はC+N量と焼き入れ処理、及び、焼き戻し処理の条件とを制御する事により、適切に規制できる。一般的に、基地組織中への炭素の溶け込み量が多い程、残留オーステナイト量は増加する為、C量又はC+N量が多い程、焼き入れ温度が高い程、焼き戻し温度が低い程、それぞれ残留オーステナイト量が増加する傾向になる。
[Amount of retained austenite at a depth of 50 μm from the surface: 30 to 60% by volume]
Residual austenite in this portion is present in a large amount in order to delay the local accumulation of hydrogen in the stress concentration portion, suppress the structure change type peeling due to hydrogen, and improve the durability of the constituent members.
That is, the retained austenite in the metal structure has a crystal structure different from that of martensite, which is the base structure of the alloy steel, and has an effect of reducing the hydrogen diffusion constant due to the crystal structure. Therefore, if the amount of retained austenite from the surface to a depth of 50 μm is increased, the diffusion rate of hydrogen entering from the surface can be reduced. Durability can be improved.
Such an effect cannot be sufficiently obtained when the amount of retained austenite at the position is less than 30% by volume. On the other hand, when the amount of retained austenite at the position exceeds 60% by volume, the stability of the shape and dimensions of the constituent members is hindered. That is, as described above, since austenite expands when transformed into martensite, if the amount of retained austenite is excessive, it is difficult to ensure the stability of the shape and dimensions of the constituent members.
Therefore, the amount of retained austenite at the position is regulated to a range of 30 to 60% by volume.
The amount of retained austenite at this position can be appropriately regulated by regulating the components of the alloy steel and controlling the amount of C or C + N and the conditions for quenching and tempering. Generally, the greater the amount of carbon dissolved in the base structure, the greater the amount of retained austenite. Therefore, the greater the amount of C or C + N, the higher the quenching temperature and the lower the tempering temperature, The austenite amount tends to increase.

本発明のうちで、請求項3に対応する製造方法の熱処理の実施状況を示す線図。The diagram which shows the implementation condition of the heat processing of the manufacturing method corresponding to Claim 3 among this invention. 同じく請求項4に対応する製造方法の熱処理の実施状況を示す線図。The diagram which similarly shows the implementation condition of the heat processing of the manufacturing method corresponding to Claim 4. 本発明の場合(A)及び従来の場合(B)に就いて、転がり軸受の構成部材を構成する合金鋼の表面層部分に存在する炭化物の大きさを比較する為の顕微鏡写真。The microscope picture for comparing the magnitude | size of the carbide | carbonized_material which exists in the surface layer part of the alloy steel which comprises the structural member of a rolling bearing about the case (A) of this invention, and the conventional case (B). 本発明の対象となるラジアル玉軸受の部分切断斜視図。The partial cut perspective view of the radial ball bearing used as the object of the present invention. 同じくラジアル円すいころ軸受の部分切断斜視図。The partial cut perspective view of a radial tapered roller bearing.

本発明の特徴は、転がり軸受を構成する部材の組成、所定位置のC濃度、炭化物の粒径、旧オーステナイト粒径、残留オーステナイト量、これら各特性を得る為の熱処理方法を工夫する事により、水素による組織変化型剥離を抑えて、前記構成部材の耐久性向上を図る点にある。転がり軸受の構造自体は、前述の図4に示したラジアル玉軸受1、図5に示したラジアル円すいころ軸受8等、従来から広く知られている各種転がり軸受と同様であるから、重複する説明は省略する。   The feature of the present invention is that by devising the composition of the members constituting the rolling bearing, the C concentration at a predetermined position, the particle size of carbide, the prior austenite particle size, the amount of retained austenite, and the heat treatment method for obtaining these characteristics, It is in the point which aims at the durable improvement of the said structural member by suppressing the structure change type | mold peeling by hydrogen. The structure of the rolling bearing itself is the same as that of various types of conventionally known rolling bearings such as the radial ball bearing 1 shown in FIG. 4 and the radial tapered roller bearing 8 shown in FIG. Is omitted.

本発明の効果を確認する為に行った実験に就いて説明する。
実験では、下記の表1にA〜Mで記載した、互いに組成が異なる13種類の合金鋼を用意した。
この表1中、括弧書きで示した数値は、本発明の技術的範囲から外れる値である。
実験では、前記表1に記載した合金鋼にそれぞれ所定の成形加工及び熱処理を施す事により、シャルピー試験片と、呼び番号が6317の単列深溝型のラジアル玉軸受用の内輪(内径:85mm、幅:41mm)とを造った。そして、このうちのシャルピー試験片を使用して靭性の評価試験を、内輪を用いて転がり寿命の評価試験を、それぞれ行った。以下、それぞれの加工条件、試験条件、及び、試験結果に就いて説明する。
An experiment conducted for confirming the effect of the present invention will be described.
In the experiment, 13 types of alloy steels with different compositions described in Table 1 below were prepared.
In Table 1, numerical values shown in parentheses are values that are out of the technical scope of the present invention.
In the experiment, the alloy steels listed in Table 1 were subjected to predetermined forming and heat treatments, respectively, to form a Charpy test piece and an inner ring for a single row deep groove type radial ball bearing having an identification number of 6317 (inner diameter: 85 mm, Width: 41 mm). And the evaluation test of toughness was performed using the Charpy test piece, and the evaluation test of the rolling life was performed using the inner ring. Hereinafter, each processing condition, test condition, and test result will be described.

[靭性評価試験]
この靭性評価試験は、JIS Z 2242:2005に規定されている、「金属材料のシャルピー衝撃試験方法」により実施した。この為に使用するシャルピー試験片を得る為に、前記表1中の「鋼種A」又は「鋼種L」により作られた素材に切削加工を施して所定形状の中間素材とした後、この中間素材に、下記の表2に記載した熱処理を施して、本発明の技術的範囲に属する7種類の試験片(実施例1〜7)と、本発明の技術的範囲から外れる7種類の試験片(比較例1〜7)とを作成した。
[Toughness evaluation test]
This toughness evaluation test was carried out by the “Charpy impact test method for metal materials” defined in JIS Z 2242: 2005. In order to obtain a Charpy test piece to be used for this purpose, the material made of “steel type A” or “steel type L” in Table 1 is cut into an intermediate material of a predetermined shape, and then this intermediate material And 7 kinds of test pieces belonging to the technical scope of the present invention (Examples 1 to 7) and seven kinds of test specimens outside the technical scope of the present invention (Examples 1 to 7) Comparative Examples 1 to 7) were prepared.

この表2中の数値に関しても、括弧書きで示した数値等は、本発明の技術的範囲から外れる値等である。 Regarding the numerical values in Table 2, the numerical values shown in parentheses are values that are out of the technical scope of the present invention.

尚、この表2中に記載した浸炭処理又は浸炭窒化処理は、この表2に記載した温度に14時間保持する事により行った。何れの場合も、ガス濃度は、浸炭処理ではプロパンの流量を0.025m/hとし、浸炭窒化処理ではプロパンの流量を0.025m/h、アンモニアの流量を0.1m/hとした。
又、浸炭処理又は浸炭窒化処理後は、比較例1を除き、それぞれ前記表2に記載した温度で、2時間保持する拡散処理を行った。但し、実施例2、7に就いては、それぞれ表2に記載した温度で10時間保持してから常温まで炉冷した後に、拡散処理を行った。拡散処理後は、比較例2、3を除き、それぞれ表2に記載した温度で2時間保持した後に油冷した。比較例2は、拡散処理後、直ちに油冷し、比較例3は、拡散処理後、温度保持をせずにそのまま炉冷した。
又、焼き入れ処理として、それぞれの試験片を表2に記載した温度で、1.5時間保持した後、室温まで油冷した。更に、焼き戻し処理として、それぞれ表2に記載した温度で2時間保持した後、室温まで空冷した。
これら一連の熱処理後に、研削加工と仕上げ加工とをそれぞれ施して、切り欠き形状が10RCノッチで、大きさが10mm×10mm×55mmである、15種類のシャルピー試験片を得た。
In addition, the carburizing process or carbonitriding process described in Table 2 was performed by maintaining the temperature described in Table 2 for 14 hours. In either case, the gas concentration in the carburizing the flow rate of propane and 0.025m 3 / h, 0.025m 3 / h flow rate of propane in the carbonitriding process, the flow rate of ammonia 0.1 m 3 / h did.
Moreover, after the carburizing treatment or the carbonitriding treatment, except for Comparative Example 1, a diffusion treatment was performed for 2 hours at the temperatures described in Table 2 above. However, in Examples 2 and 7, the diffusion treatment was performed after holding for 10 hours at the temperatures shown in Table 2 and then cooling to room temperature. After the diffusion treatment, except for Comparative Examples 2 and 3, oil cooling was performed after holding at the temperature described in Table 2 for 2 hours. Comparative Example 2 was oil cooled immediately after the diffusion treatment, and Comparative Example 3 was furnace cooled as it was without maintaining the temperature after the diffusion treatment.
Further, as a quenching treatment, each test piece was held at the temperature described in Table 2 for 1.5 hours, and then oil-cooled to room temperature. Further, as the tempering treatment, each was held at the temperature described in Table 2 for 2 hours, and then cooled to room temperature.
After these series of heat treatments, grinding and finishing were respectively performed to obtain 15 types of Charpy test pieces having a notch shape of 10RC notch and a size of 10 mm × 10 mm × 55 mm.

前記表2に記載した14種類の試験片のうち、実施例1〜7として記載した7種類の試験片は、本発明の技術的範囲に属する組成を有する合金鋼に、やはり本発明の技術的範囲に属する熱処理を施し、表面から深さ50μm位置のC量、炭化物の大きさ、残留オーステナイト量、旧オーステナイト粒径に関しても、何れも本発明の技術的範囲内である。そして、前記実施例1〜7の試験片は、シャルピー衝撃値が、何れも40J/cm以上と高く、優れた靭性を有する事が確認された。
これに対して、比較例1〜7は何れも、括弧書きで示した何れかの要件が本発明の技術的範囲から外れており、シャルピー衝撃値が最大でも30J/cmと、上述した各実施例と比較して低く、靭性が劣っていた。
この理由は次の通りと考えられる。先ず、比較例1は拡散処理を行っていない為、比較例3は拡散処理後炉冷した為、比較例4は拡散処理温度の上昇量が少ない為、比較例5は拡散処理後の保持温度が低い為、何れも炭化物の最大粒径が大きく、靭性が低下したものと考えられる。又、比較例2は拡散処理後油冷した為、比較例6は浸炭処理温度、拡散処理後の保持温度、焼き入れ温度が高い為、旧オーステナイト粒径が大きくなり、靭性が低下したものと考えられる。更に、比較例7は合金鋼の組成中、C量が本発明の技術的範囲外(過剰)であった為、芯部の硬さが過剰となって靭性が低下したものと考えられる。
Of the 14 types of test pieces described in Table 2, the seven types of test pieces described as Examples 1 to 7 are also used as alloy steels having compositions belonging to the technical scope of the present invention. The heat treatment belonging to the range is performed, and the C amount, the carbide size, the retained austenite amount, and the prior austenite particle size at a depth of 50 μm from the surface are all within the technical scope of the present invention. And it was confirmed that the test pieces of Examples 1 to 7 each had a Charpy impact value as high as 40 J / cm 2 or more and excellent toughness.
On the other hand, in all of Comparative Examples 1 to 7, any requirement shown in parentheses is out of the technical scope of the present invention, and the Charpy impact value is 30 J / cm 2 at the maximum, It was low compared with the Examples, and the toughness was inferior.
The reason is considered as follows. First, since Comparative Example 1 is not subjected to diffusion treatment, Comparative Example 3 is furnace-cooled after diffusion treatment, Comparative Example 4 is low in the amount of increase in diffusion treatment temperature, and Comparative Example 5 is holding temperature after diffusion treatment. Therefore, it is considered that the maximum particle size of the carbide is large and the toughness is lowered. In addition, Comparative Example 2 was oil cooled after diffusion treatment, and Comparative Example 6 was high in carburizing temperature, holding temperature after diffusion treatment, and quenching temperature, so that the prior austenite grain size was increased and toughness was reduced. Conceivable. Further, in Comparative Example 7, the C content was outside the technical range of the present invention (excess) during the composition of the alloy steel, so it is considered that the hardness of the core portion was excessive and the toughness was lowered.

[転がり疲れ寿命評価試験]
この試験では、呼び番号が6317である単列深溝型のラジアル玉軸受(内径:85mm、外径:180mm、幅:41mm、玉径:30.2mm)の内輪のみを、前記表1に記載した13種類の合金鋼のうち、Lを除く12種類の合金鋼により造り、外輪及び玉に就いては、JIS G 4805に規定する、SUJ2により造った。この理由は、本実施例で行った評価試験条件では、内輪の外周面に設けた内輪軌道が最も条件が厳しく、剥離し易い為である。尚、比較例9は、比較の為、内輪もSUJ2(合金鋼M)により造った。
[Rolling fatigue life evaluation test]
In this test, only the inner ring of the single row deep groove type radial ball bearing (inner diameter: 85 mm, outer diameter: 180 mm, width: 41 mm, ball diameter: 30.2 mm) having the identification number 6317 is shown in Table 1 above. Of the 13 types of alloy steel, 12 types of alloy steel except L were used, and the outer ring and ball were made of SUJ2 as defined in JIS G 4805. This is because the inner ring raceway provided on the outer peripheral surface of the inner ring is the most severe under the evaluation test conditions performed in this example, and is easily peeled off. In Comparative Example 9, the inner ring was also made of SUJ2 (alloy steel M) for comparison.

この表3に実施例8〜19、比較例8〜20として記載した、合計25種類の試験片(内輪)を造る為に、鋼材(押し出し鋼棒)を所定の大きさに切断して得られた素材に、熱間ローリング加工、球状化焼鈍、及び旋削加工を施して、試験片である内輪の形状とした後、前記の表3に示した条件で熱処理を行った。具体的には、浸炭処理又は浸炭窒化処理は、この表3に記載した温度に14時間保持する事により行った。何れの場合も、ガス濃度は、浸炭処理ではプロパンの流量を0.025m/hとし、浸炭窒化処理ではプロパンの流量を0.025m/h、アンモニアの流量を0.1m/hとした。
又、浸炭処理又は浸炭窒化処理後は、比較例14を除き、表3に記載した温度でそれぞれ2時間保持する拡散処理を行った。但し、実施例9、14、17、及び、比較例12、20に関しては、表3に記載した温度でそれぞれ10時間保持して常温まで炉冷した後に、拡散処理を行った。拡散処理後は、比較例15、16を除き表3にそれぞれ示す温度で2時間保持した後に油冷した。比較例15は拡散処理後油冷、比較例16は拡散処理後炉冷を行った。
In order to produce a total of 25 types of test pieces (inner rings) described in Table 3 as Examples 8 to 19 and Comparative Examples 8 to 20, the steel material (extruded steel bar) was obtained by cutting it into a predetermined size. The raw material was subjected to hot rolling, spheroidizing annealing, and turning to form the shape of the inner ring as a test piece, and then heat-treated under the conditions shown in Table 3 above. Specifically, the carburizing process or the carbonitriding process was performed by holding at the temperature described in Table 3 for 14 hours. In either case, the gas concentration in the carburizing the flow rate of propane and 0.025m 3 / h, 0.025m 3 / h flow rate of propane in the carbonitriding process, the flow rate of ammonia 0.1 m 3 / h did.
Moreover, after the carburizing process or the carbonitriding process, except for the comparative example 14, the diffusion process hold | maintained at the temperature described in Table 3 for 2 hours, respectively was performed. However, Examples 9, 14, 17 and Comparative Examples 12 and 20 were each subjected to diffusion treatment after being held at the temperatures shown in Table 3 for 10 hours and cooled to room temperature. After the diffusion treatment, the samples were kept at the temperatures shown in Table 3 for 2 hours except for Comparative Examples 15 and 16, and then cooled with oil. Comparative Example 15 was oil-cooled after diffusion treatment, and Comparative Example 16 was furnace-cooled after diffusion treatment.

又、焼き入れ処理として、それぞれの試験片を表3に記載した温度で、1.5時間保持した後、室温まで油冷した。更に、焼き戻し処理として、それぞれ表3に記載した温度で2時間保持した後、室温まで空冷した。
これら一連の熱処理後に、研削加工と仕上加工とをそれぞれ施して得られた、試験片である内輪を、外輪、玉、保持器と組み合わせて、呼び番号が6317であるラジアル玉軸受とした。尚、内輪の厚さは14.75mm、軌道溝の最奥部と内輪の内周面との間の距離(内輪中央部の最も薄くなった部分の径方向厚さ)は8.67mmである。
Further, as a quenching treatment, each test piece was kept at the temperature described in Table 3 for 1.5 hours, and then oil-cooled to room temperature. Further, as the tempering treatment, each was held at the temperature described in Table 3 for 2 hours, and then cooled to room temperature.
After these series of heat treatments, the inner ring, which is a test piece, obtained by grinding and finishing, respectively, was combined with the outer ring, balls, and a cage to form a radial ball bearing with a nominal number of 6317. The inner ring has a thickness of 14.75 mm, and the distance between the innermost surface of the inner ring and the innermost surface of the inner ring (the radial thickness of the thinnest part of the inner ring central portion) is 8.67 mm. .

上述の様な試料を使用して行う転がり疲れ寿命評価試験の条件は、下記の通りである。
ラジアル荷重 : 53.2kN
回転条件 : 内輪回転
回転速度 : 2000min-1
潤滑条件 : 高トラクション油(トランスミッション用合成油)の強制循環
又、試験片である内輪は、各種毎に3個ずつ、合計75個造り、それぞれに就いて上述した条件で転がり疲れ寿命試験を施し、その平均寿命を求め、この平均寿命を、それぞれ実施例8〜19、比較例8〜20の転がり疲れ寿命として、前記表の寿命比の欄に記載した。尚、この寿命比とは、比較例8の、鋼種M(SUJ2製)の内輪を組み込んだラジアル玉軸受の転がり疲れ寿命を1.0とした場合に於ける、各実施例及び比較例の転がり疲れ寿命の比である。又、転がり疲れ寿命試験では、剥離が発生したラジアル玉軸受は、剥離は総て内輪外周面の内輪軌道部分で発生し、且つ、剥離部には白色組織が観察された。
The conditions of the rolling fatigue life evaluation test performed using the sample as described above are as follows.
Radial load: 53.2kN
Rotation conditions: inner ring rotation speed: 2000min -1
Lubrication conditions: Forced circulation of high traction oil (synthetic oil for transmission) In addition, three inner rings, each of which is a test piece, are made in a total of 75, and a rolling fatigue life test is performed on each of the above conditions under the conditions described above. The average life was obtained, and this average life was described in the column of life ratio in the above table as the rolling fatigue life of Examples 8 to 19 and Comparative Examples 8 to 20, respectively. In addition, this life ratio is the rolling of each example and comparative example when the rolling fatigue life of the radial ball bearing incorporating the inner ring of steel type M (manufactured by SUJ2) is 1.0. It is the ratio of fatigue life. Further, in the rolling fatigue life test, in the radial ball bearing in which peeling occurred, all peeling occurred in the inner ring raceway portion on the outer peripheral surface of the inner ring, and a white structure was observed in the peeling portion.

前記表3にその結果を示した転がり疲れ寿命評価試験に関して、実施例8〜19は、何れも本発明の技術的範囲内の合金鋼により内輪を造っており、熱処理条件も、本発明の技術的範囲内である。更に、表面から深さ50μm位置のC量、炭化物の大きさ、残留オーステナイト量、旧オーステナイト粒径に関しても、何れも本発明の技術的範囲内であった。この為、何れのラジアル玉軸受も、比較例8の標準的なラジアル玉軸受との比較で、寿命が5倍以上延長し、剥離も生じなかった。尚、前記実施例8〜19に関する試験は、途中で打ち切った。   Regarding the rolling fatigue life evaluation test whose results are shown in Table 3 above, Examples 8 to 19 all have inner rings made of alloy steel within the technical scope of the present invention. Is within the scope. Furthermore, the C amount at a depth of 50 μm from the surface, the carbide size, the retained austenite amount, and the prior austenite grain size were all within the technical scope of the present invention. For this reason, any of the radial ball bearings had a lifespan more than five times that of the standard radial ball bearing of Comparative Example 8, and no peeling occurred. In addition, the test regarding the said Examples 8-19 was interrupted on the way.

これに対して、比較例8〜20は、何れも前記実施例8〜19と比較して、転がり疲れ寿命が短く、試験後に行った内輪断面の金属組織の観察で、水素による組織変化が観察された。その理由は、それぞれ次の様に考えられる。
先ず、比較例8〜13は、何れも内輪を構成する合金鋼の成分が、本発明の技術的範囲外のものである。このうちの比較例8は、標準的なSUJ2製のラジアル玉軸受であり、C量、Cr量、Mo量、表面から深さ50μm位置のC量、残留オーステナイト量が、何れも本発明の技術的範囲外であった。又、ずぶ焼き鋼である為、芯部の硬さが過剰で、靭性も低かった。
On the other hand, Comparative Examples 8 to 20 all have a shorter rolling fatigue life than Examples 8 to 19, and observation of the metal structure of the inner ring cross section performed after the test reveals a change in structure due to hydrogen. It was done. The reasons are considered as follows.
First, in all of Comparative Examples 8 to 13, the components of the alloy steel constituting the inner ring are outside the technical scope of the present invention. Comparative Example 8 is a standard SUJ2 radial ball bearing, and the amount of C, Cr, Mo, amount of C at a depth of 50 μm from the surface, and the amount of retained austenite are all the techniques of the present invention. It was out of the target range. Moreover, because it is a baked steel, the core has excessive hardness and low toughness.

又、比較例9はC量とCr量とが、比較例10はMo量が、それぞれ本発明に使用する合金鋼よりも少ない為、炭化物の量が不足して水素のトラップ効果を十分に得られず、寿命が短い。
又、比較例11は、Si量が本発明に使用する合金鋼よりも多く、浸炭性が低下した為、表面から深さ50μm位置のC量が低く、寿命が短い。
又、比較例12は、Mn量とMo量とが本発明に使用する合金鋼よりも多い為、旧オーステナイト粒径が大きく、寿命が短い。又、表面から深さ50μm位置の残留オーステナイト量も多い為、寸法安定性も悪い。
又、比較例13は、Si量とMn量とが、それぞれ本発明に使用する合金鋼よりも少ない為、表面から深さ50μm位置の残留オーステナイト量が少なく、寿命が短い。
Further, Comparative Example 9 has a C amount and a Cr amount, and Comparative Example 10 has a Mo amount less than that of the alloy steel used in the present invention, so that the amount of carbide is insufficient and a sufficient hydrogen trapping effect is obtained. Life is short.
In Comparative Example 11, the amount of Si is larger than that of the alloy steel used in the present invention, and the carburizing property is lowered. Therefore, the C amount at a depth of 50 μm from the surface is low, and the life is short.
In Comparative Example 12, since the amount of Mn and the amount of Mo are larger than those of the alloy steel used in the present invention, the prior austenite grain size is large and the life is short. Also, since the amount of retained austenite at a depth of 50 μm from the surface is large, the dimensional stability is also poor.
In Comparative Example 13, the amount of Si and the amount of Mn are less than that of the alloy steel used in the present invention, respectively, so the amount of retained austenite at a depth of 50 μm from the surface is small and the life is short.

更に、比較例14〜20は、何れも熱処理条件が本発明の技術的範囲外である。
このうちの比較例14は拡散処理を行っていない為、比較例16は拡散処理後炉冷した為、比較例17は拡散処理温度の上昇量が少ない為、比較例18は拡散処理後の保持温度が低い為、炭化物のサイズが大きく水素のトラップ効果が十分に得られず、何れも寿命が短い。
又、比較例15は拡散処理後油冷した為、比較例19は浸炭処理温度、拡散処理後の保持温度、焼き入れ温度が高い為、旧オーステナイト粒径が大きく、寿命が短い。
又、比較例20は、焼き戻し温度が高い為、表面から深さ50μm位置の残留オーステナイト量が少なく、寿命が短い。
Furthermore, as for Comparative Examples 14-20, as for the heat processing conditions, all are outside the technical scope of this invention.
Since Comparative Example 14 was not subjected to diffusion treatment, Comparative Example 16 was furnace-cooled after diffusion treatment, and Comparative Example 17 had a small increase in diffusion treatment temperature, Comparative Example 18 was retained after diffusion treatment. Since the temperature is low, the size of the carbide is large and the hydrogen trapping effect cannot be obtained sufficiently, both of which have a short life.
Since Comparative Example 15 was oil-cooled after diffusion treatment, and Comparative Example 19 was high in carburizing temperature, holding temperature after diffusion treatment, and quenching temperature, the prior austenite grain size was large and the life was short.
In Comparative Example 20, since the tempering temperature is high, the amount of retained austenite at a depth of 50 μm from the surface is small and the life is short.

本発明の転がり軸受は、水素が侵入し易い条件でも、水素による組織変化を抑制しつつ、優れた破壊靭性により、転動疲労寿命を向上させる事が可能である。この為、本発明の転がり軸受は、潤滑剤として潤滑油が用いられると共に高い靭性が要求される、転動体直径が30mm以上となる、比較的大きいサイズの転がり軸受が使用される、風力発電装置の主軸、或いは、変速機、建設機械、産業用ロボットを構成する回転軸等を支持する為に使用される転がり軸受として最適である。
但し、本発明はこれらの用途に限られず、様々な用途の転がり軸受に広く適用可能であり、又、単列深溝型ラジアル玉軸受に限らず、ラジアル型、アキシャル型を含んで、玉軸受の他、円すいころ軸受、円筒ころ軸受、自動調心ころ軸受等にも広く適用可能である。
The rolling bearing of the present invention can improve the rolling fatigue life due to excellent fracture toughness while suppressing the structural change caused by hydrogen even under the condition where hydrogen easily enters. For this reason, the rolling bearing of the present invention uses a relatively large size rolling bearing in which a lubricating oil is used as a lubricant and high toughness is required, and the rolling element diameter is 30 mm or more. It is most suitable as a rolling bearing used to support a main shaft of the motor, a rotating shaft constituting a transmission, a construction machine, an industrial robot, or the like.
However, the present invention is not limited to these applications, and can be widely applied to rolling bearings for various applications, and is not limited to single-row deep groove type radial ball bearings, but includes radial types and axial types. In addition, it can be widely applied to tapered roller bearings, cylindrical roller bearings, and self-aligning roller bearings.

1 ラジアル玉軸受
2、2a 外輪軌道
3、3a 外輪
4、4a 内輪軌道
5、5a 内輪
6 玉
7、7a 保持器
8 ラジアル円すいころ軸受
9 円すいころ
10 大径側鍔部
11 小径側鍔部
DESCRIPTION OF SYMBOLS 1 Radial ball bearing 2, 2a Outer ring raceway 3, 3a Outer ring 4, 4a Inner ring raceway 5, 5a Inner ring 6 Ball 7, 7a Cage 8 Radial tapered roller bearing 9 Tapered roller 10 Large diameter side collar 11 Small diameter side collar

Claims (3)

何れかの面に第一の軌道面を有する第一の軌道輪と、この第一の軌道面と対向する面に第二の軌道面を有する第二の軌道輪と、これら第一、第二の両軌道面同士の間に転動自在に設けられた複数個の転動体とを備えた転がり軸受の製造方法であって、
前記第一の軌道輪と前記第二の軌道輪とこれら各転動体とのうちの少なくとも1種の部材を、Cを0.10〜0.30質量%、Siを0.2〜0.5質量%、Mnを0.2〜1.2質量%、Crを2.2〜4.5質量%、Moを0.1〜1.0質量%、それぞれ含有し、残りをFeと不可避不純物とした鉄系合金製の素材を加工して中間素材とした後、
この中間素材に、900〜1000℃で浸炭処理又は浸炭窒化処理を施してから、この浸炭処理又は浸炭窒化処理時の温度よりも10℃以上高い温度で所定時間保持する拡散処理を施し、次いで、800〜880℃で所定時間保持してから急冷した後、800〜880℃で焼き入れ処理を施し、次いで、160〜200℃で焼き戻してから炉中又は炉外の空気中で冷却する事により、
前記少なくとも1種の部材の表面に浸炭層又は浸炭窒化層を設けると共に、この部材の表面から50μm位置で、C濃度を1.5質量%以上とし、且つ、炭化物の最大粒径を10μm以下、旧オーステナイト粒径を20μm以下とする
転がり軸受の製造方法。
A first raceway having a first raceway surface on any surface, a second raceway having a second raceway surface on a surface opposite to the first raceway surface, and the first and second A rolling bearing comprising a plurality of rolling elements provided so as to be freely rollable between both raceway surfaces,
At least one member of the first raceway ring, the second raceway ring, and each of these rolling elements, C is 0.10 to 0.30 mass%, Si is 0.2 to 0.5. Mass%, Mn 0.2-1.2 mass%, Cr 2.2-4.5 mass%, Mo 0.1-1.0 mass%, respectively, the remainder being Fe and inevitable impurities After processing the iron-based alloy material made into an intermediate material,
The intermediate material is subjected to a carburizing treatment or carbonitriding treatment at 900 to 1000 ° C., and then subjected to a diffusion treatment that is held for a predetermined time at a temperature 10 ° C. higher than the temperature at the time of the carburizing treatment or carbonitriding treatment, By holding at 800 to 880 ° C. for a predetermined time and quenching, then quenching at 800 to 880 ° C., then tempering at 160 to 200 ° C. and then cooling in the furnace or outside the furnace ,
A carburized layer or a carbonitrided layer is provided on the surface of the at least one member, and at a position of 50 μm from the surface of the member, the C concentration is 1.5% by mass or more, and the maximum particle size of the carbide is 10 μm or less, A method for manufacturing a rolling bearing in which the prior austenite grain size is 20 μm or less.
前記浸炭処理又は浸炭窒化処理後で前記拡散処理の前に、620〜700℃で所定時間保持してから炉中又は炉外の空気中で冷却する工程を有する、請求項に記載した転がり軸受の製造方法。 Before the diffusion treatment after the carburizing or carbonitriding treatment, comprising the step of cooling at a predetermined time holding furnace from or outside the furnace in air at six hundred twenty to seven hundred ° C., according to claim 1 rolling bearing Manufacturing method. 前記少なくとも1種の部材中の、表面から50μm位置の残留オーステナイト量を、30〜60容量%とする、請求項1〜2のうちの何れか1項に記載した転がり軸受の製造方法。 Wherein in at least one of the members, the amount of retained austenite from the surface 50μm position, 30 to 60 volume%, the manufacturing method of the rolling bearing according to any one of claims 1-2.
JP2012119812A 2012-05-25 2012-05-25 Manufacturing method of rolling bearing Active JP5991026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012119812A JP5991026B2 (en) 2012-05-25 2012-05-25 Manufacturing method of rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012119812A JP5991026B2 (en) 2012-05-25 2012-05-25 Manufacturing method of rolling bearing

Publications (2)

Publication Number Publication Date
JP2013245764A JP2013245764A (en) 2013-12-09
JP5991026B2 true JP5991026B2 (en) 2016-09-14

Family

ID=49845702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012119812A Active JP5991026B2 (en) 2012-05-25 2012-05-25 Manufacturing method of rolling bearing

Country Status (1)

Country Link
JP (1) JP5991026B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834956A (en) * 2016-11-09 2017-06-13 芜湖市永帆精密模具科技有限公司 A kind of anti-friction bearing steel ball and preparation method thereof
JP6812948B2 (en) * 2017-10-30 2021-01-13 株式会社デンソー Carburizing method
CN113061710B (en) * 2021-02-25 2022-07-22 克莱斯克斯轴承(北京)有限公司 Shock-resistant heat treatment process for bearing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348615A (en) * 2001-05-18 2002-12-04 Daido Steel Co Ltd High bearing pressure resistant member and manufacturing method therefor
JP2007077425A (en) * 2005-09-12 2007-03-29 Ntn Corp Carburizing method and carburized member
JP2007100126A (en) * 2005-09-30 2007-04-19 Ntn Corp Rolling member and ball bearing
JP2008025012A (en) * 2006-07-25 2008-02-07 Ntn Corp Rolling parts for automotive electrical equipment and auxiliary machinery, and rolling bearing for automotive electrical equipment and auxiliary machinery
JP5198765B2 (en) * 2006-12-28 2013-05-15 株式会社小松製作所 Rolling member and manufacturing method thereof
JP5263863B2 (en) * 2007-06-13 2013-08-14 Ntn株式会社 Automotive electrical equipment and auxiliary equipment
JP2009001848A (en) * 2007-06-20 2009-01-08 Ntn Corp Rolling member for auxiliary machinery of automotive electrical equipment, and rolling bearing for auxiliary machinery of automotive electrical equipment
JP2009250371A (en) * 2008-04-08 2009-10-29 Nsk Ltd Rolling bearing for hydrogen gas compressor

Also Published As

Publication number Publication date
JP2013245764A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
JP4800444B2 (en) Steel for machine structure for surface hardening and parts for machine structure
JP5453839B2 (en) Rolling bearing
EP2383359B1 (en) Hardfacing steel for machine structure, and steel component for machine structure
WO2016017162A1 (en) Steel for carbonitrided bearing
JP2013011010A (en) Rolling bearing and method of manufacturing the same
WO2013084800A1 (en) Rolling bearing and method for producing same
JP5477111B2 (en) Nitriding induction hardening steel and nitriding induction hardening parts
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
WO2015128973A1 (en) Anti-friction bearing
JP5728844B2 (en) Rolling bearing
JP5991026B2 (en) Manufacturing method of rolling bearing
JP5736937B2 (en) Rolling bearing
JP2005273759A (en) Rolling supporting device, manufacturing method for its component parts, and heat treatment process for steel
JP2014101896A (en) Rolling bearing
JP5070735B2 (en) Rolling bearing
JP5999485B2 (en) Carbon nitrided parts with excellent surface fatigue strength of hydrogen embrittlement type
JP6238124B2 (en) Carbon nitrided steel with excellent surface fatigue strength and carbonitrided parts using the same
JP2015206066A (en) rolling bearing
JP2010031307A (en) Roller bearing
JP2011190921A (en) Thrust roller bearing
JP6448405B2 (en) Carbon nitride bearing parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2006045591A (en) Tapered roller bearing
JP2006138376A (en) Radial needle roller bearing
JP2005314789A (en) Rolling device
JP2014047403A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5991026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350