JP2014020538A - Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment - Google Patents

Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment Download PDF

Info

Publication number
JP2014020538A
JP2014020538A JP2012162867A JP2012162867A JP2014020538A JP 2014020538 A JP2014020538 A JP 2014020538A JP 2012162867 A JP2012162867 A JP 2012162867A JP 2012162867 A JP2012162867 A JP 2012162867A JP 2014020538 A JP2014020538 A JP 2014020538A
Authority
JP
Japan
Prior art keywords
inner ring
raceway surface
rolling bearing
steel
raceway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012162867A
Other languages
Japanese (ja)
Inventor
Hideyuki Tobitaka
秀幸 飛鷹
Daisuke Watanuki
大輔 渡貫
Yukari Katayama
裕加里 片山
Kazuki Tamura
一輝 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012162867A priority Critical patent/JP2014020538A/en
Publication of JP2014020538A publication Critical patent/JP2014020538A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a rolling bearing of which the life and the toughness of a bearing ring are suitable for an application of supporting rotational axes of a mill of an iron industry and a windmill or the like and wear of an engaging surface is suppressed as the rolling bearing having the bearing ring to be obtained by executing a surface hardening method by induction hardening.SOLUTION: An inner ring 1 is obtained by performing spheroidizing annealing, induction hardening, and temper after processing a raw material consisting of hyper-eutectoid steel whose DI value is 1.0 or more in a predetermined shape, and in an orbital plane 11, effective hardened layer depth Yo and a diameter Dw of a rolling element satisfy the following formula (2), surface hardness is Hv650 or more, the residual austenite quantity is 12 vol.% or more and 40 vol.% or less, and an old austenite crystal grain diameter is 30 μm or less. Surface hardness of 30% or more of an engaging surface 12 is Hv550 or more. 0.07Dw≤Yo≤0.07Dw+5...(2).

Description

この発明は、転がり軸受とその製造方法、転がり軸受の製造方法で使用される高周波熱処理装置に関する。   The present invention relates to a rolling bearing, a manufacturing method thereof, and a high-frequency heat treatment apparatus used in the manufacturing method of the rolling bearing.

転がり軸受には寿命と靱性が要求される。産業用機械で使用される転がり軸受、特に、外径が180mm以上である大型の転がり軸受、例えば製鉄業の圧延機や風車用の転がり軸受は、加わる荷重が大きく、衝撃荷重が加わることも多いため、寿命と靱性のバランスが重要視される。
転がり軸受の転動寿命の原因となる軌道面の剥離は、内部起点型の剥離と表面起点型の剥離とに大別できる。
Rolling bearings require longevity and toughness. Rolling bearings used in industrial machines, particularly large rolling bearings with an outer diameter of 180 mm or more, such as rolling mills for steel mills and windmills, are subjected to large loads and are often subjected to impact loads. Therefore, importance is placed on the balance between life and toughness.
The separation of the raceway surface, which causes the rolling life of the rolling bearing, can be broadly divided into internal origin type separation and surface origin type separation.

内部起点型の剥離は、鋼に含まれる非金属介在物(酸化物系介在物)を起点として生じるため、鋼材の酸素含有量を低減することにより、内部起点型の剥離を抑制することができる。これまで様々な製鋼プロセスの改善により鋼材の酸素含有量の低減が図られてきたが、合金成分に関しては、炭素が多く含まれていることが鋼材の酸素含有量の低減にとって好ましい。実際、中炭素鋼であるS53Cに比べて、SUJ2(高炭素クロム軸受鋼第2種)に代表される軸受鋼は高い清浄度を示すことが知られている。   Internally originated delamination occurs starting from non-metallic inclusions (oxide inclusions) contained in the steel. Therefore, by reducing the oxygen content of the steel material, it is possible to suppress the internally originated delamination. . Until now, various steelmaking processes have been improved to reduce the oxygen content of the steel material. However, regarding the alloy component, it is preferable for the oxygen content of the steel material to be reduced that the carbon content is large. In fact, it is known that bearing steel represented by SUJ2 (high carbon chromium bearing steel type 2) exhibits higher cleanliness than S53C, which is medium carbon steel.

表面起点型の剥離は、潤滑剤中に含まれる金属粉などの異物の噛み込みによって軌道面に圧痕が生じ、この圧痕の縁部に応力が集中することに起因して生じる。よって、軌道面の残留オーステナイト量を制御して応力集中を緩和することにより、表面起点型の剥離を抑制することができる。
一般に、転がり軸受の軌道面に表面起点型の剥離が生じた場合は、内部起点型の剥離が生じた場合と比較して短い時間で転がり軸受が寿命に至るため、転がり軸受の寿命を長くするためには、表面起点型の剥離を抑制することが重要である。
Surface-origin type peeling is caused by the formation of indentations on the raceway surface due to the inclusion of foreign matter such as metal powder contained in the lubricant, and stress concentration on the edges of the indentations. Therefore, by controlling the amount of retained austenite on the raceway surface to relieve stress concentration, it is possible to suppress surface-origin type peeling.
In general, when surface-originating peeling occurs on the raceway surface of a rolling bearing, the rolling bearing reaches the end of its service life in a shorter time than when internally-originating peeling occurs, thus extending the life of the rolling bearing. For this purpose, it is important to suppress surface-origin separation.

表面起点型の剥離を抑制するためには、軌道面に残留オーステナイトを多量に析出させる必要がある。そして、軌道面に残留オーステナイトを多量に析出させるためには、軌道面の表層部に炭素や窒素の富化領域を形成させる必要がある。前記富化領域を形成させるためには、軌道輪に対して浸炭処理または浸炭窒化処理(特殊なガス雰囲気での熱処理)を行う必要がある。   In order to suppress surface-origin type separation, it is necessary to deposit a large amount of residual austenite on the raceway surface. In order to precipitate a large amount of retained austenite on the raceway surface, it is necessary to form a carbon or nitrogen enriched region on the surface layer portion of the raceway surface. In order to form the enriched region, it is necessary to perform carburizing or carbonitriding (heat treatment in a special gas atmosphere) on the race.

また、軌道面に残留オーステナイトが多量に析出していることで表面硬さは低下するため、表面硬さを硬質の炭窒化物で補う必要がある。そのためには、例えば、モリブデンなどの高価な合金元素が添加された鋼を使用する必要がある。よって、この方法(軌道面に残留オーステナイトを多量に析出させて表面起点型の剥離を抑制する方法)は、生産コストの点で好ましくない。   In addition, since a large amount of retained austenite is precipitated on the raceway surface, the surface hardness is reduced, and thus it is necessary to supplement the surface hardness with a hard carbonitride. For this purpose, for example, steel to which an expensive alloy element such as molybdenum is added needs to be used. Therefore, this method (a method in which a large amount of retained austenite is precipitated on the raceway surface to suppress surface-origin separation) is not preferable in terms of production cost.

一方、靱性は、材料の硬さと二律背反の関係にある。従って、靱性を向上させるためには、基本的には、硬さの低い領域をできるだけ多く確保する必要がある。このような考え方から、低・中炭素鋼を用い、浸炭処理又は浸炭窒化処理と焼入れ(以下「浸炭焼入れ」と称する)を行うことで、軌道面の表面のみを硬化させる方法が採用されている。
しかし、この方法では、鋼の焼入れ性を確保するために、ニッケル、モリブデン、クロムなどの比較的高価な合金元素が添加された浸炭鋼を使用する必要がある。この方法を大型の転がり軸受に適用すると、浸炭処理や浸炭窒化処理の煩雑さに加えて材料コストも高くなる。 よって、この方法(低・中炭素鋼を用い、浸炭焼入れを行うことで、軌道面の表面のみを硬化させる方法)を、大型の転がり軸受に適用することは生産コストの点で好ましくない。
On the other hand, toughness is in a trade-off relationship with the hardness of the material. Therefore, in order to improve toughness, basically, it is necessary to secure as many regions with low hardness as possible. From such a concept, a method is adopted in which only the surface of the raceway surface is hardened by performing carburizing treatment or carbonitriding treatment and quenching (hereinafter referred to as “carburizing quenching”) using low / medium carbon steel. .
However, in this method, in order to ensure the hardenability of the steel, it is necessary to use carburized steel to which a relatively expensive alloy element such as nickel, molybdenum or chromium is added. When this method is applied to a large-sized rolling bearing, the material cost is increased in addition to the complexity of the carburizing process and the carbonitriding process. Therefore, it is not preferable in terms of production cost to apply this method (a method of hardening only the surface of the raceway surface by carburizing and quenching using low / medium carbon steel) to a large-sized rolling bearing.

これに対して、近年では、特許文献1に示されているように、硬さが必要な表面部分のみを焼入れして硬化させる高周波焼入れ法が注目されている。高周波焼入れ法によれば、焼入れされた表面部分は高い面圧に耐える硬化層となり、焼入れされない芯部は靱性に優れた非硬化部となる。よって、転がり軸受の軌道面に高周波焼入れを行うことにより、転がり軸受に必要な寿命と靱性の両方を付与することができる。また、非硬化部である芯部の存在により、硬化層である表層部が圧縮残留応力状態となるため、軌道面にクラックが発生することを抑制できる。   On the other hand, in recent years, as shown in Patent Document 1, an induction hardening method in which only a surface portion requiring hardness is quenched and hardened has been attracting attention. According to the induction hardening method, the hardened surface portion becomes a hardened layer that can withstand high surface pressure, and the core portion that is not hardened becomes a non-hardened portion having excellent toughness. Therefore, by performing induction hardening on the raceway surface of the rolling bearing, both the life and toughness necessary for the rolling bearing can be provided. Moreover, since the surface layer part which is a hardened layer will be in a compression residual stress state by presence of the core part which is a non-hardened part, it can suppress that a crack generate | occur | produces in a raceway surface.

また、高周波焼入れ法では、誘導加熱時に硬さを制御できるので、高価な合金元素を含有する低炭素鋼ではなく、清浄度に優れた軸受鋼等の高炭素鋼を使用することができる。さらに、高周波焼入れ法では、誘導加熱時に表面の電流密度が高くなるため、炭素含有率が0.7質量%程度の鋼であれば、極表層のみに浸炭鋼並の残留オーステナイトを存在させることができる。   Further, in the induction hardening method, since the hardness can be controlled during induction heating, high carbon steel such as bearing steel excellent in cleanliness can be used instead of low carbon steel containing an expensive alloy element. Furthermore, in the induction hardening method, the surface current density is increased during induction heating, so if the steel has a carbon content of about 0.7% by mass, residual austenite similar to carburized steel may be present only in the extreme surface layer. it can.

残留オーステナイトが多量に存在すると寸法安定性が低下する要因になるが、高周波焼入れを行った場合、残留オーステナイト量は表面から深さ方向に沿って急激に低下する。そのため、残留オーステナイトを軌道面の最大せん断応力深さよりも表面側の部分にのみ多量に存在させつつ、残留オーステナイトの全体量を低く抑えることもできる。
よって、軌道輪の素材として軸受鋼を用い、高周波焼入れを行う方法であれば、軌道面に内部起点型と表面起点型の両方の剥離が生じることを抑制できるため、用途によっては、寿命が長く、耐割れ強度にも優れた転がり軸受を得ることができる。
When a large amount of retained austenite is present, the dimensional stability decreases. However, when induction hardening is performed, the amount of retained austenite rapidly decreases along the depth direction from the surface. Therefore, it is possible to keep the total amount of retained austenite low while allowing a large amount of retained austenite to exist only in the portion on the surface side of the maximum shear stress depth of the raceway surface.
Therefore, if bearing steel is used as the material for the bearing ring and induction hardening is used, it is possible to suppress the separation of both the internal origin type and the surface origin type on the raceway surface. In addition, it is possible to obtain a rolling bearing excellent in cracking resistance.

特許文献2には、軌道輪の素材として炭素含有率0.5質量%以上の鋼を用い、高周波焼入れを行う方法であって、高周波焼入れ工程の前に、少なくとも1回、A3変態点を超えて高周波加熱して一定温度に保持することにより、炭素を素地に溶け込ませた後、A1変態点以下に冷却する工程を行う方法が開示されている。
特許文献3には、低炭素鋼からなるボス部材の端面(潤滑される摺動面)を、焼入部分が非連続的になるように複数箇所に亘って高周波誘導加熱した後、加熱部分を自然放冷する方法を実施することで、溶接性と耐摩耗性の両方に優れたボス部材を得ることが記載されている。
Patent Document 2 discloses a method of induction hardening using steel having a carbon content of 0.5% by mass or more as a material for the raceway, which exceeds the A3 transformation point at least once before the induction hardening step. In other words, a method of performing a step of cooling to a temperature below the A1 transformation point after carbon is dissolved in the substrate by high-frequency heating and holding at a constant temperature is disclosed.
In Patent Document 3, the end surface (sliding surface to be lubricated) of a boss member made of low carbon steel is subjected to high-frequency induction heating over a plurality of locations so that the quenched portion is discontinuous, and then the heated portion is It is described that a boss member excellent in both weldability and wear resistance is obtained by carrying out a method of naturally cooling.

特開平11−37163号公報JP-A-11-37163 特許第4208426号公報Japanese Patent No. 4208426 特許第3824970号公報Japanese Patent No. 3824970

しかし、転がり軸受の軌道輪の軌道面が高周波焼入れにより硬化された場合、浸炭焼入れにより硬化された場合と比較して、表層部分(硬化層)と芯部(非硬化部)との境界領域に生じる硬さ勾配が大きくなる。よって、軌道面に高い応力が作用する用途では、高周波焼入れにより硬化された場合の方が浸炭焼入れにより硬化された場合と比較して、軌道面に内部起点破壊(いわゆるケースクラッシュ)が発生し易くなる。   However, when the raceway surface of the bearing ring of the rolling bearing is hardened by induction hardening, it is in the boundary region between the surface layer part (hardened layer) and the core part (non-hardened part) as compared with the case hardened by carburizing quenching. The resulting hardness gradient is increased. Therefore, in applications where high stress acts on the raceway surface, internal origin fracture (so-called case crash) is more likely to occur on the raceway surface when it is hardened by induction hardening than when it is hardened by carburizing and quenching. Become.

そして、製鉄業の圧延機や風車等の回転軸を支持する用途の転がり軸受は、例えば自動車の車軸を支持する用途の転がり軸受と比べて、軌道面に作用する剪断応力が高いため、高周波焼入れで硬化を行う場合には前記硬さ勾配を小さくして内部起点破壊の発生を防止する必要がある。ただし、硬化層を必要以上に深く形成すると、十分な靱性を得ることができない。   And rolling bearings for applications that support rotating shafts such as rolling mills and windmills in the steel industry have higher shear stress acting on the raceway surface than rolling bearings that are used to support the axles of automobiles. In the case of curing with, it is necessary to reduce the hardness gradient to prevent internal origin fracture. However, if the hardened layer is formed deeper than necessary, sufficient toughness cannot be obtained.

特許文献2に開示された方法では、高周波焼入れ工程の前に、少なくとも1回、A3変態点(セメンタイトとオーステナイトの二相領域)を超えてオーステナイト単相領域まで加熱することが行われている。しかし、軸受鋼では、分散化している炭化物のピン止め効果によって微細な組織が維持されているため、オーステナイト単相領域まで加熱すると著しい粒成長が起こる。また、炭素が基地に過剰に固溶して残留オーステナイトが過剰に残留し、硬さが低下する不都合がある。   In the method disclosed in Patent Document 2, heating is performed at least once to the austenite single-phase region beyond the A3 transformation point (two-phase region of cementite and austenite) before the induction hardening step. However, in bearing steel, since a fine structure is maintained by the pinning effect of dispersed carbides, remarkable grain growth occurs when heated to the austenite single phase region. Further, there is a disadvantage that carbon is excessively dissolved in the base and residual austenite is excessively retained, resulting in a decrease in hardness.

一方、転がり軸受の使用中に転動体が軌道面を移動する影響で、内輪および外輪が転動体の進行方向と同じ方向または反対方向に僅かに回転すること(すなわち、嵌め合い面にクリープが生じること)が知られている。これに伴って、嵌め合い面に摩耗が生じるという問題点がある。
この発明の課題は、浸炭焼入れと比較してコストが低い高周波焼入れによる表面硬化法を実施して得られる軌道輪を有する転がり軸受として、寿命および軌道輪の靱性が、製鉄業の圧延機や風車等の回転軸を支持する用途に好適で、嵌め合い面の摩耗が抑制された転がり軸受を提供するとともに、その製造方法およびその方法で好適に使用できる装置を提供することである。
On the other hand, the inner ring and the outer ring are slightly rotated in the same direction as or in the opposite direction to the traveling direction of the rolling element due to the rolling element moving on the raceway surface during use of the rolling bearing (that is, creep occurs on the mating surface). It is known. Along with this, there is a problem that wear occurs on the mating surface.
An object of the present invention is to provide a rolling bearing having a bearing ring obtained by carrying out a surface hardening method by induction hardening, which is lower in cost than carburizing and quenching. It is suitable for the use which supports rotating shafts, etc., and while providing the rolling bearing in which the wear of the fitting surface was suppressed, the manufacturing method and the apparatus which can be used conveniently with the method are provided.

上記課題を解決するために、この発明の転がり軸受は、外周面に軌道面を有し、内周面が軸との嵌め合い面である内輪と、内周面に軌道面を有し、外周面がハウジングとの嵌め合い面である外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配置された複数の転動体と、 を備え、前記内輪および前記外輪のうち少なくとも一方は、鋼からなる素材を所定形状に加工した後、球状化焼鈍と、高周波焼入れと、焼戻しを行って得られたものであって、下記構成(a) 〜(e) を有することを特徴とする。   In order to solve the above problems, a rolling bearing according to the present invention has a raceway surface on an outer peripheral surface, an inner ring whose inner peripheral surface is a fitting surface with a shaft, a raceway surface on an inner peripheral surface, An outer ring whose surface is a mating surface with a housing, and a plurality of rolling elements arranged to roll between the raceway surface of the inner ring and the raceway surface of the outer ring, and the inner ring and the outer ring At least one of them is obtained by processing a material made of steel into a predetermined shape, and then performing spheroidizing annealing, induction hardening, and tempering, and has the following configurations (a) to (e): It is characterized by.

(a) 素材をなす鋼は、合金成分として炭素(C)、クロム(Cr)、 マンガン(Mn)、および珪素(Si)を含有し、ニッケル(Ni)およびモリブデン(Mo)を必要に応じて含有し、残部鉄および不可避的不純物である過共析鋼(オーステナイト単相域に加熱し徐冷した際に、旧オーステナイト粒界に初析フェライトが析出しない鋼)であって、炭素含有率〔C〕が0.5質量%以上2.0質量%以下であり、下記の(1) 式で定義されるDI値が1.0以上である。
DI=(0.2〔C〕+0.14)(1+0.64〔Si〕)(1+4.1〔Mn〕)(1+0.52〔Ni〕)(1+2.33〔Cr〕)(1+3.14〔Mo〕)…(1)
(1) 式において〔M〕は合金成分Mの含有率(質量%)を意味する。
(a) The material steel contains carbon (C), chromium (Cr), manganese (Mn), and silicon (Si) as alloy components, and nickel (Ni) and molybdenum (Mo) as required. And a hypereutectoid steel (the steel in which proeutectoid ferrite does not precipitate in the prior austenite grain boundaries when heated to the austenite single-phase region and slowly cooled), and the carbon content [ C] is 0.5 mass% or more and 2.0 mass% or less, and the DI value defined by the following formula (1) is 1.0 or more.
DI = (0.2 [C] +0.14) (1 + 0.64 [Si]) (1 + 4.1 [Mn]) (1 + 0.52 [Ni]) (1 + 2.33 [Cr]) (1 + 3.14 [ Mo]) ... (1)
In the formula (1), [M] means the content (mass%) of the alloy component M.

(b) 前記軌道面の有効硬化層深さ(硬さがHv550以上になっている部分の厚さ)Yo(mm)と転動体の直径Dw(mm)が下記の(2) 式を満たす。
0.07Dw≦Yo≦0.07Dw+5 …(2)
(c) 前記軌道面の表面硬さがHv650以上であり、軌道面の残留オーステナイト量が12体積%以上40体積%以下である。
(d) 前記軌道面の旧オーステナイト結晶粒径が30μm以下である。
(b) The effective hardened layer depth (thickness of the portion where the hardness is Hv550 or more) Yo (mm) and the diameter Dw (mm) of the rolling element satisfy the following formula (2).
0.07 Dw ≦ Yo ≦ 0.07 Dw + 5 (2)
(c) The surface hardness of the raceway surface is Hv650 or more, and the amount of retained austenite of the raceway surface is 12 volume% or more and 40 volume% or less.
(d) The prior austenite grain size of the raceway is 30 μm or less.

(e) 前記嵌め合い面の30%以上の表面硬さがHv550以上である。
この発明の転がり軸受において、前記内輪および前記外輪のうち少なくとも一方は、前記構成(f) (h) を有することが好ましい。
(f) 前記軌道面および軸方向両端面の表面から0.1mmの深さまでの硬さがHv500以上である。
(h) 非硬化部に残留オーステナイト量が0体積%である部分を有し、軸方向両端面の残留オーステナイト量が軌道面の残留オーステナイト量よりも10体積%以上少ないものである。
(e) The surface hardness of 30% or more of the fitting surface is Hv550 or more.
In the rolling bearing of the present invention, it is preferable that at least one of the inner ring and the outer ring has the configuration (f) (h).
(f) Hardness from the surface of the raceway surface and both axial end surfaces to a depth of 0.1 mm is Hv500 or more.
(h) The non-hardened portion has a portion where the amount of retained austenite is 0% by volume, and the amount of retained austenite on both axial end surfaces is 10% by volume or more less than the amount of retained austenite on the raceway surface.

この発明の転がり軸受によれば、前記内輪および前記外輪のうち少なくとも一方を構成する素材をなす鋼が過共析鋼であることにより、高周波焼入れ時の加熱中に結晶粒が成長することを防止できる。過共析鋼は、オーステナイト単相域に加熱し徐冷した際に、旧オーステナイト粒界に初析フェライトが析出しない鋼である。つまり、過共析鋼では、基地を完全にオーステナイト化した際にも炭化物が残存することで、粒成長が防止される。なお、過共析鋼であるか否かは、試料を炉内でオーステナイト単相となる温度(成分によって異なるが900〜1100℃)に加熱保持した後、そのまま炉内で冷却することで、実験的に確認することができる。   According to the rolling bearing of the present invention, the steel constituting at least one of the inner ring and the outer ring is a hypereutectoid steel, thereby preventing crystal grains from growing during heating during induction hardening. it can. Hypereutectoid steel is steel in which pro-eutectoid ferrite does not precipitate at prior austenite grain boundaries when heated to an austenite single phase region and slowly cooled. That is, in hypereutectoid steel, even when the base is completely austenitized, carbides remain so that grain growth is prevented. Whether or not it is a hypereutectoid steel was tested by heating and holding the sample at a temperature at which it becomes an austenite single phase in the furnace (900 to 1100 ° C. depending on the component), and then cooling in the furnace as it is. Can be confirmed.

炭素以外の合金成分を含まない鋼では、共析組成となる鋼の炭素含有率が0.77質量%であるが、炭素以外の合金成分も含む鋼では、共析組成となる鋼の炭素含有率が各合金成分の含有率によって変化し、Thermocalcを用いて共析組成となる鋼の炭素含有率を計算することができる。これに応じて過共析鋼の炭素含有率を算出する。
また、転がり軸受に必要な硬さHRC58以上を確保するために、使用する鋼の炭素含有率〔C〕の下限値を0.5質量%とする。焼入れ後の硬さは合金元素の種類や含有率にかかわらず、炭素の含有率で決まる。一方、炭素含有率が2.0質量%よりも多い鋼は、素材の製造過程で組織がオーステナイト単相にならず、寿命に悪影響を及ぼすことが懸念される初析セメンタイトが残存するため、炭素含有率の上限値を2.0質量%とする。
In steels that do not contain alloy components other than carbon, the carbon content of the steel that is the eutectoid composition is 0.77% by mass, but in steels that also contain alloy components other than carbon, the carbon content of the steel that is the eutectoid composition. The rate varies depending on the content of each alloy component, and the carbon content of the steel having a eutectoid composition can be calculated using Thermocalc. Accordingly, the carbon content of the hypereutectoid steel is calculated.
Moreover, in order to ensure hardness HRC58 or more required for a rolling bearing, the lower limit of carbon content [C] of the steel to be used shall be 0.5 mass%. Hardness after quenching is determined by the carbon content, regardless of the type and content of the alloying elements. On the other hand, steel with a carbon content greater than 2.0% by mass does not have an austenite single phase structure in the raw material production process, and proeutectoid cementite that may have an adverse effect on the life remains. The upper limit of the content is set to 2.0% by mass.

また、使用する鋼のクロム含有率〔Cr〕は4質量%以下、マンガン含有率〔Mn〕は2質量%以下、珪素含有率〔Si〕は2質量%以下、ニッケル含有率〔Ni〕は3.5質量%以下、モリブデン含有率〔Mo〕は1.5質量%以下であることが好ましい。
クロム(Cr)は、鋼の焼入れ性を確保するために重要な元素であり、軸受鋼には通常1.0〜1.5質量%含まれる。ただし、〔Cr〕が4質量%を超えると、溶製時に巨大な炭化物を生成しやすくなり、転がり疲労特性を劣化させる原因となりやすい。
Further, the steel used has a chromium content [Cr] of 4% by mass or less, a manganese content [Mn] of 2% by mass or less, a silicon content [Si] of 2% by mass or less, and a nickel content [Ni] of 3%. The molybdenum content [Mo] is preferably 1.5% by mass or less.
Chromium (Cr) is an important element for ensuring the hardenability of the steel, and the bearing steel usually contains 1.0 to 1.5% by mass. However, when [Cr] exceeds 4% by mass, it becomes easy to generate a huge carbide during melting, which tends to cause deterioration of rolling fatigue characteristics.

マンガン(Mn)は、鋼の焼入れ性の向上作用を有する元素であり、軸受鋼には通常1.0質量%含まれる。ただし、〔Mn〕が過剰になると、残留オーステナトが過剰に析出する。
珪素(Si)は、鋼に焼戻し軟化抵抗性を付与する元素であるとともに、転がり疲労に対して有効な元素である。ただし、フェライトの硬化能が高く、球状化焼鈍時に硬度を低下させにくいという欠点も有する。生産性を考慮すると〔Si〕を2質量%以下にすることが好ましい。
Manganese (Mn) is an element having an effect of improving the hardenability of steel, and is usually contained in the bearing steel by 1.0% by mass. However, when [Mn] is excessive, residual austenate is excessively precipitated.
Silicon (Si) is an element that imparts temper softening resistance to steel and is an effective element against rolling fatigue. However, it also has the drawbacks that the hardenability of ferrite is high and it is difficult to reduce the hardness during spheroidizing annealing. Considering productivity, it is preferable to set [Si] to 2% by mass or less.

ニッケル(Ni)は、鋼の焼入れ性の向上作用を有する元素であるとともに、軸受鋼に不足する靱性を向上させる有効な元素である。ただし、高価な元素であるため、経済性を考慮すると〔Ni〕を3.5質量%以下にすることが好ましい。
モリブデン(Mo)は、鋼の焼入れ性の向上作用を有する元素であるとともに、共析組成を低炭素側に移動させる元素である。ただし、高価な元素であるため、経済性を考慮すると〔Mo〕を1.5質量%以下にすることが好ましい。
Nickel (Ni) is an element that has an effect of improving the hardenability of steel and is an effective element that improves toughness that is insufficient for bearing steel. However, since it is an expensive element, [Ni] is preferably 3.5% by mass or less in consideration of economy.
Molybdenum (Mo) is an element that has the effect of improving the hardenability of steel and moves the eutectoid composition to the low carbon side. However, since it is an expensive element, [Mo] is preferably 1.5% by mass or less in consideration of economy.

この発明の転がり軸受によれば、前記内輪および前記外輪のうち少なくとも一方を構成する素材をなす鋼のDI値が1.0以上であることにより、不完全焼入れ組織の体積率が2%以下となるため、軌道面の硬さおよび転がり寿命を確保できる。前記(1) 式で定義されるDI値は焼入れ硬化特性を表す指標であり、DI値が低い鋼を用いた場合、焼入れにより不完全焼入れ組織が発生する。不完全焼入れ組織の体積率が5%を超えると軌道面の硬さが不十分になるが、不完全焼入れ組織の体積率が2%以下であると軌道面の硬さが良好になる。   According to the rolling bearing of the present invention, the volume ratio of the incompletely quenched structure is 2% or less because the DI value of the steel constituting at least one of the inner ring and the outer ring is 1.0 or more. Therefore, the hardness of the raceway surface and the rolling life can be secured. The DI value defined by the formula (1) is an index representing quench hardening characteristics. When steel having a low DI value is used, an incompletely quenched structure is generated by quenching. When the volume fraction of the incompletely quenched structure exceeds 5%, the hardness of the raceway surface becomes insufficient, but when the volume fraction of the incompletely quenched structure is 2% or less, the hardness of the raceway surface becomes good.

この発明の転がり軸受によれば、前記内輪および前記外輪のうち少なくとも一方の軌道面の有効硬化層深さ(硬さがHv550以上になっている部分の厚さ)Yo(mm)と転動体の直径Dw(mm)が前記(2) 式を満たすことにより、製鉄業の圧延機や風車等の回転軸を支持する用途で寿命と高靱性の両立を図ることができる。
具体的には、Yoが0.07Dw以上であることにより、表層部(硬化層)と芯部(非硬化部)との境界領域に生じる硬さ勾配を、製鉄業の圧延機や風車等の回転軸を支持する用途の転がり軸受にとって適切な値(内部起点破壊や割れが生じない値)にすることができる。
According to the rolling bearing of the present invention, the effective hardened layer depth (thickness of the portion where the hardness is Hv550 or more) Yo (mm) and the rolling element of at least one of the inner ring and the outer ring. When the diameter Dw (mm) satisfies the above formula (2), both life and high toughness can be achieved in applications that support rotating shafts such as rolling mills and windmills in the steel industry.
Specifically, when Yo is 0.07 Dw or more, the hardness gradient generated in the boundary region between the surface layer portion (hardened layer) and the core portion (non-hardened portion) can be measured by a steel mill rolling mill, windmill, or the like. It can be set to a value appropriate for a rolling bearing for supporting a rotating shaft (a value at which internal origin fracture or crack does not occur).

また、製鉄業の圧延機や風車等の回転軸を支持する用途の転がり軸受を構成する軌道輪では、Yoが0.07Dw未満であると、芯部側に作用する応力が材料の強度を上回り、軌道面に内部起点破壊が生じる。Yoが「0.07Dw+5」を超えると軌道輪の靱性が不十分となる。
この発明の転がり軸受によれば、前記内輪および前記外輪のうち少なくとも一方の軌道の表面硬さがHv650以上であり、軌道面の残留オーステナイト量が12体積%以上40体積%以下であるため、軌道面に表面起点型の剥離が生じることと軌道輪の内部起点破壊が生じることが防止できる。軌道面の表面硬さがHv650未満の場合と残留オーステナイト量が12体積%未満の場合、表面起点型の剥離が生じ易い。表面残留オーステナイト量が40体積%よりも大きいと、焼き割れを発生する場合がある。
In addition, in a bearing ring that constitutes a rolling bearing for supporting a rotating shaft such as a rolling mill or a windmill in the steel industry, if the Yo is less than 0.07 Dw, the stress acting on the core side exceeds the strength of the material. The internal origin fracture occurs on the raceway surface. When Yo exceeds “0.07 Dw + 5”, the toughness of the raceway becomes insufficient.
According to the rolling bearing of the present invention, the surface hardness of at least one of the inner ring and the outer ring is Hv650 or more, and the retained austenite amount on the raceway surface is 12% by volume or more and 40% by volume or less. It is possible to prevent the surface starting type peeling from occurring on the surface and the internal starting point fracture of the raceway ring. When the surface hardness of the raceway surface is less than Hv650 and when the amount of retained austenite is less than 12% by volume, surface-initiated peeling is likely to occur. If the amount of surface retained austenite is larger than 40% by volume, there may be a case where a burning crack occurs.

この発明の転がり軸受によれば、前記内輪および前記外輪のうち少なくとも一方の軌道面の旧オーステナイトの結晶粒径が30μm以下であるため、良好な材料強度を有する。すなわち、製鉄業の圧延機や風車等の回転軸を支持する用途で使用しても、良好な耐衝撃性が得られる。前記結晶粒径が30μmよりも大きいと、前記用途での耐衝撃性が不十分となる。   According to the rolling bearing of the present invention, since the crystal grain size of the prior austenite on at least one raceway surface of the inner ring and the outer ring is 30 μm or less, the material has good material strength. That is, even when used in applications that support rotating shafts such as rolling mills and windmills in the steel industry, good impact resistance can be obtained. When the crystal grain size is larger than 30 μm, the impact resistance in the application is insufficient.

この発明の転がり軸受によれば、前記内輪および前記外輪のうち少なくとも一方の嵌め合い面の30%以上の表面硬さがHv550以上である(すなわち、嵌め合い面の30%以上が高周波焼入れによる硬化層となっている)ため、嵌め合い面の耐摩耗性が良好になる。嵌め合い面の30%以上を硬化層(表面硬さがHv550以上)にすることで、全体を硬化層にした場合とほぼ同等の耐摩耗性が得られる。   According to the rolling bearing of the present invention, the surface hardness of 30% or more of the fitting surface of at least one of the inner ring and the outer ring is Hv550 or more (that is, 30% or more of the fitting surface is hardened by induction hardening). Therefore, the wear resistance of the mating surface is improved. By using 30% or more of the mating surfaces as a hardened layer (surface hardness of Hv550 or higher), almost the same wear resistance as that obtained when the whole is a hardened layer can be obtained.

前記構成(b) 〜(e) を満たす内輪または外輪は、前記構成(a) を満たす鋼からなり、球状化焼鈍後に内輪または外輪の形状に加工された素材の前記軌道面と軸方向両端面に対して、同時に、内部組織がセメンタイトとオーステナイトの二相組織となるように誘導加熱した後に冷却する高周波焼入れと焼戻しを行い、次いで、前記嵌め合い面に対する高周波焼入れと焼戻しを行うことを特徴とする方法(この発明の方法)により製造することができる。   The inner ring or outer ring satisfying the configuration (b) to (e) is made of steel satisfying the configuration (a), and the raceway surface and the axial end surfaces of the material processed into the shape of the inner ring or the outer ring after spheroidizing annealing. In contrast, induction hardening and tempering are performed after induction heating so that the internal structure becomes a two-phase structure of cementite and austenite, and then induction hardening and tempering are performed on the mating surfaces. It can manufacture by the method to do (method of this invention).

前記鋼のクロム含有率が高い場合は、軌道面と軸方向両端面に対する高周波焼入れの前処理として、軌道面を、表面から1mmまでの範囲が、セメンタイトを3体積%以上残存する「セメンタイトとオーステナイトの二相組織」となるように加熱(前処理工程での加熱は、炉加熱および誘導加熱のいずれでもよい)した後、空冷以下の冷却速度で冷却を行って、マルテンサイトの体積率を50%以下にすることが好ましい。   When the steel has a high chromium content, as a pretreatment for induction hardening of the raceway surface and both end surfaces in the axial direction, the raceway surface remains in the range of 1 mm from the surface, and cementite and austenite remain 3% by volume or more of cementite. (The heating in the pretreatment step may be either furnace heating or induction heating), and then cooling is performed at a cooling rate equal to or lower than air cooling, so that the martensite volume ratio is 50 % Or less is preferable.

この前処理における加熱時の最高温度は、球状化炭化物の量に応じて、セメンタイトが3体積%以上残存する温度に設定する。セメンタイトの残存率が3体積%未満であると、結晶粒が部分的に粗大化する可能性がある。また、全炭化物におけるクロム炭化物の割合は、500℃以上A1変態点以下の温度域での保持時間で変化するが、高周波焼入れの前処理の冷却を空冷以下の速度で行うことにより、全炭化物におけるクロム炭化物の割合が高周波焼入れ時に炭化物の溶け込みを遅延させるほど高くはならない。
そして、このような前処理を行うことにより、前記鋼のクロム含有率が高い場合であっても、軌道面の残留オーステナイト量を12体積%以上にできるとともに、軌道面の旧オーステナイト結晶粒径を30μm以下にすることができる。
The maximum temperature during heating in this pretreatment is set to a temperature at which 3% by volume or more of cementite remains depending on the amount of spheroidized carbide. If the residual ratio of cementite is less than 3% by volume, the crystal grains may be partially coarsened. The ratio of chromium carbide in all carbides varies depending on the holding time in the temperature range of 500 ° C. or more and A1 transformation point or less, but by performing cooling in the pretreatment of induction hardening at a rate of air cooling or less, The proportion of chromium carbide is not so high as to retard carbide penetration during induction hardening.
And by performing such pretreatment, even if the chromium content of the steel is high, the amount of retained austenite on the raceway surface can be made 12% by volume or more, and the prior austenite crystal grain size on the raceway surface can be increased. It can be 30 μm or less.

また、前記構成(f) を有することで、すなわち、前記軌道面および軸方向両端面の表面から0.1mmの深さまでの硬さがHv500以上であると、他部品との接触による摩耗を生じ難くすることができる。
また、前記構成(h) を有することで、すなわち、軌道輪の非硬化部に残留オーステナイト量が0体積%である部分を有し、軸方向両端面の残留オーステナイト量が軌道面の残留オーステナイト量よりも10体積%以上少ないものであると、軌道輪の寸法変化が小さく、高周波焼入れに代えて浸炭焼入れを行った場合と同程度の寸法安定性が得られる。
In addition, by having the configuration (f), that is, when the hardness from the surface of the raceway surface and both axial end surfaces to a depth of 0.1 mm is Hv 500 or more, wear due to contact with other parts occurs. Can be difficult.
Further, by having the configuration (h), that is, there is a portion in which the amount of retained austenite is 0% by volume in the non-hardened portion of the raceway ring, and the amount of retained austenite at both axial end surfaces is the amount of retained austenite on the track surface. When the volume is less than 10% by volume, the dimensional change of the bearing ring is small, and the same dimensional stability as when carburizing and quenching is performed instead of induction hardening is obtained.

この発明の方法で、軌道面と軸方向両端面に対して同時に、内部組織がセメンタイトとオーステナイトの二相組織となるように誘導加熱する工程を実施するための装置として、前記軌道面と軸方向両端面を取り囲んで同時に加熱するコの字型部を有する主コイルと、前記軌道面を加熱する補助コイルを有する高周波熱処理装置(この発明の高周波熱処理装置)を使用することができる。また、この発明の方法で、前記嵌め合い面に対する高周波焼入れは、汎用の移動可能なコイルを用いて実施することができる。   In the method of the present invention, as an apparatus for carrying out the induction heating process so that the internal structure becomes a two-phase structure of cementite and austenite simultaneously with respect to the raceway surface and the axial end faces, the raceway surface and the axial direction It is possible to use a high-frequency heat treatment apparatus (high-frequency heat treatment apparatus of the present invention) having a main coil having a U-shaped portion that surrounds both end faces and is heated simultaneously, and an auxiliary coil that heats the raceway surface. Moreover, the induction hardening with respect to the said fitting surface can be implemented by the method of this invention using a general purpose movable coil.

この発明の転がり軸受は、前記内輪および前記外輪のうち少なくとも一方が前記構成(a) 〜(e) を満たすことにより、これらを満たさないものと比較して、寿命および軌道輪の靱性が、製鉄業の圧延機や風車等の回転軸を支持する用途に好適であって、嵌め合い面の摩耗が抑制されたものとなる。   The rolling bearing according to the present invention is such that at least one of the inner ring and the outer ring satisfies the configurations (a) to (e), so that the life and toughness of the raceway ring are compared with those not satisfying these. This is suitable for use in supporting a rotating shaft such as a rolling mill or a windmill in industry, and wear of the mating surface is suppressed.

この発明の一実施形態に相当する転がり軸受を示す断面図である。It is sectional drawing which shows the rolling bearing corresponded to one Embodiment of this invention. 実施形態の方法で使用する高周波熱処理装置の一部を示す斜視図である。It is a perspective view which shows a part of high frequency heat processing apparatus used with the method of embodiment. 内輪の嵌め合い面に形成する硬化層パターンの一例を示す図である。It is a figure which shows an example of the hardened layer pattern formed in the fitting surface of an inner ring | wheel. L10寿命比と有効硬化層深さとの関係を示すグラフである。It is a graph which shows the relationship between L10 life ratio and effective hardened layer depth. L10寿命比と旧オーステナイトの結晶粒径(d)との関係を示すグラフである。It is a graph which shows the relationship between L10 life ratio and the crystal grain size (d) of prior austenite. 圧砕強度比と有効硬化層深さとの関係を示すグラフである。It is a graph which shows the relationship between crushing strength ratio and effective hardened layer depth. L10寿命比と残留オーステナイト量との関係を示すグラフである。It is a graph which shows the relationship between L10 life ratio and a retained austenite amount. 有効硬化層深さと円筒ころの直径(Dw)との関係を示すグラフである。It is a graph which shows the relationship between an effective hardened layer depth and the diameter (Dw) of a cylindrical roller. 前処理方法の違いによる真円度の違いを示すグラフである。It is a graph which shows the difference in roundness by the difference in a pre-processing method. 嵌め合い面に関し、摩耗深さと嵌め合い面に形成されている硬化層の割合との関係を示すグラフである。It is a graph which shows the relationship between a wear depth and the ratio of the hardened layer currently formed in the fitting surface regarding a fitting surface.

以下、この発明の実施形態について説明する。
図1の円筒ころ軸受は、この発明の一実施形態に相当する転がり軸受であって、内輪1、 外輪2、複数の円筒ころ(転動体)3、および保持器4で構成されている。
内輪1は、外周面に軌道面11を有し、内周面12が軸との嵌め合い面である。外輪2は、内周面に軌道面21を有し、外周面22がハウジングとの嵌め合い面である。複数の円筒ころ3は、内輪1の軌道面11と外輪2の軌道面21との間に転動自在に配置されている。保持器4は、内輪1と外輪2の間に配置され、複数の円筒ころ3を1個ずつポケット41内に保持している。
Embodiments of the present invention will be described below.
The cylindrical roller bearing shown in FIG. 1 is a rolling bearing corresponding to an embodiment of the present invention, and includes an inner ring 1, an outer ring 2, a plurality of cylindrical rollers (rolling elements) 3, and a cage 4.
The inner ring 1 has a raceway surface 11 on the outer peripheral surface, and the inner peripheral surface 12 is a fitting surface with a shaft. The outer ring 2 has a raceway surface 21 on the inner peripheral surface, and the outer peripheral surface 22 is a fitting surface with the housing. The plurality of cylindrical rollers 3 are arranged between the raceway surface 11 of the inner ring 1 and the raceway surface 21 of the outer ring 2 so as to be able to roll. The cage 4 is disposed between the inner ring 1 and the outer ring 2 and holds the plurality of cylindrical rollers 3 one by one in the pocket 41.

内輪1は、以下の方法で作製されたものである。外輪2、円筒ころ3、および保持器4は従来品である。
この方法で使用する高周波熱処理装置を図2に示す。
図2(a)の高周波熱処理装置は、主コイル5と補助コイル6とローラ7を有する。主コイル5は、コの字型部50を有する。コの字型部50は、軸方向に延びて内輪1の軌道面11に対向配置される縦部51と、軸方向と垂直な方向に延びて軸方向端面13の軸方向外側に配置される一対の横部52とからなる。補助コイル6の先端部61は短い円弧状で、内輪1の軌道面11に対向配置される。 ローラ7は内輪1を乗せて回転させるものであり、内輪1の軸方向端面13の周方向で等間隔の3箇所に配置されている。
The inner ring 1 is manufactured by the following method. The outer ring 2, the cylindrical roller 3, and the cage 4 are conventional products.
A high-frequency heat treatment apparatus used in this method is shown in FIG.
The high frequency heat treatment apparatus of FIG. 2A includes a main coil 5, an auxiliary coil 6, and a roller 7. The main coil 5 has a U-shaped part 50. The U-shaped portion 50 extends in the axial direction so as to be opposed to the raceway surface 11 of the inner ring 1, and extends in a direction perpendicular to the axial direction so as to be disposed outside the axial end surface 13 in the axial direction. It consists of a pair of horizontal portions 52. The front end portion 61 of the auxiliary coil 6 has a short arc shape and is disposed so as to face the raceway surface 11 of the inner ring 1. The rollers 7 are for rotating the inner ring 1 and are arranged at three equally spaced locations in the circumferential direction of the axial end surface 13 of the inner ring 1.

主コイル5は、図2(a)のコの字型部50が複数個接続されたものが好ましい。図2(b)(c)に示す例では、内輪1の周方向に沿って配置された3個のコの字型部50A〜50Cが、接続部55により直列に接続され、さらに両端部56,57が接続されている。図2(c)は図2(b)のA矢視図である。
先ず、SUJ3(高炭素クロム軸受鋼第3種)製で球状化焼鈍された環状の素材を用意し、この素材を内輪1の形状に旋削加工する。SUJ3の組成は、〔C〕=1.00質量%、〔Cr〕=0.60質量%、〔Mn〕=1.00質量%、〔Si〕=0.60質量%、〔Ni〕=0.05質量%、残部鉄および不可避的不純物である。SUJ3の前記(1) 式で定義されるDI値は8.2である。
The main coil 5 is preferably one in which a plurality of U-shaped portions 50 of FIG. In the example shown in FIGS. 2 (b) and 2 (c), the three U-shaped portions 50 </ b> A to 50 </ b> C arranged along the circumferential direction of the inner ring 1 are connected in series by the connecting portion 55, and both end portions 56. , 57 are connected. FIG.2 (c) is an A arrow view of FIG.2 (b).
First, an annular material made of SUJ3 (high carbon chromium bearing steel type 3) and subjected to spheroidizing annealing is prepared, and this material is turned into the shape of the inner ring 1. The composition of SUJ3 is [C] = 1.00 mass%, [Cr] = 0.60 mass%, [Mn] = 1.00 mass%, [Si] = 0.60 mass%, [Ni] = 0. 0.05% by weight, balance iron and inevitable impurities. The DI value defined by the equation (1) of SUJ3 is 8.2.

次に、内輪1の軌道面11と軸方向両端面13に対する高周波焼入れおよび焼戻しを行う。
すなわち、先ず、図2に示す高周波熱処理装置を使用して、内輪1の軌道面11と軸方向両端面13を、同時に、内部組織がセメンタイトとオーステナイトの二相組織となるように誘導加熱する。誘導加熱条件は、周波数5〜100kHz、加熱時間5〜200秒、内輪の回転速度20〜100min-1である。 具体的には、ローラ7により内輪1を回転させた状態で、主コイル5の縦部51と横部52により、内輪1の軌道面11と軸方両端面13を取り囲んで、これらを同時に加熱すると同時に、補助コイル6により内輪1の軌道面11を加熱する。次いで、内輪1に20〜50℃の冷却水を噴霧して冷却する。次いで、内輪1を加熱炉に入れて180℃に2時間保持した後、放冷することで焼戻しを行う。
Next, induction hardening and tempering are performed on the raceway surface 11 and the axial end surfaces 13 of the inner ring 1.
That is, first, using the high-frequency heat treatment apparatus shown in FIG. 2, the raceway surface 11 and the axial end surfaces 13 of the inner ring 1 are simultaneously induction-heated so that the internal structure becomes a two-phase structure of cementite and austenite. The induction heating conditions are a frequency of 5 to 100 kHz, a heating time of 5 to 200 seconds, and an inner ring rotational speed of 20 to 100 min −1 . Specifically, in a state where the inner ring 1 is rotated by the roller 7, the longitudinal part 51 and the lateral part 52 of the main coil 5 surround the raceway surface 11 and both axial end faces 13 of the inner ring 1, and simultaneously heat them. At the same time, the track surface 11 of the inner ring 1 is heated by the auxiliary coil 6. Next, the inner ring 1 is cooled by spraying cooling water of 20 to 50 ° C. Next, the inner ring 1 is put in a heating furnace and maintained at 180 ° C. for 2 hours, and then tempered by allowing to cool.

次に、内輪1の嵌め合い面12に対する高周波焼入れおよび焼戻しを行う。
すなわち、加熱幅が約10mmになる汎用の移動焼きコイルを使用して、内輪1の嵌め合い面12を螺旋状に、内部組織がセメンタイトとオーステナイトの二相組織となるように誘導加熱した後、内輪1に20〜50℃の冷却水を噴霧して冷却する。次いで、内輪1を加熱炉に入れて180℃に2時間保持した後、放冷することで焼戻しを行う。この高周波焼入れは、嵌め合い面12の表面から1. 0mmの深さまでHv550以上となる条件で行う。誘導加熱条件は、例えば、周波数30kHz、出力50kW、コイル移動速度10mm/秒である。
Next, induction hardening and tempering are performed on the fitting surface 12 of the inner ring 1.
That is, using a general-purpose moving grilling coil having a heating width of about 10 mm, the fitting surface 12 of the inner ring 1 is spirally formed, and after induction heating so that the internal structure becomes a two-phase structure of cementite and austenite, The inner ring 1 is cooled by spraying cooling water at 20 to 50 ° C. Next, the inner ring 1 is put in a heating furnace and maintained at 180 ° C. for 2 hours, and then tempered by allowing to cool. This induction hardening is performed under the condition of Hv550 or higher from the surface of the fitting surface 12 to a depth of 1.0 mm. The induction heating conditions are, for example, a frequency of 30 kHz, an output of 50 kW, and a coil moving speed of 10 mm / second.

これにより、内輪1の嵌め合い面12に、図3に示すような螺旋状パターンで、有効硬化層深さが1. 0mmである硬化層12aを形成する。硬化層12aの幅(螺旋の軸方向の寸法)L1は約10mm、硬化層同士の間隔L2は約5mm(1mm以上)とする。なお、図3は、内輪1の嵌め合い面12の一部を展開した図である。   Thus, a hardened layer 12a having an effective hardened layer depth of 1.0 mm is formed on the fitting surface 12 of the inner ring 1 in a spiral pattern as shown in FIG. The width (dimension in the axial direction of the spiral) L1 of the hardened layer 12a is about 10 mm, and the distance L2 between the hardened layers is about 5 mm (1 mm or more). FIG. 3 is a developed view of a part of the fitting surface 12 of the inner ring 1.

次に、研磨などの後加工を施すことによって内輪1を完成する。
なお、SUJ2とSUJ4はクロム含有率が高く、オーステナイト安定化元素であるMn含有率が低いため、高周波焼入れの前処理として、内輪1の軌道面11に対する焼きならしを行う必要がある。ただし、クロム含有率が低い鋼やクロム含有率が高くてもMnを多く含む鋼(SUJ3、SUJ5)を用いる場合は、前処理をする必要がない。
前処理を行う場合は、先ず、図2に示す高周波熱処理装置の補助コイル6を使用し、ローラ7により内輪1を回転させた状態で、補助コイル6で内輪1の軌道面11を誘導加熱する。誘導加熱条件は、周波数5〜100kHz、加熱時間5〜200秒、内輪の回転速度20〜100min-1である。 これにより、表面から1mmまでの範囲が、セメンタイトが3体積%以上残存する「セメンタイトとオーステナイトの二相組織」となるようにする。
Next, the inner ring 1 is completed by performing post-processing such as polishing.
Since SUJ2 and SUJ4 have a high chromium content and a low Mn content, which is an austenite stabilizing element, it is necessary to normalize the raceway surface 11 of the inner ring 1 as a pretreatment for induction hardening. However, when steel with a low chromium content or steel with a high Mn content (SUJ3, SUJ5) is used, pretreatment is not necessary.
When performing the pretreatment, first, the auxiliary coil 6 of the high-frequency heat treatment apparatus shown in FIG. 2 is used, and the inner ring 1 is rotated by the roller 7 and the raceway surface 11 of the inner ring 1 is induction-heated by the auxiliary coil 6. . The induction heating conditions are a frequency of 5 to 100 kHz, a heating time of 5 to 200 seconds, and an inner ring rotational speed of 20 to 100 min −1 . Thereby, the range from the surface to 1 mm becomes a “two-phase structure of cementite and austenite” in which cementite remains at 3 volume% or more.

次いで、室温まで放冷(空冷以下の冷却速度で冷却)し、マルテンサイトの体積率を50%以下にする。
この実施形態の内輪1の軌道面11の有効硬化層深さ(硬さがHv550以上になっている部分の厚さ)Yo(mm)と円筒ころ(転動体)3の直径Dw(mm)が下記の(2) 式を満たすものである。
0.07Dw≦Yo≦0.07Dw+5 …(2)
Next, the mixture is allowed to cool to room temperature (cooled at a cooling rate equal to or lower than air cooling) so that the volume ratio of martensite is 50% or less.
The effective hardened layer depth (thickness of the portion where the hardness is Hv550 or more) Yo (mm) and the diameter Dw (mm) of the cylindrical roller (rolling element) 3 of the raceway surface 11 of the inner ring 1 of this embodiment are as follows. The following equation (2) is satisfied.
0.07 Dw ≦ Yo ≦ 0.07 Dw + 5 (2)

また、内輪1の軌道面11の表面硬さがHv650以上であり、軌道面11の残留オーステナイト量が12体積%以上40体積%以下である。また、内輪1の軌道面11の旧オーステナイト結晶粒径が30μm以下である。内輪1の嵌め合い面12の30%以上の表面硬さがHv550以上である。
さらに、内輪1の軌道面11および軸方向両端面13の表面から0.1mmの深さまでの硬さがHv500以上である。
Further, the surface hardness of the raceway surface 11 of the inner ring 1 is Hv650 or more, and the retained austenite amount of the raceway surface 11 is 12% by volume or more and 40% by volume or less. Further, the prior austenite crystal grain size of the raceway surface 11 of the inner ring 1 is 30 μm or less. The surface hardness of 30% or more of the fitting surface 12 of the inner ring 1 is Hv550 or more.
Furthermore, the hardness from the surface of the raceway surface 11 of the inner ring 1 and both end surfaces 13 in the axial direction to a depth of 0.1 mm is Hv 500 or more.

また、内輪1の芯部の残留オーステナイト量が0体積%であり、軸方向両端面13の残留オーステナイト量が軌道面11の残留オーステナイト量よりも10体積%以上少ないものである。
すなわち、この実施形態の円筒ころ軸受は、内輪1がこの発明の必須要件である前記構成(a) 〜(e) と好適要件である構成(f) (h) を満たすものであるため、前記構成(a) 〜(f)(h)を満たさない内輪1を備えたことのみが異なる円筒ころ軸受と比較して、寿命および軌道輪の靱性が、製鉄業の圧延機や風車等の回転軸を支持する用途に好適であって、嵌め合い面の摩耗が抑制されたものとなる。
Further, the amount of retained austenite at the core of the inner ring 1 is 0% by volume, and the amount of retained austenite at both axial end surfaces 13 is 10% by volume or less than the amount of retained austenite at the raceway surface 11.
That is, in the cylindrical roller bearing of this embodiment, the inner ring 1 satisfies the configurations (a) to (e) that are essential requirements of the invention and the configurations (f) and (h) that are preferable requirements. Compared to cylindrical roller bearings that differ only in having an inner ring 1 that does not satisfy configurations (a) to (f) and (h), the life and toughness of the bearing ring have a rotating shaft such as a rolling mill or a windmill in the steel industry. It is suitable for a use for supporting the fitting, and wear of the fitting surface is suppressed.

なお、好適要件である構成(f) (h) を満たさず、前記構成(a) 〜(e) を満たす内輪1を備えた円筒ころ軸受もこの発明の範囲に含まれる。また、外輪2のみが、または内輪1と外輪2の両方が、前記構成(a) 〜(e) と好適要件である構成(f) (h) を満たす円筒ころ軸受も、この発明の範囲に含まれる。
外輪2の軌道面21と軸方向両端面23に対する高周波焼入れを行う場合には、主コイル5と補助コイル6を外輪2の内部に配置して行う。
さらに、前記構成(a) 〜(e) を満たす内輪および/または外輪を備えていれば、円筒 ころ軸受以外の転がり軸受(玉軸受、円錐ころ軸受、自動調心ころ軸受等)もこの発明の範囲に含まれる。
The cylindrical roller bearing including the inner ring 1 that does not satisfy the requirements (f) and (h) and satisfies the configurations (a) to (e) is also included in the scope of the present invention. Further, a cylindrical roller bearing in which only the outer ring 2 or both the inner ring 1 and the outer ring 2 satisfy the above-described configurations (a) to (e) and the preferable configurations (f) and (h) is also within the scope of the present invention. included.
When induction hardening is performed on the raceway surface 21 and the axial end surfaces 23 of the outer ring 2, the main coil 5 and the auxiliary coil 6 are arranged inside the outer ring 2.
Furthermore, rolling bearings (ball bearings, tapered roller bearings, self-aligning roller bearings, etc.) other than cylindrical roller bearings are also included in the present invention as long as an inner ring and / or an outer ring satisfying the configurations (a) to (e) are provided. Included in the range.

[1] 構成(b)(c)(d) についての検証
[1-1] 実施例1〜14と比較例1〜10
図1の円筒ころ軸受を組み立てて、寿命試験を行った。内輪1としては、内径が30mm、外径が60mm、軸方向寸法が23mm、肉厚(径方向の厚み:軌道面11の直径と嵌め合い面12の直径との差)が15mmであり、以下の方法で作製されたもの(24種類のサンプル)を使用した。
[1] Verification of configuration (b) (c) (d)
[1-1] Examples 1 to 14 and Comparative Examples 1 to 10
The cylindrical roller bearing of FIG. 1 was assembled and a life test was conducted. The inner ring 1 has an inner diameter of 30 mm, an outer diameter of 60 mm, an axial dimension of 23 mm, and a wall thickness (diameter thickness: difference between the diameter of the raceway surface 11 and the diameter of the mating surface 12) is 15 mm. What was produced by the method of (24 types of samples) was used.

外輪2、円筒ころ3、および保持器4としては、呼び番号NU2210ETの円筒ころ軸受(内径が50mm、外径が90mm、軸方向寸法が23mm、円筒ころの直径Dwが11mm)用のものを使用した。外輪2と円筒ころ3は、SUJ2(高炭素クロム軸受鋼第2種)製で通常の熱処理がされたものであり、保持器4は通常のもみ抜き型保持器である。
なお、外径が180mm以上である大型軸受では、内輪の平均的な肉厚が15mmであるため、この実施例では、中型軸受の内輪として肉厚が15mmの内輪を組み込むことで、大型軸受の場合の寿命を知る試験を行った。
As the outer ring 2, the cylindrical roller 3, and the cage 4, those for a cylindrical roller bearing with an identification number NU2210ET (inner diameter is 50 mm, outer diameter is 90 mm, axial dimension is 23 mm, and cylindrical roller diameter Dw is 11 mm) are used. did. The outer ring 2 and the cylindrical roller 3 are made of SUJ2 (high carbon chrome bearing steel type 2) and subjected to normal heat treatment, and the cage 4 is an ordinary machined type cage.
In the case of a large bearing having an outer diameter of 180 mm or more, the average thickness of the inner ring is 15 mm. Therefore, in this embodiment, an inner ring having a thickness of 15 mm is incorporated as the inner ring of the medium bearing. A test was conducted to know the life of the case.

内輪1は、SUJ3(高炭素クロム軸受鋼第3種)製で球状化焼鈍された環状の素材を用意し、この素材を内輪1の形状に旋削加工した後、表1〜3に示す各種熱処理を行い、研磨などの後加工を施すことで完成させたものである。
表1〜3の熱処理で「IH」とは、 実施形態に記載した方法により、内輪1の軌道面11と軸方向両端面13に対する高周波焼入れおよび焼戻しを行ったことを意味する。誘導加熱条件は、各サンプルで、周波数5〜100kHz、加熱時間5〜200秒、内輪の回転速度20〜100min-1の範囲で変化させた。
The inner ring 1 is made of SUJ3 (High Carbon Chromium Bearing Steel Type 3) and is made of a spheroidized and annealed annular material. After turning this material into the shape of the inner ring 1, various heat treatments shown in Tables 1 to 3 are performed. And finished by post-processing such as polishing.
“IH” in the heat treatment in Tables 1 to 3 means that induction hardening and tempering were performed on the raceway surface 11 and the axial end surfaces 13 of the inner ring 1 by the method described in the embodiment. The induction heating conditions were changed for each sample in a range of a frequency of 5 to 100 kHz, a heating time of 5 to 200 seconds, and an inner ring rotational speed of 20 to 100 min −1 .

表1〜3の熱処理で「ずぶ」とは、内輪1を加熱炉に入れて800〜900℃で1時間保持した後に油冷する、ずぶ焼入れを行った後、180℃で2時間保持する焼戻しを行ったことを意味する。
表1〜3の熱処理で「浸炭」とは、内輪1を加熱炉に入れて浸炭ガスを導入し、900〜1000℃で10〜20時間保持する浸炭処理を行った後、放冷し、その後、上記「ずぶ」と同様の条件で焼入れ焼戻しを行ったことを意味する。
In the heat treatment of Tables 1 to 3, "Zub" means that the inner ring 1 is placed in a heating furnace and held at 800 to 900 ° C for 1 hour, then oil-cooled, after tempering and then tempered at 180 ° C for 2 hours. Means that
In the heat treatment of Tables 1 to 3, “carburization” means that the inner ring 1 is put into a heating furnace, a carburizing gas is introduced, and carburizing treatment is performed at 900 to 1000 ° C. and held for 10 to 20 hours. This means that quenching and tempering were performed under the same conditions as in the above “Zubu”.

<寿命試験>
先ず、実施例1〜10および比較例1〜4として得られた各円筒ころ軸受を用いて、回転試験を下記の条件1(潤滑剤に異物が混入していない清浄な潤滑環境下:清浄潤滑環境下)で行い、剥離が生じるまでの時間を測定した。また、実施例11、12と比較例5〜7として得られた各円筒ころ軸受を用いて、回転試験を下記の条件2(潤滑剤に異物が混入している潤滑環境下:異物混入潤滑環境下)で行い、剥離が生じるまでの時間を測定した。
<Life test>
First, using the cylindrical roller bearings obtained as Examples 1 to 10 and Comparative Examples 1 to 4, the rotation test was performed under the following condition 1 (in a clean lubricating environment in which no foreign matter was mixed in the lubricant: clean lubrication) Under the environment), and the time until peeling occurred was measured. Further, using the cylindrical roller bearings obtained as Examples 11 and 12 and Comparative Examples 5 to 7, the rotation test was performed under the following condition 2 (in a lubrication environment in which foreign matter is mixed in the lubricant: foreign matter mixed lubrication environment The time until peeling occurred was measured.

条件1
ラジアル荷重:50kN(P/C=0.6)
回転速度 :1000min-1
潤滑油 :ISO粘度グレードがISO VG68である潤滑油
条件2
ラジアル荷重:25kN(P/C=0.3)
回転速度 :1000min-1
潤滑油 :ISO粘度グレードがISO VG68である潤滑油
異物混入状態:潤滑剤中に異物を混入する代わりに、内輪の軌道面の幅方向中央にロックウェル硬度計にて8点の疑似圧痕を形成した。
Condition 1
Radial load: 50kN (P / C = 0.6)
Rotational speed: 1000 min -1
Lubricating oil: Lubricating oil whose ISO viscosity grade is ISO VG68 Condition 2
Radial load: 25kN (P / C = 0.3)
Rotational speed: 1000 min -1
Lubricating oil: Lubricating oil whose ISO viscosity grade is ISO VG68 Foreign matter mixed state: Instead of mixing foreign matter into the lubricant, 8 pseudo indentations are formed by the Rockwell hardness tester at the center of the inner raceway surface in the width direction. did.

なお、回転試験は、同じ種類の円筒ころ軸受を7個用意して行い、剥離が生じるまでの時間をプロットして得たワイブル分布の結果からL10寿命を求めた。その結果を表1と表2に示す。表1の「L10寿命比」は、比較例3のL10寿命の値で各サンプルのL10寿命を除算した値である。 表2の「L10寿命比」は、比較例6のL10寿命の値で各サンプルのL10寿命を除算した値である。   The rotation test was carried out by preparing seven cylindrical roller bearings of the same type, and the L10 life was obtained from the result of the Weibull distribution obtained by plotting the time until separation occurred. The results are shown in Tables 1 and 2. “L10 life ratio” in Table 1 is a value obtained by dividing the L10 life of each sample by the L10 life value of Comparative Example 3. “L10 life ratio” in Table 2 is a value obtained by dividing the L10 life of each sample by the L10 life value of Comparative Example 6.

また、各サンプルで、内輪の軌道面と、軌道面から各深さ位置での硬さをビッカース硬度計で測定した。各深さ位置での硬さの測定は、各深さ位置で切断された断面試料を作製し、各断面試料の切断面を鏡面研磨した後、その研磨面に対して行った。その結果をプロットすることで、内輪の軌道面の硬さの深さ方向プロファイルを得た。 そして、各サンプルで得られたプロファイルから、軌道面の有効硬化層深さ(硬さがHv550以上である表面からの深さ)Yoを調べた。その結果を表1〜3に示す。   In each sample, the inner ring raceway surface and the hardness at each depth position from the raceway surface were measured with a Vickers hardness tester. The measurement of the hardness at each depth position was performed on the polished surface after preparing a cross-section sample cut at each depth position and mirror-polishing the cut surface of each cross-section sample. By plotting the results, the depth profile of the hardness of the raceway surface of the inner ring was obtained. And the effective hardened layer depth (depth from the surface whose hardness is Hv550 or more) Yo of the raceway surface was investigated from the profile obtained by each sample. The results are shown in Tables 1-3.

この円筒ころ軸受を構成する円筒ころ3の直径(Dw)は11mmであるため、Yoが0.77mm以上5.77mm以下であれば前記(2) 式を満たすことになる。
また、残留オーステナイト量(γR :体積%)はX線回折装置により測定した。測定の前に、内輪の軌道面を電解研磨することで加工影響層を取り除いた状態にした。その結果を表1〜3に示す。
また、内輪を軌道面の位置で径方向に沿って切断し、その切断面を鏡面加工仕上げし、さらに腐食処理した後、その切断面を顕微鏡で観察することにより、軌道面の旧オーステナイトの結晶粒径(d)を測定した。その結果を表1〜3に示す。
Since the cylindrical roller 3 constituting this cylindrical roller bearing has a diameter (Dw) of 11 mm, the equation (2) is satisfied if Yo is 0.77 mm or more and 5.77 mm or less.
The amount of retained austenite (γ R : volume%) was measured with an X-ray diffractometer. Prior to the measurement, the race effect surface was removed by electrolytic polishing of the raceway surface of the inner ring. The results are shown in Tables 1-3.
In addition, the inner ring is cut along the radial direction at the position of the raceway surface, the cut surface is mirror-finished, and further subjected to corrosion treatment, and then the cut surface is observed with a microscope, whereby the crystal of the former austenite on the raceway surface is obtained. The particle size (d) was measured. The results are shown in Tables 1-3.

また、実施例1〜10および比較例1〜4について、この試験から得られた、軌道面の有効硬化層深さ(硬さがHv550以上である表面からの深さ)YoとL10寿命との関係を図4に、軌道面の結晶粒径とL10寿命との関係を図5に、それぞれ示す。なお、図5の横軸は結晶粒径d(μm)そのものではなく、1/√dの値(単位:1/√m)である。結晶粒径が30μmの場合、1/√d=183である。
また、実施例11、12と比較例5〜7について、この試験から得られた、軌道面の残留オーステナイト量とL10寿命との関係を図6に示す。
Moreover, about Examples 1-10 and Comparative Examples 1-4, the effective hardened layer depth (depth from the surface whose hardness is Hv550 or more) Yo and L10 life obtained from this test FIG. 4 shows the relationship, and FIG. 5 shows the relationship between the crystal grain size of the orbital plane and the L10 life. 5 is not the crystal grain size d (μm) itself but the value of 1 / √d (unit: 1 / √m). When the crystal grain size is 30 μm, 1 / √d = 183.
Moreover, about Example 11, 12 and Comparative Examples 5-7, the relationship between the amount of retained austenite of a track surface and L10 lifetime obtained from this test is shown in FIG.

Figure 2014020538
Figure 2014020538

Figure 2014020538
Figure 2014020538

表1に示すように、軌道面の有効硬化層深さYo、表面硬さ(Hv)、旧オーステナイト結晶粒径d(μm)、および残留オーステナイト量γR (体積%)が、全てこの発明の範囲内である実施例1〜10では、清浄潤滑環境下において、比較例3の2.5倍以上のL10寿命が得られた。これら(軌道面の四つの構成)のいずれかがこの発明の範囲から外れる比較例1〜3は、清浄潤滑環境下におけるL10寿命が短かった。なお、軌道面の四つの構成が全てこの発明の範囲内であり、熱処理が浸炭である比較例4の清浄潤滑環境下におけるL10寿命は、比較例3の2.4倍であった。 As shown in Table 1, the effective hardened layer depth Yo, the surface hardness (Hv), the prior austenite crystal grain size d (μm), and the retained austenite amount γ R (volume%) of the raceway surface are all of the present invention. In Examples 1 to 10, which are within the range, L10 life 2.5 times or more that of Comparative Example 3 was obtained in a clean lubrication environment. Comparative Examples 1 to 3 in which any one of these (four configurations of the raceway surface) deviates from the scope of the present invention had a short L10 life in a clean lubrication environment. Note that all four configurations of the raceway surface are within the scope of the present invention, and the L10 life in the clean lubrication environment of Comparative Example 4 in which the heat treatment is carburizing was 2.4 times that of Comparative Example 3.

表2に示すように、軌道面の有効硬化層深さYo、表面硬さ(Hv)、旧オーステナイト結晶粒径d(μm)、残留オーステナイト量γR (体積%)の全てが、この発明の範囲内である実施例11と12では、異物混入潤滑環境下において、比較例6の2.5倍以上のL10寿命が得られた。これら(軌道面の四つ構成)のいずれかがこの発明の範囲から外れる比較例6と7は、異物混入潤滑環境下におけるL10寿命が短かった。なお、軌道面の四つの構成が全てこの発明の範囲内であり、熱処理が浸炭である比較例7の異物混入潤滑環境下におけるL10寿命は、比較例6の2.0倍であった。 As shown in Table 2, all of the effective hardened layer depth Yo, surface hardness (Hv), prior austenite crystal grain size d (μm), and retained austenite amount γ R (volume%) of the raceway surface are as shown in Table 2. In Examples 11 and 12, which are within the range, an L10 life of 2.5 times or more that of Comparative Example 6 was obtained in a foreign matter-mixed lubrication environment. In Comparative Examples 6 and 7 in which any one of these (four configurations of the raceway surface) is out of the scope of the present invention, the L10 life in a foreign matter-mixed lubrication environment is short. All four configurations of the raceway surface are within the scope of the present invention, and the L10 life in a foreign matter-mixed lubricating environment of Comparative Example 7 in which heat treatment is carburizing was 2.0 times that of Comparative Example 6.

また、Yo=0.7である比較例1では、内部からの破壊が生じた結果、寿命が短くなったと考えられる。Yo=0.9である実施例1では、素材の硬さが十分に確保されたため、内部からの破壊が生じず、寿命が長かったと考えられる。これにより、内部からの破壊を十分に抑制するためには、軌道面に加わる応力よりも素材の硬さの方を大きくする必要があることが分かる。   Further, in Comparative Example 1 where Yo = 0.7, it is considered that the lifetime was shortened as a result of internal destruction. In Example 1 where Yo = 0.9, it is considered that the hardness of the material was sufficiently ensured, so that destruction from the inside did not occur and the life was long. Thus, it can be seen that the hardness of the material needs to be larger than the stress applied to the raceway surface in order to sufficiently suppress the destruction from the inside.

図4に示すように、実施例2〜10は、軌道面の有効硬化層深さYo(mm)が1.5mm以上であり、実施例1と同様に、内部からの破壊が認められず、清浄潤滑環境下でのL10寿命比が2.5以上と長寿命となった。
以上の結果から、軌道面の有効硬化層深さYo(mm)が転動体の直径の0.07倍以上になっていることで、寿命が長くできることが分かる。
As shown in FIG. 4, in Examples 2 to 10, the effective hardened layer depth Yo (mm) of the raceway surface is 1.5 mm or more, and as in Example 1, no breakage from the inside was observed. The L10 life ratio in a clean lubrication environment was 2.5 or more and a long life was obtained.
From the above results, it can be seen that the effective life of the raceway surface Yo (mm) is 0.07 times or more the diameter of the rolling element, so that the life can be extended.

また、図5に示すように、軌道面の旧オーステナイトの結晶粒径dが30μm以上(「1/√d」が183以下)になると、寿命が急激に低下している。
また、比較例5と実施例11、12は、表2に示すように、残留オーステナイト量以外の構成に大きな差がないが、図6に示すように、残留オーステナイト量の違いで異物混入潤滑環境下でのL10寿命に差が生じた。残留オーステナイト量が多いことは異物混入潤滑環境下での長寿命化に有効である。
As shown in FIG. 5, when the crystal grain size d of the prior austenite on the raceway surface is 30 μm or more (“1 / √d” is 183 or less), the lifetime is drastically reduced.
In addition, as shown in Table 2, Comparative Example 5 and Examples 11 and 12 have no significant difference in the configuration other than the amount of retained austenite, but as shown in FIG. There was a difference in the L10 life below. A large amount of retained austenite is effective for extending the service life in a lubricating environment containing foreign matter.

具体的には、残留オーステナイト量が13体積%である実施例11の異物混入潤滑環境下でのL10寿命は、残留オーステナイト量が10体積%である比較例5の3倍以上であり、残留オーステナイト量が37体積%である実施例12の異物混入潤滑環境下でのL10寿命は、残留オーステナイト量が10体積%である比較例5の7倍以上であった。   Specifically, the L10 life in a foreign matter-mixed lubricating environment of Example 11 in which the amount of retained austenite is 13% by volume is more than three times that in Comparative Example 5 in which the amount of retained austenite is 10% by volume, and retained austenite. The L10 life of the Example 12 in which the amount was 37% by volume in the lubricating environment with foreign matters was 7 times or more that of Comparative Example 5 in which the amount of retained austenite was 10% by volume.

<靱性試験>
次に、実施例13、14および比較例8〜10として得られた各円筒ころ軸受を用いて、靱性を評価するための圧砕試験を行った。
具体的には、先ず、ワイヤーカッターを用い、内輪の軌道面に、その幅方向(軸方向)に沿った深さ1mmの予亀裂を幅方向全長に渡って形成した。次に、この予亀裂が水平に延びるように内輪を圧砕試験装置に装着して、内輪の軌道面に上方から荷重を加えて内輪を圧縮した。予亀裂からクラックが進展し、内輪が破断した時の荷重を調べて、その値を圧砕強度とした。その結果を表3に示す。表3の「圧砕強度比」は、比較例9の圧砕強度の値で各サンプルの圧砕強度を除算した値である。
<Toughness test>
Next, the crushing test for evaluating toughness was done using each cylindrical roller bearing obtained as Examples 13 and 14 and Comparative Examples 8 to 10.
Specifically, first, a pre-crack having a depth of 1 mm along the width direction (axial direction) was formed over the entire length in the width direction on the raceway surface of the inner ring using a wire cutter. Next, the inner ring was mounted on a crushing test apparatus so that the pre-crack extends horizontally, and a load was applied to the raceway surface of the inner ring from above to compress the inner ring. The load when the crack progressed from the pre-crack and the inner ring broke was examined, and the value was taken as the crushing strength. The results are shown in Table 3. The “crushing strength ratio” in Table 3 is a value obtained by dividing the crushing strength of each sample by the crushing strength value of Comparative Example 9.

Figure 2014020538
Figure 2014020538

表3に示すように、軌道面の有効硬化層深さYo、表面硬さ(Hv)、旧オーステナイト結晶粒径d(μm)、残留オーステナイト量γR (体積%)の全てが、この発明の範囲内である実施例13と14では、比較例9の2.2倍以上の圧砕強度が得られた。これら(軌道面の四つ構成)のいずれかがこの発明の範囲から外れる比較例9と10は、圧砕強度が小さかった。なお、軌道面の四つの構成が全てこの発明の範囲内であり、熱処理が浸炭である比較例7の圧砕強度は、比較例9の2.1倍であった。 As shown in Table 3, the effective hardened layer depth Yo, the surface hardness (Hv), the prior austenite crystal grain size d (μm), and the retained austenite amount γ R (volume%) of the raceway are all of the present invention. In Examples 13 and 14 within the range, a crushing strength 2.2 times or more that of Comparative Example 9 was obtained. In Comparative Examples 9 and 10 in which any of these (four configurations of the raceway surface) is out of the scope of the present invention, the crushing strength is small. All four configurations of the raceway surface were within the scope of the present invention, and the crushing strength of Comparative Example 7 in which the heat treatment was carburizing was 2.1 times that of Comparative Example 9.

また、図7に、この試験から得られた、軌道面の有効硬化層深さ(硬さがHv550以上である表面からの深さ)Yoと圧砕強度との関係を示す。試験に用いた円筒ころ軸受において、0.07Dw+5となるYoの値は5.77mmである。
比較例8と実施例13、14は、表3に示すように、軌道面の有効硬化層深さYo以外の構成に大きな差がないが、図7に示すように、軌道面の有効硬化層深さYoの違いで圧砕強度に差が生じた。
FIG. 7 shows the relationship between the effective hardened layer depth (depth from the surface where the hardness is Hv550 or higher) Yo and the crushing strength obtained from this test. In the cylindrical roller bearing used for the test, the value of Yo, which is 0.07 Dw + 5, is 5.77 mm.
In Comparative Example 8 and Examples 13 and 14, as shown in Table 3, there is no significant difference in the configuration other than the effective hardened layer depth Yo of the raceway surface. However, as shown in FIG. Differences in crushing strength were caused by differences in depth Yo.

具体的には、Yoが2.1(≦5.77mm)である実施例13の圧砕強度は、Yoが6.8mm(>5.77mm)である比較例8の1.8倍であり、Yoが5.3mm(≦5.77mm)である実施例14の圧砕強度は、Yoが6.8mm(>5.77mm)である比較例8の2.5倍であった。この結果から、Yoが「0.07Dw+5」を超えると、硬化層が厚すぎて軌道輪の靱性が不十分となることが分かる。
以上のことから、Yo(mm)と転動体の直径Dw(mm)が前記(2) 式を満たすことにより、寿命と高靱性を両立できることが分かる。
Specifically, the crushing strength of Example 13 where Yo is 2.1 (≦ 5.77 mm) is 1.8 times that of Comparative Example 8 where Yo is 6.8 mm (> 5.77 mm), The crushing strength of Example 14 where Yo is 5.3 mm (≦ 5.77 mm) was 2.5 times that of Comparative Example 8 where Yo was 6.8 mm (> 5.77 mm). From this result, it is understood that when Yo exceeds “0.07 Dw + 5”, the hardened layer is too thick and the toughness of the raceway is insufficient.
From the above, it can be seen that when Yo (mm) and the diameter Dw (mm) of the rolling element satisfy the formula (2), both life and high toughness can be achieved.

[1-2] 実施例15〜17および比較例11と12
図1の円筒ころ軸受として、呼び番号NU2326の円筒ころ軸受(内径が130mm、外径が280mm、軸方向寸法が93mm、円筒ころの直径Dwが40mm)を組み立てて、寿命試験を行った。この円筒ころ軸受において、0.07DwとなるYoの値は(0.07×40=)2.80mmであり、0.07Dw+5となるYoの値は7.80mmである。
外輪2と円筒ころ3は、SUJ2(高炭素クロム軸受鋼第2種)製で通常の熱処理がされたものであり、保持器4は通常のもみ抜き型保持器である。
[1-2] Examples 15 to 17 and Comparative Examples 11 and 12
As the cylindrical roller bearing of FIG. 1, a cylindrical roller bearing having an identification number NU2326 (inner diameter 130 mm, outer diameter 280 mm, axial dimension 93 mm, cylindrical roller diameter Dw 40 mm) was assembled, and a life test was performed. In this cylindrical roller bearing, the value of Yo that becomes 0.07 Dw is (0.07 × 40 =) 2.80 mm, and the value of Yo that becomes 0.07 Dw + 5 is 7.80 mm.
The outer ring 2 and the cylindrical roller 3 are made of SUJ2 (high carbon chrome bearing steel type 2) and subjected to normal heat treatment, and the cage 4 is an ordinary machined type cage.

内輪1は、以下の方法で作製されたもの(5種類のサンプル)を使用した。
先ず、SUJ3(高炭素クロム軸受鋼第3種)製で球状化焼鈍された環状の素材を用意し、この素材を内輪1の形状に旋削加工する。次に、実施形態に記載した方法により、内輪1の軌道面11と軸方向両端面13に対して高周波焼入れおよび焼戻しからなる熱処理(IH)を行う。誘導加熱条件は、各サンプルで、周波数5〜100kHz、加熱時間5〜200秒、内輪の回転速度20〜100min-1の範囲で変化させた。 次に、研磨などの後加工を施すことで内輪1を完成させる。
The inner ring 1 used was prepared by the following method (5 types of samples).
First, an annular material made of SUJ3 (high carbon chromium bearing steel type 3) and subjected to spheroidizing annealing is prepared, and this material is turned into the shape of the inner ring 1. Next, by the method described in the embodiment, heat treatment (IH) including induction hardening and tempering is performed on the raceway surface 11 and the axial end surfaces 13 of the inner ring 1. The induction heating conditions were changed for each sample in a range of a frequency of 5 to 100 kHz, a heating time of 5 to 200 seconds, and an inner ring rotational speed of 20 to 100 min −1 . Next, the inner ring 1 is completed by performing post-processing such as polishing.

これら5種類の円筒ころ軸受について、実施例1〜10の円筒ころ軸受に対する回転試験と同じ方法で、清浄潤滑環境下での回転試験を行い、L10寿命を求めた。また、実施例1〜10の円筒ころ軸受を構成する内輪に対する方法と同じ方法で、軌道面の有効硬化層深さYo、表面硬さ(Hv)、旧オーステナイト結晶粒径d(μm)、および残留オーステナイト量γR (体積%)を測定した。
これらの結果を表4に示す。表4の「L10寿命比」は、比較例3のL10寿命の値で各サンプルのL10寿命を除算した値である。
About these 5 types of cylindrical roller bearings, the rotation test in the clean lubrication environment was done by the same method as the rotation test for the cylindrical roller bearings of Examples 1 to 10, and the L10 life was obtained. Further, in the same method as the method for the inner ring constituting the cylindrical roller bearing of Examples 1 to 10, the effective hardened layer depth Yo, the surface hardness (Hv) of the raceway surface, the prior austenite crystal grain size d (μm), and The amount of retained austenite γ R (volume%) was measured.
These results are shown in Table 4. “L10 life ratio” in Table 4 is a value obtained by dividing the L10 life of each sample by the L10 life value of Comparative Example 3.

Figure 2014020538
Figure 2014020538

表4に示すように、軌道面の有効硬化層深さYo、表面硬さ(Hv)、旧オーステナイト結晶粒径d(μm)、および残留オーステナイト量γR (体積%)が、全てこの発明の範囲内である実施例15〜17では、清浄潤滑環境下において、比較例3の2.5倍以上のL10寿命が得られた。これら(軌道面の四つの構成)のいずれかがこの発明の範囲から外れる比較例11と12は、清浄潤滑環境下におけるL10寿命が比較例3の0.7倍以下と短かった。 As shown in Table 4, the effective hardened layer depth Yo, the surface hardness (Hv), the prior austenite crystal grain size d (μm), and the retained austenite amount γ R (volume%) of the raceway surface are all of the present invention. In Examples 15-17 which are in the range, L10 life of 2.5 times or more of Comparative Example 3 was obtained in a clean lubrication environment. In Comparative Examples 11 and 12 in which any one of these (four configurations of the raceway surface) is out of the scope of the present invention, the L10 life in a clean lubrication environment is 0.7 times or shorter than that in Comparative Example 3.

これにより、円筒ころ(転動体)の直径Dwが40mmの場合でも、内輪の軌道面の有効硬化層深さYo(mm)が円筒ころ(転動体)の直径の0.07倍以上になっていることで、寿命が長くできることが分かる。
なお、図8は、円筒ころの直径Dwが11mmである実施例1〜5と比較例1、円筒ころの直径Dwが40mmである実施例15、 16と比較例11、12について、有効硬化層深さと円筒ころの直径Dwとの関係を示すグラフである。
As a result, even when the diameter Dw of the cylindrical roller (rolling element) is 40 mm, the effective hardened layer depth Yo (mm) of the raceway surface of the inner ring becomes 0.07 times or more the diameter of the cylindrical roller (rolling element). It can be seen that the lifetime can be extended.
FIG. 8 shows effective hardening layers for Examples 1 to 5 and Comparative Example 1 in which the diameter Dw of the cylindrical roller is 11 mm, and Examples 15 and 16 and Comparative Examples 11 and 12 in which the diameter Dw of the cylindrical roller is 40 mm. It is a graph which shows the relationship between the depth and the diameter Dw of a cylindrical roller.

[2] 構成(a) についての検証
前記(1) 式で定義されるDI値および合金組成が異なる複数の鋼に対して、焼入れを施したときの不完全焼入れ組織の発生状況を調べた。具体的には、表5に示すSUJ2〜SUJ5、鋼種A〜C、SK5の8種類の鋼からなり、厚さ15mm、直径60mmの円板試料を用意し、加熱炉内で840℃に1時間保持した後、60℃の油に入れる油焼入れを行った後、不完全焼入れ組織の発生状況を調べた。
また、各円板試料を加熱炉内で950℃に加熱した後に、そのまま炉内で冷却する(徐冷する)ことで、旧オーステナイト粒界に初析フェライトが析出するかどうかを調べた。これらの結果を表5に示す。
[2] Verification of composition (a) The occurrence of an incompletely quenched structure was examined when a plurality of steels having different DI values and alloy compositions defined by the above formula (1) were quenched. Specifically, it is composed of 8 types of steels, SUJ2 to SUJ5, steel types A to C and SK5 shown in Table 5, and a disk sample having a thickness of 15 mm and a diameter of 60 mm is prepared and heated to 840 ° C. for 1 hour in a heating furnace. After holding, after performing oil quenching into 60 ° C. oil, the occurrence of incompletely quenched structure was examined.
Each disk sample was heated to 950 ° C. in a heating furnace and then cooled in the furnace as it was (gradual cooling) to examine whether or not pro-eutectoid ferrite was precipitated at the prior austenite grain boundaries. These results are shown in Table 5.

Figure 2014020538
Figure 2014020538

いずれの試料も計算上は過共析鋼である。表5に示すように、いずれの試料でも、初析フェライトの析出は認められなかった。
また、SUJ2(DI値4.9)、SUJ3(DI値8.2)、SUJ4(DI値7.3)、SUJ5(DI値13.1)、鋼種A(3.4)、および鋼種B(DI値2.2)では、不完全焼入れ組織が生じなかった。鋼種C(DI値1.1)では、不完全焼入れ組織が1%生じた。不完全焼入れ組織が生じていてもその体積が1%であれば、機械的な特性に影響を及ぼさない。SK5(DI値0.7)では、不完全焼入れ組織が8%(5%超)生じた。
Both samples are hypereutectoid steel in the calculation. As shown in Table 5, no precipitation of proeutectoid ferrite was observed in any of the samples.
Moreover, SUJ2 (DI value 4.9), SUJ3 (DI value 8.2), SUJ4 (DI value 7.3), SUJ5 (DI value 13.1), Steel type A (3.4), and Steel type B ( With a DI value of 2.2), an incompletely quenched structure did not occur. In steel type C (DI value 1.1), an incompletely quenched structure was generated by 1%. Even if an incompletely quenched structure is formed, if its volume is 1%, the mechanical properties are not affected. With SK5 (DI value 0.7), an incompletely hardened structure was generated by 8% (over 5%).

以上のことから、DI値が1.0以上の鋼は、不完全焼入れ組織が実質的に生じない(2体積%以下である)良好な鋼材であることが分かる。よって、内輪および外輪のうち少なくとも一方を構成する素材として、DI値が1.0以上である鋼からなる素材を使用することにより、軌道面の硬さおよび転がり寿命を確保できる。   From the above, it can be seen that a steel having a DI value of 1.0 or more is a good steel material in which an incompletely quenched structure does not substantially occur (2% by volume or less). Therefore, the hardness of the raceway surface and the rolling life can be ensured by using a material made of steel having a DI value of 1.0 or more as a material constituting at least one of the inner ring and the outer ring.

[3] 前処理方法についての検証
[3-1] 前処理方法の選定について
図1の構造を有する呼び番号NU2326の円筒ころ軸受の内輪(内径が130mm、外径が167mm、軸方向寸法が93mm)を使用して、前処理(軌道面と軸方向両端面に対する高周波焼入れの前に行う処理)の効果を調べる試験を行った。素材はSUJ3の球状化焼鈍された環状体である。
[3] Verification of pre-processing method
[3-1] Selection of pre-treatment method Pre-treatment using an inner ring (inner diameter is 130 mm, outer diameter is 167 mm, axial dimension is 93 mm) of a cylindrical roller bearing having the structure of FIG. A test was conducted to examine the effect of the treatment performed before induction hardening on the raceway surface and both end surfaces in the axial direction. The material is a spheroidized annular body of SUJ3.

前処理A:内輪を加熱炉に入れて、800℃で0. 5時間保持した後に、室温まで放冷する焼きならしを行う。
前処理B:内輪の軌道面を含む外周面全体と端面を、900℃まで高周波(誘導)加熱した後に、室温まで放冷する焼きならしを行う。
前処理C:内輪の軌道面に対してのみ、900℃まで高周波(誘導)加熱した後に、室温まで放冷する焼きならしを行う。
Pretreatment A: The inner ring is placed in a heating furnace and held at 800 ° C. for 0.5 hours, and then normalization is performed to cool to room temperature.
Pretreatment B: The entire outer peripheral surface including the raceway surface of the inner ring and the end surface are subjected to normalization in which the whole surface and the end surface are heated to high frequency (induction) to 900 ° C. and then allowed to cool to room temperature.
Pretreatment C: After only high-frequency (induction) heating to 900 ° C. only on the raceway surface of the inner ring, normalization is performed to cool to room temperature.

前処理後の高周波焼入れは、硬化層深さが軌道面で4.2mm、端面で2. 0mmとなるように行った。焼入れ後は速やかに200℃にて焼戻し処理を行った。
このようにして得られた、前処理方法のみが異なる各内輪の外周円の真円度を測定した。また、各内輪について、軌道面の残留オースステナイト量、内部の残留オーステナイト量の最低値、端面の残留オーステナイト量、平均残留オーステナイト量を測定した。さらに、各内輪を200℃で300時間保持し、その前後での寸法変化率を測定した。
前処理方法の違いによる真円度の違いを図9に、残留オーステナイト量の違いを表6に示す。
Induction hardening after the pretreatment was performed so that the hardened layer depth was 4.2 mm at the raceway surface and 2.0 mm at the end surface. After quenching, tempering was performed immediately at 200 ° C.
The roundness of the outer circumference circles of the respective inner rings that differed only in the pretreatment method thus obtained was measured. For each inner ring, the amount of retained austenite on the raceway surface, the minimum value of the amount of retained austenite inside, the amount of retained austenite on the end surface, and the amount of average retained austenite were measured. Furthermore, each inner ring was held at 200 ° C. for 300 hours, and the dimensional change rate before and after that was measured.
FIG. 9 shows the difference in roundness due to the difference in the pretreatment method, and Table 6 shows the difference in the amount of retained austenite.

Figure 2014020538
Figure 2014020538

図9の結果から、前処理Aおよび前処理Bと比較して前処理Cの場合、すなわち、前処理として高周波加熱による軌道面のみの焼きならしを行った場合の真円度が小さく、熱処理変形量の低減効果が大きいことが分かる。
また、表6の結果から、前処理Aおよび前処理Bと比較して前処理Cの場合に、寸法変化率が小さくできることが分かる。
From the results shown in FIG. 9, the roundness is small in the case of the pretreatment C compared to the pretreatment A and the pretreatment B, that is, in the case where only the raceway surface is normalized by high frequency heating as the pretreatment. It can be seen that the effect of reducing the deformation amount is great.
Moreover, it can be seen from the results in Table 6 that the dimensional change rate can be reduced in the case of the pretreatment C as compared with the pretreatment A and the pretreatment B.

[3-2] 前処理の有無について
表5に示す組成のSUJ2〜SUJ5と鋼種A〜Cからなる平板状の試験片を使用して、前処理(軌道面と軸方向両端面に対する高周波焼入れの前に行う処理)の必要性を調べる試験を行った。
前処理有りのサンプルでは、先ず、前処理として、各試験片の平板面を、周波数30kHzの誘導コイルで加熱した後、室温まで放冷した。これにより、表面から1mmまでの範囲を、誘導加熱により、内部組織をセメンタイトが3体積%以上残存する「セメンタイトとオーステナイトの二相組織」にした後、冷却によりマルテンサイトの体積率を50%以下にした。
[3-2] Pre-treatment or non-treatment Pre-treatment (high-frequency quenching of both the raceway surface and both axial end surfaces) using a flat specimen made of SUJ2 to SUJ5 and steel types A to C having the composition shown in Table 5 A test was conducted to examine the necessity of the treatment performed before.
In the sample with pretreatment, first, as a pretreatment, the flat plate surface of each test piece was heated with an induction coil having a frequency of 30 kHz and then allowed to cool to room temperature. As a result, the range from the surface to 1 mm is converted into a “two-phase structure of cementite and austenite” where the cementite remains by 3% by volume or more by induction heating, and then the martensite volume fraction is reduced to 50% or less by cooling. I made it.

次に、各試験片の平板面を、周波数30kHzの誘導コイルで、内部組織がセメンタイトとオーステナイトの二相組織となるように加熱した後、25℃の冷却水中に入れて冷却することで、高周波焼入れを行った。次に、各試験片の平板面を、加熱炉に入れて180℃に2時間保持した後、放冷することで焼戻しを行った。   Next, after heating the flat plate surface of each test piece with an induction coil having a frequency of 30 kHz so that the internal structure becomes a two-phase structure of cementite and austenite, the plate is cooled in 25 ° C. cooling water to cool the plate. Quenching was performed. Next, the flat plate surface of each test piece was placed in a heating furnace and held at 180 ° C. for 2 hours, and then tempered by allowing to cool.

前処理無しのサンプルでは、上述の前処理を行わずに、各試験片の平板面を、周波数30kHzの誘導コイルで、内部組織がセメンタイトとオーステナイトの二相組織となるように加熱した後、25℃の冷却水中に入れて冷却することで、高周波焼入れを行った。次に、各試験片の平板面を、加熱炉に入れて180℃に2時間保持した後、放冷することで焼戻しを行った。
得られた各試験片の熱処理が施された平板面について、残留オーステナイト量(γR :体積%)と旧オーステナイトの結晶粒径(d)を測定した。その結果を表7に示す。
In the sample without pretreatment, the plate surface of each test piece was heated with an induction coil having a frequency of 30 kHz so that the internal structure became a two-phase structure of cementite and austenite without performing the above-described pretreatment. Induction hardening was performed by cooling in cooling water at 0 ° C. Next, the flat plate surface of each test piece was placed in a heating furnace and held at 180 ° C. for 2 hours, and then tempered by allowing to cool.
About the flat plate surface in which the heat treatment of each obtained test piece was performed, the amount of retained austenite (γ R : volume%) and the crystal grain size (d) of prior austenite were measured. The results are shown in Table 7.

Figure 2014020538
Figure 2014020538

この結果から、同じ鋼からなる素材を用いた場合は、前処理を行うことで、表面の残留オーステナイト量が増加するとともに、表面の旧オーステナイト粒が微細化することが分かる。
そして、SUJ2およびSUJ4(クロム含有率が高くオーステナイト安定化元素であるMn含有率が低い鋼)からなる素材を用いた場合でも、前処理を行うことで、表面の残留オーステナイト量を12体積%以上にできるとともに、表面の旧オーステナイト結晶粒径を30μm以下にできることが分かる。
From this result, it can be seen that when a material made of the same steel is used, the amount of retained austenite on the surface is increased and the prior austenite grains on the surface are refined by pretreatment.
Even when a material made of SUJ2 and SUJ4 (steel having a high chromium content and a low austenite stabilizing element Mn content) is used, the amount of retained austenite on the surface is 12 vol% or more by performing pretreatment. It can be seen that the prior austenite grain size on the surface can be reduced to 30 μm or less.

また、鋼種A〜C(クロム含有率が低い鋼)、SUJ3およびSUJ5(クロム含有率が高くてもMnを多く含む鋼)からなる素材を用いた場合は、前処理を行わなくても、表面の残留オーステナイト量を12体積%以上にできるとともに、表面の旧オーステナイト結晶粒径を30μm以下にできることが分かる。   In addition, when a material made of steel types A to C (steel with a low chromium content), SUJ3 and SUJ5 (a steel containing a large amount of Mn even if the chromium content is high) is used, the surface can be used without performing pretreatment. It can be seen that the amount of retained austenite can be increased to 12% by volume or more and the prior austenite grain size on the surface can be decreased to 30 μm or less.

[4] 構成(h) についての検証
図1の構造を有する呼び番号NU2326の円筒ころ軸受の内輪(内径が130mm、外径が167mm、軸方向寸法が93mm)用の素材として、SCM420、SUJ2、およびSUJ3製の球状化焼鈍された環状の素材を用意し、この素材を内輪の形状に旋削加工した。
[4] Verification of configuration (h) As materials for the inner ring (inner diameter is 130 mm, outer diameter is 167 mm, axial dimension is 93 mm) of the cylindrical roller bearing of the designation number NU2326 having the structure of FIG. 1, SCM420, SUJ2, And a spheroidized and annealed annular material made of SUJ3, and this material was turned into an inner ring shape.

得られた内輪に対して、浸炭焼入れ(比較例13)を行うか、前述の前処理Cを行った後に軌道面と軸方向両端面に高周波焼入れ(実施例18〜21と比較例14)を行い、次いで200℃にて焼戻し処理を行うことにより、各例で、内輪の各部の残留オーステナイト量を表8に示す各値とした。また、各内輪を200℃で300時間保持し、その前後での寸法変化率を測定した。その結果も表8に併せて示す。   Carburizing and quenching (Comparative Example 13) is performed on the obtained inner ring, or induction hardening (Examples 18 to 21 and Comparative Example 14) is performed on the raceway surface and both axial end surfaces after performing the above-described pretreatment C. Then, by performing tempering treatment at 200 ° C., the amount of retained austenite at each part of the inner ring was set to each value shown in Table 8 in each example. Moreover, each inner ring | wheel was hold | maintained at 200 degreeC for 300 hours, and the dimensional change rate before and behind that was measured. The results are also shown in Table 8.

Figure 2014020538
Figure 2014020538

表8に示すように、軌道面と端面との残留オーステナイト量の差(ΔγR )が10〜21体積%である実施例18〜21の内輪の寸法変化率は、浸炭焼入れを行った比較例13の内輪と同程度であった。軌道面と端面との残留オーステナイト量の差(ΔγR )が6体積%である比較例14の内輪の寸法変化率は、比較例13の内輪よりも大きかった。 As shown in Table 8, the dimensional change rate of the inner ring of Examples 18 to 21 in which the difference (Δγ R ) in the retained austenite amount between the raceway surface and the end surface is 10 to 21% by volume is a comparative example in which carburizing and quenching was performed. It was the same as 13 inner rings. The dimensional change rate of the inner ring of Comparative Example 14 in which the difference (Δγ R ) in retained austenite amount between the raceway surface and the end surface was 6% by volume was larger than that of the inner ring of Comparative Example 13.

この結果から、SUJ2またはSUJ3製で前処理後に高周波焼入れされ、軌道面の残留オーステナイト量が15〜28体積%であり、芯部(非硬化部)に残留オーステナイト量が0体積%の部分を含み、端面の残留オーステナイト量が軌道面の残留オーステナイト量よりも10体積%以上少ない内輪は、SCM420製で浸炭焼入れされた内輪と同程度の寸法安定性を有することが分かる。なお、SUJ3製の素材を用いる場合は、前処理を行わなくても、上記構成の内輪を得ることができる。   From this result, SUJ2 or SUJ3 made by induction hardening after pretreatment, the remaining austenite amount of the raceway surface is 15 to 28% by volume, and the core part (non-hardened part) includes a part of the retained austenite amount of 0% by volume. It can be seen that the inner ring in which the amount of retained austenite on the end face is 10% by volume or less than the amount of retained austenite on the raceway surface has the same dimensional stability as the inner ring carburized and hardened made of SCM420. In addition, when using the material made from SUJ3, the inner ring | wheel of the said structure can be obtained even if it does not pre-process.

[5] 構成(e) についての検証
SUJ3からなり、厚さ6mmで直径60mmの円板状試験片を6枚用意した。そのうちの5枚(No.9-1〜No.9-5)については、各試験片の円板面に、高周波焼入れと焼戻しにより、複数本の直線状の硬化層を、等間隔で放射状に延びるパターンで形成した。その際に、直線状の硬化層の形成本数を変えることで、各試験片の円板面の7%、15%、27%、30%、56%に硬化層が形成されている状態にした。
[5] Verification of Configuration (e) Six disc-shaped test pieces made of SUJ3 and having a thickness of 6 mm and a diameter of 60 mm were prepared. For five of them (No.9-1 to No.9-5), a plurality of linear hardened layers were radially formed at equal intervals on the disk surface of each test piece by induction hardening and tempering. It was formed with an extended pattern. At that time, by changing the number of linear hardened layers formed, hardened layers were formed on 7%, 15%, 27%, 30%, and 56% of the disk surface of each test piece. .

高周波焼入れは、表面から1. 5mmの深さまでがHv550以上となる条件で行った。焼戻しは、炉内で180℃に2時間保持した後、放冷する方法で行った。
残りの1枚(No.9-6)に対しては、加熱炉に入れて840℃に0. 5時間保持した後に油焼入れする「ずぶ焼き」を行った後、180℃に2時間保持した後、放冷する焼戻しを行うことで、試験片の円板面の全てに硬化層を形成した。
Induction hardening was performed under the condition that the depth from the surface to 1.5 mm was Hv550 or higher. The tempering was carried out by a method of allowing to cool in a furnace at 180 ° C. for 2 hours and then allowing to cool.
The remaining one (No. 9-6) was put in a heating furnace and held at 840 ° C. for 0.5 hours, followed by oil quenching and then held at 180 ° C. for 2 hours. Then, the hardening layer was formed in all the disk surfaces of a test piece by performing tempering to cool.

各試験片に対する摩耗試験を以下の方法で行った。先ず、各試験片を摩耗試験機の水平台の上にネジで固定し、その上に呼び番号51305の単式スラスト玉軸受を、中心を合わせて配置する。次に、以下の条件で、この玉軸受の上レースに固定された軸を回転させて、下レースと試験片との間に微少滑りを生じさせる。   The abrasion test for each test piece was performed by the following method. First, each test piece is fixed with screws on a horizontal base of an abrasion tester, and a single-type thrust ball bearing having a nominal number 51305 is arranged on the center thereof. Next, the shaft fixed to the upper race of the ball bearing is rotated under the following conditions to cause a slight slip between the lower race and the test piece.

<摩耗試験条件>
荷重:8820N
潤滑:油浴(VG68)
回転速度:1000min-1
試験時間:20時間
試験終了後に、各試験片の下レースとの接触面について、中心から半径15mm程度の位置を開始点として、径方向に沿って外側に向けて表面状態のライン分析を行い、最も凹んだ位置の深さを摩耗深さとして測定した。その結果を表9に示す。また、この結果から得られた、各試験片の円板面における硬化層の割合と摩耗深さとの関係を図10にグラフで示す。
<Wear test conditions>
Load: 8820N
Lubrication: Oil bath (VG68)
Rotational speed: 1000min -1
Test time: 20 hours After completion of the test, the surface of the contact surface with the lower race of each test piece is subjected to a line analysis of the surface state toward the outside along the radial direction, starting from a position with a radius of about 15 mm from the center. The depth of the most recessed position was measured as the wear depth. The results are shown in Table 9. Moreover, the relationship between the ratio of the hardened layer in the disk surface of each test piece and the wear depth obtained from this result is shown in a graph in FIG.

Figure 2014020538
Figure 2014020538

この結果から、表面硬さがHv550以上である硬化層が30%以上であると、全体を硬化層にした場合とほぼ同等の耐摩耗性が得られることが分かる。よって、内輪および外輪のうち少なくとも一方の嵌め合い面の30%以上の表面硬さをHv550以上とする(すなわち、嵌め合い面の30%以上が高周波焼入れによる硬化層となっている)ことで、嵌め合い面の耐摩耗性を良好にすることができる。   From this result, it can be seen that when the hardness of the hardened layer having a surface hardness of Hv550 or higher is 30% or higher, almost the same wear resistance as that obtained when the whole is a hardened layer can be obtained. Therefore, the surface hardness of 30% or more of the fitting surface of at least one of the inner ring and the outer ring is Hv550 or more (that is, 30% or more of the fitting surface is a hardened layer by induction hardening) The wear resistance of the mating surface can be improved.

1 内輪
11 内輪の軌道面
12 内輪の内周面(嵌め合い面)
12a 硬化層
13 内輪の軸方向端面
2 外輪
21 外輪の軌道面
22 外輪の内周面(嵌め合い面)
23 外輪の軸方向端面
3 円筒ころ(転動体)
4 保持器
41 ポケット
5 主コイル
51 縦部
52 横部
6 補助コイル
61 先端部
7 ローラ
DESCRIPTION OF SYMBOLS 1 Inner ring 11 Inner ring raceway surface 12 Inner ring inner peripheral surface (fitting surface)
12a Hardened layer 13 End surface in the axial direction of the inner ring 2 Outer ring 21 Race surface of the outer ring 22 Inner circumferential surface (fit surface) of the outer ring
23 Axial end face of outer ring 3 Cylindrical roller (rolling element)
4 Cage 41 Pocket 5 Main coil 51 Vertical portion 52 Horizontal portion 6 Auxiliary coil 61 Tip portion 7 Roller

Claims (5)

外周面に軌道面を有し、内周面が軸との嵌め合い面である内輪と、
内周面に軌道面を有し、外周面がハウジングとの嵌め合い面である外輪と、
前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配置された複数の転動体と、 を備え、
前記内輪および前記外輪のうち少なくとも一方は、鋼からなる素材を所定形状に加工した後、球状化焼鈍と、高周波焼入れと、焼戻しを行って得られたものであって、下記構成(a) 〜(e) を有することを特徴とする転がり軸受。
(a) 素材をなす鋼は、合金成分として炭素(C)、クロム(Cr)、 マンガン(Mn)、および珪素(Si)を含有し、ニッケル(Ni)およびモリブデン(Mo)を必要に応じて含有し、残部鉄および不可避的不純物である過共析鋼であって、炭素含有率〔C〕が0.5質量%以上2.0質量%以下であり、下記の(1) 式で定義されるDI値が1.0以上である。
DI=(0.2〔C〕+0.14)(1+0.64〔Si〕)(1+4.1〔Mn〕)(1+0.52〔Ni〕)(1+2.33〔Cr〕)(1+3.14〔Mo〕)…(1)
(1) 式において〔M〕は合金成分Mの含有率(質量%)を意味する。
(b) 前記軌道面の有効硬化層深さ(硬さがHv550以上になっている部分の厚さ)Yo(mm)と転動体の直径Dw(mm)が下記の(2) 式を満たす。
0.07Dw≦Yo≦0.07Dw+5 …(2)
(c) 前記軌道面の表面硬さがHv650以上であり、軌道面の残留オーステナイト量が12体積%以上40体積%以下である。
(d) 前記軌道面の旧オーステナイト結晶粒径が30μm以下である。
(e) 前記嵌め合い面の30%以上の表面硬さがHv550以上である。
An inner ring having a raceway surface on the outer peripheral surface and the inner peripheral surface being a fitting surface with the shaft;
An outer ring having a raceway surface on the inner peripheral surface and the outer peripheral surface being a fitting surface with the housing;
A plurality of rolling elements disposed between the raceway surface of the inner ring and the raceway surface of the outer ring so as to be freely rollable,
At least one of the inner ring and the outer ring is obtained by processing a material made of steel into a predetermined shape, and then performing spheroidizing annealing, induction quenching, and tempering, and the following configuration (a) to A rolling bearing characterized by having (e).
(a) The material steel contains carbon (C), chromium (Cr), manganese (Mn), and silicon (Si) as alloy components, and nickel (Ni) and molybdenum (Mo) as required. It is a hypereutectoid steel that is contained and the balance iron and inevitable impurities, and the carbon content [C] is 0.5 mass% or more and 2.0 mass% or less, and is defined by the following formula (1) The DI value is 1.0 or more.
DI = (0.2 [C] +0.14) (1 + 0.64 [Si]) (1 + 4.1 [Mn]) (1 + 0.52 [Ni]) (1 + 2.33 [Cr]) (1 + 3.14 [ Mo]) ... (1)
In the formula (1), [M] means the content (mass%) of the alloy component M.
(b) The effective hardened layer depth (thickness of the portion where the hardness is Hv550 or more) Yo (mm) and the diameter Dw (mm) of the rolling element satisfy the following formula (2).
0.07 Dw ≦ Yo ≦ 0.07 Dw + 5 (2)
(c) The surface hardness of the raceway surface is Hv650 or more, and the amount of retained austenite of the raceway surface is 12 volume% or more and 40 volume% or less.
(d) The prior austenite grain size of the raceway is 30 μm or less.
(e) The surface hardness of 30% or more of the fitting surface is Hv550 or more.
前記内輪および前記外輪のうち少なくとも一方は、軸方向両端面の表面から0.1mmの深さまでの硬さがHv500以上である請求項1記載の転がり軸受。   2. The rolling bearing according to claim 1, wherein at least one of the inner ring and the outer ring has a hardness of Hv500 or more from a surface of both axial end surfaces to a depth of 0.1 mm. 前記内輪および前記外輪のうち少なくとも一方は、非硬化部に残留オーステナイト量が0体積%である部分を有し、軸方向両端面の残留オーステナイト量が軌道面の残留オーステナイト量よりも10体積%以上少ないものである請求項1または2記載の転がり軸受。   At least one of the inner ring and the outer ring has a portion in which the amount of retained austenite is 0% by volume in the non-hardened portion, and the amount of retained austenite at both axial end surfaces is 10% by volume or more than the amount of retained austenite on the raceway surface. The rolling bearing according to claim 1 or 2, wherein there are few. 請求項1記載の転がり軸受を製造する方法であって、
前記構成(a) を満たす鋼からなり、球状化焼鈍後に内輪または外輪の形状に加工された素材の前記軌道面と軸方向両端面に対して、同時に、内部組織がセメンタイトとオーステナイトの二相組織となるように誘導加熱した後に冷却する高周波焼入れと焼戻しを行い、次いで、前記嵌め合い面に対する高周波焼入れと焼戻しを行うことを特徴とする転がり軸受の製造方法。
A method of manufacturing the rolling bearing according to claim 1,
Concerning the raceway surface and both axial end surfaces of the material made of steel satisfying the above configuration (a) and processed into the shape of an inner ring or an outer ring after spheroidizing annealing, the internal structure is a two-phase structure of cementite and austenite at the same time. A method of manufacturing a rolling bearing, characterized by performing induction quenching and tempering that is cooled after induction heating so as to become, and then performing induction quenching and tempering on the fitting surface.
請求項4記載の転がり軸受の製造方法に用いられる高周波熱処理装置であって、
前記軌道面と軸方向両端面を取り囲んで同時に加熱するコの字型部を有する主コイルと、前記軌道面を加熱する補助コイルを有することを特徴とする高周波熱処理装置。
A high-frequency heat treatment apparatus used in the method of manufacturing a rolling bearing according to claim 4,
A high-frequency heat treatment apparatus comprising: a main coil having a U-shaped portion that surrounds the raceway surface and both end surfaces in the axial direction and simultaneously heats; and an auxiliary coil that heats the raceway surface.
JP2012162867A 2012-07-23 2012-07-23 Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment Pending JP2014020538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162867A JP2014020538A (en) 2012-07-23 2012-07-23 Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162867A JP2014020538A (en) 2012-07-23 2012-07-23 Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment

Publications (1)

Publication Number Publication Date
JP2014020538A true JP2014020538A (en) 2014-02-03

Family

ID=50195667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162867A Pending JP2014020538A (en) 2012-07-23 2012-07-23 Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment

Country Status (1)

Country Link
JP (1) JP2014020538A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
JP2018119609A (en) * 2017-01-25 2018-08-02 Ntn株式会社 Rolling component, bearing and manufacturing method of rolling component
WO2018139460A1 (en) * 2017-01-25 2018-08-02 Ntn株式会社 Rolling component, bearing, and method for producing rolling component
WO2020153243A1 (en) * 2019-01-25 2020-07-30 Ntn株式会社 Race member and rolling bearing
JP2020133849A (en) * 2019-02-25 2020-08-31 Ntn株式会社 Raceway member and rolling bearing
CN111872294A (en) * 2020-07-14 2020-11-03 山东能源重装集团金源机械有限公司 Method for improving forging processing quality of petroleum elevator
CN112135981A (en) * 2018-04-02 2020-12-25 日本精工株式会社 Raceway ring intermediate part of rolling bearing, raceway ring, rolling bearing, and method for manufacturing same
WO2023037846A1 (en) * 2021-09-07 2023-03-16 Ntn株式会社 Machine component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221003A (en) * 2004-02-05 2005-08-18 Nsk Ltd Bearing device for supporting wheel
JP2007297676A (en) * 2006-04-28 2007-11-15 Nsk Ltd Method for manufacturing shaft, and shaft manufactured by the method
JP2010255099A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp Method for manufacturing bearing-component excellent in rolling fatigue characteristics under foreign matter environment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221003A (en) * 2004-02-05 2005-08-18 Nsk Ltd Bearing device for supporting wheel
JP2007297676A (en) * 2006-04-28 2007-11-15 Nsk Ltd Method for manufacturing shaft, and shaft manufactured by the method
JP2010255099A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp Method for manufacturing bearing-component excellent in rolling fatigue characteristics under foreign matter environment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
JP2018119609A (en) * 2017-01-25 2018-08-02 Ntn株式会社 Rolling component, bearing and manufacturing method of rolling component
WO2018139460A1 (en) * 2017-01-25 2018-08-02 Ntn株式会社 Rolling component, bearing, and method for producing rolling component
CN112135981A (en) * 2018-04-02 2020-12-25 日本精工株式会社 Raceway ring intermediate part of rolling bearing, raceway ring, rolling bearing, and method for manufacturing same
EP3779221A4 (en) * 2018-04-02 2021-05-26 Nsk Ltd. Intermediary race member of rolling bearing, race, rolling bearing and production method therefor
US11078961B2 (en) 2018-04-02 2021-08-03 Nsk Ltd. Intermediary race member of rolling bearing, race, rolling bearing and production method therefor
WO2020153243A1 (en) * 2019-01-25 2020-07-30 Ntn株式会社 Race member and rolling bearing
JP2020133849A (en) * 2019-02-25 2020-08-31 Ntn株式会社 Raceway member and rolling bearing
CN111872294A (en) * 2020-07-14 2020-11-03 山东能源重装集团金源机械有限公司 Method for improving forging processing quality of petroleum elevator
WO2023037846A1 (en) * 2021-09-07 2023-03-16 Ntn株式会社 Machine component

Similar Documents

Publication Publication Date Title
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
JP6535276B2 (en) Bearing component, method of manufacturing the same, and rolling bearing
TWI485267B (en) Bearing steel with excellent rolling fatigue characteristics, and manufacturing method thereof
WO2014069068A1 (en) Rolling bearing
WO2013084800A1 (en) Rolling bearing and method for producing same
JP2013011010A (en) Rolling bearing and method of manufacturing the same
JP5728844B2 (en) Rolling bearing
JP2015042897A (en) Method of manufacturing screw shaft of ball screw, and ball screw
JP6725235B2 (en) Rolling sliding member, manufacturing method thereof, and rolling bearing
JP2002180203A (en) Needle bearing components, and method for producing the components
JP5298683B2 (en) Rolling bearing and manufacturing method thereof
JP2019039044A (en) Rolling slide member and rolling bearing
JP2007100126A (en) Rolling member and ball bearing
JP2012031456A (en) Rolling bearing
JP2018021654A (en) Rolling slide member, its manufacturing method, carburization steel material and rolling bearing
JP2015206066A (en) rolling bearing
JP2006299313A (en) Rolling supporter
JP2006328514A (en) Rolling supporting device
JP5991026B2 (en) Manufacturing method of rolling bearing
CN109423575B (en) Rolling sliding member, method for producing rolling sliding member, and rolling bearing comprising rolling sliding member
JP2008266683A (en) Method for producing rolling bearing constituting member, and rolling bearing
JP5119717B2 (en) Method for manufacturing rolling bearing component and rolling bearing
JP2006045591A (en) Tapered roller bearing
JP2006002194A (en) Method for manufacturing shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160816