JP5895493B2 - Rolling bearing manufacturing method, induction heat treatment apparatus - Google Patents

Rolling bearing manufacturing method, induction heat treatment apparatus Download PDF

Info

Publication number
JP5895493B2
JP5895493B2 JP2011269232A JP2011269232A JP5895493B2 JP 5895493 B2 JP5895493 B2 JP 5895493B2 JP 2011269232 A JP2011269232 A JP 2011269232A JP 2011269232 A JP2011269232 A JP 2011269232A JP 5895493 B2 JP5895493 B2 JP 5895493B2
Authority
JP
Japan
Prior art keywords
raceway surface
heat treatment
inner ring
raceway
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011269232A
Other languages
Japanese (ja)
Other versions
JP2012162799A (en
Inventor
秀幸 飛鷹
秀幸 飛鷹
大輔 渡貫
大輔 渡貫
裕加里 片山
裕加里 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011269232A priority Critical patent/JP5895493B2/en
Publication of JP2012162799A publication Critical patent/JP2012162799A/en
Application granted granted Critical
Publication of JP5895493B2 publication Critical patent/JP5895493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、産業用の転がり軸受、特に外輪の外径が180mm以上の大型の転がり軸受、例えば製鉄業の圧延機や風車等に好適な転がり軸受、転がり軸受の製造方法、及びその製造方法に用いられる高周波熱処理装置に関する。   The present invention relates to an industrial rolling bearing, particularly a large rolling bearing having an outer ring with an outer diameter of 180 mm or more, such as a rolling bearing suitable for a rolling mill or a windmill in the steel industry, a manufacturing method of the rolling bearing, and a manufacturing method thereof. The present invention relates to a high-frequency heat treatment apparatus used.

転がり軸受には、寿命と靭性が要求される。産業用の転がり軸受、特に、外輪の外径が180mm以上の大型の転がり軸受、例えば製鉄業の圧延機や風車等に好適な転がり軸受に関しては、高荷重や衝撃的荷重が負荷されることが多く、寿命と靭性のバランスが重要視される。
転がり軸受の転動寿命の原因となる剥離は、内部起点型の剥離と表面起点型の剥離とに大別できる。内部起点型の剥離は、鋼中に含まれる非金属介在物を起点とするため、鋼材の酸素含有量を低減する方法により長寿命化が図られてきた。これまで様々な製鋼プロセスの改善により酸素含有量の低減が図られてきたが、化学成分においては、炭素含有量が多いことが酸素含有量の低下に関して望ましい。実際に中炭素鋼であるS53Cに比べてSUJ2に代表される軸受鋼は高い清浄度を示すことが知られている。一方、表面起点型の剥離は、潤滑剤中に含まれる金属粉などの異物の噛み込みによって生じる圧痕の縁部への応力集中により生じるため、残留オーステナイト量を制御して応力集中を緩和する方法により長寿命化が図られれてきた。
Rolling bearings require life and toughness. Industrial rolling bearings, particularly large rolling bearings having an outer ring with an outer diameter of 180 mm or more, such as rolling bearings suitable for rolling mills and windmills in the steel industry, may be subjected to high loads or impact loads. In many cases, the balance between life and toughness is important.
Separation that causes the rolling life of a rolling bearing can be broadly classified into internal origin type separation and surface origin type separation. Since the internal origin type peeling starts from non-metallic inclusions contained in the steel, the life has been extended by a method of reducing the oxygen content of the steel material. Until now, the oxygen content has been reduced by improving various steelmaking processes, but it is desirable that the chemical component has a high carbon content with respect to the reduction of the oxygen content. In fact, it is known that bearing steel represented by SUJ2 exhibits higher cleanliness than S53C, which is medium carbon steel. On the other hand, surface-origin type peeling is caused by stress concentration at the edge of the indentation caused by biting of foreign matter such as metal powder contained in the lubricant, and therefore, the method of reducing the stress concentration by controlling the amount of retained austenite As a result, a longer life has been achieved.

一般に、表面起点型の剥離は、内部起点型に比べて、明らかに短寿命であることから、長寿命の転がり軸受の開発は、表面起点型の剥離を抑制することにより行われることが多い。ところが、残留オーステナイトを多量に析出させるためには、鋼の表面に炭素や窒素の富化領域を形成させる必要があり、そのためには浸炭処理や浸炭窒化処理などの特殊なガス雰囲気での焼入れが必要となる。更に、多量の残留オーステナイトの析出は、転がり軸受に最も必要な表面硬さの低下をもたらすので、表面硬さを硬質の炭窒化物で補う必要があり、そのためにモリブデンなどの高価な合金元素が添加される場合もある。従って、生産コストの増大を招いている。   In general, the surface-origin type peeling is obviously short-lived compared to the internal-origin type, and therefore development of a long-life rolling bearing is often performed by suppressing surface-origin type peeling. However, in order to precipitate a large amount of retained austenite, it is necessary to form a carbon or nitrogen enriched region on the surface of the steel. For this purpose, quenching in a special gas atmosphere such as carburizing or carbonitriding is required. Necessary. Further, the precipitation of a large amount of retained austenite brings about a decrease in the surface hardness that is most necessary for rolling bearings. Therefore, it is necessary to supplement the surface hardness with a hard carbonitride, which is why expensive alloy elements such as molybdenum are added. Sometimes added. Therefore, the production cost is increased.

一方、靭性に関しては、材料の硬さと二律背反の関係にある。従って、靭性を向上させるためには、基本的には、硬さの低い領域をできるだけ多く確保することが必要となる。このような考え方から、低・中炭素鋼に浸炭処理又は浸炭窒化処理を施して、表面のみを硬化させた浸炭軸受が開発されている。ただし、浸炭鋼は、鉄鋼用の軸受など比較的大きな軸受に使用されることが多く、焼入れ性を確保するために、ニッケル、モリブデン、クロムなどの比較的高価な合金元素の添加が主流であり、浸炭処理などの熱処理の煩雑さと併せて、生産コストの増大を招いている。   On the other hand, regarding toughness, there is a trade-off between the hardness of the material. Therefore, in order to improve toughness, basically, it is necessary to secure as many regions with low hardness as possible. Based on this concept, carburized bearings have been developed in which only the surface is hardened by carburizing or carbonitriding the low / medium carbon steel. However, carburized steel is often used for relatively large bearings such as steel bearings, and the addition of relatively expensive alloy elements such as nickel, molybdenum, and chromium is the mainstream to ensure hardenability. Together with the complicated heat treatment such as carburizing, the production cost is increased.

これに対して、近年では、特許文献1に示されているように、硬さが必要な表面部分のみを焼入れして硬化させる高周波熱処理が注目されている。この手法は、一つの部品の中に、高い面圧に耐える硬化層(焼入れされた表面部分)と、靭性に優れた非硬化層(焼入れされない心部)を作り出すことで、寿命と靭性とを両立させる方法である。また、非硬化層を有することで、表面の硬化層には圧縮残留応力を付与し、寿命の向上やクラック発生の抑制に有効となる。   On the other hand, in recent years, as shown in Patent Document 1, high-frequency heat treatment for quenching and hardening only a surface portion that requires hardness has attracted attention. This method creates life and toughness by creating a hardened layer (hardened surface part) that can withstand high surface pressure and a non-hardened layer (unhardened core) with excellent toughness in one part. It is a method to make it compatible. Moreover, by having a non-hardened layer, a compressive residual stress is provided to the hardened layer on the surface, which is effective in improving the life and suppressing the occurrence of cracks.

また、この高周波熱処理による手法は、熱処理で硬さを制御できるので、高合金の低炭素鋼ではなく、清浄度の優れた汎用の軸受鋼に代表される高炭素鋼を使用することができる。さらに、表面損傷に対して残留オーステナイトが有効であるが、高周波熱処理による手法によれば、高周波焼入れの特性上、電流密度は表面が高いので、母材の炭素濃度が0.7質量%程度であれば、極表層のみに浸炭鋼並の残留オーステナイトを確保することができる。   In addition, since the heat treatment can control the hardness by the heat treatment, high carbon steel represented by general-purpose bearing steel having excellent cleanliness can be used instead of high alloy low carbon steel. Furthermore, although retained austenite is effective against surface damage, according to the technique of induction heat treatment, the current density is high on the surface of induction hardening, so the carbon concentration of the base material is about 0.7% by mass. If it exists, the retained austenite equivalent to carburized steel can be ensured only in the extreme surface layer.

多量の残留オーステナイトは、寸法変化の要因ともなるが、深さ方向で見ると、急激に残留オーステナイト量が低下するので、最大せん断応力深さよりも表面側の部分に多量に残留オーステナイトを存在させつつ全体量を低く抑えられるという利点もある。すなわち、軸受鋼に高周波焼入れを施すことによって、内部疲労及び表面疲労のいずれの破損形態に対しても優れた寿命を有し、耐割れ強度の優れた転がり軸受を得ることができる。
なお、短時間で均一に昇温させることができ、装置も比較的簡易に済むリング状部品の高周波熱処理方法及び装置として、例えば、特許文献2に示すものが知られている。
A large amount of retained austenite can cause dimensional changes, but when viewed in the depth direction, the amount of retained austenite decreases rapidly, so that a large amount of retained austenite is present in the surface side portion from the maximum shear stress depth. There is also an advantage that the total amount can be kept low. That is, by subjecting the bearing steel to induction hardening, it is possible to obtain a rolling bearing having an excellent life with respect to both internal fatigue and surface fatigue, and excellent crack resistance.
As a high-frequency heat treatment method and apparatus for a ring-shaped part that can raise the temperature uniformly in a short time and that requires a relatively simple apparatus, for example, the one shown in Patent Document 2 is known.

また、高周波熱処理方法として、例えば、特許文献3に示すものが知られている。特許文献3には、炭素含有率0.5質量%以上の鋼からなる軸受部品に対して高周波焼入れ処理を施す方法において、高周波加熱して焼入れる焼入工程と、この焼入工程の前に、少なくとも1回、A変態点を超えて高周波加熱して一定温度に保持することにより炭素を素地に溶け込ませた後、A変態点以下に冷却する工程とを備えた高周波焼入れ方法が開示されている。 Further, as a high-frequency heat treatment method, for example, the one shown in Patent Document 3 is known. In Patent Document 3, in a method of subjecting a bearing part made of steel having a carbon content of 0.5% by mass or more to induction hardening, a quenching process in which induction heating is performed and before this quenching process is performed. at least once, after the carbon was dissolve into a green body by holding the high-frequency heating beyond the a 3 transformation point at a constant temperature, induction hardening method and a step of cooling below the a 1 transformation point disclosed Has been.

更に、高周波熱処理方法として、例えば、特許文献4に示すものも知られている。特許文献4には、C:0.1〜0.45重量%と、Cr:0.3〜1.5重量%と、Mn:0.2〜1.5重量%と、Si:0.5〜2重量%と、もしくはAl:0.25〜1.5重量%のいずれか一方または(Si+Al):0.5〜3.0重量%と、P,S,N,Oの不可避的不純物元素を含有し、残部がFeからなる鋼材を用いる転動部材の製造方法であって、その鋼材中のセグメントの平均Cr濃度が2.5〜10重量%になるように加熱温度がA温度〜900℃である[セメンタイト+オーステナイト]二相領域での加熱処理であるCr濃化処理工程と、加熱時間10秒以下でA温度以下の温度から900〜1100℃の焼入れ温度まで誘導加熱し急冷する高周波焼入れ処理工程と、100〜300℃の温度で加熱する焼戻し処理工程とを有し、高周波焼入れ処理工程の前に、300℃〜A温度以下の加熱温度で予備加熱する前加熱処理工程を有し、高周波焼入れ処理工程のA温度以下の温度から900〜1100℃の焼入れ温度までの加熱速度が150℃/sec以上である転動部材の製造方法が開示されている。 Further, as a high-frequency heat treatment method, for example, the one shown in Patent Document 4 is known. In Patent Document 4, C: 0.1 to 0.45% by weight, Cr: 0.3 to 1.5% by weight, Mn: 0.2 to 1.5% by weight, Si: 0.5 ˜2 wt%, or Al: 0.25 to 1.5 wt%, or (Si + Al): 0.5 to 3.0 wt%, inevitable impurity elements of P, S, N, O containing the balance method for manufacturing a rolling contact member using a steel consisting of Fe, the heating temperature such that the average Cr concentration of a segment of the in the steel material is 2.5 to 10% by weight a 1 temperature - [Cementite + austenite] at 900 ° C. Cr concentration treatment process, which is a heat treatment in a two-phase region, and induction heating from a temperature below A 1 to a quenching temperature of 900 to 1100 ° C. with a heating time of 10 seconds or less and rapid cooling Induction hardening process and tempering at a temperature of 100 to 300 ° C. And a processing step and before the induction hardening process, has a pre-heat treatment step of preheating at 300 ° C. to A 1 temperature below the heating temperature, the A 1 temperature below the temperature of the high-frequency quenching step 900 The manufacturing method of the rolling member whose heating rate to the quenching temperature of -1100 degreeC is 150 degreeC / sec or more is disclosed.

また、高周波熱処理方法として、例えば、特許文献5に示すものも知られている。特許文献5には、Cを0.95質量%以上含有する鋼製の素材から、何れかの面に軌道面を設けた中間素材を造った後、この中間素材に、この軌道面の表層部の残留オーステナイト量を増やす為の熱処理工程を施す、転がり軸受用軌道輪の製造方法において、熱処理工程として、軌道面に存在する球状化炭化物組織の面積率が3%以下になるまで、この軌道面を高周波加熱し、続いて、50℃/s以上の冷却速度でA変態点以下まで冷却する第一工程と、炉内雰囲気中で焼入れを行い、その後、焼戻し処理を行う第二工程とを備える転がり軸受用軌道輪の製造方法が開示されている。 Further, as a high-frequency heat treatment method, for example, the one shown in Patent Document 5 is known. In Patent Document 5, after making an intermediate material having a raceway surface on any surface from a steel material containing 0.95% by mass or more of C, a surface layer portion of the raceway surface is formed on the intermediate material. In the method of manufacturing a bearing ring for rolling bearings, which is subjected to a heat treatment step for increasing the amount of retained austenite, the raceway surface until the area ratio of the spheroidized carbide structure existing on the raceway surface becomes 3% or less as the heat treatment step. the high-frequency heating, followed by a first step of cooling by a cooling rate higher than 50 ° C. / s to below the a 1 transformation point, perform quenching in a furnace atmosphere, then, a second step of performing tempering A method for manufacturing a bearing ring for a rolling bearing is disclosed.

特開平11−37163号公報Japanese Patent Laid-Open No. 11-37163 特開2005−325409号公報JP 2005-325409 A 特許第4208426号公報Japanese Patent No. 4208426 特許第4390526号公報Japanese Patent No. 4390526 特開2009−270172号公報JP 2009-270172 A

ところで、高周波焼入れは、浸炭処理に比べると、焼入れされた表面部分と焼入れされない心部との境界領域の硬さ勾配が急激になるので、高い応力が作用する用途では強度の弱い内部に応力が作用して内部起点破壊(いわゆるケースクラッシュ)が発生するという問題がある。
つまり、産業用の転がり軸受は自動車用の転がり軸受等と比べて高い荷重が負荷される場合が多く、せん断応力は鋼の内部にまで作用するので、高周波焼入れを行った場合において、せん断応力が内部にまで作用することを考慮した硬さ勾配にする必要がある。ただし、せん断応力が内部にまで作用することを考慮した硬さ勾配にするため、必要以上に硬化層の深さを大きくすると、十分な靭性を得ることができない。
By the way, in the induction hardening, the hardness gradient in the boundary region between the hardened surface portion and the unquenched core is abrupt compared to the carburizing treatment. There is a problem that internal origin destruction (so-called case crash) occurs due to the action.
In other words, industrial rolling bearings are often subjected to higher loads than automotive rolling bearings, etc., and shear stress acts even inside the steel. It is necessary to make the hardness gradient in consideration of acting inside. However, if the depth of the hardened layer is increased more than necessary in order to obtain a hardness gradient that takes into account that the shear stress acts on the inside, sufficient toughness cannot be obtained.

ここで、特許文献1に記載された転がり軸受の内輪およびその熱処理方法においては、高周波焼入れによって軌道面に勾配を持った硬化層が付与され、さらに軌道面や内径面および心部の硬さについては規定されているが、内部起点破壊や割れを抑制するための硬さ勾配(産業用の転がり軸受などの高い荷重が負荷される転がり軸受においてせん断応力が内部にまで作用することを考慮した硬さ勾配)に関する記載はない。
また、特許文献2に記載されたリング状部品の高周波熱処理方法及び装置においても、内部起点破壊や割れを抑制するための硬さ勾配に関する記載はない。
Here, in the inner ring of the rolling bearing and the heat treatment method described in Patent Document 1, a hardened layer having a gradient is imparted to the raceway surface by induction hardening, and further, the hardness of the raceway surface, the inner diameter surface, and the core portion. However, the hardness gradient for suppressing internal origin fracture and cracking (hardness considering the fact that shear stress acts on the inside of rolling bearings with high loads such as industrial rolling bearings) There is no description about (slope).
In addition, in the high-frequency heat treatment method and apparatus for a ring-shaped component described in Patent Document 2, there is no description regarding a hardness gradient for suppressing internal origin fracture and cracking.

一方、特許文献3に記載された高周波熱処理方法にあっては、高周波加熱して焼入れる焼入工程の前に、少なくとも1回、A変態点を超えて、すなわち[セメンタイト+オーステナイト]二相領域を超えてオーステナイト単相領域まで加熱することが行われている。しかし、軸受鋼には炭化物が分散しており、この炭化物がピン止め効果によって微細な組織を維持していることから、オーステナイト単相領域まで加熱すると、著しい粒成長が起こり、また、炭素が基地に過剰に固溶してしまい残留オーステナイトが過剰に残留し硬さが低下してしまう不都合がある。従って、汎用の軸受鋼に代表にされるような過共析鋼に高周波加熱を行う場合には、その保持温度は[セメンタイト+オーステナイト]二相領域での加熱にとどめるべきである。 On the other hand, in the induction heat treatment method described in Patent Document 3, and high-frequency heating before the quenching step Ru hardening at least once, it exceeds the A 3 transformation point, i.e. [cementite + austenite] biphasic Heating is performed beyond the region to the austenite single phase region. However, since carbides are dispersed in the bearing steel and the carbides maintain a fine structure due to the pinning effect, significant grain growth occurs when heating to the austenite single-phase region, and carbon is the base. This causes an inconvenience that the austenite is excessively dissolved and residual austenite remains excessively and the hardness decreases. Accordingly, when high-frequency heating is performed on hypereutectoid steel represented by general-purpose bearing steel, the holding temperature should be limited to heating in the [cementite + austenite] two-phase region.

一方、軸受鋼に高周波焼入れを行う場合には、前処理として調質処理(焼入れ焼戻し)や焼きならし処理を行うことが一般的である。これは、軸受鋼が、Crを多く含むこと、切削特性の向上を目的に球状化焼鈍されること、球状化炭化物にCrが濃化されることで高温加熱中の炭素の溶けだしを阻害すること、に起因している。炭化物中のCr濃度は500℃〜A変態点以下の温度域の保持時間に大きく左右されるため、空冷以上の速度で冷却すれば問題となるようなCrの再濃化は起こらない。
従って、軸受鋼に高周波焼入れをする場合には、前処理として[セメンタイト+オーステナイト]二相領域まで加熱し、急冷及び焼戻し、あるいは空冷して、炭化物中のCr濃度を低下させ、続いて[セメンタイト+オーステナイト]二相領域まで高周波加熱して焼入れをすることが望ましい。
On the other hand, when induction hardening is performed on bearing steel, it is common to perform tempering treatment (quenching and tempering) or normalizing treatment as a pretreatment. This is because the bearing steel contains a large amount of Cr, is spheroidized for the purpose of improving cutting characteristics, and the spheroidizing carbide concentrates Cr to inhibit carbon melting during high-temperature heating. , Is due to. Since the Cr concentration in the carbide greatly depends on the holding time in the temperature range of 500 ° C. to A 1 transformation point or less, reconcentration of Cr that causes a problem does not occur if it is cooled at a speed higher than air cooling.
Therefore, when induction-hardening bearing steel, as a pretreatment, it is heated to a [cementite + austenite] two-phase region, quenched and tempered, or air-cooled to reduce the Cr concentration in the carbide, and subsequently [cementite + Austenite] It is desirable to quench by induction heating to the two-phase region.

また、特許文献4では、鋼材中のCr濃度を低下させる、高周波焼入れの前処理として、加熱温度がA温度〜900℃である[セメンタイト+オーステナイト]二相領域での加熱処理を行っている。しかしながら、加熱処理は炉内加熱で行われており、生産性の向上には限界がある。
更に、特許文献5では、焼入れ処理の前に、前処理として、軌道面に存在する球状化炭化物組織の面積率が3%以下になるまで、この軌道面を高周波加熱しているが、焼入れ処理を炉内加熱で行っており、特許文献4と同様に、生産性の向上には限界がある。
In Patent Document 4, to lower the Cr concentration in the steel material, as a pretreatment for induction hardening, the heating temperature is subjected to heat treatment at a A 1 temperature to 900 ° C. [cementite + austenite] two phase region . However, the heat treatment is performed by heating in the furnace, and there is a limit to improving the productivity.
Furthermore, in Patent Document 5, this raceway surface is heated at a high frequency until the area ratio of the spheroidized carbide structure existing on the raceway surface becomes 3% or less as a pretreatment before the quenching treatment. As in Patent Document 4, there is a limit to improvement in productivity.

ここで、前処理及び焼入れ処理にて炉内加熱が行われると、生産性の向上に限界がある他、熱処理変形が発生するという問題がある。熱処理変形は、後工程である研削時間に直接影響し、この熱処理変形はA変態点を超えた回数とオーステナイト化した領域が大きくなるほど顕著になる。また、通常の軸受鋼を素材とした場合、2回の相変態が起こる場合があるため、オーステナイト化した領域は最低限に留めるべきであり、前処理及び焼入れ処理の双方の処理に高周波加熱が望ましい。更に、軸受では表面部を全て硬化させる必要があり、炉内加熱により前処理を施した場合、軌道面だけでなく嵌め合い面や端面でも残留オーステナトの量が多くなるという問題がある。軸受において、軌道面では残留オーステナイトは長寿命化に寄与するが、その他の部分では寸法変化の原因となり少ないほど望ましい。 Here, when heating in the furnace is performed in the pretreatment and quenching treatment, there is a problem that heat treatment deformation occurs in addition to a limit in improving productivity. Heat treatment deformation directly affects the grinding time is later step, the heat treatment deformation becomes more remarkable as regions count and austenitizing beyond the A 1 transformation point increases. In addition, when ordinary bearing steel is used as the material, two phase transformations may occur, so the austenitic region should be kept to a minimum, and high-frequency heating is applied to both the pretreatment and the quenching treatment. desirable. Furthermore, it is necessary to harden the entire surface portion of the bearing, and when pretreatment is performed by heating in the furnace, there is a problem that the amount of retained austenate increases not only on the raceway surface but also on the mating surface and the end surface. In bearings, retained austenite contributes to a longer life on the raceway surface, but in other parts, it is preferable that the remaining austenite be a cause of dimensional change.

従って、本発明は上述の問題点に鑑みてなされたものであり、その目的は、内部起点破壊や割れを抑制するための硬さ勾配を適切に規定するとともに、十分な靭性を得ることにより、内部起点破壊が生じにくく長寿命な転がり軸受、転がり軸受の製造方法、及びその製造方法に用いられる高周波熱処理装置を提供することにある。   Therefore, the present invention has been made in view of the above-mentioned problems, and its purpose is to appropriately define a hardness gradient for suppressing internal origin fracture and cracking, and to obtain sufficient toughness, It is an object of the present invention to provide a rolling bearing, a rolling bearing manufacturing method, and a high-frequency heat treatment apparatus used in the manufacturing method that do not easily cause internal origin fracture and have a long life.

上記課題を解決するために、本発明は、軌道面を有する内輪と、該内輪の軌道面に対向する軌道面を有する外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配置された複数の転動体と、を備えた転がり軸受の前記内輪及び前記外輪のうち少なくとも一方からなる軌道輪を製造する方法であって、下記の(a) 〜(c) を満足する鋼材から得られた熱処理前の前記軌道輪に対して、前処理として、高周波加熱により、軌道面のみを[セメンタイト+オーステナイト]二相領域まで加熱後冷却する焼きならし処理を施し、次いで、軌道面が下記の(d) 〜(f) に規定する熱処理品質を満足するように、軸受断面の外周部全てについて[セメンタイト+オーステナイト]二相領域まで高周波焼入れを施すことを特徴とする転がり軸受の製造方法を提供する。
(a) 炭素含有量が0.5質量%以上かつCr,Mn,Si,Ni,Moの合金元素を任意に含み、オーステナイト単相域に加熱し徐冷した際に旧オーステナイト粒界に初析フェライトが析出しない過共析鋼である。
(b) 以下の(1) 式で定義されるDI値が1.0以上である。
DI=D0×f(Si)×f(Mn)×f(Ni)×f(Cr)×f(Mo)…(1)
ここで、D0=0.2×(%C)+0.14
f(Si)=1+0.64×(%Si)
f(Mn)=1+4.1×(%Mn)
f(Ni)=1+0.52×(%Ni)
f(Cr)=1+2.33×(%Cr)
f(Mo)=1+3.14×(%Mo)
但し、%Cは炭素の質量%、%Mnはマンガンの質量%、%Niはニッケルの質量%、%Crはクロムの質量%、%Moはモリブデンの質量%である。
(c) 球状化焼鈍された鋼材である。
(d) 軌道面の有効硬化層深さ(Hv550)であるYo(mm)が下記(2) 式を満足する範囲にある。
0.07Dw≦Yo≦0.07Dw+5…(2)
ここで、Dw:転動体の直径(mm)
(e) 軌道面の表面硬さがHv650以上であるとともに、表面残留オーステナイトが12〜40体積%である。
(f) 軌道面の旧オーステナイトの結晶粒径が30μm以下である。
また、上記課題を解決する第一の転がり軸受は、軌道面を有する内輪と、該内輪の軌道面に対向する軌道面を有する外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配置された複数の転動体とを備え、前記内輪及び前記外輪のうち少なくとも一方が鋼材を用いて製造された転がり軸受において、下記1〜6の条件を満足する。
In order to solve the above problems, the present invention provides an inner ring having a raceway surface, an outer ring having a raceway surface facing the raceway surface of the inner ring, and a raceway surface between the inner ring and a raceway surface of the outer ring. A rolling bearing provided with a plurality of movably arranged rolling elements, and a method of manufacturing a race ring comprising at least one of the inner ring and the outer ring, wherein the following (a) to (c) are satisfied: As a pretreatment, the bearing ring obtained from the steel material to be subjected to heat treatment is subjected to a normalization treatment in which only the raceway surface is heated to a [cementite + austenite] two-phase region and then cooled by high-frequency heating, and then, Rolling bearings characterized by induction hardening to the [cementite + austenite] two-phase region at all outer circumferences of the bearing cross section so that the raceway surface satisfies the heat treatment quality specified in (d) to (f) below. Manufacturing method I will provide a.
(a) The carbon content is 0.5% by mass or more and optionally contains alloying elements of Cr, Mn, Si, Ni, and Mo, and is first precipitated in the prior austenite grain boundaries when heated to the austenite single phase region and gradually cooled. This is a hypereutectoid steel in which ferrite does not precipitate.
(b) The DI value defined by the following formula (1) is 1.0 or more.
DI = D0 * f (Si) * f (Mn) * f (Ni) * f (Cr) * f (Mo) (1)
Here, D0 = 0.2 × (% C) +0.14
f (Si) = 1 + 0.64 × (% Si)
f (Mn) = 1 + 4.1 × (% Mn)
f (Ni) = 1 + 0.52 × (% Ni)
f (Cr) = 1 + 2.33 × (% Cr)
f (Mo) = 1 + 3.14 × (% Mo)
However,% C is mass% of carbon,% Mn is mass% of manganese,% Ni is mass% of nickel,% Cr is mass% of chromium, and% Mo is mass% of molybdenum.
(c) Steel material that has been spheroidized.
(d) Yo (mm) which is the effective hardened layer depth (Hv550) of the raceway surface is in a range satisfying the following formula (2).
0.07 Dw ≦ Yo ≦ 0.07 Dw + 5 (2)
Where Dw: rolling element diameter (mm)
(e) The surface hardness of the raceway surface is Hv650 or more, and the surface retained austenite is 12 to 40% by volume.
(f) The crystal grain size of prior austenite on the raceway surface is 30 μm or less.
Further, a first rolling bearing that solves the above problems includes an inner ring having a raceway surface, an outer ring having a raceway surface facing the raceway surface of the inner ring, and a raceway surface of the inner ring and a raceway surface of the outer ring. and a plurality of rolling elements rotatably disposed rolling, at a rolling bearing at least one of which is manufactured using a steel of the inner ring and the outer ring, it meets the following conditions 1-6.

1.前記鋼材は、炭素含有量が0.5質量%以上かつCr,Mn,Si,Ni,Moの合金元素を任意に含み、オーステナイト単相域に加熱し徐冷した際に旧オーステナイト粒界に初析フェライトが析出しない過共析鋼である。
2.前記鋼材は、以下の(1)式で定義されるDI値が1.0以上である。
DI=D0×f(Si)×f(Mn)×f(Ni)×f(Cr)×f(Mo) …(1)
ここで、D0=0.2×(%C)+0.14
f(Si)=1+0.64×(%Si)
f(Mn)=1+4.1×(%Mn)
f(Ni)=1+0.52×(%Ni)
f(Cr)=1+2.33×(%Cr)
f(Mo)=1+3.14×(%Mo)
但し、%Cは炭素の質量%、%Mnはマンガンの質量%、%Niはニッケルの質量%、%Crはクロムの質量%、%Moはモリブデンの質量%である。
1. The steel material has a carbon content of 0.5% by mass or more and optionally contains an alloy element of Cr, Mn, Si, Ni, and Mo. When the steel material is heated to the austenite single-phase region and gradually cooled, it is the first to the prior austenite grain boundary. This is a hypereutectoid steel in which no precipitated ferrite precipitates.
2. The steel material has a DI value defined by the following formula (1) of 1.0 or more.
DI = D0 * f (Si) * f (Mn) * f (Ni) * f (Cr) * f (Mo) (1)
Here, D0 = 0.2 × (% C) +0.14
f (Si) = 1 + 0.64 × (% Si)
f (Mn) = 1 + 4.1 × (% Mn)
f (Ni) = 1 + 0.52 × (% Ni)
f (Cr) = 1 + 2.33 × (% Cr)
f (Mo) = 1 + 3.14 × (% Mo)
However,% C is mass% of carbon,% Mn is mass% of manganese,% Ni is mass% of nickel,% Cr is mass% of chromium, and% Mo is mass% of molybdenum.

3.前記鋼材は、熱処理が高周波焼入れにより行われ、得られた前記内輪及び前記外輪のうちの少なくとも一方の軌道面が下記4〜6に規定する熱処理品質を有する。
4.得られた前記内輪及び前記外輪のうち少なくとも一方の軌道面の有効硬化層深さ(Hv550)Yo(mm)が下記(2)式を満足する範囲にある。
0.07Dw≦Yo≦0.07Dw+5 …(2)
ここで、Dw:転動体の直径(mm)
5.前記軌道面の表面硬さがHv650以上であるとともに、表面残留オーステナイトが12〜40体積%である。
6.前記軌道面の旧オーステナイトの結晶粒径が30μm以下である。
3. The steel material is heat-treated by induction hardening, and at least one raceway surface of the obtained inner ring and outer ring has a heat treatment quality defined in the following 4 to 6.
4). The effective hardened layer depth (Hv550) Yo (mm) of at least one of the inner ring and the outer ring obtained is in a range satisfying the following expression (2).
0.07Dw ≦ Yo ≦ 0.07Dw + 5 (2)
Where Dw: rolling element diameter (mm)
5. The surface hardness of the raceway surface is Hv650 or more, and the surface retained austenite is 12 to 40% by volume.
6). The crystal grain size of the prior austenite on the raceway surface is 30 μm or less.

また、第二の転がり軸受は、第一の転がり軸受において、前記転がり軸受が回転中に他部品と接触しうる前記内輪及び前記外輪のうち少なくとも一方の軌道面以外の表面全体が、高周波焼入れを含む熱処理により硬化され、その表面硬さがHv500以上であるとともに、Hv500以上に硬化されている部位が表面から0.1mm以上であることを特徴としている。
ここで、内輪及び外輪のうち少なくとも一方が製造される鋼材は、オーステナイト単相域に加熱し徐冷した際に旧オーステナイト粒界に初析フェライトが析出しない過共析鋼である。これにより、焼入れの際の加熱中の結晶粒の成長を防ぐことができる。過共析鋼であれば、基地を完全にオーステナイト化した際に炭化物が残存し、粒成長を防ぐことができる。
Further, the second rolling bearing is the first rolling bearing, wherein the entire surface other than the raceway surface of at least one of the inner ring and the outer ring that can come into contact with other parts while the rolling bearing is rotating is induction-hardened. The surface hardness is Hv500 or higher, and the portion cured to Hv500 or higher is 0.1 mm or more from the surface.
Here, the steel material from which at least one of the inner ring and the outer ring is manufactured is a hypereutectoid steel in which pro-eutectoid ferrite does not precipitate at the prior austenite grain boundaries when heated to the austenite single phase region and gradually cooled. Thereby, the growth of crystal grains during heating during quenching can be prevented. If it is a hypereutectoid steel, carbides remain when the base is completely austenitized, and grain growth can be prevented.

また、鋼材の炭素含有量は0.5質量%以上である。鋼材の合金成分が炭素のみの場合、共析組成は0.77質量%であるが、合金元素の添加(Cr,Mn,Si,Ni,Moの合金元素を任意に添加する)することにより、共析組成の炭素含有量は変化する。また、複数の合金元素が組み合わさった場合、Thermocalcを用いて計算で共析組成の炭素含有量を計算することができる。実験的には950℃に加熱保持後、炉内で冷却した際に旧オーステナイト粒界に初析フェライトが析出しないことが確認された。炭素含有量の下限については焼入れ後の硬さは合金元素の種類や量にかかわらず炭素量に支配されるので、転がり軸受に必要な硬さHRC58以上を確保するために、0.5質量%以上とした。   Moreover, the carbon content of steel materials is 0.5 mass% or more. When the alloy component of the steel material is only carbon, the eutectoid composition is 0.77% by mass, but by adding an alloy element (optionally adding an alloy element of Cr, Mn, Si, Ni, Mo), The carbon content of the eutectoid composition varies. Moreover, when a plurality of alloy elements are combined, the carbon content of the eutectoid composition can be calculated by calculation using Thermocalc. Experimentally, it was confirmed that proeutectoid ferrite does not precipitate at the prior austenite grain boundaries when cooled in the furnace after being heated to 950 ° C. As for the lower limit of the carbon content, the hardness after quenching is governed by the carbon amount regardless of the type and amount of the alloying elements. Therefore, in order to ensure the hardness HRC58 or more required for the rolling bearing, 0.5% by mass That is all.

更に、鋼材は、上記(1)式で定義されるDI値が1.0以上である。DI値は、焼入れ硬化特性を表す指標である。DI値が低い鋼を焼入れした場合、不完全焼入れ組織が発生し、硬度や転がり寿命に悪影響を与える。鋼材のDI値を変化させてそれぞれ焼入れしたときの不完全焼入れ組織について調査した。予備実験によると、不完全焼入れ組織の体積率が5%を超えると硬さに悪影響が現れ始めるので、安全を見て不完全焼入れ組織の体積率が2%以下の場合を良好なものとした。この結果、鋼材のDI値が1.0以上の場合には、不完全焼入れ組織の体積率が2%以下であった。   Further, the steel material has a DI value defined by the above formula (1) of 1.0 or more. The DI value is an index representing quench hardening characteristics. When steel with a low DI value is quenched, an incompletely quenched structure is generated, which adversely affects hardness and rolling life. The incompletely quenched structure was investigated when the DI value of the steel material was changed and quenched. According to the preliminary experiment, when the volume ratio of the incompletely hardened structure exceeds 5%, an adverse effect on the hardness starts to appear. Therefore, the case where the volume ratio of the incompletely hardened structure is 2% or less is considered good for safety. . As a result, when the DI value of the steel material was 1.0 or more, the volume ratio of the incompletely quenched structure was 2% or less.

また、内輪及び外輪のうち少なくと一方の軌道面の有効硬化層深さ(Hv550)Yoを0.07Dw以上とすることにより、内部起点破壊や割れを抑制するための硬さ勾配(産業用の転がり軸受などの高い荷重が負荷される転がり軸受においてせん断応力が内部にまで作用することを考慮した硬さ勾配)を適切に規定し、長寿命となる。Yoを0.07Dw未満とすると、軌道面の有効硬化層深さが浅くなり、心部側に負荷される応力が材料の強度を上回り、内部起点破壊が生じる。また、軌道面の有効硬化層深さ(Hv550)Yoを0.07Dw+5以下とすることにより、高靭性に必要な心部が得られる。Yoを0.07Dw+5より大きくすると、靭性が低くなる。従って、軌道面の有効硬化層深さ(Hv550)Yo(mm)を上記(2)式を満足するとすることにより、内部起点破壊が生じにくく長寿命な転がり軸受を提供できる。   Further, by setting the effective hardened layer depth (Hv550) Yo of at least one of the inner ring and the outer ring to 0.07 Dw or more, a hardness gradient (industrial grade for suppressing internal origin fracture and cracking). In a rolling bearing such as a rolling bearing that is loaded with a high load, a hardness gradient that takes into account that shear stress is applied to the inside is properly defined, and the service life is increased. If Yo is less than 0.07 Dw, the effective hardened layer depth of the raceway surface becomes shallow, the stress applied to the core side exceeds the strength of the material, and internal origin fracture occurs. Moreover, the core part required for high toughness is obtained by making the effective hardened layer depth (Hv550) Yo of a raceway surface into 0.07 Dw + 5 or less. When Yo is larger than 0.07 Dw + 5, the toughness is lowered. Therefore, when the effective hardened layer depth (Hv550) Yo (mm) of the raceway surface satisfies the above formula (2), it is possible to provide a long-life rolling bearing that is less likely to cause internal origin fracture.

また、軌道面の表面硬さがHv650以上であるとともに、表面残留オーステナイトが12〜40体積%であるので、表面起点による破壊が生じにくくなり、長寿命とすることができる。軌道面の表面硬さがHv650未満であると、表面起点による破壊が生じ易い。また、表面残留オーステナイトが12%未満であっても、表面起点による破壊が生じ易い。また、表面残留オーステナイトが40体積%よりも大きいと、焼き割れを発生する場合があるため、表面残留オーステナイトが40体積%以下とする。   Further, since the surface hardness of the raceway surface is Hv650 or more and the surface retained austenite is 12 to 40% by volume, it is difficult to cause destruction due to the surface starting point, and the life can be extended. When the surface hardness of the raceway surface is less than Hv650, breakage due to the surface starting point is likely to occur. Moreover, even if the surface retained austenite is less than 12%, breakage due to the surface starting point is likely to occur. In addition, if the surface retained austenite is larger than 40% by volume, there is a case where burn cracking may occur, so the surface retained austenite is made 40% by volume or less.

更に、軌道面の旧オーステナイトの結晶粒径が30μm以下であるので、良好な寿命及び耐衝撃性を得ることができる。当該結晶粒径が30μmよりも大きいと、結晶粒が粗大化したことにより材料強度が低下し、寿命の低下及び耐衝撃性の低下の起因となる。
また、転がり軸受が回転中に他部品と接触しうる内輪及び外輪のうち少なくとも一方の軌道面以外の表面全体が、高周波焼入れを含む熱処理により硬化され、その表面硬さがHv500以上であるとともに、Hv500以上に硬化されている部位が表面から0.1mm以上であるので、他部品との接触による摩耗や、嵌合部のフレッチングなどが発生する環境下で使用されても長寿命な転がり軸受とすることができる。
Furthermore, since the crystal grain size of the prior austenite on the raceway surface is 30 μm or less, good life and impact resistance can be obtained. If the crystal grain size is larger than 30 μm, the crystal grains are coarsened, resulting in a decrease in material strength, resulting in a decrease in life and impact resistance.
Further, the entire surface other than the raceway surface of at least one of the inner ring and the outer ring that can be in contact with other components during rotation of the rolling bearing is hardened by heat treatment including induction hardening, and the surface hardness is Hv 500 or more, Since the portion hardened to Hv500 or more is 0.1 mm or more from the surface, it is a rolling bearing having a long life even when used in an environment in which wear due to contact with other parts or fretting of fitting parts occurs. can do.

また、第三の転がり軸受は、第一又は第二の転がり軸受において、前記軌道面の硬化層のうち、硬さがHv650の部分とHv400の部分との間の深さ方向の硬さ勾配が、1000以下であることを特徴としている。 これにより、軌道面における硬化層の硬さ勾配が、内輪や外輪に作用するせん断応力の分布(せん断応力の勾配)よりも緩やか、または同程度となるので、寿命と高靭性の両立を図ることができる。 Further, the third rolling bearing has a hardness gradient in the depth direction between the Hv650 portion and the Hv400 portion of the hardened layer of the raceway surface in the first or second rolling bearing. , 1000 or less. As a result, the hardness gradient of the hardened layer on the raceway surface is gentler or similar to the distribution of shear stress acting on the inner ring and outer ring (shear stress gradient). Can do.

これにより、軌道面の組織状態が良好(不完全焼入れ組織がなく、表面残留オーステナイトが12〜40体積%となり、軌道面の旧オーステナイトの結晶粒径が30μm以下である)な内輪及び外輪を有する転がり軸受が得られる。なお、前処理及び焼入れ処理共に高周波加熱としているので、生産性に優れると共に、軸受の熱処理による寸法変形が小さく、軸受の嵌め合い面及び端面の残留オーステナイトが多くなるのを回避することができる。   As a result, the inner and outer rings of the raceway surface are excellent (there is no incompletely quenched structure, the surface retained austenite is 12 to 40% by volume, and the crystal grain size of the prior austenite of the raceway is 30 μm or less). A rolling bearing is obtained. In addition, since both the pretreatment and the quenching treatment are high-frequency heating, the productivity is excellent, the dimensional deformation due to the heat treatment of the bearing is small, and the retained austenite on the fitting surface and the end face of the bearing can be avoided.

また、本発明の高周波熱処理装置は、本発明の転がり軸受の製造方法に用いられる高周波熱処理装置であって、前記内輪及び外輪の円周上に2個以上のコイルを部分的に配置し、前記コイルの一つ以上が軸受断面の外周部全てを加熱する環状コイルであり、前記コイルの他方が軌道面のみを加熱する平面コイルであることを特徴としている。 The high-frequency heat treatment apparatus of the present invention is an induction heat treatment apparatus used in the production process of the rolling bearing of the present invention, two or more coils partially arranged on the circumference of the inner ring and the outer ring, One or more of the coils are annular coils that heat the entire outer peripheral portion of the bearing cross section, and the other of the coils is a planar coil that heats only the raceway surface.

この高周波熱処理装置を用いることにより、本発明の転がり軸受の製造方法を適切に実現することができる。つまり、軌道面のみを加熱する平面コイルを主体に軌道面のみに前処理を行い、軸受断面の外周部全てを加熱する環状コイルにより軸受断面の外周部全てについて焼入れ処理を行い、軌道面のみの硬化層を厚くし、軌道面の組織状態が良好(不完全焼入れ組織がなく、表面残留オーステナイトが12〜40体積%となり、軌道面の旧オーステナイトの結晶粒径が30μm以下である)な内輪及び外輪を有する転がり軸受を得ることができる。
種々のコイル形状の中で、ワーク断面を全て囲むようにコイルを配置する環状コイルは均一加熱に適したコイルとして実用化されているが、硬化層深さに対するコイルギャップの依存性が少なく、コアなどを使用しても軌道面のみの硬化層を厚くするような微調整が難しい。これに対して、軌道面のみを加熱する平面コイルにより軌道面のみに前処理を行い、軸受断面の外周部全てを加熱する環状コイルにより軸受断面の外周部全てについて焼入れ処理を行うことで、軌道面のみの硬化層を容易に厚くすることができる。
By using this high-frequency heat treatment apparatus, the rolling bearing manufacturing method of the present invention can be appropriately realized. In other words, pre-treatment is performed only on the raceway surface mainly using a planar coil that heats only the raceway surface, and all the outer periphery portion of the bearing cross section is quenched by an annular coil that heats all the outer circumference portion of the bearing cross section. An inner ring having a thickened hardened layer and a favorable structure of the raceway surface (there is no incompletely quenched structure, the surface retained austenite is 12 to 40% by volume, and the crystal grain size of the prior austenite on the raceway is 30 μm or less); A rolling bearing having an outer ring can be obtained.
Among various coil shapes, the annular coil that arranges the coil so as to surround the entire work section is put into practical use as a coil suitable for uniform heating, but the dependency of the coil gap on the hardened layer depth is small, and the core However, it is difficult to make fine adjustments to make the hardened layer only on the raceway surface thick. On the other hand, a pre-treatment is performed only on the raceway surface by a planar coil that heats only the raceway surface, and a quenching treatment is performed on the entire outer periphery portion of the bearing cross section using an annular coil that heats the entire outer circumference portion of the bearing cross section. The hardened layer only on the surface can be easily thickened.

更に、第五の転がり軸受は、本発明の転がり軸受の製造方法により製造された転がり軸受であって、前記軌道面の残留オーステナイトが12〜40体積%であり、軸受内部に残留オーステナイトが0体積%の部分を含み、かつ、嵌め合い面の残留オーステナイトが前記軌道面の残留オーステナイトよりも10体積%以上低いことを特徴としている。
これにより、寸法変化が小さく浸炭軸受と同レベルの寸法安定性を確保した転がり軸受とすることができる。
Further, the fifth rolling bearing is a rolling bearing manufactured by the method of manufacturing a rolling bearing according to the present invention , wherein the retained austenite of the raceway surface is 12 to 40% by volume, and the retained austenite is 0 volume inside the bearing. %, And the retained austenite of the mating surface is 10 volume% or less lower than the retained austenite of the raceway surface.
Thereby, it can be set as a rolling bearing which secured the same level dimensional stability as a carburized bearing with a small dimensional change.

本発明に係る転がり軸受、転がり軸受の製造方法、及びその製造方法に用いられる高周波熱処理装置によれば、内部起点破壊や割れを抑制するための硬さ勾配を適切に規定するとともに、十分な靭性を得ることにより、内部起点破壊が生じにくく長寿命な転がり軸受、転がり軸受の製造方法、及びその製造方法に用いられる高周波熱処理装置を提供できる。   According to the rolling bearing, the manufacturing method of the rolling bearing, and the high-frequency heat treatment apparatus used in the manufacturing method according to the present invention, the hardness gradient for suppressing internal origin fracture and cracking is appropriately defined and sufficient toughness is provided. By obtaining the above, it is possible to provide a rolling bearing having a long life that is unlikely to cause internal origin fracture, a method for manufacturing the rolling bearing, and a high-frequency heat treatment apparatus used in the manufacturing method.

本発明に係る転がり軸受の一実施形態である円筒ころ軸受の部分断面図である。It is a fragmentary sectional view of the cylindrical roller bearing which is one Embodiment of the rolling bearing which concerns on this invention. 本発明に係る転がり軸受の他の実施形態である円錐ころ軸受の内輪の断面図である。It is sectional drawing of the inner ring | wheel of the tapered roller bearing which is other embodiment of the rolling bearing which concerns on this invention. 本発明に係る高周波熱処理装置の一例の概略説明図である。It is a schematic explanatory drawing of an example of the high frequency heat processing apparatus which concerns on this invention. 実施例1及び比較例1における硬さと表面からの距離との関係を示すグラフである。It is a graph which shows the relationship between the hardness in Example 1 and Comparative Example 1 and the distance from the surface. 各実施例及び比較例1、3、4におけるL10寿命比と有効硬化層深さとの関係を示すグラフである。It is a graph which shows the relationship between L10 life ratio and effective hardened layer depth in each Example and Comparative Examples 1, 3, and 4. FIG. 各実施例及び比較例2、3、4におけるL10寿命比と旧オーステナイトの結晶粒径との関係を示すグラフである。It is a graph which shows the relationship between the L10 life ratio in each Example and Comparative Examples 2, 3, and 4 and the crystal grain size of prior austenite. 各実施例及び比較例5、6、7におけるL10寿命比と残留オーステナイト量との関係を示すグラフである。It is a graph which shows the relationship between L10 life ratio and residual austenite amount in each Example and Comparative Examples 5, 6, and 7. 各実施例及び比較例8、9、10における圧砕強度比と有効硬化層深さとの関係を示すグラフである。It is a graph which shows the relationship between the crushing strength ratio and effective hardened layer depth in each Example and Comparative Examples 8, 9, and 10. 各実施例及び比較例11、12における有効硬化層深さところ径との関係を示すグラフである。It is a graph which shows the relationship between the effective hardened layer depth and diameter in each Example and Comparative Examples 11 and 12. 呼び番号:NU2326の軸受の内輪について種々の熱処理法を施した場合に、その熱処理法と真円度との関係を示すグラフである。It is a graph which shows the relationship between the heat processing method and roundness, when various heat processing methods are given about the inner ring | wheel of the bearing number: NU2326.

以下、本発明の実施の形態を図面を参照して説明する。図1は、本発明に係る転がり軸受の一実施形態である円筒ころ軸受の部分断面図である。
図1に示す円筒ころ軸受1は、産業用の転がり軸受、特に外輪の外径が180mm以上の大型の転がり軸受、例えば製鉄業の圧延機や風車等に用いられる。
この円筒ころ軸受1は、軌道面11aを外周側に有する内輪11と、内輪11の軌道面11aに対向する軌道面12aを内周側に有する外輪12と、内輪11の軌道面11aと外輪12の軌道面12aとの間に転動自在に配置された複数の転動体(円筒ころ)13とを備えている。そして、内輪11と外輪12との間には、転動体13を保持する保持器14が備えられている。両軌道面11a,12aと転動体13の転動面13aとの間の潤滑は、グリース、潤滑油等の潤滑剤(図示せず)により行われている。なお、保持器14は備えていなくてもよい。また、円筒ころ軸受1は、シール、シールド等の密封装置(図示せず)を備えていてもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partial sectional view of a cylindrical roller bearing which is an embodiment of a rolling bearing according to the present invention.
A cylindrical roller bearing 1 shown in FIG. 1 is used for industrial rolling bearings, particularly large-sized rolling bearings having an outer ring with an outer diameter of 180 mm or more, such as rolling mills and windmills in the steel industry.
The cylindrical roller bearing 1 includes an inner ring 11 having a raceway surface 11a on the outer peripheral side, an outer ring 12 having a raceway surface 12a facing the raceway surface 11a of the inner ring 11 on the inner peripheral side, and a raceway surface 11a and an outer ring 12 of the inner ring 11. A plurality of rolling elements (cylindrical rollers) 13 are provided so as to freely roll between the raceway surface 12a. A cage 14 that holds the rolling elements 13 is provided between the inner ring 11 and the outer ring 12. Lubrication between the raceway surfaces 11a and 12a and the rolling surface 13a of the rolling element 13 is performed by a lubricant (not shown) such as grease or lubricating oil. In addition, the holder | retainer 14 does not need to be provided. Moreover, the cylindrical roller bearing 1 may be provided with sealing devices (not shown), such as a seal and a shield.

ここで、内輪11及び外輪12の双方は、鋼材を用いて製造されている。この鋼材は、炭素含有量が0.5質量%以上かつCr,Mn,Si,Ni,Moの合金元素を任意に含む、過共析鋼である。過共析鋼とは、平衡状態図で定義される共析組成以上の炭素鋼であり、実験的には、オーステナイト単相域に加熱し徐冷した際に旧オーステナイト粒界に初析フェライトが析出しない鋼である。   Here, both the inner ring | wheel 11 and the outer ring | wheel 12 are manufactured using steel materials. This steel material is a hypereutectoid steel having a carbon content of 0.5% by mass or more and optionally containing alloy elements of Cr, Mn, Si, Ni, and Mo. Hypereutectoid steel is a carbon steel with a composition equal to or greater than the eutectoid composition defined by the equilibrium diagram, and experimentally, when it is heated to an austenite single phase region and annealed, proeutectoid ferrite is formed at the prior austenite grain boundaries. It is a steel that does not precipitate.

この鋼材において、炭素含有量が0.5質量%以上である。鋼材の合金成分が炭素のみの場合、共析組成は0.77質量%であるが、合金元素の添加(Cr,Mn,Si,Ni,Moの合金元素を任意に添加する)することにより、共析組成の炭素含有量は変化する。炭素含有量の下限を0.5質量%としたのは、転がり軸受に必要な硬さHRC58以上を確保するためである。一方、炭素含有量が2質量%を超えると、素材の製造過程においてオーステナイト単相とすることができず、初晶セメンタイトが残存し、寿命に悪影響を及ぼすことが懸念されるから、炭素含有量の上限は2質量%とすることが好ましい。   In this steel material, the carbon content is 0.5 mass% or more. When the alloy component of the steel material is only carbon, the eutectoid composition is 0.77% by mass, but by adding an alloy element (optionally adding an alloy element of Cr, Mn, Si, Ni, Mo), The carbon content of the eutectoid composition varies. The reason why the lower limit of the carbon content is set to 0.5% by mass is to secure a hardness HRC58 or more necessary for the rolling bearing. On the other hand, if the carbon content exceeds 2% by mass, the austenite single phase cannot be formed in the raw material production process, and primary crystal cementite remains, which may cause adverse effects on the life. The upper limit is preferably 2% by mass.

また、この鋼材において、Crの含有量は、4質量%以下とすることが好ましい。Crは、焼入れ性を確保する重要な元素であり、軸受鋼には通常1〜1.5質量%含まれる。一方で、含有量が4質量%を超えると、溶製時に巨大な炭化物を生成しやすくなり、転がり疲労特性を劣化させる原因となりやすいため、Cr含有量の上限値を4質量%とすることが好ましい。   In the steel material, the Cr content is preferably 4% by mass or less. Cr is an important element for ensuring hardenability, and the bearing steel usually contains 1 to 1.5% by mass. On the other hand, if the content exceeds 4% by mass, it becomes easy to generate huge carbides at the time of melting, which tends to cause deterioration of rolling fatigue characteristics, so the upper limit of Cr content may be 4% by mass. preferable.

また、この鋼材において、Mnの含有量は、2質量%以下とすることが好ましい。Mnは、焼入れ性を確保する元素であり、軸受鋼にも通常1質量%含まれる。一方で、添加が過剰になると、残留オーステナトの生成が過剰となり、硬さを得にくくなるため、Mn含有量の上限値を2質量%とすることが好ましい。
更に、この鋼材において、Siの含有量は、2質量%以下とすることが好ましい。Siは焼戻し軟化抵抗性を付与できる元素であり、転がり疲労に対して有効な元素である。ただし、フェライトの硬化能が高く、球状化焼鈍時に硬度を低下させにくいという欠点も有する。従って、生産性を考慮してSi含有量の上限値を2質量%とすることが好ましい。
Moreover, in this steel material, it is preferable that content of Mn shall be 2 mass% or less. Mn is an element that ensures hardenability and is usually contained in the bearing steel by 1% by mass. On the other hand, if the addition is excessive, the production of residual austenate becomes excessive and it is difficult to obtain hardness, so the upper limit of the Mn content is preferably 2% by mass.
Furthermore, in this steel material, the Si content is preferably 2% by mass or less. Si is an element that can impart temper softening resistance and is an effective element against rolling fatigue. However, it also has the drawbacks that the hardenability of ferrite is high and it is difficult to reduce the hardness during spheroidizing annealing. Therefore, it is preferable to set the upper limit of the Si content to 2% by mass in consideration of productivity.

また、この鋼材において、Niの含有量は、3.5質量%以下とすることが好ましい。Niは焼入れ性を確保する元素であり、軸受鋼に不足する靭性を向上させる有効な元素である。ただし、高価な元素であるため、経済性を考慮して、Ni含有量の上限値を3.5質量%とすることが好ましい。
更に、この鋼材において、Moの含有量は、1.5質量%以下とすることが好ましい。Moは焼入れ性を確保する元素であり、共析組成を低炭素側に移動させる重要な元素である。一方で、Niと同様に高価な元素であるため、経済性を考慮して、Mo含有量の上限値を1.5質量5とすることが好ましい。
In this steel material, the Ni content is preferably 3.5% by mass or less. Ni is an element that ensures hardenability and is an effective element that improves toughness that is insufficient for bearing steel. However, since it is an expensive element, it is preferable that the upper limit of the Ni content is 3.5% by mass in consideration of economy.
Furthermore, in this steel material, the Mo content is preferably 1.5% by mass or less. Mo is an element that ensures hardenability and is an important element that moves the eutectoid composition to the low carbon side. On the other hand, since it is an expensive element like Ni, it is preferable to set the upper limit of the Mo content to 1.5 mass 5 in consideration of economy.

また、鋼材は、以下の(1)式で定義されるDI値が1.0以上である。
DI=D0×f(Si)×f(Mn)×f(Ni)×f(Cr)×f(Mo) …(1)
ここで、D0=0.2×(%C)+0.14
f(Si)=1+0.64×(%Si)
f(Mn)=1+4.1×(%Mn)
f(Ni)=1+0.52×(%Ni)
f(Cr)=1+2.33×(%Cr)
f(Mo)=1+3.14×(%Mo)
但し、%Cは炭素の質量%、%Mnはマンガンの質量%、%Niはニッケルの質量%、%Crはクロムの質量%、%Moはモリブデンの質量%である。
Further, the steel material has a DI value defined by the following formula (1) of 1.0 or more.
DI = D0 * f (Si) * f (Mn) * f (Ni) * f (Cr) * f (Mo) (1)
Here, D0 = 0.2 × (% C) +0.14
f (Si) = 1 + 0.64 × (% Si)
f (Mn) = 1 + 4.1 × (% Mn)
f (Ni) = 1 + 0.52 × (% Ni)
f (Cr) = 1 + 2.33 × (% Cr)
f (Mo) = 1 + 3.14 × (% Mo)
However,% C is mass% of carbon,% Mn is mass% of manganese,% Ni is mass% of nickel,% Cr is mass% of chromium, and% Mo is mass% of molybdenum.

このように、DI値が1.0以上としたのは、次の理由による。即ち、DI値は、焼入れ硬化特性を表す指標である。DI値が低い鋼を焼入れした場合、不完全焼入れ組織が発生し、硬度や転がり寿命に悪影響を与える。このため、DI値を1.0以上とした。後述するように、鋼材のDI値が1.0以上の場合には、不完全焼入れ組織の体積率が2%以下であり、良好な結果が得られている。   Thus, the reason why the DI value is 1.0 or more is as follows. That is, the DI value is an index representing quench hardening characteristics. When steel with a low DI value is quenched, an incompletely quenched structure is generated, which adversely affects hardness and rolling life. For this reason, DI value was 1.0 or more. As will be described later, when the DI value of the steel material is 1.0 or more, the volume ratio of the incompletely quenched structure is 2% or less, and good results are obtained.

また、転動体13は、SUJ3等の軸受鋼で構成されている。
また、内輪11及び外輪12の鋼材は、熱処理が高周波焼入れにより行われ、得られた内輪及び外輪の軌道面11a,12aが下記1〜3に規定する熱処理品質を有している。
1.内輪11及び外輪12の軌道面11a,12aの有効硬化層深さ(Hv550)Yo(mm)が下記(2)式を満足する範囲に調整される。
0.07Dw≦Yo≦0.07Dw+5 …(2)
ここで、Dw:転動体の直径(mm)
Moreover, the rolling element 13 is comprised by bearing steel, such as SUJ3.
Moreover, the steel materials of the inner ring 11 and the outer ring 12 are heat-treated by induction hardening, and the obtained inner ring and outer ring raceway surfaces 11a and 12a have the heat treatment quality defined in the following 1-3.
1. The effective hardened layer depth (Hv550) Yo (mm) of the raceway surfaces 11a and 12a of the inner ring 11 and the outer ring 12 is adjusted to a range satisfying the following expression (2).
0.07Dw ≦ Yo ≦ 0.07Dw + 5 (2)
Where Dw: rolling element diameter (mm)

このように、軌道面11a,12aの有効硬化層深さ(Hv550)Yo(mm)を0.07Dw以上とすることにより、内部起点破壊や割れを抑制するための硬さ勾配(産業用の転がり軸受などの高い荷重が負荷される転がり軸受においてせん断応力が内部にまで作用することを考慮した硬さ勾配)を適切に規定し、長寿命の円筒ころ軸受1とすることができる。ここで、軌道面11a,12aの有効硬化層深さ(Hv550)を0.07Dw未満とすると、軌道面11a,12aの有効硬化層深さが浅くなり、心部側に負荷される応力が材料の強度を上回り、内部起点破壊が生じる。また、軌道面11a,12aの有効硬化層深さ(Hv550)Yo(mm)を0.07Dw+5以下とすることにより、高靭性に必要な心部が得られる。軌道面11a,12aの有効硬化層深さ(Hv550)Yoを0.07Dw+5より大きくすると、心部の靭性が低くなる。これにより、内部起点破壊が生じにくく長寿命な円筒ころ軸受1を提供できる。   Thus, by setting the effective hardened layer depth (Hv550) Yo (mm) of the raceway surfaces 11a and 12a to 0.07 Dw or more, a hardness gradient (industrial rolling) for suppressing internal origin fracture and cracking. In a rolling bearing that is loaded with a high load such as a bearing, a long-life cylindrical roller bearing 1 can be obtained by appropriately defining a hardness gradient that takes into account that shear stress acts to the inside. Here, if the effective hardened layer depth (Hv550) of the raceway surfaces 11a and 12a is less than 0.07 Dw, the effective hardened layer depth of the raceway surfaces 11a and 12a becomes shallow, and the stress applied to the core side is a material. The internal origin fracture occurs. Moreover, the core part required for high toughness is obtained by making the effective hardened layer depth (Hv550) Yo (mm) of the raceway surfaces 11a and 12a 0.07 Dw + 5 or less. When the effective hardened layer depth (Hv550) Yo of the raceway surfaces 11a and 12a is larger than 0.07 Dw + 5, the toughness of the core is lowered. Thereby, it is possible to provide the long-life cylindrical roller bearing 1 that is less likely to cause internal origin fracture.

2.軌道面11a,12aの表面硬さがHv650以上であるとともに、表面残留オーステナイトが12〜40体積%である。
これにより、表面起点による破壊が生じにくくなり、長寿命とすることができる。軌道面11a,12aの表面硬さがHv650未満であると、表面起点による破壊が生じ易い。また、表面残留オーステナイトが12体積%未満であっても、表面起点による破壊が生じ易い。また、表面残留オーステナイトが40体積%よりも大きいと、焼き割れを発生する場合があるため、表面残留オーステナイトが40体積%以下とする。
2. The surface hardness of the raceway surfaces 11a and 12a is Hv650 or more, and the surface retained austenite is 12 to 40% by volume.
Thereby, it becomes difficult to produce the destruction by the surface starting point, and it can be made long life. When the surface hardness of the raceway surfaces 11a and 12a is less than Hv650, the surface start point is liable to break. Moreover, even if the surface retained austenite is less than 12% by volume, breakage due to the surface origin is likely to occur. In addition, if the surface retained austenite is larger than 40% by volume, there is a case where burn cracking may occur, so the surface retained austenite is made 40% by volume or less.

3.軌道面11a,12aの旧オーステナイトの結晶粒径が30μm以下である。
これにより、良好な寿命及び耐衝撃性を得ることができる。当該結晶粒径が30μmよりも大きいと、結晶粒が粗大化したことにより材料強度が低下し、寿命の低下及び耐衝撃性の低下の起因となる。
また、円筒ころ軸受1が回転中に他部品と接触しうる内輪11及び外輪12のうち少なくとも一方の軌道面11a,12a以外の表面全体(内輪11の内径面15、内輪11の端面17、外輪12の端面17、外輪12の外径面16)が、高周波焼入れを含む熱処理により硬化され、その表面硬さがHv500以上であるとともに、Hv500以上に硬化されている部位が表面から0.1mm以上であることが好ましい。これにより、他部品との接触による摩耗や、嵌合部のフレッチングなどが発生する環境下で使用されても長寿命な円筒ころ軸受1とすることができる。
3. The crystal grain size of prior austenite on the raceway surfaces 11a and 12a is 30 μm or less.
Thereby, a favorable lifetime and impact resistance can be obtained. If the crystal grain size is larger than 30 μm, the crystal grains are coarsened, resulting in a decrease in material strength, resulting in a decrease in life and impact resistance.
Further, the entire surface other than at least one of the raceway surfaces 11a and 12a (the inner surface 15 of the inner ring 11, the end surface 17 of the inner ring 11, the outer ring) of the inner ring 11 and the outer ring 12 with which the cylindrical roller bearing 1 can come into contact with other parts during rotation. The end face 17 of 12 and the outer diameter surface 16) of the outer ring 12 are hardened by heat treatment including induction hardening, and the surface hardness is Hv500 or more, and the part hardened to Hv500 or more is 0.1 mm or more from the surface. It is preferable that Thereby, even if it uses in the environment where the abrasion by contact with other components, the fretting of a fitting part, etc. generate | occur | produce, it can be set as the long life cylindrical roller bearing 1. FIG.

なお、図1に示すように、外輪12のつば内周18側や、図2に示すように、円錐ころ軸受の内輪21のつば端部22など、転がり軸受の回転中にシール等の他部品と接触が起こり得ない部分においては、摩耗やフレッチングが発生しないため、表面硬化せずとも構わない。
また、内輪11及び外輪12のうち少なくとも一方の心部の硬さはHv500以下が好ましく、特にHv300以下であると、より良好な靭性を得ることができる。
また、内輪11の軌道面11a及び外輪12の軌道面12aのうち少なくとも一方を除いた円筒ころ軸受1における全表面の旧オーステナイトの結晶粒度を30μm以下にすることが好ましい。これにより、良好な耐衝撃性を得ることができる。
In addition, as shown in FIG. 1, other parts such as a seal during the rotation of the rolling bearing, such as the flange inner periphery 18 side of the outer ring 12 and the flange end 22 of the inner ring 21 of the tapered roller bearing as shown in FIG. In a portion where contact cannot occur, wear or fretting does not occur, and thus the surface may not be cured.
Further, the hardness of at least one of the inner ring 11 and the outer ring 12 is preferably Hv 500 or less, and in particular, if it is Hv 300 or less, better toughness can be obtained.
The crystal grain size of the prior austenite on the entire surface of the cylindrical roller bearing 1 excluding at least one of the raceway surface 11a of the inner ring 11 and the raceway surface 12a of the outer ring 12 is preferably 30 μm or less. Thereby, favorable impact resistance can be obtained.

更に、軌道面11a,12aにおける硬化層のうち、硬さがHv650の部分とHv400の部分との間の深さ方向の硬さ勾配を、1000以下とすることが好ましい。これにより、軌道面11a,12aにおける硬化層の硬さ勾配が、内輪11や外輪12に作用するせん断応力の分布(せん断応力の勾配)よりも緩やか、または同程度となるので、寿命と高靭性の両立を図ることができる。   Furthermore, in the hardened layer on the raceway surfaces 11a and 12a, it is preferable that the hardness gradient in the depth direction between the Hv650 portion and the Hv400 portion is 1000 or less. As a result, the hardness gradient of the hardened layer on the raceway surfaces 11a and 12a is more or less than the distribution of the shear stress acting on the inner ring 11 and the outer ring 12 (shear stress gradient). Can be achieved.

次に、図1に示す転がり軸受1の製造方法、即ち熱処理方法について説明する。
先ず、当該熱処理方法に用いられる高周波熱処理装置について説明すると、図3に示すように、内輪11及び外輪12(図3では内輪のみ図示)の円周上に、軸受断面の外周部全てを加熱する1つの環状コイル30と、軌道面のみを加熱する1つの平面コイル31とを配置している。つまり、1つのワークである内輪11等に対して、役割の異なる環状コイル30と平面コイル31とを配置している。ここで、環状コイル30の巻き数は、ワークである内輪11及び外輪12に依存する。これら環状コイル30及び平面コイル31は、1対でなくてもよく、ワークサイズに応じて数を増加することができる。
Next, a manufacturing method of the rolling bearing 1 shown in FIG. 1, that is, a heat treatment method will be described.
First, the high-frequency heat treatment apparatus used in the heat treatment method will be described. As shown in FIG. 3, all the outer peripheral portions of the bearing cross section are heated on the circumferences of the inner ring 11 and the outer ring 12 (only the inner ring is shown in FIG. 3). One annular coil 30 and one planar coil 31 for heating only the raceway surface are arranged. That is, the annular coil 30 and the planar coil 31 having different roles are arranged on the inner ring 11 or the like that is one workpiece. Here, the number of turns of the annular coil 30 depends on the inner ring 11 and the outer ring 12 which are workpieces. The annular coil 30 and the planar coil 31 may not be a pair, and the number can be increased according to the workpiece size.

次に、熱処理方法について述べると、先ず、ワークである球状化焼鈍された鋼材から得られた熱処理前の内輪11(外輪12)を図3に示す高周波処理装置の複数のロール32上に置き、ローラ32を回転させて当該内輪11(外輪12)をローラ32上を回転させつつ、軌道面11a,12aのみを高周波加熱し、[セメンタイト+オーステナイト]二相領域まで加熱し、その後、冷却する焼きならし処理(前処理)を行う。軌道面11a,12aのみの高周波加熱に際しては、平面コイル31を主体に加熱する。軌道面11a,12a以外の部分がA点を越えない範囲では環状コイル30を補助として用いてもよい。ここで、冷却に際しては、空冷以下の冷却速度にてマルテンサイトの体積率50%以下となるように冷却することが好ましい。また、この前処理において、[セメンタイト+オーステナイト]二相領域に加熱する際、セメンタイトは体積率で3%以上残存させることが好ましい。 Next, the heat treatment method will be described. First, the inner ring 11 (outer ring 12) before heat treatment obtained from the spheroidized steel material as the workpiece is placed on the plurality of rolls 32 of the high-frequency treatment apparatus shown in FIG. While rotating the roller 32 and rotating the inner ring 11 (outer ring 12) on the roller 32, only the raceway surfaces 11a and 12a are heated at a high frequency, heated to the [cementite + austenite] two-phase region, and then cooled. Perform leveling (preprocessing). In the high frequency heating of only the raceway surfaces 11a and 12a, the planar coil 31 is mainly heated. Raceway surface 11a, the portion other than the 12a may be used as an auxiliary annular coil 30 is in a range that does not exceed the point A. Here, when cooling, it is preferable to cool so that the volume ratio of martensite is 50% or less at a cooling rate of air cooling or less. Further, in this pretreatment, when heating to the [cementite + austenite] two-phase region, it is preferable to leave the cementite at 3% or more by volume.

次いで、内輪11(外輪12)をローラ32上を回転させつつ、軌道面11a,12aが上記1〜3に規定する熱処理品質を満足するように軸受断面の外周部全てについて[セメンタイト+オーステナイト]二相領域まで高周波加熱し焼入れ処理を施す。この焼入れ処理に際しては、環状コイル30および平面コイル31を同時に用いてワークである内輪11(外輪12)の軸受断面の外周部全てについて高周波焼入れを行う。   Next, while rotating the inner ring 11 (outer ring 12) on the roller 32, [cementite + austenite] for all the outer peripheral parts of the bearing cross section so that the raceway surfaces 11a and 12a satisfy the heat treatment quality specified in the above 1-3. Induction heating to the phase region and quenching. In this quenching process, the annular coil 30 and the planar coil 31 are simultaneously used to perform induction hardening on the entire outer peripheral portion of the bearing cross section of the inner ring 11 (outer ring 12) that is a workpiece.

これにより、軌道面11a,12aのうち少なくとも一方の組織状態が良好(不完全焼入れ組織がなく、表面残留オーステナイトが12〜40体積%となり、軌道面の旧オーステナイトの結晶粒径が30μm以下である)な内輪11及び外輪12を有する転がり軸受1が得られる。なお、前処理及び焼入れ処理共に高周波加熱としているので、生産性に優れると共に、内輪11及び外輪12のうち少なくとも一方の熱処理による寸法変形が小さく、内輪11及び外輪12のうち少なくとも一方の嵌め合い面及び端面の残留オーステナイトが多くなるのを回避することができる。なお、軌道面11a,12aの組織状態が良好であれば、焼きならし処理を省略することもできる。   Thereby, at least one of the orbital surfaces 11a and 12a is in a good structure state (there is no incompletely quenched structure, the surface retained austenite is 12 to 40% by volume, and the crystal grain size of the prior austenite on the orbital surface is 30 μm or less. A rolling bearing 1 having an inner ring 11 and an outer ring 12 is obtained. In addition, since both the pre-treatment and the quenching treatment are high-frequency heating, the productivity is excellent, and dimensional deformation due to heat treatment of at least one of the inner ring 11 and the outer ring 12 is small, and the fitting surface of at least one of the inner ring 11 and the outer ring 12 is fitted. And it can avoid that the retained austenite of an end surface increases. Note that the normalizing process may be omitted if the structure of the raceway surfaces 11a and 12a is good.

なお、DI値と不完全焼入れ組織の発生は関連があるが、不完全焼入れ組織の発生には冷却材依存性もあることが知られている。高周波焼入れでは、水(湯)を主たる冷却剤としているため、油焼入れよりも一般に冷却速度が早いが、急速な冷却は特に高炭素鋼で焼割れを誘発することがあるため、冷却速度調整剤としてポリマーを混ぜて使用する。
そして、当該熱処理方法に用いられる高周波熱処理装置は、内輪11及び外輪12のうち少なくとも一方の円周上に2個以上のコイルを部分的に配置し、コイルの一つ以上が軸受断面の外周部全てを加熱する環状コイル30であり、コイルの他方が軌道面のみを加熱する平面コイル31である。
In addition, although DI value and generation | occurrence | production of incomplete hardening structure are related, it is known that generation | occurrence | production of incomplete hardening structure also has coolant dependency. Induction hardening uses water (hot water) as the main coolant, so the cooling rate is generally faster than oil quenching, but rapid cooling can induce quenching cracks, especially in high-carbon steel, so a cooling rate modifier. As a mixture of polymers.
The high-frequency heat treatment apparatus used in the heat treatment method has two or more coils partially arranged on the circumference of at least one of the inner ring 11 and the outer ring 12, and at least one of the coils is an outer peripheral portion of the bearing cross section. It is an annular coil 30 that heats everything, and the other coil is a planar coil 31 that heats only the track surface.

この高周波熱処理装置を用いることにより、軌道面11a,12aのみを加熱する平面コイル31を主体に軌道面のみに前処理を行い、軸受断面の外周部全てを加熱する環状コイル30と平面コイルの同時使用により軸受断面の外周部全てについて焼入れ処理を行い、軌道面11a,12aのみの硬化層を厚くし、軌道面11a,12aの組織状態が良好(不完全焼入れ組織がなく、表面残留オーステナイトが12〜40体積%となり、軌道面の旧オーステナイトの結晶粒径が30μm以下である)な内輪及び外輪のうちの少なくとも一方を有する転がり軸受を得ることができる。種々のコイル形状の中で、ワーク断面を全て囲むようにコイルを配置する環状コイルは均一加熱に適したコイルとして実用化されているが、硬化層深さに対するコイルギャップの依存性が少なく、コアなどを使用しても軌道面のみの硬化層を厚くするような微調整が難しい。これに対して、軌道面11a,12aのみを加熱する平面コイル31を使用することにより、軌道面11a,12aのみの硬化層を容易に厚くすることができる。また、平面コイル31を用いて軌道面11a,12aに前処理を行うと、より容易に良好な品質が確保できる。   By using this high-frequency heat treatment apparatus, the planar coil 31 that heats only the raceway surfaces 11a and 12a is preliminarily treated only on the raceway surface, and the annular coil 30 and the planar coil that simultaneously heats the entire outer periphery of the bearing cross section are used. The entire outer periphery of the bearing cross-section is hardened by use, the hardened layer of only the raceway surfaces 11a and 12a is thickened, and the structure of the raceway surfaces 11a and 12a is good (there is no incompletely quenched structure and the surface retained austenite is 12 It is possible to obtain a rolling bearing having at least one of an inner ring and an outer ring that is ˜40% by volume and the crystal grain size of the prior austenite on the raceway surface is 30 μm or less. Among various coil shapes, the annular coil that arranges the coil so as to surround the entire work section is put into practical use as a coil suitable for uniform heating, but the dependency of the coil gap on the hardened layer depth is small, and the core However, it is difficult to make fine adjustments to make the hardened layer only on the raceway surface thick. On the other hand, by using the planar coil 31 that heats only the raceway surfaces 11a and 12a, the hardened layer of only the raceway surfaces 11a and 12a can be easily thickened. In addition, when the pretreatment is performed on the raceway surfaces 11a and 12a using the planar coil 31, good quality can be secured more easily.

また、前述した転がり軸受の製造方法により製造された転がり軸受は、軌道面11a,12aの残留オーステナイトが12〜40体積%であるのみならず、軸受(内輪11、外輪12)の内部に残留オーステナイトが0体積%の部分を含み、かつ、嵌め合い面の残留オーステナイトが軌道面11a,12aの残留オーステナイトよりも10体積%低いことが好ましい。これにより、寸法変化が小さく浸炭軸受と同レベルの寸法安定性を確保した転がり軸受1とすることができる。   Further, in the rolling bearing manufactured by the above-described rolling bearing manufacturing method, not only the retained austenite of the raceway surfaces 11a and 12a is 12 to 40% by volume, but also retained austenite inside the bearings (inner ring 11 and outer ring 12). Is preferably 0 volume%, and the retained austenite of the mating surfaces is preferably 10 volume% lower than the retained austenite of the raceway surfaces 11a and 12a. Thereby, it can be set as the rolling bearing 1 with which the dimensional change was small and the dimensional stability of the same level as a carburized bearing was ensured.

更に、内輪11及び外輪12の軌道面11a,12aのうち少なくとも一方の有効硬化層深さ(Hv550)Yo(mm)の1/4深さまでの領域の不完全焼入れ組織の体積率が2%以下であることが、組織変化部からのはく離防止のためには望ましい。
なお、DI値と不完全焼入れ組織の発生は関連があるが、不完全焼入れ組織の発生には冷却材依存性もあることが知られている。高周波焼入れでは、水(湯)を主たる冷却剤としているため、油焼入れよりも一般に冷却速度が早いが、急速な冷却は特に高炭素鋼で焼割れを誘発することがあるため、冷却速度調整剤としてポリマーを混ぜて使用する。
Further, the volume ratio of the incompletely hardened structure in the region up to 1/4 of the effective hardened layer depth (Hv550) Yo (mm) of the raceway surfaces 11a and 12a of the inner ring 11 and the outer ring 12 is 2% or less. It is desirable to prevent peeling from the tissue change part.
In addition, although DI value and generation | occurrence | production of incomplete hardening structure are related, it is known that generation | occurrence | production of incomplete hardening structure also has coolant dependency. Induction hardening uses water (hot water) as the main coolant, so the cooling rate is generally faster than oil quenching, but rapid cooling can induce quenching cracks, especially in high-carbon steel, so a cooling rate modifier. As a mixture of polymers.

以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
例えば、転がり軸受の例として円筒ころ軸受を挙げて説明したが、これに限定されず、本発明は他の種類の転がり軸受に対しても適用することができる。例えば、深溝玉軸受、アンギュラ玉軸受、自動調心玉軸受、自動調心ころ軸受、円錐ころ軸受、針状ころ軸受などのラジアル形の転がり軸受や、スラスト玉軸受、スラストころ軸受などのスラスト形の転がり軸受に本発明を適用することができる。
As mentioned above, although embodiment of this invention has been described, this invention is not limited to this, A various change and improvement can be performed.
For example, although a cylindrical roller bearing has been described as an example of a rolling bearing, the present invention is not limited thereto, and the present invention can also be applied to other types of rolling bearings. For example, radial type rolling bearings such as deep groove ball bearings, angular contact ball bearings, self-aligning ball bearings, self-aligning roller bearings, tapered roller bearings and needle roller bearings, and thrust types such as thrust ball bearings and thrust roller bearings The present invention can be applied to a rolling bearing.

本実施形態の円筒ころ軸受1とほぼ同様の構成の円筒ころ軸受(呼び番号:NU2210ET、ころ径Dw:11mm)を用意して、その寿命を評価した。但し、本発明は外輪の外径が180mm以上である産業用の大型軸受に好適であるので、大型軸受の平均的な肉厚を再現するために、内輪の内径は30mm、外径は60mm、肉厚(径方向の厚み)は15mmとした。   A cylindrical roller bearing (nominal number: NU2210ET, roller diameter Dw: 11 mm) having substantially the same configuration as that of the cylindrical roller bearing 1 of the present embodiment was prepared, and its life was evaluated. However, the present invention is suitable for industrial large bearings having an outer diameter of the outer ring of 180 mm or more. Therefore, in order to reproduce the average thickness of the large bearing, the inner diameter of the inner ring is 30 mm, the outer diameter is 60 mm, The wall thickness (diameter thickness) was 15 mm.

先ず、試験に用いた円筒ころ軸受の製造方法について説明する。
内輪は、SUJ3製の球状化焼鈍材を粗加工することによって所定の形状に成形した後、高周波焼入れ及び焼戻しを施し、さらに研磨などの後加工を施すことによって内輪を完成した。高周波焼入れの条件は、周波数5〜100kHz、加熱時間5〜200秒、ワーク回転速度20〜100min−1である。また、焼戻し条件は、180℃に2時間保持した後、放冷するというものである。このようにして得られた内輪と、SUJ2製の一般的な外輪とを組み立てて円筒ころ軸受を製造した。
First, the manufacturing method of the cylindrical roller bearing used for the test is demonstrated.
The inner ring was formed into a predetermined shape by roughing a spheroidized annealing material made of SUJ3, then subjected to induction hardening and tempering, and further subjected to post-processing such as polishing to complete the inner ring. The conditions of induction hardening are a frequency of 5 to 100 kHz, a heating time of 5 to 200 seconds, and a workpiece rotation speed of 20 to 100 min −1 . Further, the tempering condition is to hold at 180 ° C. for 2 hours and then to cool. A cylindrical roller bearing was manufactured by assembling the inner ring thus obtained and a general outer ring made of SUJ2.

このように製造された円筒ころ軸受の回転試験を、潤滑剤に異物混入のない清浄な潤滑環境下(以後、清浄潤滑環境下と称す)及び潤滑剤に異物が混入している潤滑環境下(以後、異物混入潤滑環境下と称す)のそれぞれで行い、剥離が生じるまでの時間を測定した。そして、1種の軸受につき7個の回転試験を行ってワイブルプロットを作成し、ワイブル分布の結果からL10寿命を求め、これを寿命とした。結果(実施例1〜12及び比較例1〜7の寿命)を表1及び表2に示す。寿命は、それぞれの潤滑環境下での比較例3(ずぶ焼入れ)の寿命を1.0とした場合の相対値(L10寿命比)で示してある。   The rotation test of the cylindrical roller bearing manufactured in this way is performed under a clean lubrication environment in which no foreign matter is mixed in the lubricant (hereinafter referred to as a clean lubrication environment) and in a lubrication environment in which foreign matter is mixed in the lubricant ( Hereinafter, the measurement was performed under each of the foreign-material-mixed lubrication environment, and the time until peeling occurred was measured. Then, seven rotation tests were performed for one type of bearing, a Weibull plot was created, the L10 life was obtained from the result of the Weibull distribution, and this was defined as the life. Tables 1 and 2 show the results (lifetime of Examples 1 to 12 and Comparative Examples 1 to 7). The life is shown as a relative value (L10 life ratio) when the life of Comparative Example 3 (submerged quenching) in each lubrication environment is 1.0.

回転試験の条件は下記の通りである。
A.清浄潤滑環境下での回転試験の条件
ラジアル荷重:50kN(P/C=0.6)
回転速度 :1000min−1
潤滑油 :ISO粘度グレードがISO VG68である潤滑油
B.異物混入潤滑環境下での回転試験の条件
ラジアル荷重:25kN(P/C=0.3)
回転速度 :1000min−1
潤滑油 :ISO粘度グレードがISO VG68である潤滑油
異物 :潤滑剤中に異物を混入する代わりに、内輪の軌道面の幅方向中央にロックウェル硬度計にて8点の疑似圧痕を形成
The conditions of the rotation test are as follows.
A. Conditions of rotation test under clean lubrication environment Radial load: 50kN (P / C = 0.6)
Rotational speed: 1000 min -1
Lubricating oil: Lubricating oil whose ISO viscosity grade is ISO VG68. Rotation test conditions in a lubrication environment with foreign matter Radial load: 25kN (P / C = 0.3)
Rotational speed: 1000 min -1
Lubricating oil: Lubricating oil whose ISO viscosity grade is ISO VG68 Foreign matter: Instead of mixing foreign matter into the lubricant, 8 pseudo indentations are formed with the Rockwell hardness meter at the center of the inner raceway surface in the width direction.

実施例1〜12及び比較例1〜2、5は、内輪に上記のような高周波焼入れをしたもの、比較例3、6は、内輪を、SUJ3製の球状化焼鈍材を粗加工によって所定の形状に成形した後にずぶ焼入れをして形成したもの、比較例4、7は、内輪を、SUJ3製の球状化焼鈍材を粗加工によって所定の形状に成形した後に浸炭処理したものである。実施例1〜12及び比較例1〜7の熱処理品質(軌道面の有効硬化層深さ(Hv550)Yo、軌道面の表面硬さ、軌道面における残留オーステナイト(γR%)、及び軌道面の旧オーステナイトの結晶粒径)について表1及び表2に示す。   Examples 1 to 12 and Comparative Examples 1 to 2 and 5 were obtained by subjecting the inner ring to induction hardening as described above, and Comparative Examples 3 and 6 were obtained by roughing the inner ring and the spheroidized annealing material made of SUJ3. In Comparative Examples 4 and 7, the inner ring was carburized after being formed into a predetermined shape by roughing a spheroidized annealing material made of SUJ3. Heat treatment quality of Examples 1-12 and Comparative Examples 1-7 (Effective hardened layer depth (Hv550) Yo of raceway surface, surface hardness of raceway surface, retained austenite (γR%) on raceway surface, and old raceway surface Table 1 and Table 2 show the crystal grain size of austenite.

Figure 0005895493
Figure 0005895493

Figure 0005895493
Figure 0005895493

また、比較例1及び実施例1の硬さプロファイル、及び50kN(P/C=0.6)のラジアル荷重を付与した際に生じるせん断応力を耐久硬さに変換した耐久硬さプロファイルを図4に示す。
表1、表2及び図4に示す、有効硬化層深さ(Hv550)Yo、硬さプロファイル、及び表面硬さはビッカース硬度計にて測定した。また、残留オーステナイト(γR%)の測定はX線解析法により解析した。その際、内輪の表面(軌道面)を電界研磨して加工影響層を取り除いて測定を行った。更に、内輪を切断してその切断面を鏡面加工仕上げ及び腐食処理を行った後、切断面の顕微鏡観察により軌道面の旧オーステナイトの結晶粒径の測定を行った。
Moreover, the hardness profile of the comparative example 1 and Example 1, and the durable hardness profile which converted the shear stress which arises when the radial load of 50 kN (P / C = 0.6) was provided into durable hardness are shown in FIG. Shown in
The effective hardened layer depth (Hv550) Yo, the hardness profile, and the surface hardness shown in Table 1, Table 2, and FIG. 4 were measured with a Vickers hardness meter. Further, the measurement of retained austenite (γR%) was analyzed by an X-ray analysis method. At that time, the surface (orbital surface) of the inner ring was electropolished to remove the work-affected layer and measured. Further, the inner ring was cut and the cut surface was subjected to mirror finishing and corrosion treatment, and then the crystal grain size of the prior austenite on the raceway surface was measured by microscopic observation of the cut surface.

先ず、潤滑環境下での回転試験の結果について表1及び図4乃至図6を参照して説明する。
実施例1については軌道面の有効硬化層深さ(Hv550)Yo(mm)が、表1及び図5に示すように、0.9mmであり、本発明のYo(mm)の下限値0.07Dw(ころ径Dw=11mm)を上回っている。これに対して、比較例1については軌道面の有効硬化層深さ(Hv550)Yo(mm)が0.7mmであり、Yoの下限値0.07Dw(ころ径Dw=11mm)を下回っている。このため、比較例1については、表1及び図5に示すように、L10寿命比が0.6と短寿命となった。この理由は、比較例1につき軌道面の有効硬化層深さ(Hv550)Yoが浅かったため、図4に示すように、心部側に負荷される応力が素材の硬さを上回り、内部からの破壊が生じたためと考えられる。なお、実施例2〜10については、軌道面の有効硬化層深さ(Hv550)Yo(mm)が1.5mm以上であり、内部からの破壊が認められず、L10寿命比が2.5以上と長寿命となった。これにより、内部からの破壊を十分に抑制するためには、負荷される応力よりも素材の硬さの方が大きいという関係を満たす必要があり、本発明の軌道面の有効硬化層深さ(Hv550)Yo(mm)の下限値(0.07Dw)が必要であることがわかった。
First, the result of the rotation test in a lubrication environment will be described with reference to Table 1 and FIGS. 4 to 6.
For Example 1, the effective hardened layer depth (Hv550) Yo (mm) of the raceway surface is 0.9 mm as shown in Table 1 and FIG. It exceeds 07Dw (roller diameter Dw = 11mm). On the other hand, in Comparative Example 1, the effective hardened layer depth (Hv550) Yo (mm) of the raceway surface is 0.7 mm, which is lower than the lower limit value 0.07 Dw (roller diameter Dw = 11 mm) of Yo. . For this reason, about the comparative example 1, as shown in Table 1 and FIG. 5, L10 life ratio became 0.6 and short life. The reason for this is that the effective hardened layer depth (Hv550) Yo of the raceway surface in Comparative Example 1 was shallow, so as shown in FIG. 4, the stress applied to the core side exceeded the hardness of the material, This is thought to be due to the destruction. In Examples 2 to 10, the effective hardened layer depth (Hv550) Yo (mm) of the raceway surface is 1.5 mm or more, no internal breakage is observed, and the L10 life ratio is 2.5 or more. And long life. Thereby, in order to sufficiently suppress the destruction from the inside, it is necessary to satisfy the relationship that the hardness of the material is larger than the stress applied, and the effective hardened layer depth of the raceway surface of the present invention ( It was found that the lower limit (0.07 Dw) of Hv550) Yo (mm) is necessary.

次に、図6に示すように、軌道面の旧オーステナイトの結晶粒径が30μm以上になると、急激に短寿命化することがわかる。比較例2の場合、表1及び図6に示すように、当該結晶粒径が33μmであり、L10寿命比が0.2と急激に短寿命化している。この結晶粒径が30μm以上になると、結晶粒が粗大化し、これにより材料強度が低下するためと考えられる。
なお、比較例3の場合、熱処理がずぶ焼入れである。
また、比較例4の場合、熱処理が浸炭処理であり、実施例1〜10と同様に、長寿命である。
Next, as shown in FIG. 6, when the crystal grain size of the prior austenite on the raceway surface becomes 30 μm or more, it can be seen that the lifetime is rapidly shortened. In the case of Comparative Example 2, as shown in Table 1 and FIG. 6, the crystal grain size is 33 μm, and the L10 life ratio is 0.2 and the life is rapidly shortened. It is considered that when the crystal grain size is 30 μm or more, the crystal grains become coarse, thereby reducing the material strength.
In the case of Comparative Example 3, the heat treatment is continuous quenching.
Moreover, in the case of the comparative example 4, heat processing is a carburizing process, and it is long life like Examples 1-10.

次に、異物混入潤滑環境下での回転試験の結果を表2及び図7を参照して説明する。
残留オーステナイトは異物混入潤滑環境下での長寿命化に有効であり、表2及び図7に示すように、実施例11、12は残留オーステナイト量が12体積%を超えており、L10寿命比が2.5以上で長寿命となった。比較例5の場合、表2及び図7に示すように、残留オーステナイト量が10体積%であり、L10寿命比が0.8で短寿命であった。
Next, the result of the rotation test in the foreign matter mixed lubrication environment will be described with reference to Table 2 and FIG.
Residual austenite is effective in extending the life in a foreign matter-contaminated lubricating environment. As shown in Table 2 and FIG. 7, in Examples 11 and 12, the amount of retained austenite exceeds 12% by volume, and the L10 life ratio is Long life was achieved at 2.5 or more. In the case of Comparative Example 5, as shown in Table 2 and FIG. 7, the amount of retained austenite was 10% by volume, the L10 life ratio was 0.8, and the life was short.

次に、靭性を評価するための圧砕試験を行った。ワイヤーカットにより内輪の軌道面に深さ1mまで予亀裂を形成し、予亀裂の伸びる方向を水平にして内輪を圧砕試験装置に装着し、上方から荷重を負荷し内輪を圧縮した。そして、予亀裂からクラックが伝播した荷重を圧砕強度とした。実施例13、14及び比較例8は、内輪に上記のような高周波焼入れをしたもの、比較例9は、内輪を、SUJ3製の球状化焼鈍材を粗加工によって所定の形状に成形した後にずぶ焼入れをして形成したもの、比較例11は、内輪を、SUJ3製の球状化焼鈍材を粗加工によって所定の形状に成形した後に浸炭処理したものである。実施例13、14及び比較例8、9の熱処理品質(軌道面の有効硬化層深さ(Hv550)Yo、軌道面の表面硬さ、軌道面における残留オーステナイト(γR%)、及び軌道面の旧オーステナイトの結晶粒径)及び試験結果について表3及び図7に示す。圧砕強度は、比較例9(ずぶ焼入れ)の圧砕強度を1.0とした場合の相対値(圧砕強度比)で示してある。   Next, a crushing test for evaluating toughness was performed. A pre-crack was formed on the raceway surface of the inner ring to a depth of 1 m by wire cutting, and the inner ring was mounted on a crushing test apparatus with the pre-crack extending direction horizontal, and the inner ring was compressed by applying a load from above. And the load which the crack propagated from the pre-crack was made into crushing strength. Examples 13 and 14 and Comparative Example 8 were obtained by induction hardening of the inner ring as described above, and Comparative Example 9 was formed after the inner ring was formed into a predetermined shape by roughing a SUJ3 spheroidized annealing material. In the comparative example 11 formed by quenching, the inner ring was carburized after the SUJ3 made spheroidized annealed material was formed into a predetermined shape by roughing. Heat treatment quality of Examples 13 and 14 and Comparative Examples 8 and 9 (effective hardened layer depth (Hv550) Yo of raceway surface, surface hardness of raceway surface, retained austenite (γR%) on raceway surface, and old raceway surface Austenite crystal grain size) and test results are shown in Table 3 and FIG. The crushing strength is shown as a relative value (crushing strength ratio) when the crushing strength of Comparative Example 9 (submerged quenching) is 1.0.

Figure 0005895493
Figure 0005895493

圧砕試験の結果、実施例13、14については軌道面の有効硬化層深さ(Hv550)Yo(mm)が、表3及び図8に示すように、それぞれ2.1mm、5.3mmであり、本発明のYo(mm)の上限値0.07Dw+5(ころ径Dw=11mm)を下回っている。これに対して、比較例8については軌道面の有効硬化層深さ(Hv550)Yoが6.8mmであり、Yo(mm)の上限値0.07Dw+5(ころ径Dw=11mm)を上回っている。このため、比較例8については、表3及び図8に示すように、圧砕強度比が1.2と短寿命となった。この理由は、圧砕強度に影響を及ぼす因子としては高靭性の心部の存在が考えられ、この高靭性の心部の割合の影響により圧砕強度が決定するものと考えられており、比較例8のように、軌道面の有効硬化層深さ(Hv550)Yo(mm)が上限値0.07Dw+5を上回ると、高靭性の心部の割合が少なくなると考えられるからである。   As a result of the crushing test, for Examples 13 and 14, the effective hardened layer depth (Hv550) Yo (mm) of the raceway surface is 2.1 mm and 5.3 mm, respectively, as shown in Table 3 and FIG. It is below the upper limit 0.07 Dw + 5 (roller diameter Dw = 11 mm) of Yo (mm) of the present invention. On the other hand, in Comparative Example 8, the effective hardened layer depth (Hv550) Yo of the raceway surface is 6.8 mm, which exceeds the upper limit value 0.07 Dw + 5 (roller diameter Dw = 11 mm) of Yo (mm). . For this reason, about the comparative example 8, as shown in Table 3 and FIG. 8, the crushing strength ratio was 1.2 and became short life. The reason for this is that the presence of a high-toughness core is considered as a factor that affects the crushing strength, and the crushing strength is considered to be determined by the influence of the ratio of the high-toughness core. Comparative Example 8 This is because, when the effective hardened layer depth (Hv550) Yo (mm) of the raceway surface exceeds the upper limit value 0.07 Dw + 5, it is considered that the ratio of the core portion with high toughness decreases.

次に、ころ径Dw:11mmの円筒ころ軸受からころ径Dwを変えた円筒ころ軸受(呼び番号:NU2326EM、ころ径Dw:40mm)を用意し、上記(NU2210ET)と同様に高周波焼入れ及び焼戻しを施して内輪を製作し、清浄潤滑環境下にて回転試験を行った。製造した内輪(実施例15〜17及び比較例11、12)の熱処理品質(軌道面の有効硬化層深さ(Hv550)Yo(mm)、軌道面の表面硬さ、軌道面における残留オーステナイト(γR%)、及び軌道面の旧オーステナイトの結晶粒径)と試験結果について表4及び図9に示す。なお、試験結果である寿命は、清浄潤滑環境下でずぶ焼入れした比較例3の寿命を1.0とした場合の相対値(L10寿命比)で示してある。   Next, a cylindrical roller bearing (nominal number: NU2326EM, roller diameter Dw: 40 mm) is prepared by changing the roller diameter Dw from a cylindrical roller bearing with a roller diameter Dw: 11 mm, and induction hardening and tempering are performed in the same manner as (NU2210ET). The inner ring was manufactured and subjected to a rotation test in a clean lubrication environment. Heat treatment quality (effective hardened layer depth (Hv550) Yo (mm) of raceway surface, surface hardness of raceway surface, retained austenite (γR) on raceway surface of produced inner rings (Examples 15 to 17 and Comparative Examples 11 and 12) %) And the crystal grain size of the prior austenite on the raceway surface) and the test results are shown in Table 4 and FIG. In addition, the lifetime which is a test result is shown by the relative value (L10 lifetime ratio) when the lifetime of the comparative example 3 which carried out quenching in a clean lubrication environment is set to 1.0.

Figure 0005895493
Figure 0005895493

表4及び図9を参照すると、ころ径Dwを11mmから40mmに変化させた場合であっても、軌道面の有効硬化層深さ(Hv550)Yo(mm)が下限値0.07Dw以上であれば、L10寿命比が2.0以上となることがわかった。   Referring to Table 4 and FIG. 9, even when the roller diameter Dw is changed from 11 mm to 40 mm, the effective hardened layer depth (Hv550) Yo (mm) of the raceway surface is not less than the lower limit value 0.07 Dw. It was found that the L10 life ratio was 2.0 or more.

次に、鋼材のDI値を変化させた鋼種に対して焼入れをしたときの不完全焼入れ組織の発生状況を確認した。本調査では、表5に示すDI値及び合金成分を有するSUJ2〜SUJ5、鋼種A〜C、SK5の鋼種につき、厚さ15mm、φ60mmの円板試料を用意し、840℃にて1時間保持した後、60℃での油中に焼入れを行い、不完全焼入れ組織の発生状況を確認した。その結果を表5に示す。DI値は、焼入れ硬化特性を表す指標である。DI値が低い鋼を焼入れした場合、不完全焼入れ組織が発生し、硬度や転がり寿命に悪影響を与える。予備実験によると、不完全焼入れ組織の体積率が5%を超えると硬さに悪影響が現れ始めるので、安全を見て不完全焼入れ組織の体積率が2%以下の場合を良好なものとした。   Next, the generation | occurrence | production state of the incomplete hardening structure when hardening with respect to the steel grade which changed DI value of steel materials was confirmed. In this study, a disk sample having a thickness of 15 mm and a diameter of 60 mm was prepared for SUJ2 to SUJ5, steel types A to C, and SK5 having the DI values and alloy components shown in Table 5, and held at 840 ° C. for 1 hour. Then, it hardened in the oil at 60 degreeC, and confirmed the generation | occurrence | production state of the incompletely hardened structure | tissue. The results are shown in Table 5. The DI value is an index representing quench hardening characteristics. When steel with a low DI value is quenched, an incompletely quenched structure is generated, which adversely affects hardness and rolling life. According to the preliminary experiment, when the volume ratio of the incompletely hardened structure exceeds 5%, an adverse effect on the hardness starts to appear. Therefore, the case where the volume ratio of the incompletely hardened structure is 2% or less is considered good for safety. .

Figure 0005895493
Figure 0005895493

いずれの試料も計算上は過共析鋼であり、950℃からの徐冷組織に初析フェライトは認められなかった。
また、DI値が2.2〜4.9までのSUJ2(DI値4.9)、SUJ3(DI値8.2)、SUJ4(DI値7.3)、SUJ5(DI値13.1)、鋼種A(3.4)及び鋼種B(DI値2.2)については、いずれも不完全焼入れ組織がなかった。
更に、SK5(DI値0.7)、鋼種C(DI値1.1)では不完全焼入れ組織の発生が認められるが、鋼種Cでは不完全焼入れ組織の体積率が1%であり、機械的な特性に影響はない。
従って、DI値が1.0以上の鋼材であれば、不完全焼入れ組織の少ない良好な鋼材であることがわかる。
All samples were hypereutectoid steel in calculation, and no pro-eutectoid ferrite was observed in the annealed structure from 950 ° C.
Further, SUJ2 (DI value 4.9), SUJ3 (DI value 8.2), SUJ4 (DI value 7.3), SUJ5 (DI value 13.1), DI values 2.2 to 4.9, For steel type A (3.4) and steel type B (DI value 2.2), there was no incompletely quenched structure.
Furthermore, in SK5 (DI value 0.7) and steel type C (DI value 1.1), the occurrence of an incompletely quenched structure is observed, but in steel type C, the volume ratio of the incompletely quenched structure is 1%. There is no effect on the characteristics.
Therefore, it can be seen that a steel material having a DI value of 1.0 or more is a good steel material with little incompletely quenched structure.

次に、下記寸法を有する呼び番号:NU2326の内輪について、下記A〜Cの熱処理をそれぞれ行った場合の内輪の真円度について調査した。
内輪の寸法
内径:130mm
外径:167mm
幅:90mm
熱処理方法
A:前処理として炉加熱による焼ならし→焼入れ処理として高周波焼入れ
B:前処理として高周波加熱による内外径表面焼ならし→焼入れ処理として高周波焼入れ
C:前処理として高周波加熱による軌道面のみの焼ならし→焼入れ処理として高周波焼入れ
Next, the roundness of the inner ring when the following heat treatments A to C were performed on the inner ring having the following dimension: NU2326 was investigated.
Inner ring dimensions Inner diameter: 130mm
Outer diameter: 167mm
Width: 90mm
Heat treatment method A: Normalizing by furnace heating as pretreatment → Induction hardening as quenching treatment B: Inner and outer diameter surface normalizing by induction heating as pretreatment → Induction hardening as quenching treatment C: Only raceway surface by induction heating as pretreatment Normalizing → induction hardening as quenching treatment

高周波焼入れは、上記A〜Cのそれぞれについて、硬化層深さが軌道面4.2mm、嵌め合い面1.5mmとなるように熱処理を行った。焼入れ後は速やかに200℃にて焼戻し処理を行った。
その結果を図10に示す。図10を参照すると、熱処理方法がAの場合の真円度≒熱処理方法がBの場合の真円度>熱処理方法がCの場合の真円度となっており、熱処理方法がCの場合、即ち、前処理として高周波加熱による軌道面のみの焼きならしを行った場合の熱処理変形量削減効果が大きいことがわかる。
In the induction hardening, heat treatment was performed for each of the above A to C so that the hardened layer depth was 4.2 mm for the raceway surface and 1.5 mm for the fitting surface. After quenching, tempering was performed immediately at 200 ° C.
The result is shown in FIG. Referring to FIG. 10, the roundness when the heat treatment method is A = the roundness when the heat treatment method is B> the roundness when the heat treatment method is C, and when the heat treatment method is C, That is, it can be seen that the effect of reducing the amount of heat treatment deformation is great when normalizing only the raceway surface by high-frequency heating as pretreatment.

また、上記寸法を有する呼び番号:NU2326の内輪について、上記A〜Cの熱処理をそれぞれ行った場合の、内輪の軌道面の残留オースステナイト量、内輪内部の残留オーステナイト量の最低値、内輪の嵌め合い面の残留オーステナイト量、内輪の平均残留オーステナイト量、及び200℃で300時間保持した際の寸法変化率について調査した。この結果を表6に示す。   Further, for the inner ring having the above-mentioned dimensions: NU2326, when the heat treatments A to C are performed, the retained austenite amount on the raceway surface of the inner ring, the minimum retained austenite amount inside the inner ring, and the fitting of the inner ring The amount of retained austenite on the mating surface, the average amount of retained austenite on the inner ring, and the dimensional change rate when held at 200 ° C. for 300 hours were investigated. The results are shown in Table 6.

Figure 0005895493
Figure 0005895493

表6を参照すると、熱処理方法がAの場合の寸法変化率≒熱処理方法がBの場合の寸法変化率>熱処理方法がCの場合の寸法変化率となっており、残留オーステナイトによる耐表面疲労特性を維持したまま寸法変化しにくい軸受とするためには、熱処理方法がCの場合、即ち、前処理として高周波加熱による軌道面のみの焼きならしを行った場合が最適であることがわかる。
次に、表6の結果をもとに、熱処理方法Cを用いて、軌道面の残留オーステナイト量を12体積%以上確保し、なおかつ非焼入れ部の心部が残存するように高周波熱処理条件を微調整した呼び番号:NU2326の内輪の寸法安定性を評価した。その評価結果を表7に示す。
Referring to Table 6, the dimensional change rate when the heat treatment method is A≈the dimensional change rate when the heat treatment method is B> the dimensional change rate when the heat treatment method is C, and the surface fatigue resistance due to residual austenite It can be seen that in order to obtain a bearing that is difficult to change in size while maintaining the above, it is optimal that the heat treatment method is C, that is, the normalization of only the raceway surface by high-frequency heating is performed as a pretreatment.
Next, based on the results of Table 6, the heat treatment method C is used to ensure that the amount of retained austenite on the raceway surface is 12% by volume or more, and the high-frequency heat treatment conditions are set so that the core of the non-quenched portion remains. The dimensional stability of the inner ring of adjusted nominal number: NU2326 was evaluated. The evaluation results are shown in Table 7.

Figure 0005895493
Figure 0005895493

表7において、比較例13は熱処理を浸炭焼き入れしたもの、比較例14は熱処理が高周波焼入れ、軌道面の残留オーステナイトが20体積%であり、軸受心部の残留オーステナイトが0体積%であるが、嵌め合い面の残留オーステナイトが14体積%であり、嵌め合い面の残留オーステナイトが軌道面の残留オーステナイトよりも6体積%低いものである。   In Table 7, Comparative Example 13 was carburized and quenched in heat treatment, Comparative Example 14 was heat-treated by induction hardening, the retained austenite of the raceway surface was 20% by volume, and the retained austenite of the bearing core was 0% by volume. The retained austenite on the mating surface is 14% by volume, and the retained austenite on the mating surface is 6% by volume lower than the retained austenite on the raceway surface.

表7を参照すると、実施例18〜21においては、熱処理が高周波焼入れ、軌道面の残留オーステナイトが15〜28体積%であり、軸受心部の残留オーステナイトが0体積%であり、嵌め合い面の残留オーステナイトが5〜11体積%であり、嵌め合い面の残留オーステナイトが軌道面の残留オーステナイトよりも10〜21体積%低い。この場合、内輪の寸法変化率が0.04〜0.05%と比較例13における内輪の寸法変化率と同程度に低いことがわかる。   Referring to Table 7, in Examples 18 to 21, the heat treatment was induction hardening, the retained austenite of the raceway surface was 15 to 28% by volume, the retained austenite of the bearing core was 0% by volume, and the mating surface The retained austenite is 5 to 11% by volume, and the retained austenite on the mating surface is 10 to 21% by volume lower than the retained austenite on the raceway surface. In this case, it can be seen that the dimensional change rate of the inner ring is 0.04 to 0.05%, which is as low as the dimensional change rate of the inner ring in Comparative Example 13.

一方、比較例14においては、嵌め合い面の残留オーステナイトが軌道面の残留オーステナイトよりも6体積%低いもので、この場合、内輪の寸法変化率が0.07%と大きい。
従って、軌道面の残留オーステナイトが12〜40体積%であり、軸受内部に残留オーステナイトが0体積%の部分を含み、かつ、嵌め合い面の残留オーステナイトが軌道面の残留オーステナイトよりも10体積%以上低いことにより、内輪の寸法安定性を浸炭焼入れした内輪の寸法安定性と同程度に確保できることがわかる。
次に、前処理の有無と熱品質処理に及ぼす鋼種の影響について平板試料を用いて検証を行った。その結果を表8に示す。
On the other hand, in Comparative Example 14, the retained austenite on the mating surface is 6% by volume lower than the retained austenite on the raceway surface. In this case, the dimensional change rate of the inner ring is as large as 0.07%.
Therefore, the retained austenite of the raceway surface is 12 to 40% by volume, the retained austenite is included in the bearing inside of 0% by volume, and the retained austenite of the mating surface is 10% by volume or more than the retained austenite of the raceway surface. It can be seen that the low dimensional stability of the inner ring can be secured to the same extent as the dimensional stability of the carburized and quenched inner ring.
Next, the presence or absence of pretreatment and the effect of steel type on the thermal quality treatment were verified using flat plate samples. The results are shown in Table 8.

Figure 0005895493
Figure 0005895493

本発明では、異物混入潤滑環境下での長寿命を目指しており、残留オーステナイト量を比較例17に示すずぶ焼鋼よりも大きく、即ち、表8に示すように、軌道面の残留オーステナイトを11体積%以上とする必要がある。
表8からわかるように、同一鋼種(SUJ2〜5、鋼種A、B、C:各鋼種の合金成分は表5に示すとおりである)において、前処理として焼きならしを行うと、軌道面の残留オーステナイト量が増加するとともに、軌道面の旧オーステナイト粒径が微細化する傾向にあることがわかる。特にCrを多く含むSUJ2〜SUJ5では、前処理として焼きならしを行わないと、軌道面の残留オーステナイトが確保しにくいことがわかる。SUJ2で前処理としての焼きならしを行わない場合、軌道面の残留オーステナイトが7体積%と低い(比較例15)、また、SUJ4で前処理としての焼きならしを行わない場合、軌道面の残留オーステナイトが6体積%と低い(比較例16)。従って、本発明においては、前処理として焼きならしを行う(実施例22、24、25、27、29、31、33)。但し、SUJ3やSUJ5などは表5に示すとおりCr含有量が1質量%近傍に抑えられており、オーステナイト安定化元素であるMnを多く含む軸受鋼では前処理として焼きならしを行わなくても軌道面の残留オーステナイトが確保できる場合には必ずしも焼きならしを行わなくてもよい(実施例23、26)。また、鋼種A〜CのようにCr量が少ない鋼種では、前処理として焼きならしを行う必要は必ずしもない(実施例28、30、32)。
The present invention aims at a long life in a lubricating environment containing foreign matter, and the amount of retained austenite is larger than that of the cased steel shown in Comparative Example 17, that is, the retained austenite on the raceway surface is 11 as shown in Table 8. It is necessary to set the volume% or more.
As can be seen from Table 8, in the same steel type (SUJ2-5, steel types A, B, C: the alloy components of each steel type are as shown in Table 5), when normalizing as a pretreatment, It can be seen that as the amount of retained austenite increases, the prior austenite grain size of the raceway surface tends to become finer. In particular, in SUJ2 to SUJ5 containing a large amount of Cr, it can be seen that the retained austenite on the raceway surface is difficult to ensure unless normalization is performed as a pretreatment. When normalizing as a pretreatment is not performed in SUJ2, the retained austenite of the raceway surface is as low as 7% by volume (Comparative Example 15). When normalizing as a pretreatment is not performed in SUJ4, Residual austenite is as low as 6% by volume (Comparative Example 16). Therefore, in the present invention, normalization is performed as preprocessing (Examples 22, 24, 25, 27, 29, 31, 33). However, as shown in Table 5, SUJ3, SUJ5, etc. have a Cr content of around 1% by mass, and bearing steel containing a large amount of Mn, which is an austenite stabilizing element, does not require normalization as a pretreatment. When the retained austenite on the raceway surface can be secured, normalization is not necessarily performed (Examples 23 and 26). Moreover, in steel types with a small amount of Cr, such as steel types A to C, it is not always necessary to perform normalization as a pretreatment (Examples 28, 30, and 32).

従って、表8からもわかるように、球状化焼鈍された鋼材から得られた熱処理前の内輪及び外輪のうち少なくとも一方に対して、高周波加熱により軌道面のみを[セメンタイト+オーステナイト]二相領域まで加熱後冷却する焼きならし処理をする前処理を施し、次いで、軌道面が請求項1記載の熱処理品質を満足するように軸受断面の外周部全てについて[セメンタイト+オーステナイト]二相領域まで高周波加熱し焼入れ処理を施すことにより、軌道面の組織状態が良好(不完全焼入れ組織がなく、表面残留オーステナイトが12〜40体積%となり、軌道面の旧オーステナイトの結晶粒径が30μm以下である)な内輪及び外輪を有する転がり軸受が得られる。   Therefore, as can be seen from Table 8, at least one of the inner ring and the outer ring before heat treatment obtained from the spheroidized steel material is subjected to high-frequency heating only to the [cementite + austenite] two-phase region. After the heating, a pre-treatment for cooling that is cooled is performed, and then the entire circumference of the bearing cross-section is high-frequency heated to the [cementite + austenite] two-phase region so that the raceway surface satisfies the heat treatment quality of claim 1 By applying the quenching treatment, the structure state of the raceway surface is good (there is no incompletely quenched structure, the surface retained austenite is 12 to 40% by volume, and the crystal grain size of the prior austenite on the raceway surface is 30 μm or less). A rolling bearing having an inner ring and an outer ring is obtained.

なお、前処理における軌道面の焼きならしでの冷却速度は空冷以上の緩やかな冷却が望ましい。具体的には、マルテンサイト体積率が50%以下となるように冷却することが望ましい。また、最高加熱温度は球状化炭化物の量によって決定され、球状化炭化物の体積率が3%以上残存する温度とする。これは、これ以上炭化物が減ると結晶粒が部分的に粗大化する場合があるためである。   In addition, it is desirable that the cooling rate in normalizing the raceway surface in the pretreatment is a gentle cooling that is equal to or higher than air cooling. Specifically, it is desirable to cool so that the martensite volume ratio is 50% or less. The maximum heating temperature is determined by the amount of spheroidized carbide, and is a temperature at which the volume fraction of the spheroidized carbide remains at 3% or more. This is because if the carbide is further reduced, the crystal grains may be partially coarsened.

1 転がり軸受
11 内輪
11a 軌道面
12 外輪
12a 軌道面
13 転動体(円筒ころ)
13a 転動面
14 保持器
15 内輪の内径面
16 外輪の内径面
17 内輪、外輪の端面
18 外輪のつば内周
21 円錐ころ軸受の内輪
22 内輪のつば端部
DESCRIPTION OF SYMBOLS 1 Rolling bearing 11 Inner ring 11a Raceway surface 12 Outer ring 12a Raceway surface 13 Rolling element (cylindrical roller)
13a Rolling surface 14 Cage 15 Inner ring inner diameter surface 16 Outer ring inner diameter surface 17 Inner ring, outer ring end face 18 Outer ring collar inner circumference 21 Tapered roller bearing inner ring 22 Inner ring collar end

Claims (4)

軌道面を有する内輪と、該内輪の軌道面に対向する軌道面を有する外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配置された複数の転動体と、を備えた転がり軸受の前記内輪及び前記外輪のうち少なくとも一方からなる軌道輪を製造する方法であって、
下記の(a) 〜(c) を満足する鋼材から得られた熱処理前の前記軌道輪に対して、
前処理として、高周波加熱により、軌道面のみを[セメンタイト+オーステナイト]二相領域まで加熱後冷却する焼きならし処理を施し、
次いで、軌道面が下記の(d) 〜(f) に規定する熱処理品質を満足するように、軸受断面の外周部全てについて[セメンタイト+オーステナイト]二相領域まで高周波焼入れを施すことを特徴とする転がり軸受の製造方法
(a) 炭素含有量が0.5質量%以上かつCr,Mn,Si,Ni,Moの合金元素を任意に含み、オーステナイト単相域に加熱し徐冷した際に旧オーステナイト粒界に初析フェライトが析出しない過共析鋼である。
(b) 以下の(1) 式で定義されるDI値が1.0以上である。
DI=D0×f(Si)×f(Mn)×f(Ni)×f(Cr)×f(Mo)…(1)
ここで、D0=0.2×(%C)+0.14
f(Si)=1+0.64×(%Si)
f(Mn)=1+4.1×(%Mn)
f(Ni)=1+0.52×(%Ni)
f(Cr)=1+2.33×(%Cr)
f(Mo)=1+3.14×(%Mo)
但し、%Cは炭素の質量%、%Mnはマンガンの質量%、%Niはニッケルの質量%、%Crはクロムの質量%、%Moはモリブデンの質量%である。
(c) 球状化焼鈍された鋼材である。
(d) 軌道面の有効硬化層深さ(Hv550)であるYo(mm)が下記(2) 式を満足する範囲にある。
0.07Dw≦Yo≦0.07Dw+5…(2)
ここで、Dw:転動体の直径(mm)
(e) 軌道面の表面硬さがHv650以上であるとともに、表面残留オーステナイトが12〜40体積%である。
(f) 軌道面の旧オーステナイトの結晶粒径が30μm以下である。
An inner ring having a raceway surface, an outer ring having a raceway surface opposite to the raceway surface of the inner ring, and a plurality of rolling elements arranged to roll between the raceway surface of the inner ring and the raceway surface of the outer ring, A rolling bearing comprising a bearing ring made of at least one of the inner ring and the outer ring,
For the raceway before heat treatment obtained from a steel material satisfying the following (a) to (c):
As pre-treatment, normalizing treatment is performed in which only the raceway surface is heated to a [cementite + austenite] two-phase region and then cooled by high-frequency heating.
Next, in order to satisfy the heat treatment quality specified in (d) to (f) below, all the outer periphery of the bearing cross section is subjected to induction hardening to the [cementite + austenite] two-phase region. A method of manufacturing a rolling bearing.
(a) The carbon content is 0.5% by mass or more and optionally contains alloying elements of Cr, Mn, Si, Ni, and Mo, and is first precipitated in the prior austenite grain boundaries when heated to the austenite single phase region and gradually cooled. This is a hypereutectoid steel in which ferrite does not precipitate.
(b) The DI value defined by the following formula (1) is 1.0 or more.
DI = D0 * f (Si) * f (Mn) * f (Ni) * f (Cr) * f (Mo) (1)
Here, D0 = 0.2 × (% C) +0.14
f (Si) = 1 + 0.64 × (% Si)
f (Mn) = 1 + 4.1 × (% Mn)
f (Ni) = 1 + 0.52 × (% Ni)
f (Cr) = 1 + 2.33 × (% Cr)
f (Mo) = 1 + 3.14 × (% Mo)
However,% C is mass% of carbon,% Mn is mass% of manganese,% Ni is mass% of nickel,% Cr is mass% of chromium, and% Mo is mass% of molybdenum.
(c) Steel material that has been spheroidized.
(d) Yo (mm) which is the effective hardened layer depth (Hv550) of the raceway surface is in a range satisfying the following formula (2).
0.07 Dw ≦ Yo ≦ 0.07 Dw + 5 (2)
Where Dw: rolling element diameter (mm)
(e) The surface hardness of the raceway surface is Hv650 or more, and the surface retained austenite is 12 to 40% by volume.
(f) The crystal grain size of prior austenite on the raceway surface is 30 μm or less.
転がり軸受の回転中に他部品と接触しうる前記軌道輪の軌道面以外の表面全体、高周波焼入れを含む熱処理により硬化することで、表面硬さHv500以上にするとともに、表面から0.1mm以上の部分をHv500以上にする請求項1記載の転がり軸受の製造方法 The entire surface other than the raceway surface of the bearing ring during rotation of the rolling bearing may contact with other components, that is cured by heat treatment comprising induction hardening, as well as the surface hardness than Hv 500, 0.1 mm from the surface The method for manufacturing a rolling bearing according to claim 1 , wherein the above portion is set to Hv 500 or more . 前記軌道面の硬化層のうち、硬さがHv650の部分とHv400の部分との間の深さ方向の硬さ勾配1000Hv/mm以下とする請求項1又は2記載の転がり軸受の製造方法The method for manufacturing a rolling bearing according to claim 1 or 2, wherein a hardness gradient in a depth direction between a portion of Hv650 and a portion of Hv400 in the hardened layer of the raceway surface is set to 1000 Hv / mm or less. . 請求項1〜3のいずれか1項に記載の転がり軸受の製造方法に用いられる高周波熱処理装置であって、
前記軌道輪の円周上に2個以上のコイルを部分的に配置し、前記コイルの一つ以上が軸受断面の外周部全てを加熱する環状コイルであり、前記コイルの他方が軌道面のみを加熱する平面コイルであることを特徴とする高周波熱処理装置。
An induction heat treatment apparatus used in the method for manufacturing a rolling bearing according to any one of claims 1 to 3 ,
Two or more coils are partly arranged on the circumference of the raceway , and one or more of the coils are annular coils that heat the entire outer periphery of the bearing cross section, and the other of the coils is only a raceway surface. A high-frequency heat treatment apparatus characterized by being a planar coil for heating.
JP2011269232A 2011-01-21 2011-12-08 Rolling bearing manufacturing method, induction heat treatment apparatus Active JP5895493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011269232A JP5895493B2 (en) 2011-01-21 2011-12-08 Rolling bearing manufacturing method, induction heat treatment apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011010982 2011-01-21
JP2011010982 2011-01-21
JP2011269232A JP5895493B2 (en) 2011-01-21 2011-12-08 Rolling bearing manufacturing method, induction heat treatment apparatus

Publications (2)

Publication Number Publication Date
JP2012162799A JP2012162799A (en) 2012-08-30
JP5895493B2 true JP5895493B2 (en) 2016-03-30

Family

ID=46842462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011269232A Active JP5895493B2 (en) 2011-01-21 2011-12-08 Rolling bearing manufacturing method, induction heat treatment apparatus

Country Status (1)

Country Link
JP (1) JP5895493B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477157A (en) * 2016-07-14 2019-03-15 株式会社捷太格特 Heat treatment method and annealing device
WO2020144880A1 (en) 2019-01-10 2020-07-16 陽一朗 河合 Jig for rolling element

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092199A (en) * 2012-11-01 2014-05-19 Nsk Ltd Rolling bearing
JP2014092200A (en) * 2012-11-01 2014-05-19 Nsk Ltd Rolling bearing
JP2015021599A (en) * 2013-07-23 2015-02-02 日本精工株式会社 Rolling bearing
EP2913548A4 (en) 2012-10-29 2015-12-16 Nsk Ltd Rolling bearing
JP2017082944A (en) * 2015-10-29 2017-05-18 Ntn株式会社 Process of manufacture of bearing ring and process of manufacture of double row conical roller bearing
EP3901291B1 (en) * 2020-04-24 2022-03-02 Schaeffler Technologies AG & Co. KG Machine element with a rolling contact surface and method for heat treatment of a machine element
CN114986105A (en) * 2022-07-02 2022-09-02 绍兴市上虞幼发轴承有限公司 Rolling bearing production process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4423754B2 (en) * 2000-06-22 2010-03-03 日本精工株式会社 Manufacturing method of rolling shaft
JP2003156054A (en) * 2001-11-22 2003-05-30 Nsk Ltd Axle unit for driving wheel
JP2004332086A (en) * 2003-05-12 2004-11-25 Nsk Ltd Method for producing shaft
JP2006308019A (en) * 2005-04-28 2006-11-09 Nsk Ltd Rolling bearing
JP5292897B2 (en) * 2008-03-31 2013-09-18 Jfeスチール株式会社 Bearing parts with excellent fatigue characteristics in a foreign environment and manufacturing method thereof
JP5298683B2 (en) * 2008-07-24 2013-09-25 日本精工株式会社 Rolling bearing and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477157A (en) * 2016-07-14 2019-03-15 株式会社捷太格特 Heat treatment method and annealing device
US11136640B2 (en) 2016-07-14 2021-10-05 Jtekt Corporation Heat treatment method and heat treatment device
WO2020144880A1 (en) 2019-01-10 2020-07-16 陽一朗 河合 Jig for rolling element

Also Published As

Publication number Publication date
JP2012162799A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
JP3605830B2 (en) Continuous annealing furnace, annealing method and method for manufacturing inner and outer rings of rolling bearing
JP6535276B2 (en) Bearing component, method of manufacturing the same, and rolling bearing
WO2014192117A1 (en) Soft-nitrided induction-quenched steel component
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
JP2005201349A (en) Rolling bearing and heat treatment method of steel
WO2014069068A1 (en) Rolling bearing
US20170335440A1 (en) Fatigue-resistant bearing steel
JP2006200627A (en) Rolling bearing component and its manufacturing method, and rolling bearing
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
EP2514844A2 (en) Rolling sliding member, method of manufacturing the same, and rolling bearing
JP5298683B2 (en) Rolling bearing and manufacturing method thereof
JP6055397B2 (en) Bearing parts having excellent wear resistance and manufacturing method thereof
JP2002180203A (en) Needle bearing components, and method for producing the components
JP2007113027A (en) Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus
JP2019039044A (en) Rolling slide member and rolling bearing
JP5991026B2 (en) Manufacturing method of rolling bearing
JP2008063603A (en) Method for manufacturing track member, method for manufacturing valve device, and track member
JP2007239072A (en) Rolling member manufacturing method, and rolling bearing manufacturing method
JP2022170056A (en) steel
JP2006299313A (en) Rolling supporter
JP2009270172A (en) Method for manufacturing bearing ring for rolling bearing
JP2008064159A (en) Method of manufacturing track member, method of manufacturing valve gear, and track member
JP2007308740A (en) Rolling bearing
JP2007182603A (en) Method for manufacturing rolling member, rolling member and rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5895493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350