JP5298683B2 - Rolling bearing and manufacturing method thereof - Google Patents

Rolling bearing and manufacturing method thereof Download PDF

Info

Publication number
JP5298683B2
JP5298683B2 JP2008190843A JP2008190843A JP5298683B2 JP 5298683 B2 JP5298683 B2 JP 5298683B2 JP 2008190843 A JP2008190843 A JP 2008190843A JP 2008190843 A JP2008190843 A JP 2008190843A JP 5298683 B2 JP5298683 B2 JP 5298683B2
Authority
JP
Japan
Prior art keywords
rolling bearing
rolling
hardness
hardened
hardened layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008190843A
Other languages
Japanese (ja)
Other versions
JP2010024530A (en
Inventor
秀幸 飛鷹
大輔 渡貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008190843A priority Critical patent/JP5298683B2/en
Publication of JP2010024530A publication Critical patent/JP2010024530A/en
Application granted granted Critical
Publication of JP5298683B2 publication Critical patent/JP5298683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing in which the starting point in the inner part is hardly broken dowm and which has a long service life, and a manufacturing method therefor. <P>SOLUTION: An inner ring 1 and an outer ring 2 of the cylindrical rolling bearing are constituted of steel having &ge;0.7 mass% carbon content and a rolling body 3 is constituted of a bearing steel of SUJ3, etc. The inner ring 1 and the outer ring 2 are subjected to a heat-treatment including a high-frequency induction-hardening, and the hardened layers hardened by the heat-treatment are formed on orbital surfaces 1a, 2a. The hardened layer is composed of a martensitic structure, but in the inside of the hardened layer, a pearlitic structure is formed by the heat-treatment and further, in the inside of the avove inside, a core part composed of a spheroidized structure not being hardened is formed. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は転がり軸受及びその製造方法に関する。   The present invention relates to a rolling bearing and a manufacturing method thereof.

転がり軸受には、寿命と靱性が要求される。特に、高荷重や衝撃的荷重が負荷されることが多い産業用の転がり軸受に関しては、両者のバランスが重要視される。
転がり軸受の転動寿命の原因となる剥離は、内部起点型の剥離と表面起点型の剥離とに大別される。前者は、鋼中に含まれる非金属介在物を起点とするため、鋼材の酸素含有量を低減する方法により長寿命化を図ることができる。一方、後者は、潤滑剤中に含まれる金属粉などの異物の噛み込みによって生じる圧痕の縁部への応力集中により生じるため、残留オーステナイト量を制御して応力集中を緩和する方法により長寿命化を図ることができる。
Rolling bearings require life and toughness. In particular, regarding industrial rolling bearings that are often subjected to high loads or impact loads, the balance between them is regarded as important.
Separation that causes the rolling life of the rolling bearing is roughly classified into internal origin type separation and surface origin type separation. Since the former is based on non-metallic inclusions contained in the steel, the life can be extended by a method of reducing the oxygen content of the steel material. On the other hand, the latter is caused by stress concentration at the edge of the indentation caused by the inclusion of foreign matter such as metal powder contained in the lubricant, so the life is extended by controlling the amount of retained austenite and relaxing the stress concentration. Can be achieved.

一般に、表面起点型の剥離は内部起点型の剥離に比べて明らかに短寿命であることから、長寿命な転がり軸受の開発は、表面起点型の剥離を抑制することにより行われることが多い。ところが、残留オーステナイトを多量に析出させるためには、表面に炭素や窒素の富化領域を形成させる必要があり、そのためには浸炭処理や浸炭窒化処理などの特殊なガス雰囲気下での焼入れが必要となる。さらに、多量の残留オーステナイトの析出は、転がり軸受に最も必要な表面硬さの低下をもたらすので、これを硬質の炭窒化物で補う必要があり、そのためにモリブデンなどの高価な合金元素が添加される場合もある。よって、生産コストの増大という問題が生じるおそれがあった。   In general, since surface-origin type peeling has an apparently short life compared to internal origin-type peeling, development of a long-life rolling bearing is often performed by suppressing surface-origin type peeling. However, in order to deposit a large amount of retained austenite, it is necessary to form a carbon or nitrogen-enriched region on the surface, which requires quenching in a special gas atmosphere such as carburizing or carbonitriding. It becomes. In addition, the precipitation of a large amount of retained austenite results in the reduction of the surface hardness that is most necessary for rolling bearings, so this must be supplemented with hard carbonitrides, for which expensive alloy elements such as molybdenum are added. There is also a case. Therefore, there is a possibility that a problem of an increase in production cost occurs.

一方、靱性に関しては、材料の硬さと二律背反の関係にある。したがって、靱性を向上させるためには、基本的には、硬さの低い領域をできるだけ多く確保することが必要となる。このような考え方から、低・中炭素鋼に浸炭処理又は浸炭窒化処理を施して、表面のみを硬化させた浸炭軸受が開発されている。ただし、浸炭鋼は、鉄鋼機械用の転がり軸受などの比較的大型の転がり軸受に使用されることが多い。また、焼入れ性を確保するためにニッケル,モリブデン,クロム等の比較的高価な合金元素の添加が主流であり、浸炭処理などの熱処理の煩雑さと併せて、生産コストの増大を招いている。   On the other hand, regarding toughness, there is a trade-off between the hardness of the material. Therefore, in order to improve toughness, basically, it is necessary to secure as many regions with low hardness as possible. Based on this concept, carburized bearings have been developed in which only the surface is hardened by carburizing or carbonitriding the low / medium carbon steel. However, carburized steel is often used for relatively large rolling bearings such as rolling bearings for steel machines. In addition, in order to ensure hardenability, the addition of relatively expensive alloy elements such as nickel, molybdenum, chromium, etc. is the mainstream, leading to an increase in production cost in combination with the complexity of heat treatment such as carburizing.

これに対して、近年では、硬さが必要な表面部分のみを焼入れし硬化する高周波熱処理が注目されている(特許文献1,2を参照)。この手法は、1つの部品の中に焼入れされ硬化された表面部分と焼入れされない高靱性の芯部とを作ることにより、寿命と靱性とを両立させる手法である。また、焼入れされない芯部を有することにより、焼入れされ硬化された表面部分に圧縮の残留応力が付与されるので、寿命の向上やクラック発生の抑制に有効である。   On the other hand, in recent years, high-frequency heat treatment that hardens and hardens only the surface portion that requires hardness (see Patent Documents 1 and 2). This method is a method of achieving both life and toughness by making a hardened and hardened surface portion and a high toughness core portion that is not hardened in one part. In addition, by having a core portion that is not quenched, compressive residual stress is imparted to the hardened and hardened surface portion, which is effective in improving the life and suppressing the occurrence of cracks.

さらに、熱処理の有無で硬さを制御できるので、高合金の低炭素鋼ではなく、清浄度の優れた汎用の軸受鋼に代表される高炭素鋼を使用することができる。さらに、表面損傷に対して残留オーステナイトが有効であることは前述したが、高周波焼入れの特性上、電流密度は表面が高いので、母材の炭素濃度が0.7質量%程度であれば極表層のみに浸炭鋼並みの残留オーステナイトを確保することもできる。   Furthermore, since the hardness can be controlled by the presence or absence of heat treatment, high carbon steel represented by general-purpose bearing steel having excellent cleanliness can be used instead of high alloy low carbon steel. Furthermore, as described above, the retained austenite is effective against surface damage. However, the current density is high on the surface due to the characteristics of induction hardening, so if the carbon concentration of the base material is about 0.7% by mass, the extreme surface layer Only retained austenite comparable to carburized steel can be secured.

多量の残留オーステナイトは寸法変化の要因ともなるが、深さ方向で見ると急激に残留オーステナイト量が低下するので、最大剪断応力深さよりも表面側の部分に多量に存在させつつ全体の量は低く抑えられるという利点もある。すなわち、軸受鋼に高周波焼入れを施すことによって、内部疲労,表面疲労のいずれの破損形態に対しても優れた寿命を有し、耐割れ強度の優れた転がり軸受を得ることができる。
特開平11−37163号公報 特開平14−256336号公報
A large amount of retained austenite can cause dimensional changes, but when viewed in the depth direction, the amount of retained austenite decreases rapidly, so the total amount is low while being present in a large amount on the surface side than the maximum shear stress depth. There is also an advantage that it can be suppressed. That is, by subjecting the bearing steel to induction hardening, it is possible to obtain a rolling bearing having an excellent life with respect to both internal fatigue and surface fatigue, and having excellent crack resistance.
Japanese Patent Laid-Open No. 11-37163 Japanese Patent Laid-Open No. 14-256336

しかしながら、高周波焼入れは、浸炭処理に比べると、焼入れされた表面部分と焼入れされない芯部との境界領域の硬さ勾配が急激となるので、高い応力が作用する用途では強度の弱い内部に応力が作用して内部起点破壊(いわゆるケースクラッシュ)が発生するという問題点を有している。
つまり、産業用の転がり軸受は自動車用転がり軸受等と比べて高い荷重が負荷される場合が多く、剪断応力は内部にまで作用するので、靱性を確保するために芯部の硬さを低くすると、必要以上に硬化層深さを大きくする必要性が生じ、十分な靱性を得るための芯部の量を確保できなくなるおそれがある。
そこで、本発明は上記のような従来技術が有する問題点を解決し、内部起点破壊が生じにくく長寿命な転がり軸受及びその製造方法を提供することを課題とする。
However, in the induction hardening, the hardness gradient in the boundary region between the hardened surface portion and the core portion that is not hardened becomes sharper than in the carburizing treatment. There is a problem in that internal origin destruction (so-called case crash) occurs due to the action.
In other words, industrial rolling bearings are often subjected to higher loads than automotive rolling bearings, etc., and since shear stress acts on the inside, reducing the hardness of the core to ensure toughness Further, it becomes necessary to increase the depth of the hardened layer more than necessary, and there is a possibility that the amount of the core part for obtaining sufficient toughness cannot be secured.
Accordingly, an object of the present invention is to solve the above-described problems of the prior art, and to provide a long-life rolling bearing and a method for manufacturing the same that are less likely to cause internal origin fracture.

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明に係る請求項1の転がり軸受は、軌道面を有する内輪と、前記内輪の軌道面に対向する軌道面を有する外輪と、前記両軌道面間に転動自在に配された複数の転動体と、を備える転がり軸受において、前記内輪及び前記外輪の少なくとも一方は、炭素含有量が0.7質量%以上の鋼で構成されており、その軌道面には、高周波焼入れを含む熱処理により硬化されてなる硬化層が形成されているとともに、マルテンサイト組織からなる前記硬化層の内側には、前記熱処理によりパーライト組織層が形成されており、さらにその内側には、硬化されておらず球状化組織からなる芯部が形成されていることを特徴とする。   In order to solve the above problems, the present invention has the following configuration. That is, the rolling bearing of claim 1 according to the present invention includes an inner ring having a raceway surface, an outer ring having a raceway surface facing the raceway surface of the inner ring, and a plurality of rolling bearings arranged between the raceway surfaces. And at least one of the inner ring and the outer ring is made of steel having a carbon content of 0.7% by mass or more, and the raceway surface includes heat treatment including induction hardening. A hardened layer formed by hardening is formed, and a pearlite structure layer is formed inside the hardened layer made of martensite structure by the heat treatment, and further, it is not hardened inside. A core portion made of a spheroidized structure is formed.

また、本発明に係る請求項2の転がり軸受は、請求項1に記載の転がり軸受において、前記硬化層のうち硬さがHv650の部分と前記芯部のうち硬さがHv300の部分との間の深さ方向の硬さ勾配を、最小二乗法で求めた値が95以下であることを特徴とする。 さらに、本発明に係る請求項3の転がり軸受は、請求項1又は請求項2に記載の転がり軸受において、前記熱処理が施された前記軌道面の残留オーステナイト量が26体積%以上であることを特徴とする。
さらに、本発明に係る請求項4の転がり軸受は、請求項1〜3のいずれか一項に記載の転がり軸受において、前記熱処理が施された前記軌道面における前記転動体の転走方向の残留応力が−204MPa以下であることを特徴とする。
According to a second aspect of the present invention, there is provided the rolling bearing according to the first aspect, wherein the hardness of the hardened layer is between the Hv650 portion and the core portion of the Hv300 portion. The value of the hardness gradient in the depth direction obtained by the least square method is 95 or less. Furthermore, the rolling bearing according to claim 3 according to the present invention is the rolling bearing according to claim 1 or 2, wherein the amount of retained austenite of the raceway surface subjected to the heat treatment is 26% by volume or more. Features.
Furthermore, the rolling bearing of Claim 4 which concerns on this invention is a rolling bearing as described in any one of Claims 1-3. Residual of the rolling direction of the said rolling element in the said raceway surface where the said heat processing was performed. The stress is −204 MPa or less.

らに、本発明に係る請求項5の転がり軸受の製造方法は、請求項1〜4のいずれか一項に記載の転がり軸受を製造するに際して、球状化焼鈍しを施した後に、必要硬化層深さよりも深い部分までA1変態点以上に加熱して徐冷し、次いで、必要硬化層深さまでA1変態点以上に高周波加熱して前記高周波焼入れを施すことを特徴とする。 Et al is, the production method of a rolling bearing according to claim 5 of the present invention, when producing a rolling bearing according to claim 1, after performing spheroidizing annealing, required hardening Heating to A1 transformation point or more to a deeper part than the layer depth and slow cooling, then induction heating to A1 transformation point or more to the required hardened layer depth to perform the induction hardening.

本発明の転がり軸受は、内部起点破壊が生じにくく長寿命である。また、本発明の転がり軸受の製造方法は、内部起点破壊が生じにくく長寿命な転がり軸受を製造することができる。   The rolling bearing of the present invention has a long service life that hardly causes internal origin fracture. Moreover, the manufacturing method of the rolling bearing of this invention can manufacture a long-life rolling bearing which is hard to produce internal origin destruction.

本発明に係る転がり軸受及び該転がり軸受の製造方法の実施の形態を、図面を参照しながら詳細に説明する。図1は、本発明に係る転がり軸受の一実施形態である円筒ころ軸受の構造を示す部分縦断面図である。
この円筒ころ軸受は、軌道面1aを外周面に有する内輪1と、内輪1の軌道面1aに対向する軌道面2aを内周面に有する外輪2と、両軌道面1a,2a間に転動自在に配された複数の転動体(円筒ころ)3と、内輪1及び外輪2の間に転動体3を保持する保持器4と、を備えていて、両軌道面1a,2aと転動体3の転動面3aとの間の潤滑が、グリース,潤滑油等の潤滑剤(図示せず)により行われている。なお、保持器4は備えていなくてもよい。また、シール,シールド等の密封装置を備えていてもよい。
DESCRIPTION OF EMBODIMENTS Embodiments of a rolling bearing and a manufacturing method of the rolling bearing according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial longitudinal sectional view showing a structure of a cylindrical roller bearing which is an embodiment of a rolling bearing according to the present invention.
This cylindrical roller bearing has an inner ring 1 having a raceway surface 1a on its outer peripheral surface, an outer ring 2 having a raceway surface 2a opposite to the raceway surface 1a of the inner ring 1 on its inner peripheral surface, and rolling between both raceway surfaces 1a and 2a. A plurality of rolling elements (cylindrical rollers) 3 arranged freely, and a cage 4 that holds the rolling elements 3 between the inner ring 1 and the outer ring 2, both raceway surfaces 1 a and 2 a and the rolling elements 3 are provided. Lubricating with the rolling surface 3a is performed by a lubricant (not shown) such as grease or lubricating oil. In addition, the holder | retainer 4 does not need to be provided. Moreover, you may provide sealing devices, such as a seal and a shield.

この円筒ころ軸受においては、内輪1及び外輪2は、炭素の含有量が0.7質量%以上の鋼(例えばSUJ2,SUJ3等の軸受鋼)で構成されており、転動体3はSUJ3等の軸受鋼で構成されている。内輪1及び外輪2には高周波焼入れを含む熱処理が施されていて、該熱処理により硬化されてなる硬化層(図示せず)が軌道面1a,2aに形成されている。この硬化層はマルテンサイト組織からなるが、硬化層の内側には、前記熱処理によりパーライト組織層が形成されており、さらにその内側には、硬化されていない芯部(芯部は球状化組織からなる)が形成されている。   In this cylindrical roller bearing, the inner ring 1 and the outer ring 2 are made of steel having a carbon content of 0.7% by mass or more (for example, bearing steel such as SUJ2 and SUJ3), and the rolling element 3 is made of SUJ3 or the like. It is made of bearing steel. The inner ring 1 and the outer ring 2 are subjected to heat treatment including induction hardening, and hardened layers (not shown) cured by the heat treatment are formed on the raceway surfaces 1a and 2a. This hardened layer is composed of a martensite structure, and a pearlite structure layer is formed by heat treatment on the inner side of the hardened layer, and further on the inner side, an unhardened core (the core is made of a spheroidized structure). Formed).

このように、内輪1及び外輪2は、硬質な硬化層と軟質な芯部との間に中程度の硬さのパーライト組織層が挟まれた3層構造を有しており、硬化層と芯部との境界領域の硬さ勾配が緩やかとされているため、寿命と高靱性とが両立しており、高い応力が作用する用途で使用されても、円筒ころ軸受は内部起点破壊が生じにくく長寿命である。よって、この円筒ころ軸受は、産業用の転がり軸受に好適であり、特に外輪の外径が200mm以上の大型の転がり軸受に好適である。   As described above, the inner ring 1 and the outer ring 2 have a three-layer structure in which a medium-hardness pearlite structure layer is sandwiched between a hard hardened layer and a soft core portion. Because the hardness gradient in the boundary area with the part is moderate, both life and high toughness are compatible. Cylindrical roller bearings are less susceptible to internal origin failure even when used in applications where high stress acts. Long life. Therefore, this cylindrical roller bearing is suitable for an industrial rolling bearing, and is particularly suitable for a large-sized rolling bearing having an outer diameter of the outer ring of 200 mm or more.

なお、硬化層のうち硬さがHv650の部分と、芯部のうち硬さがHv300の部分との間の深さ方向の硬さ勾配を、最小二乗法で求めた値が95以下とされていることが好ましい。そうすれば、前記硬さ勾配が、内輪1や外輪2に作用する剪断応力の分布(剪断応力の勾配)よりも緩やか又は同程度となるので、寿命と高靱性とを両立することができる。   It should be noted that the hardness gradient in the depth direction between the portion of the hardened layer having a hardness of Hv650 and the portion of the core having a hardness of Hv300 is 95 or less. Preferably it is. By doing so, the hardness gradient becomes gentler or similar to the distribution of shear stress acting on the inner ring 1 and the outer ring 2 (shear stress gradient), so that both life and high toughness can be achieved.

また、軌道面1a,2aの残留オーステナイト量は、26体積%以上であることが好ましい。さらに、亀裂の発生及び進展を抑制するためには、軌道面1a,2aにおける転動体3の転走方向の残留応力は−204MPa以下(残留圧縮応力が204MPa以上)とすることが好ましい。さらに、亀裂の発生及び進展を抑制するためには、硬化層の最大剪断応力深さまでの部分における深さ方向(径方向)の残留応力は−210MPa以下(残留圧縮応力が210MPa以上)とすることが好ましい。   The amount of retained austenite on the raceway surfaces 1a and 2a is preferably 26% by volume or more. Furthermore, in order to suppress the generation and propagation of cracks, it is preferable that the residual stress in the rolling direction of the rolling elements 3 on the raceway surfaces 1a and 2a is −204 MPa or less (residual compressive stress is 204 MPa or more). Furthermore, in order to suppress the occurrence and development of cracks, the residual stress in the depth direction (radial direction) in the portion up to the maximum shear stress depth of the hardened layer should be −210 MPa or less (residual compressive stress is 210 MPa or more). Is preferred.

このような円筒ころ軸受を製造するための前記熱処理としては、例えば、鋼材に球状化焼鈍しを施した後に、必要硬化層深さよりも深い部分までA1変態点以上に加熱して徐冷(例えば空冷)し、次いで、必要硬化層深さまでA1変態点以上に高周波加熱し急冷して焼入れを施すという熱処理があげられる。
球状化組織を出発組織とし、必要硬化層深さよりも深い部分(例えば、必要硬化層深さの1.2〜2.5倍の深さ)まで高周波加熱等の方法によりA1変態点以上に加熱して徐冷すると、加熱された部分はパーライト化される。加熱されない芯部は、球状化組織のままである。
As the heat treatment for manufacturing such a cylindrical roller bearing, for example, after spheroidizing annealing is performed on a steel material, it is gradually cooled (for example, heated to a portion deeper than the required hardened layer depth to the A1 transformation point or more). Then, heat treatment is performed such that the air is heated to high frequency above the A1 transformation point to the required hardened layer depth, rapidly cooled, and quenched.
Starting from a spheroidized structure, heat to a point deeper than the required hardened layer depth (for example, 1.2 to 2.5 times the required hardened layer depth) above the A1 transformation point by a method such as high frequency heating. Then, when it is gradually cooled, the heated portion becomes pearlite. The core that is not heated remains a spheroidized structure.

次に、必要硬化層深さまでA1変態点以上に高周波加熱し急冷して高周波焼入れを施すと、表面にマルテンサイト組織からなる硬化層が形成される。その結果、表面側から順に、マルテンサイト組織、パーライト組織、球状化組織となり、硬化層と芯部との境界領域の硬さ勾配が緩やかとなる。
パーライト組織は、マルテンサイト組織と球状化組織とのほぼ中間の硬さを有している。また、パーライト組織は、球状化組織に比べて炭化物間の距離が短いことから、高周波焼入れにより硬化層を形成する際の前組織がパーライト組織であると、短時間の加熱でも炭素が速やかに拡散して残留オーステナイトを確保しつつ均一な組織が得られやすい。
Next, when induction heating is performed by induction heating above the A1 transformation point to the required hardening layer depth and quenching, induction hardening is formed on the surface. As a result, a martensite structure, a pearlite structure, and a spheroidized structure are formed in this order from the surface side, and the hardness gradient in the boundary region between the hardened layer and the core portion becomes gentle.
The pearlite structure has a hardness almost intermediate between the martensite structure and the spheroidized structure. In addition, since the pearlite structure has a shorter distance between carbides than the spheroidized structure, if the previous structure when forming a hardened layer by induction hardening is a pearlite structure, carbon diffuses quickly even with short heating. Thus, it is easy to obtain a uniform structure while securing retained austenite.

境界領域の硬さ勾配を緩やかにする熱処理としては、全体に焼入れ及び焼戻しを施す処理である調質処理も有効であるが、全体を相変態点以上の温度に加熱するため変形量が大きくなりやすいという問題点を有している。
転動体3については特に限定されるものではなく、一般的なものを問題なく使用できる。例えば、浸炭窒化処理又は窒化処理を含む熱処理が施されていて、該熱処理により硬化されてなる窒化層が転動面3aに形成されているものがあげられる。
A tempering treatment, which is a process of quenching and tempering the entire area, is effective as a heat treatment to moderate the hardness gradient in the boundary region, but the amount of deformation increases because the whole is heated to a temperature above the phase transformation point. It has the problem of being easy.
The rolling elements 3 are not particularly limited, and general ones can be used without problems. For example, a heat treatment including a carbonitriding process or a nitriding process is performed, and a nitride layer formed by the heat treatment is formed on the rolling surface 3a.

なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。例えば、本実施形態においては転がり軸受の例として円筒ころ軸受をあげて説明したが、本発明は、他の種類の様々な転がり軸受に対して適用することができる。例えば、深溝玉軸受,アンギュラ玉軸受,自動調心玉軸受,自動調心ころ軸受,円すいころ軸受,針状ころ軸受等のラジアル形の転がり軸受や、スラスト玉軸受,スラストころ軸受等のスラスト形の転がり軸受である。   In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. For example, in the present embodiment, a cylindrical roller bearing has been described as an example of a rolling bearing, but the present invention can be applied to various types of rolling bearings. For example, radial type rolling bearings such as deep groove ball bearings, angular contact ball bearings, self-aligning ball bearings, self-aligning roller bearings, tapered roller bearings and needle roller bearings, and thrust types such as thrust ball bearings and thrust roller bearings This is a rolling bearing.

〔実施例〕
本実施形態の円筒ころ軸受とほぼ同様の構成の円筒ころ軸受(呼び番号NU2210ET)を用意して、その寿命を評価した。ただし、本発明は外輪の外径が200mm以上である産業用の大型軸受に好適であるので、該大型軸受の平均的な肉厚を再現するために、内輪の内径は30mm、外径は60mm、肉厚(径方向の幅)は15mmとした。まず、試験に用いた円筒ころ軸受の製造方法について説明する。
〔Example〕
A cylindrical roller bearing (nominal number NU2210ET) having a configuration substantially similar to that of the cylindrical roller bearing of the present embodiment was prepared, and its life was evaluated. However, since the present invention is suitable for industrial large bearings having an outer diameter of 200 mm or more, the inner diameter of the inner ring is 30 mm and the outer diameter is 60 mm in order to reproduce the average thickness of the large bearing. The wall thickness (the width in the radial direction) was 15 mm. First, the manufacturing method of the cylindrical roller bearing used for the test is demonstrated.

内輪は、SUJ3製の球状化焼鈍し材を粗加工によって所定の形状に成形した後、高周波加熱により表面から深さ5mm又は10mmまでA1変態点以上に加熱し空冷して、加熱部分をパーライト化した。なお、パーライト化深さは、後述する組織観察により求めた。また、この高周波加熱の条件は、周波数10kHz、加熱時間20〜60秒、ワーク回転速度60min-1である。
次いで、高周波焼入れ及び焼戻しを施し、さらに研磨等の後加工を施すことにより内輪を完成した。この高周波焼入れの条件は、周波数100kHz、加熱時間5〜200秒、ワーク回転速度60min-1、固定焼である。また、焼戻しの条件は、180℃に保持した後に放冷するというものである。
The inner ring is made of SUJ3 spheroidized annealed material into a predetermined shape by roughing, then heated to a depth of 5mm or 10mm from the surface to the A1 transformation point or higher by air heating, and the heated part is made pearlite. did. In addition, the pearlite depth was calculated | required by structure | tissue observation mentioned later. Further, the conditions for the high-frequency heating are a frequency of 10 kHz, a heating time of 20 to 60 seconds, and a work rotation speed of 60 min −1 .
Next, induction hardening and tempering were performed, and further post-processing such as polishing was performed to complete the inner ring. The conditions for this induction hardening are a frequency of 100 kHz, a heating time of 5 to 200 seconds, a work rotation speed of 60 min −1 , and fixed hardening. Moreover, the conditions of tempering are that it cools after hold | maintaining at 180 degreeC.

なお、比較例1は、SUJ3製の球状化焼鈍し材を粗加工によって所定の形状に成形した後に、ズブ焼入れを施して内輪を製造したものである。また、比較例2は、SUJ3製の球状化焼鈍し材を粗加工によって所定の形状に成形した後に、パーライト化を行うことなくすぐに高周波焼入れを施して軌道面に硬化層を形成したものである。
ここで、このようにして得られた内輪の分析を行った。まず、表面(軌道面)からの種々の深さでの硬さHv(硬さプロファイル)を測定した。結果を表1及び図2のグラフに示す。なお、図2のグラフには、84kN(P/C=0.6)のラジアル荷重を付与した際に生じる剪断応力の分布を、耐久硬さHvに変換して示した。
In Comparative Example 1, a spheroidized annealed material made of SUJ3 was formed into a predetermined shape by roughing, and then subjected to sub-quenching to produce an inner ring. In Comparative Example 2, a spheroidized annealing material made of SUJ3 was formed into a predetermined shape by roughing, and then subjected to induction hardening without performing pearlite to form a hardened layer on the raceway surface. is there.
Here, the inner ring thus obtained was analyzed. First, hardness Hv (hardness profile) at various depths from the surface (orbital surface) was measured. The results are shown in Table 1 and the graph of FIG. The graph of FIG. 2 shows the distribution of shear stress generated when a radial load of 84 kN (P / C = 0.6) is applied, converted to durable hardness Hv.

そして、硬さHv650の部分と硬さHv300の部分との間の深さ方向の硬さ勾配を、最小二乗法で算出した。結果を表2に示す。なお、芯部の硬さがHv300を超える場合は、硬さHv650の部分と高周波焼入れによる全硬化層深さとの間の深さ方向の硬さ勾配を、最小二乗法で計算する。
図2のグラフから分かるように、軌道面から深さ11mmの部分までの硬さは、比較例1はほとんど変化していないのに対して、実施例1,2及び比較例2は徐々に低下している。そして、その勾配は、比較例2が最も急であり、実施例2が最も緩やかであることが分かる。
And the hardness gradient of the depth direction between the part of hardness Hv650 and the part of hardness Hv300 was computed by the least square method. The results are shown in Table 2. When the hardness of the core exceeds Hv300, the hardness gradient in the depth direction between the portion of hardness Hv650 and the total hardened layer depth by induction hardening is calculated by the least square method.
As can be seen from the graph of FIG. 2, the hardness from the raceway surface to the depth of 11 mm is hardly changed in Comparative Example 1, whereas Examples 1, 2 and Comparative Example 2 are gradually decreased. doing. It can be seen that the gradient is the steepest in Comparative Example 2 and the slowest in Example 2.

Figure 0005298683
Figure 0005298683

Figure 0005298683
Figure 0005298683

また、残留オーステナイト量及び転動体の転走方向(周方向)の残留応力は、X線回折法により測定した。その際には、内輪の表面(軌道面)を電解研磨して加工影響層を取り除いて測定を行った。さらに、内輪を切断して、その切断面を鏡面仕上げ及び腐食処理を行った後に、切断面の顕微鏡観察により組織を特定した。また、組織観察を行った試料を用いて、X線回折法により深さ方向の残留応力を測定した。すなわち、深さ0.15mmの部分を中心とする直径0.1mmの円状範囲について、残留応力を測定した。結果を表2及び図3に示す。   Moreover, the residual austenite amount and the residual stress in the rolling direction (circumferential direction) of the rolling elements were measured by an X-ray diffraction method. At that time, the surface (track surface) of the inner ring was electropolished to remove the work-affected layer, and measurement was performed. Further, the inner ring was cut, the cut surface was mirror-finished and subjected to corrosion treatment, and then the structure was identified by microscopic observation of the cut surface. Moreover, the residual stress in the depth direction was measured by the X-ray diffraction method using the sample subjected to the structure observation. That is, the residual stress was measured for a circular range having a diameter of 0.1 mm centering on a portion having a depth of 0.15 mm. The results are shown in Table 2 and FIG.

図3は、各試料の表面(軌道面)から深さ10mmまでの組織構成を模式的に示したものである。比較例1は、全体がマルテンサイト組織となっており、比較例2は、表面から約2mmまでがマルテンサイト組織で、芯部は球状化組織となっている。一方、実施例1,2は、表面から順にマルテンサイト組織、パーライト組織、球状化組織となっており、パーライト組織層の厚さは実施例1よりも実施例2の方が厚い。表1や図2の硬さプロファイルは、このような組織構成をよく反映している。   FIG. 3 schematically shows the structure of each sample from the surface (orbital surface) to a depth of 10 mm. Comparative Example 1 has a martensite structure as a whole, and Comparative Example 2 has a martensite structure from the surface to about 2 mm, and the core has a spheroidized structure. On the other hand, Examples 1 and 2 have a martensite structure, a pearlite structure, and a spheroidized structure in order from the surface, and the pearlite structure layer is thicker in Example 2 than in Example 1. The hardness profiles in Table 1 and FIG. 2 well reflect such a structure.

上記のようにして得られた内輪とSUJ2製の一般的な外輪及び転動体とを組み立てて、円筒ころ軸受を製造した。そして、これらの円筒ころ軸受の回転試験を、潤滑剤に異物混入のない清浄な潤滑環境下(以降は清浄潤滑環境下と記す)及び潤滑剤に異物が混入している潤滑環境下(以降は異物混入潤滑環境下と記す)のそれぞれで行い、剥離が生じるまでの時間を測定した。   A cylindrical roller bearing was manufactured by assembling the inner ring obtained as described above, a general outer ring made of SUJ2, and rolling elements. The rotation test of these cylindrical roller bearings is conducted under a clean lubrication environment in which no foreign matter is mixed in the lubricant (hereinafter referred to as a clean lubrication environment) and in a lubrication environment in which foreign matter is mixed in the lubricant (hereinafter referred to as a clean lubrication environment). This was carried out in each of the above-mentioned cases, and the time until peeling occurred was measured.

そして、1種の軸受につき7個の回転試験を行ってワイブルプロットを作成し、ワイブル分布の結果からL10寿命を求め、これを寿命とした。結果を表2に示す。なお、表2の寿命は、それぞれの潤滑環境下での比較例1の寿命を1とした場合の相対値で示してある。回転試験の条件は下記の通りである。
(清浄潤滑環境下での回転試験)
ラジアル荷重:84kN(P/C=0.6)
回転速度 :1000min-1
潤滑剤 :ISO粘度グレードがISO VG68である潤滑油
(異物混入潤滑環境下での回転試験)
ラジアル荷重:25kN(P/C=0.3)
回転速度 :1000min-1
潤滑剤 :ISO粘度グレードがISO VG68である潤滑油
異物 :潤滑剤中に異物を混入する代わりに、内輪の軌道面の幅方向中央に、ロックウェル硬度計を用いて8点の疑似圧痕を形成した。
Then, to create a Weibull plot subjected to seven rotation test per one bearing obtains the L 10 life From the results of Weibull distribution, which was used as a lifetime. The results are shown in Table 2. In addition, the lifetime of Table 2 is shown by the relative value when the lifetime of the comparative example 1 in each lubrication environment is set to 1. The conditions of the rotation test are as follows.
(Rotation test under clean lubrication environment)
Radial load: 84kN (P / C = 0.6)
Rotational speed: 1000 min -1
Lubricant: Lubricating oil whose ISO viscosity grade is ISO VG68 (Rotation test in a contaminated lubricating environment)
Radial load: 25kN (P / C = 0.3)
Rotational speed: 1000 min -1
Lubricant: Lubricating oil whose ISO viscosity grade is ISO VG68 Foreign matter: Instead of mixing foreign matter into the lubricant, 8 pseudo indentations are formed in the center of the raceway surface of the inner ring in the width direction using a Rockwell hardness meter. did.

まず、清浄潤滑環境下での回転試験の結果について説明する。比較例2は、約半数の試料で芯部からの破壊が発生し、短寿命となった。これは、図2から分かるように、芯部に負荷される応力が材料の硬さを上回ったために生じたと考えられる。一方、実施例1,2は、比較例2に見られたような内部からの破壊は認められなかった。内部からの破壊を十分に抑制するためには、負荷される応力よりも素材の硬さの方が大きいという関係を満たす必要があり、そのためには、硬さHv650の部分と硬さHv300の部分との間の深さ方向の硬さ勾配を、最小二乗法で求めた値が95以下である必要があることが判明した。また、このときの軌道面の表面硬さはHv650以上であることが好ましい。   First, the results of the rotation test in a clean lubrication environment will be described. In Comparative Example 2, destruction from the core occurred in about half of the samples, resulting in a short life. As can be seen from FIG. 2, this is considered to have occurred because the stress applied to the core part exceeded the hardness of the material. On the other hand, in Examples 1 and 2, the destruction from the inside as seen in Comparative Example 2 was not observed. In order to sufficiently suppress the destruction from the inside, it is necessary to satisfy the relationship that the hardness of the material is larger than the stress applied. For that purpose, the portion of hardness Hv650 and the portion of hardness Hv300 It was found that the hardness gradient in the depth direction between and the value obtained by the least square method needs to be 95 or less. Moreover, it is preferable that the surface hardness of the raceway surface at this time is Hv650 or more.

さらに、実施例1,2は、比較例1よりも長寿命であった。これは、清浄潤滑環境下では、高い応力が加わる表面付近(深さ1.5mm以内の領域)に存在する介在物を起点とした剥離が生じるためであると考えられる。比較例1の回転試験後の破損品を調査したところ、軌道面に平行な方向のクラックが介在物から発生し、これが剥離の原因となったことが判明した。つまり、実施例1,2では、径方向の残留圧縮応力が軌道面に平行なクラックの発生を抑制したため、長寿命となったと考えられる。そして、軌道面に平行なクラックの発生を抑制するためには、径方向の残留圧縮応力は210MPa以上であることが好ましいことが分かる。   Furthermore, Examples 1 and 2 had a longer life than Comparative Example 1. This is presumably because, under a clean lubrication environment, peeling occurs starting from inclusions present near the surface to which high stress is applied (region within a depth of 1.5 mm). When the damaged product after the rotation test of Comparative Example 1 was investigated, it was found that cracks in the direction parallel to the raceway surface were generated from the inclusions, which caused peeling. In other words, in Examples 1 and 2, the radial residual compressive stress suppresses the generation of cracks parallel to the raceway surface, which is considered to have a long life. And in order to suppress generation | occurrence | production of the crack parallel to a track surface, it turns out that it is preferable that the residual compressive stress of radial direction is 210 Mpa or more.

次に、異物混入潤滑環境下での回転試験の結果について説明する。残留オーステナイトは異物混入潤滑環境下での長寿命化に有効であるが、実施例1,2は残留オーステナイト量が26体積%を超えているため、比較例1に比べて長寿命となったと考えられる。実施例1,2で多量の残留オーステナイトが容易に得られた原因としては、一度パーライト化しているため、球状化炭化物に比べて炭化物が微細であり、且つ、炭化物の溶解を抑制するクロム等の合金元素が球状化炭化物ほど濃化していないことが考えられる。   Next, the results of the rotation test in a foreign matter mixed lubrication environment will be described. Residual austenite is effective for extending the life in a foreign matter-contaminated lubrication environment, but Examples 1 and 2 are considered to have a longer life than Comparative Example 1 because the amount of retained austenite exceeds 26% by volume. It is done. The reason why a large amount of retained austenite was easily obtained in Examples 1 and 2 was because it was pearlite once, so that the carbide was finer than the spheroidized carbide, and chromium that suppresses dissolution of the carbide, etc. It is conceivable that the alloy element is not as concentrated as the spheroidized carbide.

一方、異物による圧痕からの剥離に関しては、クラックは周方向に対して直交する方向に発生する。すなわち、周方向に圧縮の残留応力が発生すると、クラックの発生が抑制される。比較例2に着目すると、残留オーステナイト量は比較例1と大差ないが、周方向の残留圧縮応力が発生したために長寿命となったと考えられる。そして、クラックの発生を抑制するためには、周方向の残留圧縮応力は204MPa以上であることが好ましいことが分かる。   On the other hand, regarding the peeling from the indentation by the foreign matter, the crack is generated in a direction orthogonal to the circumferential direction. That is, when compressive residual stress is generated in the circumferential direction, generation of cracks is suppressed. When attention is paid to Comparative Example 2, the amount of retained austenite is not much different from that of Comparative Example 1, but it is considered that a long life was obtained due to the occurrence of residual compressive stress in the circumferential direction. And in order to suppress generation | occurrence | production of a crack, it turns out that it is preferable that the circumferential direction residual compressive stress is 204 Mpa or more.

次に、靱性を評価するための圧砕試験について説明する。ワイヤーカットにより内輪の軌道面に深さ1mmまで予亀裂を形成し、予亀裂の延びる方向を水平にして内輪を圧砕試験装置に装着して、上方から荷重を負荷し内輪を圧縮した。そして、予亀裂からクラックが伝播した荷重を圧砕強度とした。結果を表2に示す。なお、表2の圧砕強度は、比較例1の圧砕強度を1とした場合の相対値で示してある。
実施例1,2及び比較例2は、比較例1と比べて圧砕強度が優れていた。圧砕強度に影響を及ぼす因子としては、高靱性の芯部の存在と周方向の残留圧縮応力の効果とが考えられ、周方向の残留圧縮応力は亀裂の抑制に効果があると考えられるが、本試験では予亀裂が導入してあることから、主に芯部の影響により圧砕強度が決定したと考えられる。
Next, a crushing test for evaluating toughness will be described. A pre-crack was formed on the raceway surface of the inner ring to a depth of 1 mm by wire cutting, the direction in which the pre-crack extends was horizontal, the inner ring was mounted on a crushing test apparatus, and a load was applied from above to compress the inner ring. And the load which the crack propagated from the pre-crack was made into crushing strength. The results are shown in Table 2. The crushing strength in Table 2 is shown as a relative value when the crushing strength of Comparative Example 1 is 1.
Examples 1 and 2 and Comparative Example 2 were superior in crushing strength to Comparative Example 1. Factors affecting the crushing strength are considered to be the presence of a high toughness core and the effect of circumferential residual compressive stress, and the circumferential residual compressive stress is thought to be effective in suppressing cracking, Since pre-cracks were introduced in this test, it is considered that the crushing strength was determined mainly by the influence of the core.

本発明に係る転がり軸受の一実施形態である円筒ころ軸受の構造を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the structure of the cylindrical roller bearing which is one Embodiment of the rolling bearing which concerns on this invention. 硬さプロファイルの測定結果を示すグラフである。It is a graph which shows the measurement result of a hardness profile. 内輪の組織構成を模式的に示した図である。It is the figure which showed typically the structure | tissue structure of the inner ring.

符号の説明Explanation of symbols

1 内輪
1a 軌道面
2 外輪
2a 軌道面
3 転動体
3a 転動面
DESCRIPTION OF SYMBOLS 1 Inner ring 1a Raceway surface 2 Outer ring 2a Raceway surface 3 Rolling element 3a Rolling surface

Claims (5)

軌道面を有する内輪と、前記内輪の軌道面に対向する軌道面を有する外輪と、前記両軌道面間に転動自在に配された複数の転動体と、を備える転がり軸受において、
前記内輪及び前記外輪の少なくとも一方は、炭素含有量が0.7質量%以上の鋼で構成されており、その軌道面には、高周波焼入れを含む熱処理により硬化されてなる硬化層が形成されているとともに、
マルテンサイト組織からなる前記硬化層の内側には、前記熱処理によりパーライト組織層が形成されており、さらにその内側には、硬化されておらず球状化組織からなる芯部が形成されていることを特徴とする転がり軸受。
In a rolling bearing comprising an inner ring having a raceway surface, an outer ring having a raceway surface facing the raceway surface of the inner ring, and a plurality of rolling elements arranged to be freely rollable between the both raceway surfaces,
At least one of the inner ring and the outer ring is made of steel having a carbon content of 0.7 mass% or more, and a hardened layer formed by heat treatment including induction hardening is formed on the raceway surface. And
A pearlite structure layer is formed by the heat treatment on the inner side of the hardened layer made of martensite structure, and further, a core part made of a spheroidized structure that is not hardened is formed on the inner side. Characteristic rolling bearing.
前記硬化層のうち硬さがHv650の部分と前記芯部のうち硬さがHv300の部分との間の深さ方向の硬さ勾配を、最小二乗法で求めた値が95以下であることを特徴とする請求項1に記載の転がり軸受。   The hardness gradient in the depth direction between the portion of the hardened layer having a hardness of Hv650 and the portion of the core having a hardness of Hv300 is a value obtained by a least square method of 95 or less. The rolling bearing according to claim 1, wherein 前記熱処理が施された前記軌道面の残留オーステナイト量が26体積%以上であることを特徴とする請求項1又は請求項2に記載の転がり軸受。   The rolling bearing according to claim 1 or 2, wherein the amount of retained austenite of the raceway surface subjected to the heat treatment is 26% by volume or more. 前記熱処理が施された前記軌道面における前記転動体の転走方向の残留応力が−204MPa以下であることを特徴とする請求項1〜3のいずれか一項に記載の転がり軸受。   The rolling bearing according to claim 1, wherein a residual stress in a rolling direction of the rolling elements on the raceway surface subjected to the heat treatment is −204 MPa or less. 請求項1〜4のいずれか一項に記載の転がり軸受を製造するに際して、球状化焼鈍しを施した後に、必要硬化層深さよりも深い部分までA1変態点以上に加熱して徐冷し、次いで、必要硬化層深さまでA1変態点以上に高周波加熱して前記高周波焼入れを施すことを特徴とする転がり軸受の製造方法。 In producing the rolling bearing according to any one of claims 1 to 4 , after subjecting to spheroidizing annealing, it is gradually cooled by heating above the A1 transformation point to a portion deeper than the required hardened layer depth, Next, the method for producing a rolling bearing is characterized in that the induction hardening is performed by induction heating above the A1 transformation point to the required hardened layer depth.
JP2008190843A 2008-07-24 2008-07-24 Rolling bearing and manufacturing method thereof Active JP5298683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190843A JP5298683B2 (en) 2008-07-24 2008-07-24 Rolling bearing and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190843A JP5298683B2 (en) 2008-07-24 2008-07-24 Rolling bearing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010024530A JP2010024530A (en) 2010-02-04
JP5298683B2 true JP5298683B2 (en) 2013-09-25

Family

ID=41730618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190843A Active JP5298683B2 (en) 2008-07-24 2008-07-24 Rolling bearing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5298683B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057714A (en) * 2010-09-08 2012-03-22 Nsk Ltd Shaft and pinion shaft
JP5855338B2 (en) * 2010-11-01 2016-02-09 富士電子工業株式会社 Induction hardening method and manufacturing method of products made of steel
JP5895493B2 (en) * 2011-01-21 2016-03-30 日本精工株式会社 Rolling bearing manufacturing method, induction heat treatment apparatus
JP2012241862A (en) * 2011-05-23 2012-12-10 Nsk Ltd Rolling bearing
JP2013160314A (en) * 2012-02-06 2013-08-19 Nsk Ltd Rolling bearing
JP7471068B2 (en) 2019-09-30 2024-04-19 山陽特殊製鋼株式会社 Spheroidizing annealing method for case hardening steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174414A (en) * 1981-04-21 1982-10-27 Osaka Bearing Seizo Kk Outer ring of roller and bearing in one
JPH02168022A (en) * 1988-12-22 1990-06-28 Toyota Motor Corp Bearing parts
JPH05320741A (en) * 1992-05-19 1993-12-03 Komatsu Ltd Induction heat treatment of cylindrical parts
JP3991901B2 (en) * 2003-03-28 2007-10-17 株式会社ジェイテクト Rolling bearing raceway and method for manufacturing the same
JP5319866B2 (en) * 2004-05-24 2013-10-16 株式会社小松製作所 Rolling member and manufacturing method thereof
JP2006291302A (en) * 2005-04-12 2006-10-26 Nsk Ltd Pinion shaft and planetary gear device

Also Published As

Publication number Publication date
JP2010024530A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
JP4800444B2 (en) Steel for machine structure for surface hardening and parts for machine structure
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
JP2008267402A (en) Roller bearing
JP5298683B2 (en) Rolling bearing and manufacturing method thereof
JP5453839B2 (en) Rolling bearing
US9249476B2 (en) Rolling bearing
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
JP5728844B2 (en) Rolling bearing
JP2010025311A (en) Rolling bearing and method of manufacturing the same
JP2012224931A (en) Rolling sliding member, method of manufacturing the same, and rolling bearing
JP2014122378A (en) Rolling bearing
JP2009235448A (en) Bearing component for papermaking machine, rolling bearing for papermaking machine and papermaking machine
JP2007113027A (en) Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus
JP2012031456A (en) Rolling bearing
JP2016151352A (en) Rolling bearing
JP2010031307A (en) Roller bearing
KR20240012362A (en) raceway and shaft
JP2007239072A (en) Rolling member manufacturing method, and rolling bearing manufacturing method
JP2006328514A (en) Rolling supporting device
JP2012241862A (en) Rolling bearing
JP2007321895A (en) Rolling member for joint device, and rolling bearing for joint device
TWI575170B (en) Ball screw device
JP2006138376A (en) Radial needle roller bearing
JP2009019713A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350