JP2012241862A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2012241862A
JP2012241862A JP2011115075A JP2011115075A JP2012241862A JP 2012241862 A JP2012241862 A JP 2012241862A JP 2011115075 A JP2011115075 A JP 2011115075A JP 2011115075 A JP2011115075 A JP 2011115075A JP 2012241862 A JP2012241862 A JP 2012241862A
Authority
JP
Japan
Prior art keywords
raceway surface
rolling
hardness
outer ring
hardened layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011115075A
Other languages
Japanese (ja)
Inventor
Daisuke Watanuki
大輔 渡貫
Hideyuki Tobitaka
秀幸 飛鷹
Yukari Katayama
裕加里 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011115075A priority Critical patent/JP2012241862A/en
Publication of JP2012241862A publication Critical patent/JP2012241862A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive rolling bearing which has excellent toughness and secures a long life even when used under an environment in which water or solid foreign matter is mixed in lubricant.SOLUTION: An outer ring 2 of the cylindrical roller bearing 10 is composed of high-carbon steel having a content of carbon of≥0.6 mass%. A hardened layer subjected to quenching by heat treatment including high frequency quenching treatment is formed on a surface of the outer ring 2 including a raceway surface 2a, and a non-quenched part not subjected to quenching is formed in a core part. The surface hardness of the raceway surface 2a is≥Hv 651, and the hardness of the core part is≤Hv 500. Further, the residual austenite amount in the raceway surface 2a is≥12 vol.% and ≤40 vol.%. The valid hardened layer depth Y0 of the raceway surface 2a satisfies the expression of 0.07×Dw<Y0<0.07×Dw+5. The maximum diameter of nonmetallic inclusions estimated by external statistics method is≤35 μm.

Description

本発明は転がり軸受に関する。   The present invention relates to a rolling bearing.

鉄鋼用圧延機等で使用される大形の転がり軸受を製造する場合は、通常、クロム,ニッケル,モリブデン等の添加によって焼入れ性を確保した低中炭素鋼(炭素の含有量は0.1〜0.4質量%)が軌道輪の素材として用いられ、低中炭素鋼を浸炭処理(又は浸炭窒化処理)することによって転がり軸受として必要な硬さを得ている。軌道輪の素材として低中炭素鋼が用いられる理由としては、靭性の確保があげられる。焼入れが施された鋼では硬さが炭素の含有量に依存し、硬さと靭性がトレードオフの関係にあることから、低炭素の母材を用いるほど高靭性の軸受とすることができる。   When manufacturing large-sized rolling bearings used in steel rolling mills, etc., low-medium carbon steels that ensure hardenability by adding chromium, nickel, molybdenum, etc. 0.4% by mass) is used as a material for the bearing ring, and the hardness required for the rolling bearing is obtained by carburizing (or carbonitriding) the low and medium carbon steel. The reason why low-medium carbon steel is used as a material for the bearing ring is to ensure toughness. In hardened steel, the hardness depends on the carbon content, and the hardness and toughness are in a trade-off relationship. Therefore, a bearing having higher toughness can be obtained by using a low carbon base material.

鉄鋼用圧延機は主に鋼板を圧延する設備であり、圧延ロールのロールネック部にはロールを回転支持するための転がり軸受が使用されている。このロールネック用転がり軸受には、圧延時に高荷重、衝撃、振動等が作用するので、靱性は重要な要求性能の一つである。よって、鋼の低炭素化によって浸炭処理時間が長時間になるというデメリットを考慮しても、軌道輪の素材として中炭素鋼又は低炭素鋼が用いられる。   A rolling mill for steel is a facility mainly for rolling steel plates, and a rolling bearing for rotating and supporting the roll is used at the roll neck portion of the rolling roll. The roll neck rolling bearing is subjected to high loads, impacts, vibrations, and the like during rolling, so toughness is one of the important performance requirements. Therefore, even in consideration of the demerit that the carburization time becomes longer due to the low carbonization of the steel, medium carbon steel or low carbon steel is used as a material for the race.

また、ロールネック用転がり軸受は、圧延水の混入や鉄粉塵等の固体異物の混入が生じやすいので、これらに起因する比較的短寿命な表面疲労が問題となる。
潤滑剤に水が混入した場合の転がり疲労寿命の低下は、以下に示す理由で生じることが知られている。転動体が軌道面に接触して荷重が加わるとき、軌道面は深さ方向に弾性変形し、接触面近傍には引張応力が生じる。引張応力が作用する表面に酸化物系介在物と水が存在すると、酸化物系介在物と金属母相との間に隙間が生じ、その隙間に水が浸入して腐食反応が生じる。これにより非金属介在物周辺での応力集中が大きくなり、クラックの発生を招き、転がり疲労寿命を低下させる。よって、潤滑剤に水が混入する環境下で使用される転がり軸受においては、亀裂の起点となる非金属介在物を減少させて応力集中を小さくする対策が取られている。
In addition, since the roll neck rolling bearing is likely to be mixed with rolling water and solid foreign matters such as iron dust, surface fatigue resulting from these problems becomes a problem.
It is known that the rolling fatigue life is reduced when water is mixed in the lubricant for the following reasons. When a rolling element contacts the raceway surface and a load is applied, the raceway surface is elastically deformed in the depth direction, and tensile stress is generated in the vicinity of the contact surface. When oxide inclusions and water are present on the surface on which tensile stress acts, a gap is formed between the oxide inclusions and the metal matrix, and water enters the gap to cause a corrosion reaction. As a result, stress concentration around the non-metallic inclusions increases, causing cracks and reducing the rolling fatigue life. Therefore, in rolling bearings used in an environment where water is mixed in the lubricant, measures are taken to reduce stress concentration by reducing non-metallic inclusions that are the starting points of cracks.

一方、潤滑剤に固体異物が混入した場合の転がり疲労寿命の低下は、潤滑剤中の固体異物(硬質の粒子)が転がり接触部に噛み込んで生じる圧痕縁への応力集中によって起こる。この対策としては、表面硬さを高くする方法や、表面の残留オーステナイト量を制御することで圧痕縁への応力集中を緩和する方法が提案されている(例えば、特許文献1,2を参照)。   On the other hand, when the solid foreign matter is mixed in the lubricant, the rolling fatigue life is reduced due to the stress concentration on the indentation edge caused by the solid foreign matter (hard particles) in the lubricant biting into the rolling contact portion. As measures against this, a method of increasing the surface hardness and a method of relaxing the stress concentration on the indentation edge by controlling the amount of retained austenite on the surface have been proposed (see, for example, Patent Documents 1 and 2). .

特開平6−117438号公報JP-A-6-117438 特開平6−129436号公報JP-A-6-129436

しかしながら、表面の残留オーステナイト量を確保するためには、それに応じた炭素量が必要であるため、靭性の面も考慮すると、中炭素鋼又は低炭素鋼に長時間の浸炭処理を施して転がり軸受を製造しているのが現状である。一方、低炭素鋼は高炭素鋼よりも高清浄度化が難しいことが一般に知られている。そのため、潤滑剤に水が混入した場合の表面疲労寿命を、中炭素鋼又は低炭素鋼を用いた場合においても向上させるためには、通常の軸受鋼の製造において行われている真空脱ガス以外に、特殊な溶解法を行って材料の清浄度の向上を図る必要がある。   However, in order to secure the amount of retained austenite on the surface, the amount of carbon corresponding to that is required. Therefore, considering the toughness, rolling bearings are obtained by subjecting medium carbon steel or low carbon steel to long-term carburizing treatment. Is currently manufacturing. On the other hand, it is generally known that low carbon steel is more difficult to clean up than high carbon steel. Therefore, in order to improve the surface fatigue life when water is mixed in the lubricant even when medium carbon steel or low carbon steel is used, in addition to the vacuum degassing performed in the production of ordinary bearing steel In addition, it is necessary to improve the cleanliness of the material by performing a special melting method.

このため、従来では、靱性、潤滑剤に水が混入した場合の転がり疲労寿命、潤滑剤に固体異物が混入した場合の転がり疲労寿命をいずれも優れたものとするためには、軸受鋼のような高炭素鋼を軌道輪の素材として用いることはできず、特殊溶解した中炭素鋼又は低炭素鋼を軌道輪の素材として用い、長時間の浸炭処理を施す必要があるため、製造コストが高いという問題があった。
そこで、本発明は上記のような従来技術が有する問題点を解決し、優れた靱性を有し且つ潤滑剤に水や固体異物が混入するような環境下で使用されても長寿命であるとともに安価な転がり軸受を提供することを課題とする。
For this reason, conventionally, in order to improve the toughness, rolling fatigue life when water is mixed in the lubricant, and rolling fatigue life when solid foreign matter is mixed in the lubricant, High carbon steel cannot be used as a material for the bearing ring, and it is necessary to use specially melted medium carbon steel or low carbon steel as the material for the bearing ring and to perform carburizing treatment for a long time. There was a problem.
Therefore, the present invention solves the problems of the prior art as described above, has excellent toughness, and has a long life even when used in an environment where water or solid foreign matter is mixed in the lubricant. An object is to provide an inexpensive rolling bearing.

前記課題を解決するため、本発明の態様は次のような構成からなる。すなわち、本発明の一態様に係る転がり軸受は、軌道面を有する内輪と、前記内輪の軌道面に対向する軌道面を有する外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配された複数の転動体と、を備え、前記外輪が以下の5つの条件を満足することを特徴とする。
条件A:高周波焼入れ処理を含む熱処理により焼入れが施されてなる硬化層が、前記軌道面を含む表面に形成されているとともに、焼入れが施されていない非焼入れ部が芯部に形成されている。
条件B:前記軌道面の表面硬さがHv651以上であり、前記芯部の硬さがHv500以下である。
条件C:前記軌道面の残留オーステナイト量が12体積%以上40体積%以下である。
条件D:前記軌道面の有効硬化層深さY0が0.07×Dw<Y0<0.07×Dw+5なる式を満足する。ただし、Dwは前記転動体の直径であり、Y0及びDwの単位はいずれもmmである。
条件E:極値統計法により推定した非金属介在物の最大径が35μm以下である。
このような転がり軸受においては、前記軌道面の残留応力が−200MPa以下であることが好ましい。
In order to solve the above problems, an aspect of the present invention has the following configuration. That is, a rolling bearing according to an aspect of the present invention includes an inner ring having a raceway surface, an outer ring having a raceway surface facing the raceway surface of the inner ring, and a raceway surface of the inner ring and a raceway surface of the outer ring. A plurality of rolling elements arranged so as to be capable of rolling, wherein the outer ring satisfies the following five conditions.
Condition A: A hardened layer that is quenched by heat treatment including induction hardening is formed on the surface including the raceway surface, and a non-quenched portion that is not quenched is formed in the core. .
Condition B: The surface hardness of the raceway surface is Hv651 or higher, and the hardness of the core portion is Hv500 or lower.
Condition C: The amount of retained austenite on the raceway surface is 12% by volume to 40% by volume.
Condition D: The effective hardened layer depth Y0 of the raceway surface satisfies the expression 0.07 × Dw <Y0 <0.07 × Dw + 5. However, Dw is the diameter of the said rolling element, and the unit of Y0 and Dw is mm.
Condition E: The maximum diameter of the nonmetallic inclusion estimated by the extreme value statistical method is 35 μm or less.
In such a rolling bearing, the residual stress on the raceway surface is preferably −200 MPa or less.

本発明の転がり軸受は、優れた靱性を有し且つ潤滑剤に水や固体異物が混入するような環境下で使用されても長寿命であるとともに安価である。   The rolling bearing of the present invention has excellent toughness and has a long life and is inexpensive even when used in an environment where water or solid foreign matter is mixed in the lubricant.

本発明に係る転がり軸受の一実施形態である円筒ころ軸受の構造を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the structure of the cylindrical roller bearing which is one Embodiment of the rolling bearing which concerns on this invention. 非金属介在物の予測最大径と転がり軸受の寿命との相関を示すグラフである。It is a graph which shows the correlation with the estimated maximum diameter of a nonmetallic inclusion, and the lifetime of a rolling bearing. 軌道面の残留オーステナイト量と転がり軸受の寿命との相関を示すグラフである。It is a graph which shows the correlation with the amount of retained austenite of a raceway surface, and the lifetime of a rolling bearing. 軌道面の有効硬化層深さY0と圧砕強度との相関を示すグラフである。It is a graph which shows the correlation with the effective hardened layer depth Y0 of a raceway surface, and crushing strength.

本発明に係る転がり軸受の実施の形態を、図面を参照しながら詳細に説明する。図1は、本発明に係る転がり軸受の一実施形態である円筒ころ軸受の構造を示す部分縦断面図である。
図1の円筒ころ軸受10は、外周面に軌道面1aを有する内輪1と、内輪1の軌道面1aに対向する軌道面2aを内周面に有する外輪2と、両軌道面1a,2a間に転動自在に配された複数の転動体3と、両軌道面1a,2a間に転動体3を保持する保持器4と、両軌道面1a,2aと転動体3との潤滑を行う潤滑油,グリース等の潤滑剤(図示せず)と、を備えている。なお、保持器4は備えていなくてもよい。また、ゴムシール等の密封装置を備えていても差し支えない。
Embodiments of a rolling bearing according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial longitudinal sectional view showing a structure of a cylindrical roller bearing which is an embodiment of a rolling bearing according to the present invention.
A cylindrical roller bearing 10 in FIG. 1 includes an inner ring 1 having a raceway surface 1a on an outer peripheral surface, an outer ring 2 having a raceway surface 2a opposite to the raceway surface 1a of the inner ring 1 on an inner peripheral surface, and both raceway surfaces 1a and 2a. A plurality of rolling elements 3 arranged so as to be freely rollable, a cage 4 that holds the rolling elements 3 between both raceway surfaces 1a and 2a, and lubrication that lubricates both the raceway surfaces 1a and 2a and the rolling elements 3. And a lubricant (not shown) such as oil and grease. In addition, the holder | retainer 4 does not need to be provided. Further, a sealing device such as a rubber seal may be provided.

このような円筒ころ軸受10において外輪2は、炭素の含有量が0.6質量%以上である高炭素鋼で構成されているとともに、以下の5つの条件を満たしている(なお、内輪1及び転動体3の一方又は両方も、外輪2と同様の構成であってもよい)。
条件A:高周波焼入れ処理を含む熱処理により焼入れが施されてなる硬化層が、軌道面2aを含む外輪2の表面に形成されているとともに、焼入れが施されていない非焼入れ部が芯部に形成されている。
条件B:軌道面2aの表面硬さがHv651以上であり、前記芯部の硬さがHv500以下である。
条件C:軌道面2aの残留オーステナイト量が12体積%以上40体積%以下である。
条件D:軌道面2aの有効硬化層深さY0が0.07×Dw<Y0<0.07×Dw+5なる式を満足する。ただし、Dwは転動体3の直径であり、Y0及びDwの単位はいずれもmmである。
条件E:極値統計法により推定した非金属介在物(炭化物,窒化物,酸化物等)の最大径が35μm以下である。
In such a cylindrical roller bearing 10, the outer ring 2 is made of high carbon steel having a carbon content of 0.6% by mass or more and satisfies the following five conditions (in addition, the inner ring 1 and One or both of the rolling elements 3 may have the same configuration as the outer ring 2).
Condition A: A hardened layer formed by heat treatment including induction hardening is formed on the surface of the outer ring 2 including the raceway surface 2a, and a non-quenched portion not subjected to hardening is formed in the core portion. Has been.
Condition B: The surface hardness of the raceway surface 2a is Hv651 or higher, and the hardness of the core is Hv500 or lower.
Condition C: The amount of retained austenite on the raceway surface 2a is 12% by volume to 40% by volume.
Condition D: The effective hardened layer depth Y0 of the raceway surface 2a satisfies the expression 0.07 × Dw <Y0 <0.07 × Dw + 5. However, Dw is the diameter of the rolling element 3, and the unit of Y0 and Dw is mm.
Condition E: The maximum diameter of nonmetallic inclusions (carbide, nitride, oxide, etc.) estimated by the extreme value statistical method is 35 μm or less.

芯部に形成されている非焼入れ部の作用によって、外輪2は靱性が優れており、浸炭処理を施した場合と同等の靱性が得られる。すなわち、芯部の硬さがHv500以下であり、芯部の靱性が優れているため、外輪2に割れが生じにくい。長時間の浸炭処理又は浸炭窒化処理を施すことなく、高周波焼入れ処理により熱処理を行うことができるので、円筒ころ軸受10の製造コストが安価である。なお、芯部の硬さはHv500以下である必要があるが、Hv497Hv以下であることがより好ましい。また、205以上であることが好ましい。   Due to the action of the non-quenched portion formed in the core portion, the outer ring 2 has excellent toughness, and the same toughness as when carburized is applied. That is, the hardness of the core is Hv500 or less and the toughness of the core is excellent, so that the outer ring 2 is hardly cracked. Since heat treatment can be performed by induction hardening without performing carburizing or carbonitriding for a long time, the manufacturing cost of the cylindrical roller bearing 10 is low. In addition, although the hardness of a core part needs to be Hv500 or less, it is more preferable that it is Hv497Hv or less. Moreover, it is preferable that it is 205 or more.

また、軌道面2aの表面硬さ、残留オーステナイト量、及び有効硬化層深さY0(表面から硬さHv550の深さ位置までの距離)を制御することにより、潤滑剤に固体異物(例えば、鉄粉塵等の硬質の粒子)が混入するような環境下で使用されても表面疲労や表面剥離が生じにくく、本実施形態の円筒ころ軸受10は長寿命である。軌道面2aの表面硬さがHv651以上であり、且つ、残留オーステナイト量が12体積%以上(好ましくは14体積%以上)であるため、表面を起点とする破壊が生じにくくなり、円筒ころ軸受10が長寿命となる。なお、過剰な残留オーステナイトによる熱処理中の焼き割れを防ぐために、残留オーステナイト量は40体積%以下とすることが好ましく、25体積%以下とすることがより好ましい。   Further, by controlling the surface hardness of the raceway surface 2a, the amount of retained austenite, and the effective hardened layer depth Y0 (distance from the surface to the depth position of the hardness Hv550), solid lubricant (for example, iron) Even when used in an environment where hard particles such as dust are mixed, surface fatigue and surface peeling hardly occur, and the cylindrical roller bearing 10 of this embodiment has a long life. Since the surface hardness of the raceway surface 2a is Hv651 or more and the amount of retained austenite is 12% by volume or more (preferably 14% by volume or more), it is difficult to cause fracture starting from the surface, and the cylindrical roller bearing 10 Has a long life. In order to prevent burning cracks during heat treatment due to excessive retained austenite, the amount of retained austenite is preferably 40% by volume or less, and more preferably 25% by volume or less.

さらに、有効硬化層深さY0が0.07×Dwに満たないと、芯部の剪断応力に耐えられずに早期破壊するおそれがある。一方、有効硬化層深さY0が0.07×Dw+5よりも小さいため、高靱性の芯部が十分に残存することとなり、外輪2に割れが生じにくくなる。
さらに、非金属介在物の最大径が小さく且つ浸炭鋼よりも高清浄度の高炭素鋼で構成されているので、潤滑剤に水が混入するような環境下で使用されても表面疲労や表面剥離が生じにくく、本実施形態の円筒ころ軸受10は長寿命である。極値統計法により推定した非金属介在物の最大径は、クリーン潤滑環境下における寿命と相関がある。
Furthermore, if the effective hardened layer depth Y0 is less than 0.07 × Dw, there is a risk of premature failure without being able to withstand the shear stress of the core. On the other hand, since the effective hardened layer depth Y0 is smaller than 0.07 × Dw + 5, the core portion having high toughness remains sufficiently, and the outer ring 2 is hardly cracked.
Furthermore, since the maximum diameter of non-metallic inclusions is small and is made of high carbon steel with higher cleanliness than carburized steel, surface fatigue and surface even when used in an environment where water is mixed into the lubricant Separation hardly occurs, and the cylindrical roller bearing 10 of this embodiment has a long life. The maximum diameter of non-metallic inclusions estimated by the extreme value statistical method correlates with the life in a clean lubrication environment.

そしてさらに、高周波焼入れ処理により軌道面2aに−200MPa以下(好ましくは−205MPa以下)の残留応力(すなわち圧縮の残留応力)を付与すれば、亀裂の発生が抑制されるので、潤滑剤に水が混入するような環境下で使用された場合に、本実施形態の円筒ころ軸受10はより長寿命となる。
このような本実施形態の円筒ころ軸受10は靱性が優れているので、靱性を要求される大形軸受に好適である。また、鉄鋼用圧延機の圧延ロールのロールネック部に組み込まれ、ロールを回転支持するロールネック用転がり軸受は、潤滑剤に水や固体異物が混入するような環境下で使用されるので、本実施形態の円筒ころ軸受10はロールネック用転がり軸受に好適である。
Furthermore, if a residual stress (that is, a compressive residual stress) of −200 MPa or less (preferably −205 MPa or less) is applied to the raceway surface 2a by induction hardening, cracking is suppressed, so water is added to the lubricant. When used in a mixed environment, the cylindrical roller bearing 10 of this embodiment has a longer life.
Since the cylindrical roller bearing 10 of this embodiment is excellent in toughness, it is suitable for a large bearing that requires toughness. Also, the roll neck rolling bearing incorporated in the roll neck of the rolling roll of a steel rolling mill and rotatingly supporting the roll is used in an environment where water and solid foreign matter are mixed in the lubricant. The cylindrical roller bearing 10 of the embodiment is suitable for a roll neck rolling bearing.

ここで、外輪2が上記のような条件を満たしていることによって円筒ころ軸受10が長寿命となる理由を説明する。主に大形のラジアルころ軸受においては、特に外輪の疲労の進行が早く、破損が生じやすいという傾向がある。これは、以下のようなことが原因であると考えられる。すなわち、内輪の軌道面は凸面となっているために、転動体との接触域には高い面圧が発生しているのに対して、外輪の軌道面は凹面となっているため、内輪と比較して転動体との接触面圧が低い。そのため、一般的なラジアルころ軸受においては、外輪よりも内輪の方が転動疲労の進行が早い場合が多い。   Here, the reason why the cylindrical roller bearing 10 has a long life when the outer ring 2 satisfies the above conditions will be described. Mainly, large radial roller bearings have a tendency that fatigue of the outer ring progresses rapidly and is easily damaged. This is considered to be caused by the following. That is, since the raceway surface of the inner ring is convex, high surface pressure is generated in the contact area with the rolling elements, whereas the raceway surface of the outer ring is concave, In comparison, the contact surface pressure with the rolling element is low. For this reason, in general radial roller bearings, the rolling fatigue of the inner ring is often faster than that of the outer ring.

しかしながら、前述のロールネック用転がり軸受のように大形のラジアルころ軸受の場合は、内輪,外輪いずれの軌道面も、曲率がかなり平らに近いため、転動体との接触面圧の差は小さい。一方、ロールネック用転がり軸受は内輪回転で使用されるため、固定輪である外輪には、全周の1/5程度の負荷圏が存在する。この負荷圏における応力繰り返し数は、内輪の応力繰り返し数と比べて大きい。   However, in the case of a large-sized radial roller bearing such as the above-mentioned roll neck rolling bearing, the raceway surface of both the inner ring and the outer ring has a substantially flat curvature, so the difference in contact surface pressure with the rolling element is small. . On the other hand, since the roll neck rolling bearing is used for inner ring rotation, the outer ring, which is a fixed ring, has a load zone of about 1/5 of the entire circumference. The number of stress repetitions in this load zone is larger than the number of stress repetitions in the inner ring.

このため、転がり軸受のサイズが大きいほど、面圧よりも応力繰り返し数の方が大きく影響することとなり、内輪よりも外輪の方が転動疲労の進行が早くなる。よって、転がり軸受のサイズが大きいほど、外輪が上記のような条件を満たしていることによって長寿命化効果が得られることとなる。
なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。例えば、本実施形態においては、転がり軸受の例として円筒ころ軸受をあげて説明したが、本発明は円筒ころ軸受以外の様々な種類の転がり軸受に対して適用することができる。例えば、深溝玉軸受,アンギュラ玉軸受,自動調心玉軸受,円すいころ軸受,針状ころ軸受,自動調心ころ軸受等のラジアル形の転がり軸受や、スラスト玉軸受,スラストころ軸受等のスラスト形の転がり軸受である。そして、本発明は、大形の円筒ころ軸受に限らず、大形の円すいころ軸受,大形の自動調心ころ軸受等にも適用することができる。
For this reason, the larger the size of the rolling bearing, the greater the influence of the number of stress repetitions than the surface pressure, and the faster the rolling fatigue of the outer ring than the inner ring. Therefore, as the size of the rolling bearing is larger, the effect of extending the life is obtained because the outer ring satisfies the above conditions.
In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. For example, in the present embodiment, a cylindrical roller bearing has been described as an example of a rolling bearing, but the present invention can be applied to various types of rolling bearings other than the cylindrical roller bearing. For example, radial rolling bearings such as deep groove ball bearings, angular contact ball bearings, self-aligning ball bearings, tapered roller bearings, needle roller bearings, and self-aligning roller bearings, and thrust types such as thrust ball bearings and thrust roller bearings This is a rolling bearing. The present invention can be applied not only to large cylindrical roller bearings but also to large tapered roller bearings, large self-aligning roller bearings, and the like.

〔実施例〕
以下に、実施例を示して、本発明をさらに具体的に説明する。本発明の効果を要素的に確認するため、合金成分の異なる種々の鋼で構成された軌道輪を用意して、これを固定輪とするスラスト玉軸受(呼び番号51305)を作製した。使用した鋼種は、M1〜M9、SUJ2〜SUJ5、及びSCr420であり、表1,2に示すような合金成分をそれぞれ有している。なお、表1,2に示した炭素(C),ケイ素(Si),マンガン(Mn),クロム(Cr),モリブデン(Mo)以外の成分(残部)は、鉄及び不可避的不純物である。
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to examples. In order to confirm the effect of the present invention elementally, a race ring made of various steels having different alloy components was prepared, and a thrust ball bearing (nominal number 51305) using this as a fixed ring was produced. The steel types used are M1 to M9, SUJ2 to SUJ5, and SCr420, and have alloy components as shown in Tables 1 and 2, respectively. In addition, components (remainder) other than carbon (C), silicon (Si), manganese (Mn), chromium (Cr), and molybdenum (Mo) shown in Tables 1 and 2 are iron and inevitable impurities.

Figure 2012241862
Figure 2012241862

Figure 2012241862
Figure 2012241862

各鋼種が含んでいる非金属介在物の最大径を極値統計法により推定し、各鋼種の清浄度を評価した。具体的には、検査基準面積S0=100mm2 内のミクロ組織を観察し、予測する面積S=30000mm2 中で酸化物系介在物及び窒化チタン(TiN)系介在物の寸法(長径と短径の積の平方根)を算出し、これらの中で最大の寸法を予測最大径とした。各鋼種の非金属介在物の予測最大径を、表1,2に示す。 The maximum diameter of non-metallic inclusions contained in each steel type was estimated by the extreme value statistical method, and the cleanliness of each steel type was evaluated. Specifically, to observe the microstructure of the test reference area S0 = 100 mm 2, the dimensions of the oxide inclusions and titanium nitride (TiN) inclusions in an area S = 30,000 mm 2 to forecast (length and breadth Square root of the product), and the largest dimension among these was taken as the predicted maximum diameter. Tables 1 and 2 show the predicted maximum diameters of the nonmetallic inclusions of each steel type.

スラスト玉軸受の具体的な作製方法を、以下に説明する。鋼材を旋削加工によって粗加工して軌道輪の形状に成形した後に、熱処理として高周波焼入れ処理を施して、軌道面に硬化層を形成した。この硬化層はマルテンサイトからなるが、この硬化層の内側の芯部には、高周波焼入れ処理によりパーライト組織や球状化炭化物が分散した非焼入れ部(フェライト組織)が形成されている。そして、焼戻し処理を施した後に、最後に研削加工を行った。   A specific method for manufacturing the thrust ball bearing will be described below. A steel material was roughly processed by turning to form a raceway shape, and then subjected to induction hardening as a heat treatment to form a hardened layer on the raceway surface. The hardened layer is composed of martensite, and a non-hardened portion (ferrite structure) in which pearlite structure and spheroidized carbide are dispersed is formed in the core portion inside the hardened layer by induction hardening. And after performing the tempering process, the grinding process was finally performed.

このようにして得られた固定輪と、SUJ2からなる回転輪と、転動体(玉)と、保持器とを組み立てて、呼び番号51305のスラスト玉軸受(内径25mm、外形52mm、幅18mm)を得た。なお、比較例1に関しては、熱処理として浸炭処理、焼入れ、焼戻しを行い、比較例2に関しては、熱処理として貫通焼入れ、焼戻しを行った。また、転動体の素材はSUJ2であり、その直径Dwは9.3mmである。   A fixed ring, a rotating wheel made of SUJ2, a rolling element (ball), and a cage are assembled to obtain a thrust ball bearing (inner diameter: 25 mm, outer diameter: 52 mm, width: 18 mm). Obtained. For Comparative Example 1, carburization, quenching, and tempering were performed as the heat treatment, and for Comparative Example 2, through-quenching and tempering were performed as the heat treatment. Moreover, the raw material of a rolling element is SUJ2, and the diameter Dw is 9.3 mm.

上記のような熱処理により軌道面が硬化されているが、各スラスト玉軸受の固定輪の軌道面の表面硬さは、表3,4に示すような値となっている。また、芯部の硬さは、表3,4に示す通りである。さらに、軌道面の残留オーステナイト量及び有効硬化層深さ(表面から硬さHv550の深さ位置までの距離)Y0も、表3,4に示す通りである。なお、表面硬さ,芯部の硬さ,及び有効硬化層深さY0は、ビッカース硬度計により測定した。また、残留オーステナイト量は、X線回折法により測定した。   Although the raceway surface is hardened by the heat treatment as described above, the surface hardness of the raceway surface of the fixed ring of each thrust ball bearing has values as shown in Tables 3 and 4. Moreover, the hardness of the core is as shown in Tables 3 and 4. Further, the amount of retained austenite on the raceway surface and the effective hardened layer depth (distance from the surface to the depth position of the hardness Hv550) Y0 are also as shown in Tables 3 and 4. The surface hardness, core hardness, and effective hardened layer depth Y0 were measured with a Vickers hardness meter. The amount of retained austenite was measured by the X-ray diffraction method.

Figure 2012241862
Figure 2012241862

Figure 2012241862
Figure 2012241862

これらのスラスト玉軸受について、潤滑剤に水又は固体異物が混入するような環境下で回転試験を行って、それぞれの環境下での寿命を評価した。水混入環境下での試験条件(面圧及び潤滑条件)は下記の通りとし、試験軸受の累積破損確率が10%となる寿命(L10寿命)を求めた。
面圧 :3.2GPa
潤滑剤 :ISO粘度グレードがISO VG10である潤滑油(油浴)
水の混入量:30ml/day
試験面 :研磨面
These thrust ball bearings were subjected to a rotation test in an environment in which water or solid foreign matters were mixed in the lubricant, and the life under each environment was evaluated. The test conditions (surface pressure and lubrication conditions) in a water-mixed environment were as follows, and the life (L 10 life) at which the cumulative failure probability of the test bearing was 10% was determined.
Surface pressure: 3.2 GPa
Lubricant: Lubricating oil (oil bath) whose ISO viscosity grade is ISO VG10
Amount of water mixed: 30 ml / day
Test surface: Polished surface

また、固体異物混入環境下での試験条件(面圧及び潤滑条件)は下記の通りとし、試験軸受の累積破損確率が10%となる寿命(L10寿命)を求めた。なお、固体異物の硬さはHv870であり、粒径は74〜147μmである。
面圧 :4.2GPa
潤滑剤 :ISO粘度グレードがISO VG68であるタービン油(油浴)
固体異物の混入量:200ppm
試験面 :研磨面
Moreover, test conditions under solid contaminated environment (surface pressure and lubrication condition) and as follows, the cumulative failure probability of the test bearing was determined lifetime (L 10 life) of 10%. In addition, the hardness of a solid foreign material is Hv870, and a particle size is 74-147 micrometers.
Surface pressure: 4.2 GPa
Lubricant: Turbine oil (oil bath) whose ISO viscosity grade is ISO VG68
Solid foreign matter content: 200ppm
Test surface: Polished surface

水混入環境下での回転試験の結果を表3,4に示す。また、非金属介在物の予測最大径と試験軸受のL10寿命との相関を、図2のグラフに示す。なお、表3,4及び図2の寿命の数値は、比較例1のL10寿命を1.0とした場合の相対値で示してある。
図2のグラフから、非金属介在物の予測最大径が小さく清浄度の優れた素材を用いることにより、浸炭鋼を用いた比較例1と比べて寿命が優れていることが分かる。また、非金属介在物の予測最大径が35μm以下(好ましくは34μm以下)であると寿命が優れており、20μm以下であると寿命がさらに優れていることが分かる。
Tables 3 and 4 show the results of the rotation test in a water-mixed environment. The correlation between the predicted maximum diameter of nonmetallic inclusions and the L 10 life of the test bearing is shown in the graph of FIG. The numerical values of the lifetime of Tables 3 and 4 and Figure 2 are indicated by the relative value when the 1.0 L 10 life of Comparative Example 1.
From the graph of FIG. 2, it can be seen that by using a material having a small predicted maximum diameter of non-metallic inclusions and excellent cleanliness, the life is superior compared to Comparative Example 1 using carburized steel. Further, it can be seen that the life expectancy is excellent when the predicted maximum diameter of the nonmetallic inclusion is 35 μm or less (preferably 34 μm or less), and the life is further improved when it is 20 μm or less.

次に、固体異物混入環境下での回転試験の結果を表3,4に示す。また、軌道面の残留オーステナイト量と試験軸受のL10寿命との相関を、図3のグラフに示す。なお、表3,4及び図3の寿命の数値は、比較例2のL10寿命を1.0とした場合の相対値で示してある。
図3のグラフから、熱処理として高周波焼入れ処理を用いた各実施例は、熱処理として貫通焼入れを用いた比較例2と比べて寿命が優れており、軌道面の残留オーステナイト量が多いほど寿命が優れていることが分かる。
Next, Tables 3 and 4 show the results of the rotation test in a solid foreign matter mixed environment. The correlation between the amount of retained austenite on the raceway surface and the L 10 life of the test bearing is shown in the graph of FIG. The numerical values of the lifetime of Tables 3 and 4 and FIG. 3 is shown as a relative value when the 1.0 L 10 life of Comparative Example 2.
From the graph of FIG. 3, each example using induction hardening as the heat treatment has a longer life than Comparative Example 2 using through-quenching as the heat treatment, and the longer the amount of retained austenite on the raceway surface, the better the life. I understand that

次に、靱性を評価するために、以下のような圧砕試験を行った。SUJ2製の鋼材を旋削して得たリング状部材に熱処理(焼入れ及び焼戻し)を施した後に研削して、大形円筒ころ軸受(呼び番号NU2326)用の内輪を作製した。実施例18〜26及び比較例9,11,12は、高周波焼入れ処理により焼入れを施し、軌道面に硬化層を形成した。比較例10は、リング状部材を炉加熱して油冷することにより、焼入れ(貫通焼入れ)を施した。実施例18〜26及び比較例9〜12の焼入れの種類、軌道面の表面硬さ、芯部の硬さ、軌道面の残留オーステナイト量、及び有効硬化層深さY0を表5に示す。なお、転動体の素材はSUJ3であり、その直径Dwは38mmである。   Next, in order to evaluate toughness, the following crushing tests were performed. A ring-shaped member obtained by turning a steel material made of SUJ2 was subjected to heat treatment (quenching and tempering) and then ground to produce an inner ring for a large cylindrical roller bearing (nominal number NU2326). In Examples 18 to 26 and Comparative Examples 9, 11, and 12, quenching was performed by induction hardening to form a hardened layer on the raceway surface. In Comparative Example 10, the ring-shaped member was subjected to quenching (through quenching) by furnace heating and oil cooling. Table 5 shows the types of quenching in Examples 18 to 26 and Comparative Examples 9 to 12, the surface hardness of the raceway surface, the hardness of the core, the amount of retained austenite on the raceway surface, and the effective hardened layer depth Y0. In addition, the raw material of a rolling element is SUJ3, The diameter Dw is 38 mm.

Figure 2012241862
Figure 2012241862

これらの内輪の軌道面(外周面)に、ワイヤーカットによって深さ1mmまで予亀裂を形成し、予亀裂の延びる方向を水平にして内輪を圧砕試験装置に装着して、上方から荷重を負荷し内輪を圧縮した。そして、予亀裂からクラックが伝播した荷重を圧砕強度とした。結果を表5及び図4のグラフに示す。なお、表5及び図4の圧砕強度の数値は、比較例10の圧砕強度を1.0とした場合の相対値で示してある。   A pre-crack is formed on the raceway surface (outer peripheral surface) of these inner rings to a depth of 1 mm by wire cutting, the direction in which the pre-cracks extend is horizontal, the inner ring is mounted on a crushing test apparatus, and a load is applied from above. The inner ring was compressed. And the load which the crack propagated from the pre-crack was made into crushing strength. The results are shown in Table 5 and the graph of FIG. In addition, the numerical value of crushing strength of Table 5 and FIG. 4 is shown by the relative value when the crushing strength of Comparative Example 10 is 1.0.

図4のグラフから、有効硬化層深さY0が0.07×Dw+5よりも小さいと、圧砕強度が高く靱性が優れていることが分かる。
さらに、軌道面の有効硬化層深さY0と転がり軸受の寿命との相関性について、試験を行った。SUJ2製の鋼材を旋削加工して得たリング状部材に熱処理(焼入れ及び焼戻し)を施した後に研削して、大形円すいころ軸受(呼び番号HR30326J)用の外輪を作製した。
From the graph of FIG. 4, it can be seen that when the effective hardened layer depth Y0 is smaller than 0.07 × Dw + 5, the crushing strength is high and the toughness is excellent.
Further, a test was conducted on the correlation between the effective hardened layer depth Y0 of the raceway surface and the life of the rolling bearing. A ring-shaped member obtained by turning a steel material made of SUJ2 was subjected to heat treatment (quenching and tempering) and then ground to produce an outer ring for a large tapered roller bearing (reference number HR30326J).

実施例27及び比較例13は、高周波焼入れ処理により焼入れを施し、軌道面に硬化層を形成した。比較例14は、リング状部材を炉加熱して油冷することにより、焼入れ(貫通焼入れ)を施した。実施例27及び比較例13,14の焼入れの種類、非金属介在物の予測最大径、軌道面の表面硬さ、芯部の硬さ、軌道面の残留オーステナイト量、及び有効硬化層深さY0を表6に示す。なお、転動体の素材はSUJ2であり、その直径(有効外径)Dwは38mmである。   In Example 27 and Comparative Example 13, quenching was performed by induction hardening, and a hardened layer was formed on the raceway surface. In Comparative Example 14, the ring-shaped member was subjected to quenching (through quenching) by furnace heating and oil cooling. The type of quenching in Example 27 and Comparative Examples 13 and 14, the predicted maximum diameter of non-metallic inclusions, the surface hardness of the raceway surface, the hardness of the core, the amount of retained austenite on the raceway surface, and the effective hardened layer depth Y0 Is shown in Table 6. In addition, the raw material of a rolling element is SUJ2, and the diameter (effective outer diameter) Dw is 38 mm.

Figure 2012241862
Figure 2012241862

このようにして得られた外輪と内輪及び転動体とを組み立てて、呼び番号HR30326Jの円すいころ軸受を作製した。そして、下記のような条件で回転試験を行って、寿命(L10寿命)を評価した。
面圧 :1.7GPa
潤滑剤 :ISO粘度グレードがISO VG68であるタービン油(強制循環) 回転速度:1500min-1
計算寿命:600時間
回転試験の結果を表6に示す。なお、表6の寿命の数値は、比較例14のL10寿命を1.0とした場合の相対値で示してある。表6から、有効硬化層深さY0が小さい比較例13は、焼入れの種類が貫通焼入れである比較例14よりも短寿命であったのに対し、十分な有効硬化層深さY0を有する実施例27の寿命は、比較例14の3倍であった。
The outer ring, the inner ring and the rolling element thus obtained were assembled to produce a tapered roller bearing with a nominal number HR30326J. Then, by performing a rotation test under the following conditions, it was evaluated life (L 10 life).
Surface pressure: 1.7 GPa
Lubricant: Turbine oil whose ISO viscosity grade is ISO VG68 (forced circulation) Rotational speed: 1500 min -1
Calculation life: 600 hours Table 6 shows the results of the rotation test. The numerical values of the lifetime of the table 6 is shown as a relative value when the 1.0 L 10 life of Comparative Example 14. From Table 6, the comparative example 13 having a small effective hardened layer depth Y0 has a shorter life than the comparative example 14 in which the type of quenching is through-quenching, whereas the implementation having a sufficient effective hardened layer depth Y0. The lifetime of Example 27 was three times that of Comparative Example 14.

1 内輪
1a 軌道面
2 外輪
2a 軌道面
3 転動体
10 円筒ころ軸受
DESCRIPTION OF SYMBOLS 1 Inner ring 1a Raceway surface 2 Outer ring 2a Raceway surface 3 Rolling element 10 Cylindrical roller bearing

Claims (2)

軌道面を有する内輪と、前記内輪の軌道面に対向する軌道面を有する外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配された複数の転動体と、を備え、前記外輪が以下の5つの条件を満足することを特徴とする転がり軸受。
条件A:高周波焼入れ処理を含む熱処理により焼入れが施されてなる硬化層が、前記軌道面を含む表面に形成されているとともに、焼入れが施されていない非焼入れ部が芯部に形成されている。
条件B:前記軌道面の表面硬さがHv651以上であり、前記芯部の硬さがHv500以下である。
条件C:前記軌道面の残留オーステナイト量が12体積%以上40体積%以下である。
条件D:前記軌道面の有効硬化層深さY0が0.07×Dw<Y0<0.07×Dw+5なる式を満足する。ただし、Dwは前記転動体の直径であり、Y0及びDwの単位はいずれもmmである。
条件E:極値統計法により推定した非金属介在物の最大径が35μm以下である。
An inner ring having a raceway surface, an outer ring having a raceway surface opposite to the raceway surface of the inner ring, and a plurality of rolling elements arranged in a freely rollable manner between the raceway surface of the inner ring and the raceway surface of the outer ring, And the outer ring satisfies the following five conditions.
Condition A: A hardened layer that is quenched by heat treatment including induction hardening is formed on the surface including the raceway surface, and a non-quenched portion that is not quenched is formed in the core. .
Condition B: The surface hardness of the raceway surface is Hv651 or higher, and the hardness of the core portion is Hv500 or lower.
Condition C: The amount of retained austenite on the raceway surface is 12% by volume to 40% by volume.
Condition D: The effective hardened layer depth Y0 of the raceway surface satisfies the expression 0.07 × Dw <Y0 <0.07 × Dw + 5. However, Dw is the diameter of the said rolling element, and the unit of Y0 and Dw is mm.
Condition E: The maximum diameter of the nonmetallic inclusion estimated by the extreme value statistical method is 35 μm or less.
前記軌道面の残留応力が−200MPa以下であることを特徴とする請求項1に記載の転がり軸受。   The rolling bearing according to claim 1, wherein a residual stress of the raceway surface is −200 MPa or less.
JP2011115075A 2011-05-23 2011-05-23 Rolling bearing Pending JP2012241862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115075A JP2012241862A (en) 2011-05-23 2011-05-23 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115075A JP2012241862A (en) 2011-05-23 2011-05-23 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2012241862A true JP2012241862A (en) 2012-12-10

Family

ID=47463793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115075A Pending JP2012241862A (en) 2011-05-23 2011-05-23 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2012241862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088391A1 (en) * 2014-12-04 2016-06-09 日本精工株式会社 Rolling bearing
JP2018053291A (en) * 2016-09-28 2018-04-05 山陽特殊製鋼株式会社 Steel for high cleanliness shaft bearing excellent in rolling motion fatigue life under hydrogen environment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156054A (en) * 2001-11-22 2003-05-30 Nsk Ltd Axle unit for driving wheel
JP2009168090A (en) * 2008-01-15 2009-07-30 Nsk Ltd Double-row rolling bearing unit
JP2010024530A (en) * 2008-07-24 2010-02-04 Nsk Ltd Rolling bearing and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156054A (en) * 2001-11-22 2003-05-30 Nsk Ltd Axle unit for driving wheel
JP2009168090A (en) * 2008-01-15 2009-07-30 Nsk Ltd Double-row rolling bearing unit
JP2010024530A (en) * 2008-07-24 2010-02-04 Nsk Ltd Rolling bearing and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088391A1 (en) * 2014-12-04 2016-06-09 日本精工株式会社 Rolling bearing
JP2018053291A (en) * 2016-09-28 2018-04-05 山陽特殊製鋼株式会社 Steel for high cleanliness shaft bearing excellent in rolling motion fatigue life under hydrogen environment

Similar Documents

Publication Publication Date Title
JP4810157B2 (en) Rolling bearing
WO2011122371A1 (en) Rolling bearing
JP2010248568A (en) Rolling bearing for use in hydrogen atmosphere
JP2010196107A (en) Roller bearing
JP2014074212A (en) Rolling and sliding member, manufacturing method thereof, and rolling bearing
JP5696575B2 (en) Rolling sliding member, method for manufacturing the same, and rolling bearing
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
JP5728844B2 (en) Rolling bearing
JP5163183B2 (en) Rolling bearing
JP2010025311A (en) Rolling bearing and method of manufacturing the same
JP5298683B2 (en) Rolling bearing and manufacturing method thereof
JP2013249500A (en) Rolling bearing
JP5998631B2 (en) Rolling bearing
JP2012031456A (en) Rolling bearing
JP2014122378A (en) Rolling bearing
JP4968106B2 (en) Rolling bearing
JP2012241862A (en) Rolling bearing
JP2013160314A (en) Rolling bearing
JP2013238274A (en) Inner ring for radial rolling bearing and method for manufacturing the inner ring
JP2010031307A (en) Roller bearing
JP2006328514A (en) Rolling supporting device
JP4904106B2 (en) Rolling parts
JP2008232212A (en) Rolling device
JP6015251B2 (en) Rolling bearing
JP5857433B2 (en) Method for manufacturing rolling guide device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804