JP5998631B2 - Rolling bearing - Google Patents
Rolling bearing Download PDFInfo
- Publication number
- JP5998631B2 JP5998631B2 JP2012115251A JP2012115251A JP5998631B2 JP 5998631 B2 JP5998631 B2 JP 5998631B2 JP 2012115251 A JP2012115251 A JP 2012115251A JP 2012115251 A JP2012115251 A JP 2012115251A JP 5998631 B2 JP5998631 B2 JP 5998631B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- bearing
- steel
- less
- raceway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/62—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/04—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
- F16C19/06—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/34—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
- F16C19/36—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
- F16C19/364—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
- Heat Treatment Of Articles (AREA)
Description
この発明は、ラジアル軸受、スラスト軸受等の一般的な転がり軸受、直動軸受(リニアガイド)やボールねじ等の特殊な転がり軸受を含めた、各種転がり軸受の耐久性向上を図るものである。具体的には、転がり軸受を構成する軸受部品を構成する鋼中に存在する介在物による組織変化を抑え、当該軸受部品を含む転がり軸受の耐久性向上を図るものである。 The present invention is intended to improve the durability of various rolling bearings, including general rolling bearings such as radial bearings and thrust bearings, and special rolling bearings such as linear motion bearings (linear guides) and ball screws. Specifically, the structural change due to the inclusions present in the steel constituting the bearing part constituting the rolling bearing is suppressed, and the durability of the rolling bearing including the bearing part is improved.
各種回転機械装置の回転支持部に、例えば図1に示す様なラジアル玉軸受1が組み込まれている。このラジアル玉軸受1は、内周面に外輪軌道2を有する外輪3と、外周面に内輪軌道4を有する内輪5と、これら外輪軌道2と内輪軌道4との間に設けた、それぞれが転動体である複数個の玉6、6とを備える。これら各玉6、6は、円周方向に等間隔に配置された状態で、保持器7により、転動自在に保持されている。又、大きなラジアル荷重が加わる回転支持部には、例えば図2に示す様な、転動体として円すいころを使用したラジアル円すいころ軸受8が組み込まれている。このラジアル円すいころ軸受8は、内周面に円すい凹面状の外輪軌道2aを有する外輪3aと、外周面に円すい凸面状の内輪軌道4aを有する内輪5aと、これら外輪軌道2aと内輪軌道4aとの間に、保持器7aに保持された状態で転動自在に設けられた、それぞれが転動体である複数の円すいころ9、9とを備える。又、前記内輪5aの外周面両端部のうち、大径側端部には大径側鍔部10を、小径側端部には小径側鍔部11を、それぞれ形成している。尚、この小径側鍔部11は省略する場合もある。この様なラジアル玉軸受1及びラジアル円すいころ軸受8は、例えば前記外輪3、3aをハウジングに内嵌固定すると共に、前記内輪5、5aを回転軸に外嵌固定する事により、この回転軸を前記ハウジングに対し、回転自在に支持する。 For example, a radial ball bearing 1 as shown in FIG. 1 is incorporated in a rotation support portion of various rotary machine devices. The radial ball bearing 1 includes an outer ring 3 having an outer ring raceway 2 on an inner peripheral surface, an inner ring 5 having an inner ring raceway 4 on an outer peripheral surface, and an outer ring raceway 2 and an inner ring raceway 4 provided between the outer ring raceway 2 and the inner ring raceway 4. A plurality of balls 6 and 6 which are moving bodies are provided. These balls 6, 6 are held by a cage 7 so as to be able to roll while being arranged at equal intervals in the circumferential direction. Further, a radial tapered roller bearing 8 using a tapered roller as a rolling element as shown in FIG. 2, for example, is incorporated in the rotation support portion to which a large radial load is applied. The radial tapered roller bearing 8 includes an outer ring 3a having a conical concave outer ring raceway 2a on an inner peripheral surface, an inner ring 5a having a conical convex inner ring raceway 4a on an outer peripheral surface, the outer ring raceway 2a and the inner ring raceway 4a. Are provided with a plurality of tapered rollers 9, 9 each being a rolling element provided so as to be able to roll while being held by the cage 7 a. Further, out of both ends of the outer peripheral surface of the inner ring 5a, a large-diameter side flange 10 is formed at the large-diameter end, and a small-diameter flange 11 is formed at the small-diameter end. The small diameter side flange 11 may be omitted. Such a radial ball bearing 1 and a radial tapered roller bearing 8 are configured such that, for example, the outer rings 3 and 3a are fitted and fixed to the housing, and the inner rings 5 and 5a are fitted and fixed to the rotating shaft. The housing is rotatably supported.
例えば上述の様なラジアル玉軸受1或いはラジアル円すいころ軸受8の如き転がり軸受は、大きな荷重が負荷された状態で長期間使用される場合が多い。この様な使用に伴って、前記外輪3、3a、前記内輪5、5a、転動体(玉6、6或いは円すいころ9、9)等の軸受部品を構成する鋼に金属疲労が生じ、当該軸受部品の表面が剥離する場合がある。この様な剥離は、転動体の転動面よりも、この転動面に比べて大きな応力が発生し易い、前記外輪3、3や前記内輪5、5a等の軌道輪の軌道面に発生し易い。この様な、転がり軸受の構成部品の表面に発生する剥離の種類には、材料内部の介在物を起点として生じる「介在物起点型剥離」や、塵等の異物を噛み込んだ圧痕を起点として生じる「表面起点型剥離」や、水素が鋼中に侵入して水素脆性を生じた、白色組織と呼ばれる組織変化を起点として生じる「白色組織剥離」等がある。これら各剥離は、それぞれ異なるメカニズムで生じる為、それぞれに就いて、互いに異なる対策が必要である。本発明は、このうちの介在物起点型剥離を抑える事を目的としている為、この介在物起点型剥離発生のメカニズムと、この介在物起点型剥離の発生を抑える為に考えられている従来技術とに就いて、先ず説明する。 For example, a rolling bearing such as the radial ball bearing 1 or the radial tapered roller bearing 8 as described above is often used for a long period under a large load. With such use, metal fatigue occurs in the steel constituting the bearing parts such as the outer rings 3 and 3a, the inner rings 5 and 5a, and the rolling elements (balls 6 and 6 or tapered rollers 9 and 9). The surface of the part may peel off. Such delamination occurs on the raceway surfaces of the race rings such as the outer rings 3, 3 and the inner rings 5, 5a, which are more susceptible to stress than the rolling surfaces of the rolling elements. easy. The types of delamination that occur on the surface of rolling bearing components such as this are "inclusion-origin-type delamination" that starts from inclusions inside the material, and indentations that contain foreign objects such as dust. There are “surface-originating exfoliation” that occurs, and “white structure exfoliation” that originates from a structural change called white structure in which hydrogen has entered the steel and has become hydrogen brittle. Since each of these peelings occurs by different mechanisms, different measures are required for each. Since the present invention aims to suppress inclusion-initiated type peeling among these, the mechanism of this inclusion-initiated type peeling occurrence and the prior art considered to suppress the occurrence of inclusion-initiated type peeling First, I will explain.
軸受部品を構成する鋼中に、この鋼の本来の硬さよりも遥かに硬い、酸化物系非金属介在物が存在すると、この介在物の周辺部分に応力集中が生じ、この周辺部分にバタフライ型の組織変化が生じる。この様なバタフライ型の組織変化が生じると、この組織が変化した部分の界面に沿って、金属疲労による亀裂が発生し、更にこの亀裂が進展して、介在物起点型の剥離に至る。この様な介在物起点型の剥離が発生するのを抑える為に従来は、剥離の起点となる酸化物系非金属介在物を小さくしたり、数を減らす事が提案されていた。 If there is an oxide-based non-metallic inclusion in the steel constituting the bearing part that is much harder than the original hardness of this steel, stress concentration occurs in the peripheral portion of this inclusion, and a butterfly type is formed in this peripheral portion. Organizational changes occur. When such a butterfly-type structure change occurs, a crack due to metal fatigue occurs along the interface of the part where the structure has changed, and this crack further develops, leading to inclusion-origin type separation. In order to suppress the occurrence of such inclusion-initiated type separation, conventionally, it has been proposed to reduce the number or the number of oxide-based non-metallic inclusions that are the origin of separation.
例えば特許文献1には、極値統計法を用いて、推定面積30000mm2中に含まれる酸化物系非金属介在物の最大径を予測し、この最大径を5μm以下に制御した軸受用鋼を用いる事によって、転がり軸受の長寿命化を図る技術が開示されている。但し、この特許文献1に記載された様に、極めて清浄度の高い鋼材を製造するには、鋼中の酸素量や硫黄量の低減が不可欠である。既存の設備では既に限界に達しており、更なる酸素量や硫黄量の低減の為には、設備や工程の改良(製鋼設備の大幅な改良や工程の変更)が必要になり、鋼材価格の上昇を招く事が避けられない。従って、鋼材価格や生産性を考慮すると、難しい場合もある。 For example, Patent Document 1 discloses a bearing steel in which the maximum diameter of oxide-based nonmetallic inclusions included in an estimated area of 30000 mm 2 is predicted using an extreme value statistical method, and the maximum diameter is controlled to 5 μm or less. A technique for extending the life of a rolling bearing by using it is disclosed. However, as described in Patent Document 1, in order to manufacture a steel material with extremely high cleanliness, it is indispensable to reduce the amount of oxygen and sulfur in the steel. The existing equipment has already reached its limit, and in order to further reduce the amount of oxygen and sulfur, it is necessary to improve the equipment and processes (substantial improvements in steelmaking equipment and process changes) Inevitable rise. Therefore, it may be difficult considering the price of steel and productivity.
又、特許文献2には、被検面積320mm2中に含まれる、厚さ1μm以上の硫化物系非金属介在物の個数を1200個以下に、酸化物系非金属介在物の最大径を10μm以下に、それぞれ制御する事により、転がり軸受の長寿命化を図れる軸受用鋼に関する発明が記載されている。
又、特許文献3には、320mm2中に含まれる酸化物非金属介在物の数を100〜200個とし、更に不純物元素であるSb量を0.001質量%以下に抑える事により、転がり軸受の長寿命化を図る軸受用鋼に関する発明が記載されている。
但し、実際の転がり軸受の運転状態では、この転がり軸受の高応力部に存在する非金属介在物のうちの最大の非金属介在物を起点として、剥離が生じる。この為、上述の様な特許文献2、3に記載された発明の様に、鋼材の微小な面積中に含まれる非金属介在物の数や大きさを制限しても、必ずしも非金属介在物を起点とする剥離寿命を延ばせるとは限らない。言い換えれば、予想外の起点剥離が生じ、意図した程剥離寿命が延びない個体が発生する可能性があった。
Patent Document 2 discloses that the number of sulfide-based nonmetallic inclusions having a thickness of 1 μm or more included in a test area of 320 mm 2 is 1200 or less, and the maximum diameter of oxide-based nonmetallic inclusions is 10 μm. In the following, there are described inventions related to bearing steels that can extend the life of rolling bearings by controlling each of them.
In Patent Document 3, the number of oxide nonmetallic inclusions contained in 320 mm 2 is set to 100 to 200, and the amount of Sb as an impurity element is suppressed to 0.001% by mass or less, thereby increasing the length of the rolling bearing. An invention relating to bearing steel that achieves a long life is described.
However, in the actual operation state of the rolling bearing, peeling occurs starting from the largest nonmetallic inclusion among the nonmetallic inclusions present in the high stress portion of the rolling bearing. For this reason, even if the number and size of the nonmetallic inclusions contained in the minute area of the steel material is limited as in the inventions described in Patent Documents 2 and 3 as described above, the origin is not necessarily the nonmetallic inclusions. It is not always possible to extend the peeling life. In other words, unexpected starting point peeling occurs, and there is a possibility that an individual whose peeling life does not extend as intended is generated.
更に、特許文献4には、極値統計法を用いて、30000mm2中に含まれる硫化物系非金属介在物の予測最大径を40μm以下、更に、酸化物、硫化物、窒化物の各介在物の予測最大径を求め、そのうち最大の値を60μm以下に抑える事により、転がり軸受の長寿命化を図れる軸受用鋼に関する発明が記載されている。
但し、この様な特許文献4に記載された発明の様に、最大で60μmと言った様な、或る程度の大きさの非金属介在物を許容する場合には、転がり軸受の使用条件が厳しいと、この非金属介在物を起点としてバタフライ型組織変化が生じ、剥離に至る場合がある。
Furthermore, Patent Document 4 uses an extreme value statistical method to set the predicted maximum diameter of sulfide-based nonmetallic inclusions contained in 30000 mm 2 to 40 μm or less, and further includes oxide, sulfide, and nitride inclusions. An invention relating to a steel for bearings is described in which the predicted maximum diameter of an object is obtained, and the maximum value is suppressed to 60 μm or less, thereby extending the life of a rolling bearing.
However, as in the invention described in Patent Document 4, when a non-metallic inclusion of a certain size such as 60 μm at the maximum is allowed, the usage condition of the rolling bearing is If it is severe, butterfly structure changes may occur from this non-metallic inclusion as a starting point, which may lead to peeling.
本発明は、上述の様な事情に鑑みて、軸受部品を構成する鋼中に存在する非金属介在物を過度のコスト上昇を招く程(現在一般的に実施されているよりも)低減させるのではなく、鋼中にSi、Mn、Cr、Moを適正量添加し、非金属介在物の周辺にバタフライ型組織変化を発生し難くする(バタフライ型組織変化の発生を遅延させる)事によって、長寿命化を図れる転がり軸受を実現すべく発明したものである。 In view of the circumstances as described above, the present invention reduces the non-metallic inclusions present in the steel constituting the bearing part to such an extent that it causes an excessive increase in cost (as compared to currently practiced). Rather than adding a proper amount of Si, Mn, Cr, and Mo to the steel, making it difficult for butterfly structure changes to occur around non-metallic inclusions (delaying the occurrence of butterfly structure changes) The invention was invented to realize a rolling bearing capable of extending the service life.
本発明の転がり軸受は、前述の図1〜2に示したラジアル玉軸受1或いはラジアル円すいころ軸受8を含み、従来から知られている各種転がり軸受と同様に、何れかの面に第一の軌道面を有する第一の軌道輪と、この第一の軌道面と対向する面に第二の軌道面を有する第二の軌道輪と、これら第一、第二の両軌道面同士の間に転動自在に設けられた複数個の転動体とを備える。
特に、本発明の転がり軸受に於いては、前記第一の軌道輪と前記第二の軌道輪とこれら各転動体とのうちの少なくとも1種の部材である軸受部品を、
Cを0.85〜1.15質量%、Siを0.40〜0.90質量%、Mnを0.55〜1.20質量%、Crを1.30〜1.90質量%、Moを0.30質量%以下、Niを0.30質量%以下、Cuを0.20質量%以下、Sを0.025質量%以下、Pを0.020質量%以下、Oを15質量ppm以下、それぞれ含有し、残部をFeと不可避的不純物とし、
極値統計法により、面積30000mm2に存在する酸化物系介在物の大きさに関する最大値を予測した場合に、最大の酸化物系介在物の面積の平方根が22μm以上、50μm以下である鋼により構成している。
又、前記少なくとも1種の部材の、焼き入れ・焼き戻し後の硬さを、Hv697〜800としている。尚、この部材には、所謂ズブ焼き入れを施すので、この部材の硬さは、表面から芯部まで、ほぼ同じとなる。
又、前記少なくとも1種の部材の、焼き入れ・焼き戻し後の鋼中に残存している球状化炭化物の量を、5〜9質量%としている。
更に、[Si]、[Mn]、[Cr]、[Mo]を、前記鋼中への各合金成分(元素)の含有量を質量%で表した数値とし、[MC]を、焼き入れ・焼き戻し後の鋼中に残存している球状化炭化物の割合を質量%で表した数値とした場合に、
2.5≦2[Si]+[Mn]+([Cr]−7[MC]/100)/(1−[MC]/100)+3[Mo]≦3.8
を満たす。
The rolling bearing of the present invention includes the radial ball bearing 1 or the radial tapered roller bearing 8 shown in FIGS. 1 and 2 described above, and is similar to various types of conventionally known rolling bearings. A first raceway having a raceway surface, a second raceway having a second raceway surface on a surface opposite to the first raceway surface, and between the first and second raceway surfaces. A plurality of rolling elements provided so as to freely roll.
In particular, in the rolling bearing of the present invention, a bearing component that is at least one member of the first race ring, the second race ring, and each of these rolling elements,
C is 0.85 to 1.15% by mass, Si is 0.40 to 0.90% by mass, Mn is 0.55 to 1.20% by mass, Cr is 1.30 to 1.90% by mass, Mo is 0.30 mass% or less, Ni 0.30 mass% or less, Cu 0.20 mass% or less, S 0.025 mass% or less, P 0.020 mass% or less, O 15 mass ppm or less, Each containing, the remainder as Fe and inevitable impurities,
When the maximum value regarding the size of oxide inclusions existing in an area of 30000 mm 2 is predicted by the extreme value statistical method, the square root of the area of the maximum oxide inclusions is 22 μm or more and 50 μm or less. It is composed.
The hardness of the at least one member after quenching and tempering is Hv697-800. Since this member is subjected to so-called quenching, the hardness of this member is substantially the same from the surface to the core.
Further, the amount of the spheroidized carbide remaining in the steel after quenching and tempering of the at least one member is set to 5 to 9% by mass.
Furthermore, [Si], [Mn], [Cr], [Mo] is a numerical value representing the content of each alloy component (element) in the steel in mass%, and [MC] When the percentage of spheroidized carbide remaining in the steel after tempering is a numerical value expressed in mass%,
2.5 ≦ 2 [Si] + [Mn] + ([Cr] −7 [MC] / 100) / (1− [MC] / 100) +3 [Mo] ≦ 3.8
Meet.
上述の様に構成する本発明によれば、軸受部品を構成する鋼中に存在する非金属介在物を過度のコスト上昇を招く程低減させなくても、非金属介在物の周辺にバタフライ型組織変化が発生し難くなり、転がり軸受の長寿命化を図れる。この理由に就いて、各数値の限定理由と共に、以下に説明する。 According to the present invention configured as described above, a butterfly structure is formed around the nonmetallic inclusions without reducing the nonmetallic inclusions present in the steel constituting the bearing component to an excessive cost increase. Changes are less likely to occur and the life of the rolling bearing can be extended. This reason will be described below together with the reasons for limiting each numerical value.
本発明により発生を抑えようとする「介在物起点型剥離」とは、前述の通り、軸受部品を構成する鋼の内部に存在する非金属介在物の周辺に発生した応力集中に基づいて、この周辺部分にバタフライ型組織変化が生じ、この変化した組織の界面に沿って生じた疲労亀裂が進展して、剥離に至る現象である。前述した特許文献1〜4に記載された発明の場合には、この様な剥離の起点になる非金属介在物の大きさと量とを制限する事で、介在物起点型剥離を抑える事を意図していた。これに対して本発明の場合には、次の様にして、介在物起点型剥離を抑える。 As described above, “inclusion starting type separation” which is intended to suppress the occurrence according to the present invention is based on the stress concentration generated around the non-metallic inclusions existing in the steel constituting the bearing part. This is a phenomenon in which a butterfly structure change occurs in the peripheral portion, fatigue cracks generated along the interface of the changed structure develop, and lead to delamination. In the case of the inventions described in Patent Documents 1 to 4 described above, it is intended to suppress inclusion-origin type peeling by limiting the size and amount of non-metallic inclusions that are the starting point of such peeling. Was. On the other hand, in the case of the present invention, inclusion starting type peeling is suppressed as follows.
前記バタフライ型組織変化は、次の様な現象である。軸受部品に大きな荷重が加わると、この軸受部品を構成する鋼の内部に存在する非金属介在物の周辺に応力が集中する。そして、この応力集中によって生じる大きな剪断応力が、前記鋼の基地のマルテンサイト組織に繰り返し負荷される事によって、マルテンサイト組織中の転位と固溶炭素とが動かされ、徐々にマルテンサイト組織が崩れ、超微細なフェライト組織に変化する。本発明は、この様なバタフライ型組織変化を遅延させる為に、鋼中の合金成分として、Si、Mn、Cr、Moを最適な量添加する事によって、基地中のマルテンサイト組織を安定化させるものである。即ち、本発明は、このマルテンサイト組織を安定させる事により、マルテンサイト組織中で転位と固溶炭素とを動きにくくし、バタフライ型の組織変化を遅延させて、軸受部品の長寿命化を図るものである。 The butterfly structure change is the following phenomenon. When a large load is applied to the bearing part, stress concentrates around the non-metallic inclusions existing in the steel constituting the bearing part. The large shear stress generated by this stress concentration is repeatedly applied to the martensitic structure of the steel base, so that dislocations and solute carbon in the martensitic structure are moved, and the martensitic structure gradually collapses. , Changes to an ultrafine ferrite structure. The present invention stabilizes the martensitic structure in the base by adding an optimum amount of Si, Mn, Cr, and Mo as alloy components in the steel in order to delay such a butterfly structure change. Is. That is, the present invention stabilizes the martensite structure, thereby making it difficult for dislocations and solute carbons to move in the martensite structure, delaying the butterfly structure change, and extending the life of the bearing component. Is.
但し、Si、Mn、Cr、Moの添加によっても、バタフライ型の組織変化を完全に阻止できる訳ではなく、遅延させる事に止まる。従って、Si、Mn、Cr、Moの添加によってバタフライ型の組織変化を遅延させられるとは言え、非金属介在物の大きさが大き過ぎると、この非金属介在物を起点とするバタフライ型組織変化の発生を、必ずしも十分には抑えられない。一方で、このバタフライ型組織変化の発生を遅延させられるので、前述の特許文献1〜4に記載された発明の様に、鋼中の非金属介在物の大きさや数を、製鋼コストが特に嵩む程、小さくしたり少なくしたりする必要はない。本発明の場合には、最大の酸化物系介在物の面積の平方根を22μm以上、50μm以下に規制しているので、製鋼コストを抑えつつ、非金属介在物を起点とするバタフライ型組織変化の発生を十分に抑えられる。 However, the addition of Si, Mn, Cr, and Mo does not completely prevent the butterfly structure change, but only delays it. Therefore, the addition of Si, Mn, Cr, and Mo can delay the butterfly structure change. However, if the size of the nonmetallic inclusions is too large, the butterfly structure change starting from the nonmetallic inclusions will occur. The occurrence of this is not always sufficiently suppressed. On the other hand, since the occurrence of this butterfly structure change can be delayed, the size and number of non-metallic inclusions in steel are particularly high in steelmaking costs, as in the inventions described in Patent Documents 1 to 4 described above. There is no need to make it smaller or smaller. In the case of the present invention, since the square root of the area of the maximum oxide inclusion is regulated to 22 μm or more and 50 μm or less, the butterfly structure change starting from the nonmetallic inclusion is suppressed while suppressing the steelmaking cost. Occurrence can be suppressed sufficiently.
要するに、鋼中にSi、Mn、Cr、Moを添加する事により、この鋼中に或る程度の大きさの非金属介在物が存在しても、軸受部品に介在物起点型剥離を発生し難くして、当該軸受部品を組み込んだ転がり軸受の耐久性の向上を図れる。
次に、この軸受部品を構成する鋼中に添加する元素及びその含有量、並びに、酸化物系介在物の大きさを規制した理由に就いて、以下に説明する。
In short, by adding Si, Mn, Cr, and Mo to the steel, even if non-metallic inclusions of a certain size exist in the steel, inclusion starting type peeling occurs in the bearing parts. It is difficult to improve the durability of the rolling bearing incorporating the bearing component.
Next, the reason why the elements added to the steel constituting the bearing part, the content thereof, and the size of the oxide inclusions are regulated will be described below.
[C:0.85〜1.15質量%]
Cは、焼き入れによって基地に固溶し、硬さを向上させる元素である為、軸受部品に必要な硬さを確保する為に添加する。合金成分中のC量が0.85質量%未満であると、焼き入れ後の硬さが不足して、耐摩耗性や転がり疲れ寿命が低下する。そこで、Cを0.85質量%以上、含有させる。これら耐摩耗性や転がり疲れ寿命をより安定的に得る為に、好ましくは、Cの含有量を0.95質量%以上とする。一方、Cの含有量が1.15質量%を超えると、得られた軸受部品が硬くなり過ぎて、研削性の低下や破壊靭性値の低下を生じる。そこで、Cの含有量を1.15質量%以下に抑える。前記研削性をより安定させる為に、好ましくは、Cの含有量を1.10質量%以下とする。
[C: 0.85 to 1.15% by mass]
C is an element that dissolves in the base by quenching and improves the hardness, so it is added to ensure the necessary hardness for the bearing parts. When the amount of C in the alloy component is less than 0.85% by mass, the hardness after quenching is insufficient, and wear resistance and rolling fatigue life are reduced. Therefore, C is contained in an amount of 0.85% by mass or more. In order to obtain these wear resistance and rolling fatigue life more stably, the C content is preferably 0.95% by mass or more. On the other hand, if the C content exceeds 1.15% by mass, the resulting bearing part becomes too hard, resulting in a decrease in grindability and a decrease in fracture toughness value. Therefore, the C content is suppressed to 1.15% by mass or less. In order to further stabilize the grindability, the C content is preferably 1.10% by mass or less.
[Si:0.40〜0.90質量%]
Siは、基地に固溶して焼き入れ性及び焼き戻し軟化抵抗性を向上させる効果がある為、軸受部品に必要な硬さを確保する為に添加する。且つ、Siは、本発明の重要な目的である、介在物起点型剥離の発生を抑える効果がある。即ち、Siは、基地組織中のマルテンサイトを安定化させ、非金属介在物周辺に生じるバタフライ型組織変化を遅延させて、軸受部品に介在物起点型剥離が発生する事を抑え(遅延させ)、この軸受部品を組み込んだ転がり軸受の寿命延長に寄与する。この様な、バタフライ型組織変化遅延による寿命延長効果は、Si量が0.40質量%未満の場合には十分には得られない。一方、Siの含有量が0.90質量%を超えると、球状化焼鈍後の硬さが上昇する為、旋削性及び冷間加工性が低下する。球状化焼鈍後の硬さを適正範囲に抑え、安定した旋削性及び冷間加工性を得る為に、好ましくは、Siの含有量を、0.70質量%以下に抑える。
[Si: 0.40-0.90 mass%]
Si has the effect of improving the hardenability and temper softening resistance by dissolving in the base and is added to ensure the necessary hardness for the bearing parts. Moreover, Si has an effect of suppressing the occurrence of inclusion-origin separation, which is an important object of the present invention. That is, Si stabilizes martensite in the base structure, delays butterfly-type structural changes that occur around non-metallic inclusions, and suppresses (delays) the occurrence of inclusion-origin-type separation in bearing parts. This contributes to extending the life of rolling bearings incorporating this bearing component. Such a life extension effect due to the butterfly structure change delay cannot be sufficiently obtained when the Si amount is less than 0.40 mass%. On the other hand, when the Si content exceeds 0.90% by mass, the hardness after spheroidizing annealing is increased, so that the turning property and the cold workability are lowered. In order to suppress the hardness after spheroidizing annealing to an appropriate range and obtain stable turning and cold workability, the Si content is preferably suppressed to 0.70% by mass or less.
[Mn:0.55〜1.20質量%]
Mnは、基地に固溶して焼き入れ性を向上させる効果がある為、軸受部品に必要な硬さを確保する為に添加する。且つ、Mnも、上述したSiの場合と同様に、本発明の重要な目的である、介在物起点型剥離の発生を抑える効果がある。即ち、Mnも、基地組織中のマルテンサイトを安定化させ、非金属介在物周辺に生じるバタフライ型組織変化を遅延させて、軸受部品に介在物起点型剥離が発生する事を抑え、この軸受部品を組み込んだ転がり軸受の寿命延長に寄与する。更に、Mnは、熱処理後の残留オーステナイト量を生成し易くする効果がある。残留オーステナイトは、比較的粘りのある組織であり、前述した表面起点型剥離を抑えて、別の観点から、前記軸受部品を組み込んだ転がり軸受の寿命延長に寄与する。この様な効果は、Mnの含有量が0.55質量%未満の場合には、十分には得られない。一方、Mnの含有量が1.20質量%を超えると、熱間鍛造時の変形抵抗が上昇して、熱間鍛造性を低下させる。又、軸受部品を構成する鋼中の残留オーステナイトは、転がり軸受の使用に伴って少しずつ分解し、分解に伴って、僅かとは言え体積が膨張する。この為、Mnの含有量を多くする事で残留オーステナイトの量が過剰になると、前記軸受部品の形状及び寸法の安定性が低下する。そこで、この軸受部品を構成する鋼中のMnの量を、0.55〜1.20質量%の範囲とする。尚、熱間鍛造性及び寸法安定性をより安定させる為に、好ましくは、Mnの含有量を0.85質量%以下に抑える。
[Mn: 0.55 to 1.20 mass%]
Mn has the effect of improving the hardenability by solid solution in the base, so Mn is added to ensure the necessary hardness for the bearing parts. Mn also has the effect of suppressing the occurrence of inclusion-origin separation, which is an important object of the present invention, as in the case of Si described above. That is, Mn also stabilizes the martensite in the base structure, delays the butterfly structure change that occurs around the non-metallic inclusions, and suppresses the occurrence of inclusion-origin separation in the bearing parts. Contributes to extending the life of rolling bearings incorporating Further, Mn has an effect of easily generating the amount of retained austenite after the heat treatment. Residual austenite is a relatively sticky structure, and suppresses the above-described surface-origin separation, and contributes to extending the life of a rolling bearing incorporating the bearing component from another viewpoint. Such an effect cannot be sufficiently obtained when the Mn content is less than 0.55% by mass. On the other hand, if the content of Mn exceeds 1.20% by mass, the deformation resistance during hot forging increases and the hot forgeability decreases. Further, the retained austenite in the steel constituting the bearing part is decomposed little by little with the use of the rolling bearing, and the volume expands, albeit slightly, with the decomposition. For this reason, when the amount of retained austenite becomes excessive by increasing the content of Mn, the stability of the shape and dimensions of the bearing component is lowered. Therefore, the amount of Mn in the steel constituting this bearing part is set in the range of 0.55 to 1.20% by mass. In order to further stabilize the hot forgeability and dimensional stability, the Mn content is preferably suppressed to 0.85% by mass or less.
[Cr:1.30〜1.90質量%]
Crは、基地のマルテンサイト中に固溶する分と、球状化炭化物中に固溶する分とに分配される。基地のマルテンサイト中に固溶したCrは、焼き入れ性を向上させて、軸受部品表面の硬さを確保する効果がある。又、Crも、前述したSi及び上述したMnの場合と同様に、本発明の重要な目的である、介在物起点型剥離の発生を抑える効果がある。即ち、Crも、基地組織中のマルテンサイトを安定化させ、非金属介在物周辺に生じるバタフライ型組織変化を遅延させて、軸受部品に介在物起点型剥離が発生する事を抑え、この軸受部品を組み込んだ転がり軸受の寿命延長に寄与する。この様な効果は、Crの含有量が1.30質量%未満の場合には、十分には得られない。一方、Crの含有量が1.90質量%を超えると、球状化焼鈍後の硬さが上昇する為、旋削性及び冷間加工性が低下する。そこで、前記軸受部品を構成する鋼中のCrの量を、1.30〜1.90質量%の範囲とする。尚、旋削性及び冷間加工性をより安定させる為に、好ましくは、Crの含有量を1.70質量%以下とする。
[Cr: 1.30 to 1.90 mass%]
Cr is distributed into a part that dissolves in the base martensite and a part that dissolves in the spheroidized carbide. Cr dissolved in the base martensite has the effect of improving the hardenability and ensuring the hardness of the surface of the bearing component. Cr also has the effect of suppressing the occurrence of inclusion-origin separation, which is an important object of the present invention, as in the case of Si and Mn. That is, Cr also stabilizes martensite in the base structure, delays the butterfly structure change that occurs around non-metallic inclusions, and suppresses the occurrence of inclusion-origin separation in the bearing part. Contributes to extending the life of rolling bearings incorporating Such an effect cannot be sufficiently obtained when the Cr content is less than 1.30% by mass. On the other hand, if the Cr content exceeds 1.90 mass%, the hardness after spheroidizing annealing is increased, so that the turning property and the cold workability are lowered. Therefore, the amount of Cr in the steel constituting the bearing part is set to a range of 1.30 to 1.90% by mass. In order to further stabilize the turning property and the cold workability, the Cr content is preferably 1.70% by mass or less.
[Mo:0.30質量%以下]
Moは、基地に固溶して、焼き入れ性及び焼き戻し軟化抵抗性を向上させて、軸受部品表面の硬さを確保する効果がある。又、Moも、前述したSi、Mn及び上述したCrの場合と同様に、本発明の重要な目的である、介在物起点型剥離の発生を抑える効果がある。即ち、Moも、基地組織のマルテンサイトを安定化させ、非金属介在物周辺に生じるバタフライ型組織変化を遅延させて、軸受部品に介在物起点型剥離が発生する事を抑え、この軸受部品を組み込んだ転がり軸受の寿命延長に寄与する。但し、Moの含有量が0.30質量%を超えると、Moの一部が硬い炭化物を形成し、研削性を低下させる。又、非常に高価な元素である為、前記軸受部品を含む転がり軸受の製造コストを高くする原因となる。そこで、Moの含有量を0.30質量%以下とした。好ましくは、Moの含有量を0.15質量%以下とする。尚、Moの含有量の下限値は、製造コストの面から規制するが、0.01質量%以上とする事が好ましい。
[Mo: 0.30 mass% or less]
Mo dissolves in the base and improves the hardenability and temper softening resistance, and has the effect of ensuring the hardness of the bearing component surface. Further, Mo also has an effect of suppressing the occurrence of inclusion-origin type peeling, which is an important object of the present invention, as in the case of Si, Mn, and Cr described above. In other words, Mo also stabilizes the martensite of the base structure, delays the butterfly structure change that occurs around the non-metallic inclusions, and suppresses the occurrence of inclusion-origin separation from the bearing parts. Contributes to extending the life of the built-in rolling bearing. However, if the Mo content exceeds 0.30% by mass, a part of Mo forms a hard carbide, which reduces grindability. Moreover, since it is a very expensive element, it causes a high manufacturing cost of the rolling bearing including the bearing component. Therefore, the Mo content is set to 0.30% by mass or less. Preferably, the Mo content is 0.15% by mass or less. In addition, although the lower limit of content of Mo is controlled from the surface of manufacturing cost, it is preferable to set it as 0.01 mass% or more.
[Ni:0.30質量%以下]
Niは、焼き入れ性を向上させる効果とオーステナイトを安定化させる効果とを持つ元素であり、更に、多量に添加すると靱性が向上する。但し、非常に高価な元素である為、前記軸受部品を含む転がり軸受の製造コストを高くする原因となる。そこで、Niに関しては、積極的には添加せず、その含有量を0.30質量%以下とした。好ましくは、Niの含有量を0.18質量%以下とする。尚、Niの含有量の下限値は、製造コストの面から規制するが、0.01質量%以上とする事が好ましい。
[Ni: 0.30 mass% or less]
Ni is an element having an effect of improving hardenability and an effect of stabilizing austenite. Further, when added in a large amount, Ni improves toughness. However, since it is a very expensive element, it causes an increase in the manufacturing cost of the rolling bearing including the bearing component. Therefore, Ni was not actively added, and its content was set to 0.30% by mass or less. Preferably, the Ni content is 0.18% by mass or less. In addition, although the lower limit of content of Ni is controlled from the surface of manufacturing cost, it is preferable to set it as 0.01 mass% or more.
[Cu:0.20質量%以下]
Cuは、焼き入れ性を向上させる効果と、粒界強度を向上させる効果とがある。但し、Cuの含有量が多くなると熱間鍛造性が低下する。そこで、Cuに関しては、積極的には添加せず、その含有量を0.20質量%以下とした。但し、Cuに関しては、添加する事による利点もあるので、好ましくは0.01質量%以上添加する。
[Cu: 0.20% by mass or less]
Cu has the effect of improving the hardenability and the effect of improving the grain boundary strength. However, when the Cu content increases, hot forgeability decreases. Therefore, Cu is not actively added, and its content is set to 0.20% by mass or less. However, regarding Cu, there is an advantage by adding, so 0.01% by mass or more is preferably added.
[S:0.025質量%以下]
Sは、MnSを形成し、介在物として作用する為、鋼中に含まれるS量は少ない程良い。但し、Sは自然界に多く存在する元素であり、Sの含有量を極端に少なく抑えようとすると、鋼材の生産性が低下し、鋼材の製造コストが上昇する為、工業上広く利用する事が難しくなる。一方、Sを0.025質量%程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、軸受部品に必要とされる耐久性を確保できる。そこで、Sの含有量の上限値を0.025質量%とした。
[S: 0.025% by mass or less]
Since S forms MnS and acts as an inclusion, the smaller the amount of S contained in the steel, the better. However, S is an element that exists abundantly in the natural world, and trying to keep the S content extremely low reduces the productivity of the steel material and increases the manufacturing cost of the steel material, so it can be widely used industrially. It becomes difficult. On the other hand, even if S is contained in an amount of about 0.025% by mass, durability required for the bearing component can be ensured by making the content of other elements and the heat treatment method appropriate. Therefore, the upper limit of the S content is set to 0.025% by mass.
[P:0.020質量%以下]
Pは、結晶粒界に偏析して、粒界強度や破壊靱性値を低下させるので、少ない程良い。但し、Pも自然界に多く存在する元素であり、Pの含有量を極端に少なく抑えようとすると、鋼材の製造コストが上昇する。一方、Pを0.020質量%程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、軸受部品に必要とされる耐久性を確保できる。そこで、Pの含有量の上限値を0.020質量%とした。
[P: 0.020% by mass or less]
P is preferably as small as possible because it segregates at the grain boundaries and lowers the grain boundary strength and fracture toughness value. However, P is also an element that exists in a large amount in nature. If an attempt is made to keep the P content extremely low, the manufacturing cost of the steel material will increase. On the other hand, even if P is contained in an amount of about 0.020% by mass, durability required for bearing parts can be ensured by making the content of other elements and the heat treatment method appropriate. Therefore, the upper limit of the P content is set to 0.020% by mass.
[O:15質量ppm以下]
Oは、鋼中でAl2O3等の酸化物系の非金属介在物を形成する。酸化物系の非金属介在物は、剥離の起点となり、転がり疲れ寿命に悪影響を及ぼすので、Oの含有量は少ない程良い。但し、Oに関しても、含有量を極端に少なくすると鋼材コストが上昇するのに対して、Oを15質量ppm程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、軸受部品に必要とされる耐久性を確保できる。そこで、Oの含有量の上限値を15質量ppmとした。
[O: 15 mass ppm or less]
O forms oxide-based non-metallic inclusions such as Al 2 O 3 in the steel. Oxide-based non-metallic inclusions serve as a starting point for peeling and adversely affect the rolling fatigue life. Therefore, the smaller the O content, the better. However, with regard to O as well, the steel material cost increases when the content is extremely reduced. On the other hand, even if O is contained in an amount of about 15 ppm by mass, the content of other elements and the heat treatment method can be made appropriate. The required durability can be ensured. Therefore, the upper limit of the O content was set to 15 ppm by mass.
[最大の酸化物系介在物の面積の平方根が22μm以上、50μm以下]
本発明でこの平方根の値を規定する為に利用した極値統計法は、正規分布、指数分布、対数分布等に従う集合に対して、最大値及び最小値等の極値を予測する手法であり、鋼中に含まれる非金属介在物の最大径を予測する手法として有効である。又、転がり軸受を構成する軸受部品の鋼中に存在する非金属介在物による介在物起点型剥離に於いては、極値統計法で予測した最大介在物径と転がり疲れ寿命との間に良い相関が見られる。特に、酸化物系の非金属介在物は、寿命に最も悪影響をもたらす事が知られている。
[The square root of the area of the largest oxide inclusion is 22 μm or more and 50 μm or less]
The extreme value statistical method used to define the square root value in the present invention is a method for predicting extreme values such as maximum value and minimum value for a set according to normal distribution, exponential distribution, logarithmic distribution, etc. It is an effective method for predicting the maximum diameter of non-metallic inclusions contained in steel. In addition, in the inclusion-origin type separation due to non-metallic inclusions existing in the steel of the bearing parts constituting the rolling bearing, it is good between the maximum inclusion diameter predicted by the extreme value statistical method and the rolling fatigue life. Correlation is seen. In particular, it is known that oxide-based non-metallic inclusions have the most adverse effect on the lifetime.
そこで、本発明の場合には、転がり軸受は、極値統計法により、面積30000mm2に存在する最大の酸化物系介在物の大きさを予測した場合に、最大の酸化物系介在物の面積の平方根を、22μm以上、50μm以下としている。この平方根に関する値が50μmを超えると、転がり疲れを受けた場合にも、バタフライ型の組織変化が生じず、酸化物系介在物から直接疲労亀裂が発生する。この為、合金成分(組成)が本発明で規定する範囲内であっても、軸受部品の寿命延長効果を得られない。一方、前記平方根に関する値を22μm未満にする事は、転がり疲れに基づく損傷防止の面からは好ましいが、鋼材の中で大きな介在物を含む部位を破棄する必要を生じる為、鋼材の歩留まりが低下し、鋼材のコストが嵩み、工業上広く利用する事が難しくなる。そこで、前記最大の酸化物系介在物の面積の平方根を、22μm以上、50μm以下とする。
Therefore, in the case of the present invention, when the size of the maximum oxide inclusions existing in the area of 30000 mm 2 is predicted by the extreme value statistical method, the rolling bearing has the maximum area of the oxide inclusions. Is set to 22 μm or more and 50 μm or less. When the value regarding this square root exceeds 50 μm, even when subjected to rolling fatigue, a butterfly structure change does not occur, and fatigue cracks are generated directly from oxide inclusions. For this reason, even if the alloy component (composition) is within the range specified in the present invention, the effect of extending the life of the bearing component cannot be obtained. On the other hand, it is preferable to set the value relating to the square root to less than 22 μm from the viewpoint of preventing damage due to rolling fatigue, but it is necessary to discard a portion containing large inclusions in the steel material, so that the yield of the steel material is reduced. However, the cost of the steel material increases, making it difficult to use widely in the industry. Therefore, the square root of the area of the maximum oxide inclusion is set to 22 μm or more and 50 μm or less.
尚、本発明で前記平方根の値を規制する場合に、酸化物系介在物の面積とは、近似的に、酸化物系介在物を長方形と仮定して求めれば良い。又、極値統計を行う際には、日本トライボロジー学会の「軸受鋼における非金属介在物の評価法研究会(略称EIBS研究会)」が提案する方法が好ましい。即ち、鋼材断面の観察面積100mm2中に含まれる最大の酸化物系介在物を求め、それを鋼材の30箇所の断面で行い、統計処理により30000mm2に含まれる最大の酸化物系介在物の大きさを求める事が好ましい。 Note that when the value of the square root is regulated in the present invention, the area of the oxide inclusions may be determined approximately assuming that the oxide inclusions are rectangular. In addition, when performing extreme value statistics, a method proposed by the “Study Group for Evaluation Method of Nonmetallic Inclusions in Bearing Steel (abbreviated as EIBS Study Group)” of the Japanese Society of Tribology is preferable. That is, the maximum oxide inclusions included in the observation area 100 mm 2 of the steel material cross section are obtained, and the maximum oxide inclusions included in 30000 mm 2 are obtained by statistical processing. It is preferable to determine the size.
[焼き入れ・焼き戻し後の硬さがHv697〜Hv800]
本発明により抑えようとする介在物起点型の剥離は、前述した通り、バタフライ型の組織変化部分の界面に沿った、金属疲労による亀裂の進展として生じる。又、このバタフライ型の組織変化は、先に述べた通り、酸化物系介在物周辺の応力集中によって生じる大きな剪断応力が、基地のマルテンサイト組織に繰り返し負荷される事によって、マルテンサイト組織中の転位と固溶炭素とが動かされ、超微細なフェライト組織に変化する現象である。基地組織の硬さを向上させる事は、基地組織に剪断応力が加わった場合にも、マルテンサイト組織中で転位と固溶炭素とを動きにくくし、バタフライ型の組織変化が生じるのを遅延させる効果がある。硬さがHv697未満であると、上記の効果が不足する事によって、バタフライ型組織変化が生じ易くなり、転がり疲れ寿命が低下する。一方、硬さがHv800を超えると、軸受部品の研削性と破壊靱性値との低下が生じる。そこで、硬さの値をHv697〜Hv800の範囲に規制した。この硬さが、表面から芯部までほぼ同じである事は、前述した通りである。
[Hardness after quenching / tempering: Hv697 to Hv800]
The inclusion-origin-type peeling to be suppressed by the present invention occurs as a crack progresses due to metal fatigue along the interface of the butterfly-type structure change portion as described above. In addition, as described above, this butterfly-type structure change is caused by a large shear stress generated by stress concentration around oxide inclusions being repeatedly applied to the base martensite structure. This is a phenomenon in which dislocations and solute carbon are moved to change to an ultrafine ferrite structure. Improving the hardness of the matrix structure makes it difficult for dislocations and solute carbons to move in the martensite structure even when shear stress is applied to the matrix structure, and delays the occurrence of butterfly structure changes. effective. If the hardness is less than Hv697, the above effects are insufficient, and a butterfly structure change is likely to occur, resulting in a reduced rolling fatigue life. On the other hand, if the hardness exceeds Hv 800, the grindability and fracture toughness value of the bearing parts are reduced. Therefore, the hardness value is regulated within the range of Hv697 to Hv800. As described above, the hardness is substantially the same from the surface to the core.
[鋼中の各元素量と焼き入れ・焼き戻し後の鋼中に残存している球状化炭化物の割合]
[Si]、[Mn]、[Cr]、[Mo]を、前記軸受部品を構成する鋼中への各合金成分の含有量を質量%で表した数値とし、[MC]を、焼き入れ・焼き戻し後の鋼中に残存している球状化炭化物の割合を質量%で表した数値とした場合に、
2.5≦2[Si]+[Mn]+([Cr]−7[MC]/100)/(1−[MC]/100)+3[Mo]≦3.8
を満たす点に関して。
この点を説明する為に、前記不等式中の「2[Si]+[Mn]+([Cr]−7[MC]/100)/(1−[MC]/100)+3[Mo]」で表される値を「算出値」とする。
[Amount of each element in steel and ratio of spheroidized carbide remaining in steel after quenching and tempering]
[Si], [Mn], [Cr], [Mo] is a numerical value representing the content of each alloy component in the steel constituting the bearing part in mass%, and [MC] When the percentage of spheroidized carbide remaining in the steel after tempering is a numerical value expressed in mass%,
2.5 ≦ 2 [Si] + [Mn] + ([Cr] −7 [MC] / 100) / (1− [MC] / 100) +3 [Mo] ≦ 3.8
Regarding the points to satisfy.
In order to explain this point, in “2 [Si] + [Mn] + ([Cr] −7 [MC] / 100) / (1− [MC] / 100) +3 [Mo]” in the inequality, The represented value is defined as “calculated value”.
本発明者等は、成分の異なる複数種類の鋼材を用いて、転がり疲れ寿命試験を行い、バタフライ型組織変化による剥離寿命に及ぼす、各合金元素の長寿命化効果を数値化した。この結果、Si、Mn、Cr、Moを添加する事に基づく、バタフライ型組織変化を抑えて剥離寿命を向上させる事に寄与する、各合金元素の長寿命化の効果は、それぞれ2:1:1:3となる事が分かった。又、上記算出値が大きい程、基地のマルテンサイト組織に固溶する合金元素の量が多くなり、基地組織がより安定化し、バタフライ型組織変化の発生が遅延し、長寿命になる事が分かった。Si及びMoが、Mn及びCrよりも寿命延長効果が大きいのは、Si及びMoがFeとの間での原子半径の差が大きい為、置換元素として、結晶構造中に固溶すると、マルテンサイト組織中で転位及び固溶炭素を動きにくくする効果がより大きい為と推測される。 The present inventors conducted a rolling fatigue life test using a plurality of types of steel materials having different components, and quantified the effect of extending the life of each alloy element on the peel life due to the butterfly structure change. As a result, the effect of extending the life of each alloy element, which contributes to improving the peel life by suppressing the butterfly structure change based on the addition of Si, Mn, Cr, and Mo, is 2: 1: It turned out to be 1: 3. In addition, it can be seen that the larger the calculated value, the greater the amount of alloying elements dissolved in the base martensite structure, the base structure becomes more stable, the occurrence of butterfly structure changes delays, and the life becomes longer. It was. Si and Mo have a longer life-spanning effect than Mn and Cr because Si and Mo have a large difference in atomic radius between Fe and Si. It is presumed that the effect of making dislocation and solute carbon difficult to move in the structure is greater.
但し、Crは、基地のマルテンサイト組織に固溶する分と、球状化炭化物に固溶する分とに分配され、球状化炭化物中では、Crが7質量%程度まで濃化する。従って、球状化炭化物の割合が多いと、Crは球状化炭化物により多く分配される為、基地のマルテンサイト組織中のCr量は低くなる。球状化焼鈍後は、鋼中の炭化物は、約15質量%存在するが、焼き入れ処理をする事によって、球状化炭化物の一部が基地のマルテンサイト組織に固溶する。即ち、基地組織に固溶しているCr量は、鋼材中のCr量と、焼き入れ・焼き戻し後に残存している球状化炭化物量とで決まり、([Cr]−7[MC]/100)/(1−[MC]/100)で概算される。本発明の場合、転がり軸受の軸受部品の鋼中に残存する球状化炭化物の量は、焼き入れ・焼き戻し後の状態で5〜9質量%としている。その理由は、次の通りである。先ず、球状化炭化物の残存量が9質量%を越えると、Crが球状化炭化物に多く分配される事で、基地組織中に固溶しているCr量が不足し、バタフライ型組織変化を抑える効果が小さくなる。これに対して、球状化炭化物の残存量が5質量%未満の場合には、球状化炭化物が基地に溶け込む量が多くなり過ぎて、基地中のC量(炭素量)が過剰になる。その結果、残留オーステナイト量が過剰になり、寸法安定性が低下する。
However, Cr is distributed into a part that dissolves in the matrix martensite structure and a part that dissolves in the spheroidized carbide, and in the spheroidized carbide, Cr is concentrated to about 7% by mass. Therefore, if the ratio of spheroidized carbides is large, Cr is distributed more in the spheroidized carbides, so the amount of Cr in the matrix martensite structure becomes low. After spheroidizing annealing, about 15% by mass of carbide in the steel is present, but by quenching, a part of the spheroidizing carbide is dissolved in the matrix martensite structure. That is, the amount of Cr dissolved in the base structure is determined by the amount of Cr in the steel material and the amount of spheroidized carbide remaining after quenching and tempering ((Cr) -7 [MC] / 100 ) / (1- [MC] / 100). In the case of the present invention, the amount of spheroidized carbide remaining in the steel of the bearing component of the rolling bearing is 5 to 9% by mass in the state after quenching and tempering. The reason is as follows. First, when the residual amount of spheroidized carbide exceeds 9% by mass, Cr is distributed in a large amount in the spheroidized carbide, so that the amount of Cr dissolved in the base structure is insufficient, and the butterfly structure change is suppressed. The effect is reduced. On the other hand, when the residual amount of the spheroidized carbide is less than 5% by mass, the amount of the spheroidized carbide dissolved in the base becomes excessive, and the C amount (carbon amount) in the base becomes excessive. As a result, the amount of retained austenite becomes excessive and the dimensional stability decreases.
上述の様に規定される、前記算出値が、2.5未満の場合には、バタフライ型組織変化に基づく剥離寿命に関する長寿命化効果を十分には得られない。一方、前記算出値が3.8を超えると、基地のマルテンサイトに固溶している合金元素量が過剰になる為、研削性が低下したり、残留オーステナイトが過剰になって、形状安定性及び寸法安定性が低下したりする。好ましくは、安定的に転がり疲れ寿命を向上させ、良好な研削性を得る為に、上記算出値を、2.8以上、3.8以下とする。 When the calculated value defined as described above is less than 2.5, it is not possible to sufficiently obtain a long life effect related to the peeling life based on the butterfly structure change. On the other hand, if the calculated value exceeds 3.8, the amount of alloying elements dissolved in the base martensite becomes excessive, so that the grindability decreases or the retained austenite becomes excessive, resulting in shape stability. And the dimensional stability is reduced. Preferably, in order to stably improve the rolling fatigue life and obtain good grindability, the calculated value is set to 2.8 or more and 3.8 or less.
本発明の特徴は、転がり軸受を構成する軸受部品の一部又は全部に就いて、鋼材の成分、酸化物系介在物の大きさ、焼き入れ・焼き戻し後の硬さを適切に規制する事により、酸化物系介在物を起点として発生する剥離を抑える点にある。図面に現れる構造に関しては、前述の図1に記載したラジアル玉軸受1や図2に記載したラジアル円すいころ軸受8を含み、従来から知られている各種構造の転がり軸受と同様であるから、重複する説明を省略し、以下、本発明と合わせて実施する事で、転がり軸受の寿命をより向上させられる技術に就いて説明する。 The feature of the present invention is to appropriately regulate the components of steel materials, the size of oxide inclusions, and the hardness after quenching and tempering for some or all of the bearing parts constituting the rolling bearing. Therefore, it is in the point which suppresses peeling which generate | occur | produces from an oxide type inclusion. Regarding the structure appearing in the drawings, the radial ball bearing 1 shown in FIG. 1 and the radial tapered roller bearing 8 shown in FIG. 2 are the same as the rolling bearings of various structures conventionally known. In the following, a description will be given of a technique that can improve the life of a rolling bearing by carrying out the present invention together with the present invention.
[焼き入れ・焼き戻し後の残留オーステナイト量の適正値]
鋼中に含まれる残留オーステナイトは、基地組織であるマルテンサイトに比べて軟質である為、鉄粉等の硬質の異物を噛み込む事で生じる圧痕の縁部分の応力集中を緩和する。そして、この圧痕の縁部分を起点とした亀裂の発生を抑制でき、表面起点型剥離寿命を延長する効果がある。本発明と組み合わせてこの様な効果を十分に得る為には、残留オーステナイト量を11容量%以上とする事が好ましい。前述した様に、本発明は介在物起点型剥離を抑える事を意図しており、上述の様な残留オーステナイト量を確保する事による表面起点型剥離寿命が介在物起点型剥離寿命以上である事が好ましい。鋼中の残留オーステナイトの量が11容量%未満の場合には、介在物起点型剥離よりも、表面起点型剥離が先に生じてしまう可能性が高くなる。これに対して、残留オーステナイト量が20容量%を超えると、前述した様な理由により、形状安定性及び寸法安定性が低下する。
[Appropriate amount of retained austenite after quenching and tempering]
Residual austenite contained in the steel is softer than martensite, which is a base structure, and therefore relieves stress concentration at the edge of the indentation caused by biting hard foreign matter such as iron powder. And generation | occurrence | production of the crack which started from the edge part of this indentation can be suppressed, and there exists an effect which extends a surface origin type | mold peeling life. In order to sufficiently obtain such an effect in combination with the present invention, the amount of retained austenite is preferably 11% by volume or more. As described above, the present invention is intended to suppress inclusion-initiated type peeling, and the surface-initiated type peeling life by securing the amount of retained austenite as described above is greater than the inclusion-initiated type peeling life. Is preferred. When the amount of retained austenite in the steel is less than 11% by volume, there is a higher possibility that surface-initiated separation will occur earlier than inclusion-initiated separation. On the other hand, when the amount of retained austenite exceeds 20% by volume, shape stability and dimensional stability are lowered due to the reasons described above.
これらを考慮して、本発明と合わせて、焼き入れ・焼き戻し後の残留オーステナイト量を規制する場合には、11容量%以上、20容量%以下とする事が好ましい(請求項2に記載した発明)。より好ましくは、良好な形状安定性及び寸法安定性と、表面起点型剥離寿命とを得る為に、前記鋼中の残留オーステナイト量を、11容量%以上、16容量%以下とする。尚、残留オーステナイト量の測定は、軸受部品の一部(例えば軌道面の一部)を切り出した後、この一部表面(例えば軌道面表面)を電解研磨して、X線回折装置を用いて行う。
但し、本発明を実施する場合、残留オーステナイト量を、必ずしも11容量%以上にする必要はない。例えば、残留オーステナイトの分解が進み易い、高温条件下で使用する転がり軸受に本発明を適用する場合には、形状安定性及び寸法安定性を重視して、残留オーステナイト量を11容量%未満にして使用する事が好ましい場合もある。
In consideration of these, in combination with the present invention, when the amount of retained austenite after quenching and tempering is regulated, it is preferably set to 11% by volume or more and 20% by volume or less (described in claim 2). invention). More preferably, the amount of retained austenite in the steel is 11% by volume or more and 16% by volume or less in order to obtain good shape stability and dimensional stability and surface-origin type peel life. The amount of retained austenite is measured by cutting out a part of the bearing part (for example, a part of the raceway surface), then electrolytically polishing the part of the surface (for example, the surface of the raceway surface), and using an X-ray diffractometer. Do.
However, when carrying out the present invention, the amount of retained austenite is not necessarily 11% by volume or more. For example, when the present invention is applied to a rolling bearing used under high temperature conditions in which decomposition of retained austenite is likely to proceed, the amount of retained austenite is set to less than 11% by volume with emphasis on shape stability and dimensional stability. It may be preferable to use it.
[好適な熱処理条件]
本発明の転がり軸受を実施する場合に於いて、特許請求の範囲に記載した条件を満たす軸受部品が軌道輪である場合には、素材に熱間加工と旋削加工とを順次施して、当該部品の形状を軌道輪の完成形状に近づけて中間素材とした後、この中間素材に焼き入れ及び焼き戻し処理を施して第二中間素材とする。その後、この第二中間素材のうちで、少なくとも軌道面部分に研削加工を施して、完成形状に仕上げる。前述した硬さ、残留オーステナイト量、及び残存する球状化炭化物の割合は、特許請求の範囲に記載した条件を満たす鋼材を使用し、更に、焼き入れ・焼き戻し条件を適正に規制する事によって実現できる。
[Suitable heat treatment conditions]
In carrying out the rolling bearing according to the present invention, when the bearing part satisfying the conditions described in the claims is a bearing ring, the part is subjected to hot working and turning in order, and the part. After making the shape close to the completed shape of the raceway and making it an intermediate material, the intermediate material is subjected to quenching and tempering treatment to obtain a second intermediate material. After that, at least the raceway surface portion of the second intermediate material is ground to finish the finished shape. The above-mentioned hardness, residual austenite amount, and the ratio of remaining spheroidized carbide are realized by using steel materials that satisfy the conditions described in the claims, and by properly regulating the quenching and tempering conditions. it can.
生産性を、軸受部品として一般的に使用されている、高炭素クロム軸受鋼2種(SUJ2、JIS G 4805)と同等にする為、前記鋼材を、SUJ2と同条件で焼き入れをする事が好ましい。即ち、好ましくは、焼き入れは、820〜860℃で所定の時間保持した後、油冷する。より好ましくは、安定的に、硬さ、残留オーステナイト及び残存する球状化炭化物の割合を好適な範囲にする為に、保持温度を830〜850℃とする。 In order to make the productivity equivalent to 2 types of high carbon chrome bearing steel (SUJ2, JIS G 4805), which is generally used as bearing parts, the steel material can be quenched under the same conditions as SUJ2. preferable. That is, preferably, quenching is oil-cooled after being held at 820 to 860 ° C. for a predetermined time. More preferably, the holding temperature is set to 830 to 850 ° C. in order to stably bring the ratio of hardness, retained austenite and remaining spheroidized carbide to a suitable range.
焼き戻しも、SUJ2と同条件で行う事が好ましい。即ち、160〜200℃で所定の時間保持した後、空冷或いは炉冷する事が好ましい。この焼き戻し温度が160℃未満であると、残留オーステナイト量が過剰になり、形状安定性及び寸法安定性が低下する。これに対して、焼き戻し温度が200℃を超えると、残留オーステナイト量が低下し、前述した表面起点型剥離の原因となる、圧痕縁部分の応力集中を緩和する効果を十分に得られなくなる。
但し、先に述べた様に、本発明を高温条件下で使用する転がり軸受に本発明を適用する場合には、形状安定性及び寸法安定性を重視して、200℃以上、290℃以下の温度で焼き戻しを行い、残留オーステナイト量を11容量%未満にしても良い。
Tempering is also preferably performed under the same conditions as SUJ2. That is, it is preferable to hold at 160 to 200 ° C. for a predetermined time, and then air or furnace cool. When the tempering temperature is less than 160 ° C., the amount of retained austenite becomes excessive, and the shape stability and dimensional stability are lowered. On the other hand, when the tempering temperature exceeds 200 ° C., the amount of retained austenite decreases, and the effect of alleviating the stress concentration at the indentation edge, which causes the above-described surface-origin separation, cannot be obtained sufficiently.
However, as described above, when the present invention is applied to a rolling bearing that uses the present invention under high temperature conditions, emphasis is placed on shape stability and dimensional stability. Tempering may be performed at a temperature so that the amount of retained austenite is less than 11% by volume.
[好適な軌道輪の軌道溝形状]
本発明の転がり軸受は、深溝型玉軸受、アンギュラ型玉軸受、スラスト玉軸受等の玉軸受、円筒ころ軸受や円すいころ軸受、自動調心ころ軸受等のころ軸受、或いはニードル軸受等、転がり軸受の型式に制限されず適用可能である。このうち、最も一般的な玉軸受の場合には、軌道輪の軌道溝形状を、下記の様に規制する事が、玉軸受の耐久性確保と低トルク化との両立を図る面から好ましい。
[Suitable raceway groove shape]
The rolling bearing of the present invention is a ball bearing such as a deep groove type ball bearing, an angular type ball bearing, a thrust ball bearing, a roller bearing such as a cylindrical roller bearing, a tapered roller bearing, a self-aligning roller bearing, or a needle bearing. It is applicable without being limited to the type of. Among these, in the case of the most general ball bearing, it is preferable to restrict the shape of the raceway groove of the bearing ring as follows from the viewpoint of ensuring both the durability of the ball bearing and the reduction in torque.
即ち、転がり軸受に於いては、耐久性(寿命)だけでなく、回転抵抗(動トルク)が低い事(低トルク化)が求められる場合が多い。玉軸受の動トルクを低減する為には、玉の直径に対する軌道溝(の母線形状)の曲率半径の比を大きくして、各玉の転動面と軌道面との接触面積(接触楕円)を小さくする事が有効である。但し、一般的には、前記各玉の直径に対する軌道溝の曲率半径の比を大きくして、接触面積を小さくすると、接触部の面圧が大きくなり、軌道面の表面近傍部分に発生する応力が大きくなる。この為、前記軌道輪を構成する鋼中に存在する非金属介在物を起点として、バタフライ型組織変化が発生し易くなり、前記軌道輪を含む転がり軸受の寿命が低下する。 That is, in rolling bearings, not only durability (life) but also low rotational resistance (dynamic torque) (reduction in torque) is often required. In order to reduce the dynamic torque of the ball bearing, the ratio of the radius of curvature of the raceway groove (the bus bar shape) to the ball diameter is increased, and the contact area between the rolling surface and raceway surface of each ball (contact ellipse) It is effective to reduce. However, in general, when the ratio of the radius of curvature of the raceway groove to the diameter of each ball is increased and the contact area is reduced, the surface pressure of the contact portion increases and stress generated in the vicinity of the surface of the raceway surface. Becomes larger. For this reason, butterfly structure changes are likely to occur starting from non-metallic inclusions present in the steel constituting the bearing ring, and the life of the rolling bearing including the bearing ring is reduced.
これに対して、本発明の転がり軸受は、前述の様な要件を備える事により、バタフライ型組織変化を発生しにくくしている為、前記各玉の直径に対する前記軌道溝の曲率半径の比を大きくしても、寿命が低下しにくい。これらの事を勘案すると、本発明の転がり軸受は、低トルクでの回転が求められる用途、例えば、モータ用軸受、自動車のトランスミッション用軸受や工作機械用軸受等に好適である。
玉の直径に対する軌道溝の曲率半径の比は、一般的には51〜52%程度であるが、本発明の転がり軸受の場合には、玉の直径に対する軌道溝の曲率半径の比を53%以上、54%以下にした場合でも、一般的な鋼で造られた玉の直径に対する軌道溝の曲率半径の比52%の軸受と同様の寿命が得られる。
これらの事を考慮すれば、本発明を玉軸受として実施する場合に、前記各玉の直径に対する前記軌道溝の曲率半径の比を、53%以上、54%以下にする事が好ましい(請求項3に記載した発明)。
On the other hand, the rolling bearing of the present invention makes it difficult for the butterfly structure change to occur by providing the above-described requirements. Therefore, the ratio of the radius of curvature of the raceway groove to the diameter of each ball is set. Even if it is increased, the life is not likely to decrease. Considering these matters, the rolling bearing of the present invention is suitable for applications requiring rotation with low torque, for example, motor bearings, automobile transmission bearings, machine tool bearings, and the like.
The ratio of the radius of curvature of the raceway groove to the diameter of the ball is generally about 51 to 52%. However, in the case of the rolling bearing of the present invention, the ratio of the radius of curvature of the raceway groove to the diameter of the ball is 53%. As described above, even when the ratio is 54% or less, the same life as a bearing having a ratio of the curvature radius of the raceway groove to the diameter of a ball made of general steel of 52% can be obtained.
In consideration of these matters, when the present invention is implemented as a ball bearing, the ratio of the radius of curvature of the raceway groove to the diameter of each ball is preferably 53% or more and 54% or less. 3).
本発明を成す過程で行った実験に就いて説明する。実験は、下記の表1に示したA〜Q17種類の鋼材に就いて、加工のし易さを知る為の旋削性評価試験と、所望の硬さ及び残留オーステナイト量を得られるか否かを知る為の熱処理試験と、軌道面の粗さを所望通りに仕上られるか否かを知る為の軸受試作試験と、実際に作った転がり軸受の耐久性を知る為の軸受寿命試験との、4種類の試験を行った。 An experiment conducted in the process of forming the present invention will be described. In the experiment, for the A to Q17 kinds of steel materials shown in Table 1 below, a turning evaluation test for knowing the ease of processing, and whether or not a desired hardness and a retained austenite amount can be obtained. 4 of the heat treatment test to know, the bearing prototype test to know if the surface roughness can be finished as desired, and the bearing life test to know the durability of the actual rolling bearing A variety of tests were conducted.
[旋削性評価試験]
この表1に示す組成を有する鋼材を用いて、球状化焼鈍を行った後、旋削試験を行った。この旋削試験は、切削工具(バイト)により棒材の外周を20分間旋削した後、この切削工具の逃げ面の摩耗量を測定する事によって行った。試験条件を下記に示す。
切削工具 : 超硬(P20)
被切削部の周速 : 150m/min
切り込み量 : 1.0mm
切削工具の送り速度 : 0.2mm/rev
潤滑条件 : 乾式
[Turability evaluation test]
Using a steel material having the composition shown in Table 1, spheroidizing annealing was performed, and then a turning test was performed. This turning test was performed by measuring the amount of wear on the flank of this cutting tool after turning the outer periphery of the bar for 20 minutes with a cutting tool (bite). Test conditions are shown below.
Cutting tool: Carbide (P20)
Peripheral speed of part to be cut: 150 m / min
Cutting depth: 1.0mm
Cutting tool feed rate: 0.2 mm / rev
Lubrication condition: Dry type
この様な条件で行った実験の結果を、次の表2のうちの、「旋削試験摩耗量」の欄に示す。
この表2から明らかな通り、本発明の技術的範囲に属する実施例1〜9は、鋼材の組成が好適な範囲である為、球状化焼鈍後の旋削性は、JIS−SUJ2(比較例6)とほぼ同程度のレベルである。
一方、比較例1はSi量が、比較例3はCr量が、それぞれ本発明で規定するよりも高い為、旋削試験に於ける工具の逃げ摩耗量が大きく、旋削性が劣る。
As is apparent from Table 2, Examples 1 to 9 belonging to the technical scope of the present invention have a suitable steel composition, so that the turning property after spheroidizing annealing is JIS-SUJ2 (Comparative Example 6). ) And almost the same level.
On the other hand, the amount of Si in Comparative Example 1 and the amount of Cr in Comparative Example 3 are higher than specified in the present invention, respectively, so that the amount of flank wear of the tool in the turning test is large and the turning performance is inferior.
[熱処理試験]
前記表1に示した組成を有する鋼材を用いて、球状化焼鈍を行った後、直径60mm、厚さ6mmの円板試験片を作製した。それらを、前記表2の「焼き入れ温度」、「焼き戻し温度」の欄にそれぞれ記載した温度により、焼き入れ・焼き戻し処理した後、表面の硬さをビッカース硬度計で測定した。又、残留オーステナイト量(残留γ)も測定した。焼き入れ時の保持時間は40min、焼き戻し時の保持時間は2hrである。この様な熱処理条件は、SUJ2の熱処理条件とほぼ同じである。測定結果を、前記表2の「硬さ」の欄及び「残留γ」の欄に示す。
[Heat treatment test]
Using a steel material having the composition shown in Table 1, spheroidizing annealing was performed, and then a disk specimen having a diameter of 60 mm and a thickness of 6 mm was produced. These were subjected to quenching and tempering treatment at temperatures described in the columns of “Quenching temperature” and “Tempering temperature” in Table 2, and then the surface hardness was measured with a Vickers hardness meter. The amount of retained austenite (residual γ) was also measured. The holding time during quenching is 40 min, and the holding time during tempering is 2 hr. Such heat treatment conditions are almost the same as those of SUJ2. The measurement results are shown in the “hardness” column and the “residual γ” column in Table 2.
前記表2から明らかな通り、本発明の技術的範囲に属する実施例1〜9は、鋼材の組成が好適な範囲である為、SUJ2と同条件で熱処理しても、良好な硬さ及び残留オーステナイト量を得られる。
一方、比較例2は、Mn量が本発明で規定するよりも高い為、残留オーステナイト量が高い。従って、転がり軸受として長時間使用する際には、十分な形状安定性及び寸法安定性を得られない。
又、比較例9は、実施例5と同じ鋼材Eを使用しているが、焼き入れ温度の相違により、硬さが本発明で規定する範囲より高い為、軸受部品の研削性及び破壊靱性値確保の面から不利になる。
又、比較例10は、実施例7と同じ鋼材Gを用いているが、焼き入れ温度の相違により、硬さが本発明で規定する範囲よりも低い為、転がり疲れ寿命確保の面から不利になる。
As is apparent from Table 2, Examples 1 to 9 belonging to the technical scope of the present invention are in a suitable range of the steel material. Therefore, even when heat-treated under the same conditions as SUJ2, good hardness and residual properties are obtained. The amount of austenite can be obtained.
On the other hand, Comparative Example 2 has a higher amount of retained austenite because the amount of Mn is higher than that defined in the present invention. Therefore, when used for a long time as a rolling bearing, sufficient shape stability and dimensional stability cannot be obtained.
Further, Comparative Example 9 uses the same steel material E as Example 5, but due to the difference in quenching temperature, the hardness is higher than the range specified in the present invention, so that the grinding and fracture toughness values of bearing parts are It is disadvantageous from the aspect of securing.
Further, Comparative Example 10 uses the same steel material G as in Example 7, but due to the difference in quenching temperature, the hardness is lower than the range specified in the present invention, which is disadvantageous from the viewpoint of securing the rolling fatigue life. Become.
又、焼き入れ・焼き戻し後の鋼中に残存している球状化炭化物の割合([MC])を知る為に、焼き入れ・焼き戻しの熱処理を施した試験片の断面に関して、ピクラールエッチングを用いて金属組織の観察を行い、炭化物の面積率を測定した。測定した面積率を質量%に換算したものを球状化炭化物の割合([MC])として、前記表2に記載した。
又、酸化物系介在物の観察も行い、極値統計法によって、30000mm2中に含まれる最大の酸化物系介在物の大きさを予測した。予測した最大の酸化物系介在物の面積の平方根の値を、前記表2の酸化物系介在物最大径の欄に記載した。
Also, in order to know the ratio of spheroidized carbide ([MC]) remaining in the steel after quenching and tempering, picral etching is performed on the cross section of the specimen subjected to heat treatment for quenching and tempering. Was used to observe the metal structure, and the area ratio of carbide was measured. The measured area ratio converted to mass% is shown in Table 2 as the ratio of spheroidized carbide ([MC]).
In addition, the oxide inclusions were also observed, and the size of the largest oxide inclusion contained in 30000 mm 2 was predicted by an extreme value statistical method. The predicted value of the square root of the maximum area of the oxide inclusions is shown in the column of the maximum diameter of oxide inclusions in Table 2.
[軸受試作(研削性評価)試験]
前記表1に記載した組成を有する鋼材を用いて、呼び番号が6206である単列深溝型の玉軸受(内径30mm、外径62mm、幅16mm)の内輪及び外輪を、以下の工程で造った。先ず、鋼材に球状化焼鈍を施して中間素材としてから、この中間素材に旋削加工及び焼き入れ・焼き戻しを施して第二中間素材とし、最後にこの第二中間素材に研削加工を施して最終形状とした。研削加工後の軌道溝(内輪軌道及び外輪軌道)の表面粗さを測定する事によって、研削性の評価とした。表面粗さの測定は、算術平均粗さRaを指標として、内輪軌道及び外輪軌道の表面のうちで、軸方向に離隔した3箇所位置ずつを測定して(各試料毎に6種類ずつの測定値の)平均値を求めた。この様にして求めた表面粗さに関する測定結果を、前記表2の「溝粗さ」の欄に記載した。
[Bearing prototype (grindability evaluation) test]
Using the steel material having the composition described in Table 1, the inner ring and the outer ring of a single row deep groove type ball bearing (inner diameter 30 mm, outer diameter 62 mm, width 16 mm) having a nominal number of 6206 were manufactured in the following steps. . First, the steel material is subjected to spheroidizing annealing to be an intermediate material, and then this intermediate material is turned, quenched and tempered to become a second intermediate material, and finally the second intermediate material is ground and finished. Shaped. Grindability was evaluated by measuring the surface roughness of the raceway grooves (inner ring raceway and outer ring raceway) after grinding. The surface roughness is measured by measuring the three axially spaced positions on the inner ring raceway and outer ring raceway surface using the arithmetic average roughness Ra as an index (six kinds of measurements for each sample). The average value was calculated. The measurement results relating to the surface roughness thus obtained are listed in the “groove roughness” column of Table 2 above.
この表2から明らかな通り、本発明の技術的範囲に属する実施例1〜9は、組成及び焼き入れ・焼き戻し後の硬さが好適な範囲である為、軌道溝の表面粗さは、SUJ2と同成分の比較例6と同程度の値であり、研削性に優れている。
一方、比較例4は、Moの含有量が本発明で規定する範囲よりも高い為、軌道溝の表面粗さが大きく(悪く)、研削性に劣る事が分かった。
又、比較例8は、算出値が本発明で規定する範囲よりも高い為、軌道溝の表面粗さが悪く、研削性に劣る事が分かった。
又、比較例9は、硬さが本発明で規定する範囲よりも高い為、軌道溝の表面粗さが悪く、研削性に劣る事が分かった。
As is apparent from Table 2, Examples 1 to 9 belonging to the technical scope of the present invention are in a suitable range of composition and hardness after quenching and tempering. The value is comparable to that of Comparative Example 6 having the same components as SUJ2 and is excellent in grindability.
On the other hand, in Comparative Example 4, since the Mo content was higher than the range specified in the present invention, it was found that the surface roughness of the raceway groove was large (bad) and inferior in grindability.
Moreover, since the calculated value of the comparative example 8 was higher than the range prescribed | regulated by this invention, it turned out that the surface roughness of a track groove is bad and it is inferior to grindability.
Moreover, since the hardness of the comparative example 9 was higher than the range prescribed | regulated by this invention, it turned out that the surface roughness of a track groove is bad and it is inferior to grindability.
[軸受寿命試験]
上述した軸受試作試験で述べた様にして造った、呼び番号が6206である玉軸受の内輪と外輪との間に、SUJ2製の玉(直径9.525mm)を組み込み、ポリアミド樹脂製の冠型保持器により保持して、それぞれ試験軸受とした。
寿命試験条件は下記の通りである。各実施例及び各比較例で、それぞれ4〜8個ずつの玉軸受で寿命試験を実施し、累積破損確率が10%となる寿命(L10寿命)を求めた。
ラジアル荷重 : 13818N
回転速度 : 3900min−1
回転条件 : 内輪回転
潤滑油 : ISO−VG68相当の鉱油(強制循環方式)
尚、先に述べた各試験、旋削評価試験で不良と判定された比較例1、3と、熱処理試験で不良と判定された比較例2と、軸受試作(研削性)試験で不良と判定された比較例4、8、9に関しては、軸受寿命試験を省略した。
[Bearing life test]
A SUJ2 ball (diameter 9.525 mm) is incorporated between the inner ring and outer ring of the ball bearing 6206, which is manufactured as described in the above-mentioned bearing prototype test, and a crown shape made of polyamide resin. Each of the test bearings was held by a cage.
The life test conditions are as follows. In each example and each comparative example, a life test was performed with 4 to 8 ball bearings, and a life (L10 life) at which the cumulative failure probability was 10% was obtained.
Radial load: 13818N
Rotational speed: 3900 min -1
Rotating condition: Inner ring rotation Lubricating oil: Mineral oil equivalent to ISO-VG68 (forced circulation method)
In addition, each of the tests described above and Comparative Examples 1 and 3 determined as defective in the turning evaluation test, Comparative Example 2 determined as defective in the heat treatment test, and a bearing prototype (grindability) test determined as defective. For Comparative Examples 4, 8, and 9, the bearing life test was omitted.
上述の様な条件で行った軸受寿命試験は、軌道面(内輪軌道又は外輪軌道であるが、多くの場合、内輪軌道)の表面が剥離し、玉軸受の運転に伴う振動が大きくなった場合に、当該試験片(玉軸受)は寿命に達したとした。何れの試験片に就いても、剥離部の表面には、剥離を引き起こす様な圧痕は見られなかった。又、剥離部断面には、水素によって生じる白色組織は観察されなかった。一方、剥離部断面の近傍には、介在物を起点とするバタフライ型の組織変化が観察された。従って、各試験片は、介在物を起点として、剥離が生じた(介在物起点型剥離が発生した)ものと推定される。この様な条件で行った軸受寿命試験の結果を、前記表2の「軸受試験寿命比」の欄に記載した。尚、この軸受試験寿命比の欄に記載した数値は、SUJ2を使用した比較例6のL10寿命を1とし、それぞれの寿命を、この比較例6との比で表したものである。 The bearing life test conducted under the above conditions shows that the surface of the raceway surface (inner ring raceway or outer ring raceway, but in many cases, the inner ring raceway) is peeled off and the vibration associated with the operation of the ball bearing increases. In addition, the test piece (ball bearing) reached the end of its life. In any of the test pieces, no indentation was observed on the surface of the peeled portion so as to cause peeling. Moreover, the white structure | tissue produced by hydrogen was not observed by the peeling part cross section. On the other hand, a butterfly structure change starting from inclusions was observed in the vicinity of the cross section of the peeled portion. Therefore, it is presumed that each test piece was peeled off from the inclusion as the starting point (inclusion starting point type peeling occurred). The results of the bearing life test conducted under such conditions are listed in the “Bearing test life ratio” column of Table 2 above. In addition, the numerical value described in the column of this bearing test life ratio represents L10 life of Comparative Example 6 using SUJ2 as 1, and each life is represented by a ratio with this Comparative Example 6.
前記表2から明らかな通り、本発明の技術的範囲に属する実施例1〜9は、組成、酸化物系介在物の大きさ、硬さ及び算出値が、何れも本発明で規定する範囲内にある為、介在物起点型剥離に対して長寿命になる。特に、算出値が2.8以上である実施例1〜7は、安定的に長寿命化効果が得られている。更に、実施例1〜4は、組成中のMn量がより好ましい範囲である為、焼き入れ・焼き戻し後の残留オーステナイト量がより好ましい範囲(11〜16容量%)になっており、残留オーステナイト量が18〜20容量%の範囲にある実施例5〜7と比較して、形状安定性及び寸法安定性にも優れている。 As apparent from Table 2, in Examples 1 to 9 belonging to the technical scope of the present invention, the composition, the size of oxide inclusions, the hardness, and the calculated values are all within the range defined by the present invention. Therefore, it has a long life against inclusion starting type peeling. In particular, in Examples 1 to 7 in which the calculated value is 2.8 or more, the effect of extending the life is stably obtained. Furthermore, in Examples 1 to 4, since the amount of Mn in the composition is in a more preferable range, the amount of retained austenite after quenching and tempering is in a more preferable range (11 to 16% by volume). Compared to Examples 5 to 7 in which the amount is in the range of 18 to 20% by volume, the shape stability and dimensional stability are also excellent.
一方、比較例5及び比較例6は、算出値が本発明の実施例の範囲より小さい為、バタフライ型組織変化が生じ易くなり、寿命が短い。
又、比較例7は、極値統計で予測した酸化物系介在物の大きさが本発明で規定する範囲より大きく、内輪或いは外輪のうちで、剥離が生じた方の軌道輪の軌道面直下に大きな酸化物系介在物が存在すると推定される。介在物の大きさが大きいと、バタフライ型組織変化が生じる過程を経ずに、酸化物系介在物から直接疲労亀裂が発生してしまう為、組成を変えた効果が得られず、寿命が短い。
更に、比較例10は、本発明で規定する範囲より硬さが低い。その為に、酸化物系介在物周辺の応力集中によって、バタフライ型組織変化が生じ易く、寿命が短い。
On the other hand, in Comparative Example 5 and Comparative Example 6, since the calculated value is smaller than the range of the example of the present invention, the butterfly structure change is likely to occur and the life is short.
Further, in Comparative Example 7, the size of the oxide inclusions predicted by the extreme value statistics is larger than the range defined in the present invention, and the inner ring or the outer ring is directly below the raceway surface of the raceway where separation has occurred. It is estimated that there are large oxide inclusions. If the size of inclusions is large, fatigue cracks are generated directly from oxide inclusions without going through the process of changing the butterfly structure, so the effect of changing the composition cannot be obtained and the life is short. .
Furthermore, the hardness of Comparative Example 10 is lower than the range defined in the present invention. Therefore, a butterfly structure change is likely to occur due to stress concentration around oxide inclusions, and the life is short.
以上に述べた軸受寿命試験の試験結果をまとめて、各試験片(玉軸受を構成する内輪及び外輪)に関する算出値とL10寿命比との関係を、図3に記載した。この図3の記載から分かる様に、算出値が2.5以上になると、寿命が急激に改善され、算出値が2.8以上になると、安定的に長寿命を得られる。
又、図4の(A)に、比較例5の剥離部の近傍に観察された酸化物系非金属介在物を示す。又、図4の(B)に、実施例2の剥離部近傍に観察された酸化物系非金属介在物を示す。何れの場合も、酸化物系介在物の周辺に、白く見えるバタフライ型の組織変化が発生している。但し、前記比較例5(算出値=2.4)と前記実施例2(算出値=3.8)とでは、酸化物系非金属介在物の大きさは同程度であるが、この酸化物系非金属介在物の周囲に発生したバタフライ型組織変化部は、実施例2が比較例5よりも小さく、組織変化が遅延していると推測される。
The test results of the bearing life test described above are summarized, and the relationship between the calculated value for each test piece (inner ring and outer ring constituting the ball bearing) and the L10 life ratio is shown in FIG. As can be seen from the description of FIG. 3, when the calculated value is 2.5 or more, the life is rapidly improved, and when the calculated value is 2.8 or more, a long life can be stably obtained.
FIG. 4A shows oxide-based nonmetallic inclusions observed in the vicinity of the peeled portion of Comparative Example 5. FIG. 4B shows oxide-based nonmetallic inclusions observed in the vicinity of the peeled portion in Example 2. In either case, a butterfly-type structural change that appears white occurs around the oxide inclusions. However, in Comparative Example 5 (calculated value = 2.4) and Example 2 (calculated value = 3.8), the size of the oxide-based non-metallic inclusions is approximately the same. As for the butterfly type | mold structure change part which generate | occur | produced around the system nonmetallic inclusion, Example 2 is smaller than the comparative example 5, and it is estimated that the structure | tissue change is delayed.
以上に述べた軸受寿命試験の結果から、鋼材の組成、極値統計法で予測される酸化物系介在物の大きさ、硬さ、及び算出値を本発明で規定する範囲内とする事によって、介在物周辺でのバタフライ型組織変化の形成を遅延させて、介在物起点の剥離に対して長寿命な軸受を提供する事ができる事が分かる。 From the results of the bearing life test described above, the composition of the steel material, the size and hardness of the oxide inclusions predicted by the extreme value statistical method, and the calculated value are within the range specified in the present invention. It can be seen that the formation of a butterfly structure change around the inclusions can be delayed to provide a long-life bearing against peeling of the inclusion origin.
上述した軸受寿命試験は、本発明を深溝型の玉軸受に適用した場合に就いて行ったが、本発明は、アンギュラ玉軸受やスラスト玉軸受等のその他の玉軸受、円筒ころ軸受、円すいころ軸受、自動調心ころ軸受、ニードル軸受等のころ軸受、ボールねじやリニアガイド等の特殊な転がり軸受に適用しても、同様の効果が得られる。 The bearing life test described above was performed when the present invention was applied to a deep groove type ball bearing. However, the present invention includes other ball bearings such as angular ball bearings and thrust ball bearings, cylindrical roller bearings, tapered rollers. The same effects can be obtained even when applied to roller bearings such as bearings, self-aligning roller bearings, needle bearings, and special rolling bearings such as ball screws and linear guides.
1 ラジアル玉軸受
2、2a 外輪軌道
3、3a 外輪
4、4a 内輪軌道
5、5a 内輪
6 玉
7、7a 保持器
8 ラジアル円すいころ軸受
9 円すいころ
10 大径側鍔部
11 小径側鍔部
DESCRIPTION OF SYMBOLS 1 Radial ball bearing 2, 2a Outer ring raceway 3, 3a Outer ring 4, 4a Inner ring raceway 5, 5a Inner ring 6 Ball 7, 7a Cage 8 Radial tapered roller bearing 9 Tapered roller 10 Large diameter side collar 11 Small diameter side collar
Claims (3)
前記第一の軌道輪と前記第二の軌道輪とこれら各転動体とのうちの少なくとも1種の部材である軸受部品が、
Cを0.85〜1.15質量%、Siを0.40〜0.90質量%、Mnを0.55〜1.20質量%、Crを1.30〜1.90質量%、Moを0.30質量%以下、Niを0.30質量%以下、Cuを0.20質量%以下、Sを0.025質量%以下、Pを0.020質量%以下、Oを15質量ppm以下、それぞれ含有し、残部をFeと不可避的不純物とし、
極値統計法により、面積30000mm2に存在する酸化物系介在物の大きさに関する最大値を予測した場合に、最大の酸化物系介在物の面積の平方根が22μm以上50μm以下である鋼から成り、
焼き入れ・焼き戻し後の硬さが、Hv697〜800であり、
焼き入れ・焼き戻し後の鋼中に残存している球状化炭化物の量が、5〜9質量%であり、
[Si]、[Mn]、[Cr]、[Mo]を、前記鋼中への各合金成分の含有量を質量%で表した数値とし、[MC]を、焼き入れ・焼き戻し後の鋼中に残存している球状化炭化物の割合を質量%で表した数値とした場合に、
2.5≦2[Si]+[Mn]+([Cr]−7[MC]/100)/(1−[MC]/100)+3[Mo]≦3.8
を満たす事を特徴とする転がり軸受。 A first raceway having a first raceway surface on any surface, a second raceway having a second raceway surface on a surface opposite to the first raceway surface, and the first and second In a rolling bearing provided with a plurality of rolling elements provided between the raceway surfaces of the two rolling elements,
A bearing component which is at least one member of the first race ring, the second race ring, and each of the rolling elements,
C is 0.85 to 1.15% by mass, Si is 0.40 to 0.90% by mass, Mn is 0.55 to 1.20% by mass, Cr is 1.30 to 1.90% by mass, Mo is 0.30 mass% or less, Ni 0.30 mass% or less, Cu 0.20 mass% or less, S 0.025 mass% or less, P 0.020 mass% or less, O 15 mass ppm or less, Each containing, the remainder as Fe and inevitable impurities,
When the maximum value related to the size of oxide inclusions existing in an area of 30000 mm 2 is predicted by the extreme value statistical method, the square root of the area of the maximum oxide inclusions is 22 μm or more and 50 μm or less. ,
The hardness after quenching and tempering is Hv697-800,
The amount of spheroidized carbide remaining in the steel after quenching and tempering is 5 to 9% by mass,
[Si], [Mn], [Cr], and [Mo] are numerical values representing the content of each alloy component in the steel in mass%, and [MC] is steel after quenching and tempering. When the ratio of the spheroidized carbide remaining in the numerical value expressed in mass%,
2.5 ≦ 2 [Si] + [Mn] + ([Cr] −7 [MC] / 100) / (1− [MC] / 100) +3 [Mo] ≦ 3.8
Rolling bearing characterized by satisfying
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012115251A JP5998631B2 (en) | 2012-05-21 | 2012-05-21 | Rolling bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012115251A JP5998631B2 (en) | 2012-05-21 | 2012-05-21 | Rolling bearing |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013241986A JP2013241986A (en) | 2013-12-05 |
JP2013241986A5 JP2013241986A5 (en) | 2015-04-30 |
JP5998631B2 true JP5998631B2 (en) | 2016-09-28 |
Family
ID=49843067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012115251A Active JP5998631B2 (en) | 2012-05-21 | 2012-05-21 | Rolling bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5998631B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014122378A (en) * | 2012-12-20 | 2014-07-03 | Nsk Ltd | Rolling bearing |
WO2016063558A1 (en) * | 2014-10-21 | 2016-04-28 | 日本精工株式会社 | Rolling bearing |
JP2016108596A (en) * | 2014-12-04 | 2016-06-20 | 日本精工株式会社 | Rolling bearing |
JP2016108597A (en) * | 2014-12-04 | 2016-06-20 | 日本精工株式会社 | Rolling bearing for washing machine |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03100142A (en) * | 1989-09-13 | 1991-04-25 | Kobe Steel Ltd | Case hardening steel for bearing having excellent crushing property and its manufacture |
JP2005069419A (en) * | 2003-08-27 | 2005-03-17 | Koyo Seiko Co Ltd | Ball bearing |
JP2006063402A (en) * | 2004-08-27 | 2006-03-09 | Sanyo Special Steel Co Ltd | Steel used in parts for machinery superior in rolling fatigue life |
JP2012031456A (en) * | 2010-07-29 | 2012-02-16 | Nsk Ltd | Rolling bearing |
-
2012
- 2012-05-21 JP JP2012115251A patent/JP5998631B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013241986A (en) | 2013-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5453839B2 (en) | Rolling bearing | |
WO2013084800A1 (en) | Rolling bearing and method for producing same | |
JP5728844B2 (en) | Rolling bearing | |
JP5998631B2 (en) | Rolling bearing | |
JP2014122378A (en) | Rolling bearing | |
JP2014074212A (en) | Rolling and sliding member, manufacturing method thereof, and rolling bearing | |
JP5163183B2 (en) | Rolling bearing | |
JP2013249500A (en) | Rolling bearing | |
JP2008151236A (en) | Rolling bearing | |
JP2012031456A (en) | Rolling bearing | |
JP2009242893A (en) | Holder for rolling bearing and its surface treatment method | |
JP4968106B2 (en) | Rolling bearing | |
JP2010031307A (en) | Roller bearing | |
JP2011190921A (en) | Thrust roller bearing | |
JP5857433B2 (en) | Method for manufacturing rolling guide device | |
JP2006328514A (en) | Rolling supporting device | |
JP2016069695A (en) | Rolling bearing | |
JP6015251B2 (en) | Rolling bearing | |
JP5966350B2 (en) | Rolling bearing | |
JP5640528B2 (en) | Rolling bearing | |
JP2010209965A (en) | Cage for rolling bearing | |
JP2006045591A (en) | Tapered roller bearing | |
JP2015090207A (en) | Rolling bearing | |
JP2006219726A (en) | Method for manufacturing race of rolling bearing | |
JP2015232156A (en) | Rolling shaft bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150312 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150312 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160815 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5998631 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S801 | Written request for registration of abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311801 |
|
ABAN | Cancellation of abandonment | ||
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |