JP2014122378A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2014122378A
JP2014122378A JP2012278595A JP2012278595A JP2014122378A JP 2014122378 A JP2014122378 A JP 2014122378A JP 2012278595 A JP2012278595 A JP 2012278595A JP 2012278595 A JP2012278595 A JP 2012278595A JP 2014122378 A JP2014122378 A JP 2014122378A
Authority
JP
Japan
Prior art keywords
mass
less
bearing
raceway
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012278595A
Other languages
Japanese (ja)
Other versions
JP2014122378A5 (en
Inventor
Masako Tsutsumi
雅子 堤
Hideyuki Uyama
英幸 宇山
Koki Yamada
紘樹 山田
yusuke Morifuji
祐介 森藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012278595A priority Critical patent/JP2014122378A/en
Publication of JP2014122378A publication Critical patent/JP2014122378A/en
Publication of JP2014122378A5 publication Critical patent/JP2014122378A5/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements

Abstract

PROBLEM TO BE SOLVED: To achieve life prolongation of a rolling bearing by preventing generation of changes of a butterfly type structure around non-metallic inclusion while preventing cost increase.SOLUTION: An alloy steel constituting a rolling bearing contains C of 0.85 to 1.15 mass%, Si of 0.40 to 0.90 mass%, Mn of 0.55 to 1.20 mass%, Cr of 1.30 to 1.90 mass%, Mo of 0.30 mass% or less, Ni of 0.30 mass% or less, Cu of 0.20 mass% or less, S of 0.025 mass% or less, P of 0.020 mass% or less, O of 15 mass ppm or less and the balance Fe with inevitable impurities. A square root of area of an oxide-based inclusion existed in area of 30000 mmof 22 μm to 50 μm in terms of the rolling bearing. Also a maximum thickness of sulfide-based inclusion is 15 μm or less. A hardness after hardening and tempering is Hv 697 to 800.

Description

この発明は、ラジアル軸受、スラスト軸受等の一般的な転がり軸受、直動軸受(リニアガイド)やボールねじ等の特殊な転がり軸受を含めた、各種転がり軸受の耐久性向上を図るものである。具体的には、転がり軸受を構成する軸受部品を構成する鋼中に存在する介在物による組織変化を抑え、当該軸受部品を含む転がり軸受の耐久性向上を図るものである。   The present invention is intended to improve the durability of various rolling bearings, including general rolling bearings such as radial bearings and thrust bearings, and special rolling bearings such as linear motion bearings (linear guides) and ball screws. Specifically, the structural change due to the inclusions present in the steel constituting the bearing part constituting the rolling bearing is suppressed, and the durability of the rolling bearing including the bearing part is improved.

各種回転機械装置の回転支持部に、例えば図1に示す様なラジアル玉軸受1が組み込まれている。このラジアル玉軸受1は、内周面に外輪軌道2を有する外輪3と、外周面に内輪軌道4を有する内輪5と、これら外輪軌道2と内輪軌道4との間に設けた、それぞれが転動体である複数個の玉6、6とを備える。これら各玉6、6は、円周方向に等間隔に配置された状態で、保持器7により、転動自在に保持されている。   For example, a radial ball bearing 1 as shown in FIG. 1 is incorporated in a rotation support portion of various rotary machine devices. The radial ball bearing 1 includes an outer ring 3 having an outer ring raceway 2 on an inner peripheral surface, an inner ring 5 having an inner ring raceway 4 on an outer peripheral surface, and an outer ring raceway 2 and an inner ring raceway 4 provided between the outer ring raceway 2 and the inner ring raceway 4. A plurality of balls 6 and 6 which are moving bodies are provided. These balls 6, 6 are held by a cage 7 so as to be able to roll while being arranged at equal intervals in the circumferential direction.

又、大きなラジアル荷重が加わる回転支持部には、例えば図2に示す様な、転動体として円筒ころ8、8を使用したラジアル円筒ころ軸受9が組み込まれている。このラジアル円筒ころ軸受9は、内周面に円筒凹面状の外輪軌道2aを有する外輪3aと、外周面に円筒凸面状の内輪軌道4aを有する内輪5aと、これら外輪軌道2aと内輪軌道4aとの間に、保持器7aに保持された状態で転動自在に設けられた、複数の円筒ころ8、8とを備える。又、前記外輪3aの両端部内周面に内向鍔部10、10を、前記内輪5aの一端部外周面に外向鍔部11を、それぞれ形成している。   In addition, a radial cylindrical roller bearing 9 using cylindrical rollers 8 and 8 as rolling elements is incorporated in the rotation support portion to which a large radial load is applied, for example, as shown in FIG. The radial cylindrical roller bearing 9 includes an outer ring 3a having a cylindrical concave outer ring raceway 2a on an inner peripheral surface, an inner ring 5a having a cylindrical convex inner ring raceway 4a on an outer peripheral surface, the outer ring raceway 2a and the inner ring raceway 4a. Are provided with a plurality of cylindrical rollers 8, 8 provided so as to be freely rollable while being held by the cage 7 a. Further, inward flange portions 10 and 10 are formed on the inner peripheral surfaces of both ends of the outer ring 3a, and outward flange portions 11 are formed on the outer peripheral surface of one end portion of the inner ring 5a.

又、大きなラジアル荷重に加えてスラスト荷重が加わる回転支持部には、例えば図3に示す様な、転動体として円すいころ12、12を使用したラジアル円すいころ軸受13が組み込まれている。このラジアル円すいころ軸受13は、内周面に円すい凹面状の外輪軌道2bを有する外輪3bと、外周面に円すい凸面状の内輪軌道4bを有する内輪5bと、これら外輪軌道2bと内輪軌道4bとの間に、保持器7bに保持された状態で転動自在に設けられた、複数の円すいころ12、12とを備える。又、前記内輪5bの外周面両端部のうち、大径側端部には大径側鍔部14を、小径側端部には小径側鍔部15を、それぞれ形成している。尚、この小径側鍔部15は省略する場合もある。   In addition, a radial tapered roller bearing 13 using tapered rollers 12 and 12 as rolling elements, for example, as shown in FIG. 3 is incorporated in a rotation support portion to which a thrust load is applied in addition to a large radial load. The radial tapered roller bearing 13 includes an outer ring 3b having a tapered outer ring raceway 2b on the inner peripheral surface, an inner ring 5b having a tapered outer ring raceway 4b on the outer peripheral surface, the outer ring raceway 2b and the inner ring raceway 4b. In between, there are provided a plurality of tapered rollers 12, 12 provided so as to be able to roll while being held by the cage 7 b. Further, out of both ends of the outer peripheral surface of the inner ring 5b, a large-diameter side flange 14 is formed at the large-diameter end, and a small-diameter flange 15 is formed at the small-diameter end. The small diameter side flange 15 may be omitted.

更に、大きなラジアル荷重を受ける状態で運転され、しかも、外輪の中心軸と内輪の中心軸とを厳密に一致させたままにする事が難しい条件下では、図4に示す様な自動調心ころ軸受16が使用されている。この自動調心ころ軸受16では、転動体として、母線形状が部分円弧状であり、全体がビヤ樽型の、球面ころ17、17を使用している。又、外輪3cの内周面に設ける外輪軌道2cは、この外輪3cの中心軸上の点を曲率中心とする、部分球面状としている。又、内輪5cの外周面には、複列の内輪軌道4c、4cを設けている。これら両内輪軌道4c、4cの母線形状は、前記各球面ころ17、17の中心軸に関して、前記外輪軌道2cの母線形状と対称である。更に、これら各球面ころ17、17は、それぞれ保持器7c、7cにより保持された状態で、前記外輪軌道2cと前記両内輪軌道4c、4cとの間に、転動自在に設けられている。   Furthermore, under the condition that it is operated under a large radial load and it is difficult to keep the center axis of the outer ring and the center axis of the inner ring in exact agreement, a self-aligning roller as shown in FIG. A bearing 16 is used. In this self-aligning roller bearing 16, spherical rollers 17 and 17 are used as rolling elements, the bus bar shape of which is a partial arc shape, and the whole is a beer barrel type. Further, the outer ring raceway 2c provided on the inner peripheral surface of the outer ring 3c has a partially spherical shape with a point on the central axis of the outer ring 3c as the center of curvature. In addition, double-row inner ring raceways 4c and 4c are provided on the outer peripheral surface of the inner ring 5c. The bus bar shapes of the inner ring raceways 4c and 4c are symmetric with respect to the bus bar shape of the outer ring raceway 2c with respect to the central axis of the spherical rollers 17 and 17, respectively. Further, each of the spherical rollers 17 and 17 is rotatably provided between the outer ring raceway 2c and the inner ring raceways 4c and 4c while being held by the cages 7c and 7c, respectively.

上述の図1〜4に示す様な各種転がり軸受は、大きな荷重が負荷された状態で長期間使用される場合が多い。この様な使用に伴って、前記外輪3、3a、3b、3c、前記内輪5、5a、5b、5c、転動体(玉6、6、円筒ころ8、8、円すいころ9、9、球面ころ17、17)等の軸受部品を構成する鋼に金属疲労が生じ、当該軸受部品の表面が剥離する場合がある。この様な剥離は、転動体の転動面よりも、この転動面に比べて大きな応力が発生し易い、前記外輪3、3a、3b、3cや前記内輪5、5a、5b、5c等の軌道輪の軌道面(特に内輪軌道4、4a、4b、4c)に発生し易い。この様な、転がり軸受の構成部品の表面に発生する剥離の種類には、材料内部の介在物を起点として生じる「介在物起点型剥離」や、塵等の異物を噛み込んだ圧痕を起点として生じる「表面起点型剥離」や、水素が鋼中に侵入して水素脆性を生じた、白色組織と呼ばれる組織変化を起点として生じる「白色組織剥離」等がある。これら各剥離は、それぞれ異なるメカニズムで生じる為、それぞれに就いて、互いに異なる対策が必要である。本発明は、このうちの介在物起点型剥離を抑える事を目的としている為、この介在物起点型剥離発生のメカニズムと、この介在物起点型剥離の発生を抑える為に考えられている従来技術とに就いて、先ず説明する。   The various rolling bearings as shown in FIGS. 1 to 4 are often used for a long period of time under a large load. With such use, the outer rings 3, 3a, 3b, 3c, the inner rings 5, 5a, 5b, 5c, rolling elements (balls 6, 6, cylindrical rollers 8, 8, tapered rollers 9, 9, spherical rollers In some cases, the steel constituting the bearing parts such as 17 and 17) is subjected to metal fatigue, and the surface of the bearing parts is peeled off. Such peeling is more likely to generate a larger stress than the rolling surface of the rolling element, such as the outer rings 3, 3a, 3b, 3c and the inner rings 5, 5a, 5b, 5c. It tends to occur on the raceway surface (especially the inner raceway 4, 4a, 4b, 4c) of the raceway. The types of delamination that occur on the surface of rolling bearing components such as this are "inclusion-origin-type delamination" that starts from inclusions inside the material, and indentations that contain foreign objects such as dust. There are “surface-originating exfoliation” that occurs, and “white structure exfoliation” that originates from a structural change called a white structure, in which hydrogen enters the steel and causes hydrogen embrittlement. Since each of these peelings occurs by different mechanisms, different measures are required for each. Since the present invention aims to suppress inclusion-initiated type peeling among these, the mechanism of this inclusion-initiated type peeling occurrence and the prior art considered to suppress the occurrence of inclusion-initiated type peeling First, I will explain.

軸受部品を構成する鋼中に、この鋼の本来の硬さよりも遥かに硬い、酸化物系介在物等の非金属介在物が存在すると、この介在物の周辺部分に応力集中が生じ、この周辺部分にバタフライ型組織変化が生じる。この様なバタフライ型組織変化が生じると、この組織が変化した部分の界面に沿って、金属疲労による亀裂が発生し、更にこの亀裂が進展して、介在物起点型の剥離に至る。この様な介在物起点型の剥離が発生するのを抑える為に従来は、剥離の起点となる酸化物系介在物等の非金属介在物を小さくしたり、数を減らす事が提案されていた。   If there are non-metallic inclusions such as oxide inclusions in the steel constituting the bearing parts that are much harder than the original hardness of the steel, stress concentration will occur in the peripheral parts of these inclusions, A butterfly type tissue change occurs in the part. When such a butterfly structure change occurs, a crack due to metal fatigue occurs along the interface of the part where the structure has changed, and this crack further develops, leading to inclusion-origin type separation. Conventionally, in order to suppress the occurrence of such inclusion-initiated type peeling, it has been proposed to reduce or reduce the number of non-metallic inclusions such as oxide inclusions that are the starting point of peeling. .

例えば、特許文献1には、合金鋼中のC、Si、Mn、Cr、P、S、O、Mo、Sbの含有量を規制すると共に、酸化物系非金属介在物の最大径を10μm以下に抑え、更に、厚さが1μm以上の硫化物系非金属介在物の個数を、320mm当り1200個以下に抑える事で、軸受部品の転がり疲れ寿命を向上させる事が記載されている。
又、特許文献2には、合金鋼中のC、Cr、O、Sb、Si、Mn、Mo、Ni、Nb、V、Cu、Alの含有量を規制すると共に、酸化物系非金属介在物の個数を、320mm当り100〜200個に規制する事で、軸受部品の転がり疲れ寿命を向上させる事が記載されている。
又、特許文献3には、極値統計法により推定される、30000mm中に含まれる酸化物系非金属介在物の最大径を5μm以下に規制する事で、軸受部品の転がり疲れ寿命を向上させる事が記載されている。
更に、特許文献4には、表面硬度をHRC58以上とすると共に、極値統計法により推定される、30000mm中に含まれる硫化物系非金属介在物の予測最大径を40μm以下に抑えるか、或いは、同じ条件で、酸化物、硫化物、窒化物の各介在物の予測最大径を60μm以下に抑える事で、軸受部品の転がり疲れ寿命を向上させる事が記載されている。
For example, in Patent Document 1, the content of C, Si, Mn, Cr, P, S, O, Mo, and Sb in the alloy steel is regulated, and the maximum diameter of the oxide-based nonmetallic inclusion is 10 μm or less. Further, it is described that the rolling fatigue life of bearing parts is improved by suppressing the number of sulfide-based nonmetallic inclusions having a thickness of 1 μm or more to 1200 or less per 320 mm 2 .
In Patent Document 2, the content of C, Cr, O, Sb, Si, Mn, Mo, Ni, Nb, V, Cu, and Al in the alloy steel is regulated, and oxide-based nonmetallic inclusions are also disclosed. It is described that the rolling fatigue life of bearing parts is improved by restricting the number of bearings to 100 to 200 per 320 mm 2 .
Patent Document 3 also improves the rolling fatigue life of bearing parts by regulating the maximum diameter of oxide-based non-metallic inclusions contained in 30000 mm 2 estimated to be 5 μm or less, which is estimated by the extreme value statistical method. It is described that
Further, in Patent Document 4, the surface hardness is set to HRC58 or more, and the predicted maximum diameter of sulfide-based nonmetallic inclusions contained in 30000 mm 2 estimated by the extreme value statistical method is suppressed to 40 μm or less, Alternatively, it is described that the rolling fatigue life of bearing parts is improved by suppressing the predicted maximum diameter of each oxide, sulfide, and nitride inclusion to 60 μm or less under the same conditions.

但し、上述の特許文献1〜4に記載されている様な従来技術によっては、厳しい条件下で使用される転がり軸受の耐久性を、必ずしも十分には向上させられないか、或いはコストが嵩む。
例えば、特許文献1、2に記載されている程度に、合金鋼中の微小な面積中に含まれる非金属介在物の数や大きさを制限しても、実際に転がり軸受を、高荷重下の様な厳しい条件で使用すると、軸受部品の高応力部に存在する最大の非金属介在物を起点として剥離が生じる場合がある。そして、この様な場合には、非金属介在物を起点とする剥離により、当該転がり軸受の転がり疲れ寿命が、予想外に短くなる場合がある。
又、特許文献3に記載されている従来技術の様に、酸化物系非金属介在物の最大径を5μm以下に規制する如く、極めて清浄度の高い合金鋼を造る事は、コストの面から難しい。即ち、この様な清浄度の高い合金鋼を造る為には、合金鋼中のO量やS量の低減が不可欠であるが、これらOやSの低減に関して、現在の工業レベルでは既に限界に達しており、更なるO量やS量の低減の為には、設備や工程の更なる改良が必要になる。この結果、鋼材価格の上昇を招き、工業上広く利用する事が難しくなる。
更に、特許文献4に記載されている従来技術の様に、或る程度の大きさの非金属介在物の存在を許容する場合には、使用条件が厳しくなると、この非金属介在物を起点としてバタフライ型組織変化が生じて剥離に至り、転がり軸受の耐久性を、必ずしも十分には向上させられない。
However, depending on the prior arts described in the above-mentioned Patent Documents 1 to 4, the durability of the rolling bearing used under severe conditions cannot always be improved sufficiently, or the cost increases.
For example, even if the number and size of non-metallic inclusions contained in a minute area in the alloy steel are limited to the extent described in Patent Documents 1 and 2, the rolling bearing is actually used under a high load. When used under such severe conditions, peeling may occur starting from the largest non-metallic inclusion present in the high stress portion of the bearing component. In such a case, the rolling fatigue life of the rolling bearing may be unexpectedly shortened due to separation starting from non-metallic inclusions.
In addition, as in the prior art described in Patent Document 3, it is costly to produce an alloy steel with extremely high cleanliness so as to restrict the maximum diameter of oxide-based nonmetallic inclusions to 5 μm or less. difficult. That is, in order to produce such a steel alloy with a high degree of cleanness, it is indispensable to reduce the amount of O and S in the alloy steel. In order to further reduce the amount of O and S, further improvements in equipment and processes are required. As a result, the price of steel materials rises, making it difficult to use widely industrially.
Furthermore, as in the prior art described in Patent Document 4, when the presence of non-metallic inclusions of a certain size is allowed, when the use conditions become severe, the non-metallic inclusions are used as starting points. A butterfly structure change occurs, leading to separation, and the durability of the rolling bearing cannot be improved sufficiently.

特開平09−291340号公報JP 09-291340 A 特開2000−144326号公報JP 2000-144326 A 特開2003−232367号公報JP 2003-232367 A 特開2006−063402号公報JP 2006-066342 A

本発明は、上述の様な事情に鑑みて、軸受部品を構成する鋼中に存在する非金属介在物を過度のコスト上昇を招く程(現在一般的に実施されているよりも)低減させるのではなく、鋼中にSi、Mn、Cr、Moを適正量添加し、非金属介在物の周辺にバタフライ型組織変化を発生し難くする(バタフライ型組織変化の発生を遅延させる)事によって、長寿命化を図れる転がり軸受を実現すべく発明したものである。   In view of the circumstances as described above, the present invention reduces the non-metallic inclusions present in the steel constituting the bearing part to such an extent that it causes an excessive increase in cost (as compared to currently practiced). Rather than adding a proper amount of Si, Mn, Cr, and Mo to the steel, making it difficult for butterfly structure changes to occur around non-metallic inclusions (delaying the occurrence of butterfly structure changes) The invention was invented to realize a rolling bearing capable of extending the service life.

本発明の転がり軸受は、前述の図1〜4に示したラジアル玉軸受1、ラジアル円筒ころ軸受9、ラジアル円すいころ軸受13、自動調心ころ軸受16を含み、従来から知られている各種転がり軸受と同様に、何れかの面に第一の軌道面を有する第一の軌道輪と、この第一の軌道面と対向する面に第二の軌道面を有する第二の軌道輪と、これら第一、第二の両軌道面同士の間に転動自在に設けられた複数個の転動体とを備える。
本発明は、この様な転がり軸受のうち、前記第一、第二の軌道面が母線形状が部分円弧形の軌道溝の表面であり、前記各転動体が玉であり、前記両軌道輪各部の直径のうちの最大直径(ラジアル玉軸受の場合には外輪の外径)が180mm以下で、且つ、これら各玉の直径が30.2mm以下である玉軸受を対象として、好ましく実施できる。尚、後述の説明から明らかな通り、小径の転がり軸受の場合には、特に下限値を限定する事なく実施できる。
The rolling bearing according to the present invention includes the radial ball bearing 1, the radial cylindrical roller bearing 9, the radial tapered roller bearing 13, and the self-aligning roller bearing 16 shown in FIGS. As with the bearing, a first race ring having a first raceway surface on any surface, a second race ring having a second raceway surface on a surface opposite to the first raceway surface, and these A plurality of rolling elements provided between the first and second raceway surfaces so as to be freely rollable.
According to the present invention, among the rolling bearings, the first and second raceway surfaces are surfaces of raceway grooves having a partial arc shape on the generatrix, the rolling elements are balls, and both raceways It can be preferably implemented for a ball bearing in which the maximum diameter (in the case of a radial ball bearing, the outer diameter of the outer ring) of each part is 180 mm or less and the diameter of each ball is 30.2 mm or less. As will be apparent from the following description, in the case of a small-diameter rolling bearing, it can be carried out without any particular limitation on the lower limit value.

例えば、上述の様な大きさの玉軸受等の転がり軸受を対象とする本発明に於いては、前記第一の軌道輪と前記第二の軌道輪とこれら各転動体とのうちの少なくとも1種の部材である軸受部品(最も好ましくはラジアル玉軸受の内輪)を、Cを0.85〜1.15質量%、Siを0.40〜0.90質量%、Mnを0.55〜1.20質量%、Crを1.30〜1.90質量%、Moを0.30質量%以下、Niを0.30質量%以下、Cuを0.20質量%以下、Sを0.025質量%以下、Pを0.020質量%以下、Oを15質量ppm以下、それぞれ含有し、残部をFeと不可避的不純物とした鋼により造っている。   For example, in the present invention that is intended for a rolling bearing such as a ball bearing having the above-described size, at least one of the first race ring, the second race ring, and the rolling elements. A bearing component (most preferably an inner ring of a radial ball bearing) which is a seed member, C is 0.85 to 1.15 mass%, Si is 0.40 to 0.90 mass%, and Mn is 0.55 to 1. 20 mass%, Cr 1.30 to 1.90 mass%, Mo 0.30 mass% or less, Ni 0.30 mass% or less, Cu 0.20 mass% or less, and S 0.025 mass% % Or less, P is 0.020 mass% or less, O is 15 mass ppm or less, and the balance is made of steel with Fe and inevitable impurities.

更に、この鋼により造られた前記軸受部品に関して、極値統計法により、面積30000mmに存在する酸化物系介在物の大きさに関する最大値を予測した場合に、最大の酸化物系介在物の面積の平方根が22μm以上、50μm以下で、同じく面積30000mmに存在する硫化物系介在物の最大厚さを予測した場合に、この最大厚さが15μm以下であり、且つ、焼き入れ・焼き戻し後の硬さが、Hv697〜800である。尚、前記軸受部品には、所謂ズブ焼き入れを施すので、この軸受部品の硬さは、表面から芯部まで、ほぼ同じとなる。 Further, regarding the bearing part made of this steel, when the maximum value regarding the size of oxide inclusions existing in an area of 30000 mm 2 is predicted by the extreme value statistical method, When the maximum thickness of sulfide inclusions having an area square root of 22 μm or more and 50 μm or less and also having an area of 30000 mm 2 is predicted, the maximum thickness is 15 μm or less, and quenching / tempering is performed. The latter hardness is Hv697-800. Since the bearing part is subjected to so-called quenching, the hardness of the bearing part is substantially the same from the surface to the core part.

上述の様に構成する本発明によれば、軸受部品を構成する鋼中に存在する酸化物系介在物や硫化物系介在物を、過度のコスト上昇を招く程低減させなくても(小さくしなくても)、これら各介在物の周辺にバタフライ型組織変化が発生し難くなり、転がり軸受の長寿命化を図れる。この理由に就いて、各数値の限定理由と共に、以下に説明する。   According to the present invention configured as described above, the oxide inclusions and sulfide inclusions existing in the steel constituting the bearing part can be reduced (reduced) without causing excessive cost increase. However, a butterfly structure change hardly occurs around these inclusions, and the life of the rolling bearing can be extended. This reason will be described below together with the reasons for limiting each numerical value.

本発明により発生を抑えようとする「介在物起点型剥離」とは、前述の通り、軸受部品を構成する鋼の内部に存在する酸化物系介在物や硫化物系介在物の周辺に発生した応力集中に基づいて、この周辺部分にバタフライ型組織変化が生じ、この変化した組織の界面に沿って生じた疲労亀裂が進展して、剥離に至る現象である。前述した特許文献1〜4に記載された発明の場合には、この様な剥離の起点になる非金属介在物の大きさと量とを制限する事で、介在物起点型剥離を抑える事を意図していた。これに対して本発明の場合には、次の様にして、介在物起点型剥離を抑える。   As described above, the “inclusion-origin-type peeling” that suppresses the occurrence according to the present invention is generated around the oxide inclusions and sulfide inclusions existing in the steel constituting the bearing part. This is a phenomenon in which a butterfly structure change occurs in the peripheral portion based on the stress concentration, and fatigue cracks generated along the interface of the changed structure develop and lead to delamination. In the case of the inventions described in Patent Documents 1 to 4 described above, it is intended to suppress inclusion-origin type peeling by limiting the size and amount of non-metallic inclusions that are the starting point of such peeling. Was. On the other hand, in the case of the present invention, inclusion starting type peeling is suppressed as follows.

前記バタフライ型組織変化は、次の様な現象である。軸受部品に大きな荷重が加わると、この軸受部品を構成する鋼の内部に存在する酸化物系介在物や硫化物系介在物の周辺に応力が集中する。そして、この応力集中によって生じる大きな剪断応力が、前記鋼の基地のマルテンサイト組織に繰り返し負荷される事によって、マルテンサイト組織中の転位と固溶炭素とが動かされ、徐々にマルテンサイト組織が崩れ、超微細なフェライト組織に変化する。本発明は、この様なバタフライ型組織変化を遅延させる為に、鋼中の合金成分として、Si、Mn、Cr、Moを最適な量添加する事によって、基地中のマルテンサイト組織を安定化させるものである。即ち、本発明は、このマルテンサイト組織を安定させる事により、マルテンサイト組織中で転位と固溶炭素とを動きにくくし、バタフライ型組織変化を遅延させて、軸受部品の長寿命化を図るものである。   The butterfly structure change is the following phenomenon. When a large load is applied to the bearing component, stress concentrates around the oxide inclusions and sulfide inclusions present in the steel constituting the bearing component. The large shear stress generated by this stress concentration is repeatedly applied to the martensitic structure of the steel base, so that dislocations and solute carbon in the martensitic structure are moved, and the martensitic structure gradually collapses. , Changes to an ultrafine ferrite structure. The present invention stabilizes the martensitic structure in the base by adding an optimum amount of Si, Mn, Cr, and Mo as alloy components in the steel in order to delay such a butterfly structure change. Is. That is, the present invention stabilizes the martensite structure, thereby making it difficult for dislocations and solute carbons to move in the martensite structure, delaying the butterfly structure change, and extending the life of the bearing component. It is.

但し、Si、Mn、Cr、Moの添加によっても、バタフライ型組織変化を完全に阻止できる訳ではなく、遅延させる事に止まる。従って、Si、Mn、Cr、Moの添加によってバタフライ型組織変化を遅延させられるとは言え、酸化物系介在物や硫化物系介在物の大きさが大き過ぎると、これら酸化物系介在物や硫化物系介在物を起点とするバタフライ型組織変化の発生を、必ずしも十分には抑えられない。一方で、このバタフライ型組織変化の発生を遅延させられるので、前述の特許文献1〜4に記載された発明の様に、鋼中の酸化物系介在物や硫化物系介在物の大きさや数を、製鋼コストが特に嵩む程、小さくしたり少なくしたりする必要はない。本発明の場合には、最大の酸化物系介在物の面積の平方根を22μm以上、50μm以下に、硫化物系介在物の最大厚さを15μm以下に、それぞれ規制しているので、製鋼コストを抑えつつ、酸化物系介在物や硫化物系介在物を起点とするバタフライ型組織変化の発生を十分に抑えられる。   However, the addition of Si, Mn, Cr, and Mo does not completely prevent the butterfly structure change and only delays it. Therefore, although the butterfly structure change can be delayed by addition of Si, Mn, Cr, and Mo, if the oxide inclusions and sulfide inclusions are too large, these oxide inclusions and The occurrence of a butterfly structure change starting from sulfide inclusions is not always sufficiently suppressed. On the other hand, since the occurrence of this butterfly structure change can be delayed, the size and number of oxide inclusions and sulfide inclusions in steel as in the inventions described in Patent Documents 1 to 4 described above. It is not necessary to reduce or reduce the amount of steel as the steelmaking cost increases. In the case of the present invention, since the square root of the area of the maximum oxide inclusions is regulated to 22 μm or more and 50 μm or less, and the maximum thickness of the sulfide inclusions is regulated to 15 μm or less, respectively, the steelmaking cost is reduced. While suppressing, it is possible to sufficiently suppress the occurrence of butterfly structure changes starting from oxide inclusions and sulfide inclusions.

要するに、鋼中にSi、Mn、Cr、Moを添加する事により、この鋼中に或る程度の大きさの酸化物系介在物や硫化物系介在物が存在しても、軸受部品に介在物起点型剥離を発生し難くして、当該軸受部品を組み込んだ転がり軸受の耐久性の向上を図れる。
次に、本発明の対象となる転がり軸受の軸受部品を構成する鋼中に添加する元素及びその含有量、酸化物系介在物の大きさ、硫化物系介在物の最大厚さ、軸受部品の硬さ、本発明の実施の対象として好ましい転がり軸受のサイズ、好ましい残留オーステナイト量等をそれぞれ規制した理由に就いて、以下に説明する。
In short, by adding Si, Mn, Cr, and Mo to the steel, even if oxide inclusions and sulfide inclusions of a certain size exist in the steel, they intervene in bearing parts. It is possible to improve durability of a rolling bearing in which the bearing part is incorporated by making it difficult to cause product-origin separation.
Next, the elements added to the steel constituting the bearing component of the rolling bearing subject to the present invention and its content, the size of oxide inclusions, the maximum thickness of sulfide inclusions, The reason why the hardness, the size of a rolling bearing that is preferable as an object of implementation of the present invention, the preferable amount of retained austenite, and the like will be described below.

[C:0.85〜1.15質量%]
Cは、焼き入れによって基地に固溶し、硬さを向上させる元素である為、軸受部品に必要な硬さを確保する為に添加する。合金成分中のC量が0.85質量%未満であると、焼き入れ後の硬さが不足して、耐摩耗性や転がり疲れ寿命が低下する。そこで、Cを0.85質量%以上、含有させる。これら耐摩耗性や転がり疲れ寿命をより安定的に得る為に、好ましくは、Cの含有量を0.95質量%以上とする。一方、Cの含有量が1.15質量%を超えると、得られた軸受部品が硬くなり過ぎて、研削性の低下や破壊靭性値の低下を生じる。そこで、Cの含有量を1.15質量%以下に抑える。前記研削性をより安定させる為に、好ましくは、Cの含有量を1.10質量%以下とする。
[C: 0.85 to 1.15% by mass]
C is an element that dissolves in the base by quenching and improves the hardness, so it is added to ensure the necessary hardness for the bearing parts. When the amount of C in the alloy component is less than 0.85% by mass, the hardness after quenching is insufficient, and wear resistance and rolling fatigue life are reduced. Therefore, C is contained in an amount of 0.85% by mass or more. In order to obtain these wear resistance and rolling fatigue life more stably, the C content is preferably 0.95% by mass or more. On the other hand, if the C content exceeds 1.15% by mass, the resulting bearing part becomes too hard, resulting in a decrease in grindability and a decrease in fracture toughness value. Therefore, the C content is suppressed to 1.15% by mass or less. In order to further stabilize the grindability, the C content is preferably 1.10% by mass or less.

[Si:0.40〜0.90質量%]
Siは、基地に固溶して焼き入れ性及び焼き戻し軟化抵抗性を向上させる効果がある為、軸受部品に必要な硬さを確保する為に添加する。且つ、Siは、本発明の重要な目的である、介在物起点型剥離の発生を抑える効果がある。即ち、Siは、基地組織中のマルテンサイトを安定化させ、非金属介在物周辺に生じるバタフライ型組織変化を遅延させて、軸受部品に介在物起点型剥離が発生する事を抑え(遅延させ)、この軸受部品を組み込んだ転がり軸受の寿命延長に寄与する。この様な、バタフライ型組織変化の遅延による寿命延長効果は、Si量が0.40質量%未満の場合には十分には得られない。一方、Siの含有量が0.90質量%を超えると、球状化焼鈍後の硬さが上昇する為、旋削性及び冷間加工性が低下する。球状化焼鈍後の硬さを適正範囲に抑え、安定した旋削性及び冷間加工性を得る為に、好ましくは、Siの含有量を、0.70質量%以下に抑える。
[Si: 0.40-0.90 mass%]
Si has the effect of improving the hardenability and temper softening resistance by dissolving in the base and is added to ensure the necessary hardness for the bearing parts. Moreover, Si has an effect of suppressing the occurrence of inclusion-origin separation, which is an important object of the present invention. That is, Si stabilizes martensite in the base structure, delays butterfly-type structural changes that occur around non-metallic inclusions, and suppresses (delays) the occurrence of inclusion-origin-type separation in bearing parts. This contributes to extending the life of rolling bearings incorporating this bearing component. Such a life extension effect due to the delay of the butterfly structure change cannot be sufficiently obtained when the Si amount is less than 0.40 mass%. On the other hand, when the Si content exceeds 0.90% by mass, the hardness after spheroidizing annealing is increased, so that the turning property and the cold workability are lowered. In order to suppress the hardness after spheroidizing annealing to an appropriate range and obtain stable turning and cold workability, the Si content is preferably suppressed to 0.70% by mass or less.

[Mn:0.55〜1.20質量%]
Mnは、基地に固溶して焼き入れ性を向上させる効果がある為、軸受部品に必要な硬さを確保する為に添加する。且つ、Mnも、上述したSiの場合と同様に、本発明の重要な目的である、介在物起点型剥離の発生を抑える効果がある。即ち、Mnも、基地組織中のマルテンサイトを安定化させ、非金属介在物周辺に生じるバタフライ型組織変化を遅延させて、軸受部品に介在物起点型剥離が発生する事を抑え、この軸受部品を組み込んだ転がり軸受の寿命延長に寄与する。更に、Mnは、熱処理後の残留オーステナイトを生成し易くする効果がある。残留オーステナイトは、比較的軟らかい組織であり、前述した表面起点型剥離を抑えて、別の観点から、前記軸受部品を組み込んだ転がり軸受の寿命延長に寄与する。この様な効果は、Mnの含有量が0.55質量%未満の場合には、十分には得られない。一方、Mnの含有量が1.20質量%を超えると、熱間鍛造時の変形抵抗が上昇して、熱間鍛造性を低下させる。又、軸受部品を構成する鋼中の残留オーステナイトは、転がり軸受の使用に伴って少しずつ分解し、分解に伴って、僅かとは言え体積が膨張する。この為、Mnの含有量を多くする事で残留オーステナイトの量が過剰になると、前記軸受部品の形状及び寸法の安定性が低下する。そこで、この軸受部品を構成する鋼中のMnの量を、0.55〜1.20質量%の範囲とする。尚、表面起点型剥離寿命を向上させる為に、好ましくは、Mnの含有量を0.80〜1.20質量%とする。
[Mn: 0.55 to 1.20 mass%]
Mn has the effect of improving the hardenability by solid solution in the base, so Mn is added to ensure the necessary hardness for the bearing parts. Mn also has the effect of suppressing the occurrence of inclusion-origin separation, which is an important object of the present invention, as in the case of Si described above. That is, Mn also stabilizes the martensite in the base structure, delays the butterfly structure change that occurs around the non-metallic inclusions, and suppresses the occurrence of inclusion-origin separation in the bearing parts. Contributes to extending the life of rolling bearings incorporating Further, Mn has an effect of easily generating retained austenite after heat treatment. Residual austenite is a relatively soft structure, and suppresses the above-described surface-origin type peeling, and contributes to extending the life of a rolling bearing incorporating the bearing component from another viewpoint. Such an effect cannot be sufficiently obtained when the Mn content is less than 0.55% by mass. On the other hand, if the content of Mn exceeds 1.20% by mass, the deformation resistance during hot forging increases and the hot forgeability decreases. Further, the retained austenite in the steel constituting the bearing part is decomposed little by little with the use of the rolling bearing, and the volume expands, albeit slightly, with the decomposition. For this reason, when the amount of retained austenite becomes excessive by increasing the content of Mn, the stability of the shape and dimensions of the bearing component is lowered. Therefore, the amount of Mn in the steel constituting this bearing part is set in the range of 0.55 to 1.20% by mass. In order to improve the surface-origin type peeling life, the Mn content is preferably 0.80 to 1.20% by mass.

[Cr:1.30〜1.90質量%]
Crは、基地のマルテンサイト中に固溶する分と、球状化炭化物中に固溶する分とに分配される。基地のマルテンサイト中に固溶したCrは、焼き入れ性を向上させて、軸受部品表面の硬さを確保する効果がある。又、Crも、前述したSi及び上述したMnの場合と同様に、本発明の重要な目的である、介在物起点型剥離の発生を抑える効果がある。即ち、Crも、基地組織中のマルテンサイトを安定化させ、非金属介在物周辺に生じるバタフライ型組織変化を遅延させて、軸受部品に介在物起点型剥離が発生する事を抑え、この軸受部品を組み込んだ転がり軸受の寿命延長に寄与する。この様な効果は、Crの含有量が1.30質量%未満の場合には、十分には得られない。一方、Crの含有量が1.90質量%を超えると、球状化焼鈍後の硬さが上昇する為、旋削性及び冷間加工性が低下する。そこで、前記軸受部品を構成する鋼中のCrの量を、1.30〜1.90質量%の範囲とする。尚、旋削性及び冷間加工性をより安定させる為に、好ましくは、Crの含有量を1.70質量%以下とする。
[Cr: 1.30 to 1.90 mass%]
Cr is distributed into a part that dissolves in the base martensite and a part that dissolves in the spheroidized carbide. Cr dissolved in the base martensite has the effect of improving the hardenability and ensuring the hardness of the surface of the bearing component. Cr also has the effect of suppressing the occurrence of inclusion-origin separation, which is an important object of the present invention, as in the case of Si and Mn. That is, Cr also stabilizes martensite in the base structure, delays the butterfly structure change that occurs around non-metallic inclusions, and suppresses the occurrence of inclusion-origin separation in the bearing part. Contributes to extending the life of rolling bearings incorporating Such an effect cannot be sufficiently obtained when the Cr content is less than 1.30% by mass. On the other hand, if the Cr content exceeds 1.90 mass%, the hardness after spheroidizing annealing is increased, so that the turning property and the cold workability are lowered. Therefore, the amount of Cr in the steel constituting the bearing part is set to a range of 1.30 to 1.90% by mass. In order to further stabilize the turning property and the cold workability, the Cr content is preferably 1.70% by mass or less.

[Mo:0.30質量%以下]
Moは、基地に固溶して、焼き入れ性及び焼き戻し軟化抵抗性を向上させ、軸受部品表面の硬さを確保する効果がある。又、Moも、前述したSi、Mn及び上述したCrの場合と同様に、本発明の重要な目的である、介在物起点型剥離の発生を抑える効果がある。即ち、Moも、基地組織中のマルテンサイトを安定化させ、酸化物系介在物や硫化物系介在物周辺に生じるバタフライ型組織変化を遅延させて、軸受部品に介在物起点型剥離が発生する事を抑え、この軸受部品を組み込んだ転がり軸受の寿命延長に寄与する。但し、Moの含有量が0.30質量%を超えると、Moの一部が硬い炭化物を形成し、研削性を低下させる。又、高価な元素である為、前記軸受部品を含む転がり軸受の製造コストを高くする原因となる。そこで、Moの含有量を0.30質量%以下とした。好ましくは、Moの含有量を0.15質量%以下とする。尚、Moの含有量の下限値は、製造コストの面から規制するが、0.01質量%以上とする事が好ましい。
[Mo: 0.30 mass% or less]
Mo is dissolved in the base and has the effects of improving the hardenability and temper softening resistance and ensuring the hardness of the bearing component surface. Further, Mo also has an effect of suppressing the occurrence of inclusion-origin type peeling, which is an important object of the present invention, as in the case of Si, Mn, and Cr described above. In other words, Mo also stabilizes martensite in the base structure, delays butterfly-type structure changes that occur around oxide inclusions and sulfide inclusions, and causes inclusion origin-type separation in bearing parts. This contributes to extending the life of rolling bearings incorporating this bearing component. However, if the Mo content exceeds 0.30% by mass, a part of Mo forms a hard carbide, which reduces grindability. Moreover, since it is an expensive element, it causes an increase in the manufacturing cost of the rolling bearing including the bearing component. Therefore, the Mo content is set to 0.30% by mass or less. Preferably, the Mo content is 0.15% by mass or less. In addition, although the lower limit of content of Mo is controlled from the surface of manufacturing cost, it is preferable to set it as 0.01 mass% or more.

[Ni:0.30質量%以下]
Niは、焼き入れ性を向上させる効果とオーステナイトを安定化させる効果とを持つ元素であり、更に、多量に添加すると靱性が向上する。但し、高価な元素である為、前記軸受部品を含む転がり軸受の製造コストを高くする原因となる。そこで、Niに関しては、積極的には添加せず、その含有量を0.30質量%以下とした。好ましくは、Niの含有量を0.18質量%以下とする。尚、Niの含有量の下限値は、製造コストの面から規制するが、0.01質量%以上とする事が好ましい。
[Ni: 0.30 mass% or less]
Ni is an element having an effect of improving hardenability and an effect of stabilizing austenite. Further, when added in a large amount, Ni improves toughness. However, since it is an expensive element, it causes an increase in the manufacturing cost of the rolling bearing including the bearing component. Therefore, Ni was not actively added, and its content was set to 0.30% by mass or less. Preferably, the Ni content is 0.18% by mass or less. In addition, although the lower limit of content of Ni is controlled from the surface of manufacturing cost, it is preferable to set it as 0.01 mass% or more.

[Cu:0.20質量%以下]
Cuは、焼き入れ性を向上させる効果と、粒界強度を向上させる効果とがある。但し、Cuの含有量が多くなると熱間鍛造性が低下する。そこで、Cuに関しては、積極的には添加せず、その含有量を0.20質量%以下とした。但し、Cuに関しては、添加する事による利点もあるので、好ましくは0.01質量%以上添加する。
[Cu: 0.20% by mass or less]
Cu has the effect of improving the hardenability and the effect of improving the grain boundary strength. However, when the Cu content increases, hot forgeability decreases. Therefore, Cu is not actively added, and its content is set to 0.20% by mass or less. However, regarding Cu, there is an advantage by adding, so 0.01% by mass or more is preferably added.

[S:0.025質量%以下]
Sは、MnSを形成し、介在物として作用する為、鋼中に含まれるS量は少ない程良い。但し、Sは自然界に多く存在する元素であり、Sの含有量を極端に少なく抑えようとすると、軸受部品を造る為の合金構成の素材(鋼材)の生産性が低下し、鋼材の製造コストが上昇する為、工業上広く利用する事が難しくなる。一方、Sを0.025質量%程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、軸受部品に必要とされる耐久性を確保できる。そこで、Sの含有量の上限値を0.025質量%とした。
[S: 0.025% by mass or less]
Since S forms MnS and acts as an inclusion, the smaller the amount of S contained in the steel, the better. However, S is an element that exists abundantly in nature, and trying to keep the S content extremely low reduces the productivity of the alloy material (steel material) for making bearing parts, and the manufacturing cost of the steel material. Increases, making it difficult to use widely in industry. On the other hand, even if S is contained in an amount of about 0.025% by mass, durability required for the bearing component can be ensured by making the content of other elements and the heat treatment method appropriate. Therefore, the upper limit of the S content is set to 0.025% by mass.

[P:0.020質量%以下]
Pは、結晶粒界に偏析して、粒界強度や破壊靱性値を低下させるので、少ない程良い。但し、Pも自然界に多く存在する元素であり、Pの含有量を極端に少なく抑えようとすると、鋼材の製造コストが上昇する。一方、Pを0.020質量%程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、軸受部品に必要とされる耐久性を確保できる。そこで、Pの含有量の上限値を0.020質量%とした。
[P: 0.020% by mass or less]
P is preferably as small as possible because it segregates at the grain boundaries and lowers the grain boundary strength and fracture toughness value. However, P is also an element that exists in a large amount in nature. If an attempt is made to keep the P content extremely low, the manufacturing cost of the steel material will increase. On the other hand, even if P is contained in an amount of about 0.020% by mass, durability required for bearing parts can be ensured by making the content of other elements and the heat treatment method appropriate. Therefore, the upper limit of the P content is set to 0.020% by mass.

[O:15質量ppm以下]
Oは、鋼中でAl等の酸化物系介在物を形成する。酸化物系介在物は、硬く、剥離の起点となり、転がり疲れ寿命に大きな悪影響を及ぼすので、Oの含有量は少ない程良い。但し、Oに関しても、含有量を極端に少なくすると鋼材コストが上昇するのに対して、Oを15質量ppm程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、軸受部品に必要とされる耐久性を確保できる。そこで、Oの含有量の上限値を15質量ppmとした。
[O: 15 mass ppm or less]
O forms oxide inclusions such as Al 2 O 3 in the steel. Oxide inclusions are hard and serve as starting points for peeling and have a great adverse effect on rolling fatigue life, so the smaller the O content, the better. However, with regard to O as well, the steel material cost increases when the content is extremely reduced. On the other hand, even if O is contained in an amount of about 15 ppm by mass, the content of other elements and the heat treatment method can be made appropriate. The required durability can be ensured. Therefore, the upper limit of the O content was set to 15 ppm by mass.

[最大の酸化物系介在物の面積の平方根が22μm以上、50μm以下]
本発明でこの平方根の値を規定する為に利用した極値統計法は、正規分布、指数分布、対数分布等に従う集合に対して、最大値及び最小値等の極値を予測する手法であり、鋼中に含まれる介在物の最大径を予測する手法として有効である。又、転がり軸受を構成する軸受部品の鋼中に存在する酸化物系介在物による介在物起点型剥離に於いては、極値統計法で予測した最大介在物径と転がり疲れ寿命との間に良い相関が見られる。特に、酸化物系介在物は、硬い為、寿命に最も悪影響をもたらす事が知られている。
[The square root of the area of the largest oxide inclusion is 22 μm or more and 50 μm or less]
The extreme value statistical method used to define the square root value in the present invention is a method for predicting extreme values such as maximum value and minimum value for a set according to normal distribution, exponential distribution, logarithmic distribution, etc. It is effective as a method for predicting the maximum diameter of inclusions contained in steel. In addition, in the inclusion-origin separation due to oxide inclusions existing in the steel of the bearing parts that make up a rolling bearing, the maximum inclusion diameter predicted by the extreme statistical method and the rolling fatigue life are between. There is a good correlation. In particular, it is known that oxide inclusions are hard and thus have the most adverse effect on the lifetime.

そこで、本発明の場合には、転がり軸受は、極値統計法により、面積30000mmに存在する最大の酸化物系介在物の大きさを予測した場合に、最大の酸化物系介在物の面積の平方根を、22μm以上、50μm以下としている。この平方根に関する値が50μmを超えると、転がり疲れを受けた場合に、バタフライ型組織変化が生じる以前に、酸化物系介在物から直接疲労亀裂が発生する。この為、合金成分(組成)が本発明で規定する範囲内であっても、軸受部品の寿命延長効果を得られない。一方、前記平方根に関する値を22μm未満にする事は、転がり疲れに基づく損傷防止の面からは好ましいが、鋼材の中で大きな介在物を含む部位を多く破棄する必要を生じる為、鋼材の歩留まりが過度に低下し、鋼材のコストが徒に嵩み、工業上広く利用する事が難しくなる。そこで、前記最大の酸化物系介在物の面積の平方根を、22μm以上、50μm以下とする。 Therefore, in the case of the present invention, when the size of the maximum oxide inclusions existing in the area of 30000 mm 2 is predicted by the extreme value statistical method, the rolling bearing has the maximum area of the oxide inclusions. Is set to 22 μm or more and 50 μm or less. If the value regarding this square root exceeds 50 μm, fatigue cracks are generated directly from oxide inclusions before the butterfly structure change occurs when rolling fatigue is applied. For this reason, even if the alloy component (composition) is within the range specified in the present invention, the effect of extending the life of the bearing component cannot be obtained. On the other hand, it is preferable to set the value relating to the square root to less than 22 μm from the viewpoint of preventing damage due to rolling fatigue, but it is necessary to discard many portions containing large inclusions in the steel material. It decreases excessively, and the cost of the steel material increases, making it difficult to use it widely industrially. Therefore, the square root of the area of the maximum oxide inclusion is set to 22 μm or more and 50 μm or less.

尚、本発明で前記平方根の値を規制する場合に、酸化物系介在物の面積とは、近似的に、酸化物系介在物を長方形と仮定して求めれば良い。又、極値統計を行う際には、日本トライボロジー学会の「軸受鋼における非金属介在物の評価法研究会(略称EIBS研究会)」が提案する方法が好ましい。即ち、鋼材断面の観察面積100mm中に含まれる最大の酸化物系介在物を求め、それを鋼材の30箇所の断面で行い、統計処理により30000mmに存在する最大の酸化物系介在物の大きさを求める事が好ましい。 Note that when the value of the square root is regulated in the present invention, the area of the oxide inclusions may be determined approximately assuming that the oxide inclusions are rectangular. In addition, when performing extreme value statistics, a method proposed by the “Study Group for Evaluation Method of Nonmetallic Inclusions in Bearing Steel (abbreviated as EIBS Study Group)” of the Japanese Society of Tribology is preferable. That is, determine the maximum oxide inclusions contained in the observation area 100 mm 2 of steel cross-section, it was carried out a cross section of 30 points of the steel material, the largest oxide inclusions present in the 30,000 mm 2 by statistical processing It is preferable to determine the size.

[硫化物系介在物の最大厚さが15μm以下]
MnS等の硫化物系介在物は、硬さが低く、合金鋼製の素材の圧延方向に細長く伸びた形状をしている。この為、軸受部品の転がり疲れ寿命への悪影響(有害度)は、酸化物系介在物に比べて小さいと考えられている。但し、厚さが15μmを超える様な、厚い硫化物径介在物になると、有害度が大きくなり、前記軸受部品の転がり疲れ寿命短縮(悪化)に及ぼす影響を無視できなくなる。そこで、本発明の場合には、統計処理により30000mmに存在する硫化物系介在物の最大厚さを予測した場合に於ける、この硫化物系介在物の最大の厚さを15μm以下に抑える。尚、この硫化物系介在物の厚さは、前述の酸化物系介在物の極値統計と同様の方法で、短辺の長さを厚さとして測定する事により求める。
[Maximum thickness of sulfide inclusions is 15 μm or less]
Sulfide inclusions such as MnS have a low hardness and are elongated in the rolling direction of the alloy steel material. For this reason, it is considered that the adverse effect (harmfulness) on the rolling fatigue life of bearing parts is smaller than that of oxide inclusions. However, when the inclusion has a thick sulfide diameter with a thickness exceeding 15 μm, the degree of harmfulness increases, and the influence on the rolling fatigue life shortening (deterioration) of the bearing part cannot be ignored. Therefore, in the case of the present invention, when the maximum thickness of the sulfide inclusion existing at 30000 mm 2 is predicted by statistical processing, the maximum thickness of the sulfide inclusion is suppressed to 15 μm or less. . The thickness of the sulfide inclusion is determined by measuring the length of the short side as the thickness by the same method as the above-described extreme value statistics of the oxide inclusion.

[焼き入れ・焼き戻し後の硬さがHv697〜800]
本発明により抑えようとする介在物起点型剥離は、前述した通り、バタフライ型組織変化部分の界面に沿った、金属疲労による亀裂の進展として生じる。又、このバタフライ型組織変化は、先に述べた通り、酸化物系介在物や硫化物系介在物周辺の応力集中によって生じる大きな剪断応力が、基地のマルテンサイト組織に繰り返し負荷される事によって、マルテンサイト組織中の転位と固溶炭素とが動かされ、超微細なフェライト組織に変化する現象である。基地組織の硬さを向上させる事は、基地組織に剪断応力が加わった場合にも、マルテンサイト組織中で転位と固溶炭素とを動きにくくし、バタフライ型組織変化が生じるのを遅延させる効果がある。硬さがHv697未満であると、上記の効果が不足する事によって、バタフライ型組織変化が生じ易くなり、転がり疲れ寿命が低下する。一方、硬さがHv800を超えると、軸受部品の研削性と破壊靱性値との低下が生じる。そこで、硬さの値をHv697〜800の範囲に規制した。この硬さが、表面から芯部までほぼ同じである事は、前述した通りである。
[Hardness after quenching and tempering is Hv697-800]
The inclusion-origin type separation to be suppressed by the present invention occurs as a crack progresses due to metal fatigue along the interface of the butterfly structure change portion as described above. In addition, as described above, this butterfly structure change is caused by repeatedly applying a large shear stress caused by stress concentration around oxide inclusions and sulfide inclusions to the base martensite structure. This is a phenomenon in which dislocations and solute carbon in the martensite structure are moved to change to an ultrafine ferrite structure. Improving the hardness of the matrix structure has the effect of making it difficult for dislocations and solute carbons to move in the martensite structure even when shear stress is applied to the matrix structure, and delaying the occurrence of butterfly structure changes. There is. If the hardness is less than Hv697, the above effects are insufficient, and a butterfly structure change is likely to occur, resulting in a reduced rolling fatigue life. On the other hand, if the hardness exceeds Hv 800, the grindability and fracture toughness value of the bearing parts are reduced. Therefore, the hardness value is regulated within the range of Hv697 to 800. As described above, the hardness is substantially the same from the surface to the core.

[軌道輪の最大直径が180mm以下、各玉の直径が30.2mm以下]
玉軸受等の転がり軸受の転動輪は、玉等の各転動体からの荷重によって、内部に剪断応力が負荷されるが、この剪断応力が高くなる領域の体積は、転がり軸受の外径と転動体直径との相関が強い。ラジアル玉軸受等の玉軸受の場合には、前記軌道輪の最大直径(ラジアル玉軸受の場合には外輪の外径)が180mm以下、各玉の直径が30.2mm以下であれば、前記軌道輪のうちで剪断応力が大きくなる部分の体積が小さくなり、極値統計法で予測する以上の大型介在物を含む可能性を低く抑えられる(請求項2に記載した発明)。逆に言えば、軌道輪の最大直径が180mmを超えたり、各転動体の直径が30.2mm超えたりする様な、大型の転がり軸受の場合には、極値統計法により予測する、酸化物系、硫化物系各介在物が大きくなる可能性があり、転がり軸受の耐久性を、必ずしも十分に確保できない可能性を生じる。尚、小径の転がり軸受の場合には、前記極値統計法の予測値がより小さくなるので、特に下限値を限定する事なく実施できる。
[Maximum diameter of raceway is 180mm or less, diameter of each ball is 30.2mm or less]
Rolling bearings of ball bearings and other rolling bearings are subjected to internal shear stress due to the load from each rolling element such as balls, and the volume of the region where the shear stress increases is the same as the outer diameter of the rolling bearing. Strong correlation with moving body diameter. In the case of a ball bearing such as a radial ball bearing, if the maximum diameter of the race (in the case of a radial ball bearing, the outer diameter of the outer ring) is 180 mm or less and the diameter of each ball is 30.2 mm or less, the race The volume of the portion of the ring where the shear stress increases is reduced, and the possibility of including large inclusions more than predicted by the extreme value statistical method can be suppressed (the invention described in claim 2). In other words, in the case of a large-sized rolling bearing where the maximum diameter of the raceway exceeds 180 mm or the diameter of each rolling element exceeds 30.2 mm, the oxide is predicted by the extreme value statistical method. There is a possibility that the inclusions of the system and sulfide system become large, and there is a possibility that the durability of the rolling bearing cannot be ensured sufficiently. In the case of a small-diameter rolling bearing, since the predicted value of the extreme value statistical method is smaller, it can be carried out without any particular limitation on the lower limit value.

[焼き入れ・焼き戻し後の残留オーステナイト量の適正値]
鋼中に含まれる残留オーステナイトは、基地組織であるマルテンサイトに比べて軟質である為、鉄粉等の硬質の異物を噛み込む事で生じる圧痕の縁部分の応力集中を緩和する。そして、この圧痕の縁部分を起点とした亀裂の発生を抑制でき、表面起点型剥離寿命を延長する効果がある。本発明と組み合わせてこの様な効果を十分に得る為には、残留オーステナイト量を10容量%以上とする事が好ましい。前述した様に、本発明は介在物起点型剥離を抑える事を意図しており、上述の様な残留オーステナイト量を確保する事による表面起点型剥離寿命が介在物起点型剥離寿命以上である事が好ましい。鋼中の残留オーステナイトの量が10容量%未満の場合には、介在物起点型剥離よりも、表面起点型剥離が先に生じてしまう可能性が高くなり、転がり軸受の寿命延長に結び付かない。これに対して、残留オーステナイト量が20容量%を超えると、前述した様な理由により、形状安定性及び寸法安定性が低下する。
[Appropriate amount of retained austenite after quenching and tempering]
Residual austenite contained in the steel is softer than martensite, which is a base structure, and therefore relieves stress concentration at the edge of the indentation caused by biting hard foreign matter such as iron powder. And generation | occurrence | production of the crack which started from the edge part of this indentation can be suppressed, and there exists an effect which extends a surface origin type | mold peeling life. In order to sufficiently obtain such an effect in combination with the present invention, the amount of retained austenite is preferably 10% by volume or more. As described above, the present invention is intended to suppress inclusion-initiated type peeling, and the surface-initiated type peeling life by securing the amount of retained austenite as described above is greater than the inclusion-initiated type peeling life. Is preferred. When the amount of retained austenite in the steel is less than 10% by volume, there is a higher possibility that surface-initiated separation will occur earlier than inclusion-initiated separation, and this will not lead to an increase in the life of rolling bearings. . On the other hand, when the amount of retained austenite exceeds 20% by volume, shape stability and dimensional stability are lowered due to the reasons described above.

これらを考慮して、本発明と合わせて、焼き入れ・焼き戻し後の残留オーステナイト量を規制する場合には、10容量%以上、20容量%以下とする事が好ましい(請求項3に記載した発明)。より好ましくは、良好な形状安定性及び寸法安定性と、表面起点型剥離寿命とを得る為に、前記鋼中の残留オーステナイト量を、10容量%以上、15容量%以下とする。尚、残留オーステナイト量の測定は、軸受部品の一部(例えば軌道面の一部)を切り出した後、この一部表面(例えば軌道面表面)を電解研磨して、X線回折装置を用いて行う。
但し、本発明を実施する場合、残留オーステナイト量を、必ずしも10容量%以上にする必要はない。例えば、残留オーステナイトの分解が進み易い、高温条件下で使用する転がり軸受に本発明を適用する場合には、形状安定性及び寸法安定性を重視して、残留オーステナイト量を10容量%未満にして使用する事が好ましい場合もある。
In consideration of these, in combination with the present invention, when the amount of retained austenite after quenching and tempering is regulated, it is preferably 10% by volume or more and 20% by volume or less (described in claim 3). invention). More preferably, in order to obtain good shape stability and dimensional stability and a surface-origin type peel life, the amount of retained austenite in the steel is set to 10% by volume or more and 15% by volume or less. The amount of retained austenite is measured by cutting out a part of the bearing part (for example, a part of the raceway surface), then electrolytically polishing the part of the surface (for example, the surface of the raceway surface), and using an X-ray diffractometer. Do.
However, when carrying out the present invention, the amount of retained austenite is not necessarily 10% by volume or more. For example, when the present invention is applied to a rolling bearing used under high temperature conditions in which decomposition of retained austenite is likely to proceed, the amount of retained austenite is set to less than 10% by volume with emphasis on shape stability and dimensional stability. It may be preferable to use it.

[好適な熱処理条件]
本発明の転がり軸受を実施する場合に於いて、特許請求の範囲に記載した条件を満たす軸受部品が軌道輪である場合には、素材に熱間加工と旋削加工とを順次施して、当該部品の形状を軌道輪の完成形状に近づけて中間素材とした後、この中間素材に焼き入れ及び焼き戻し処理を施して第二中間素材とする。その後、この第二中間素材のうちで、少なくとも軌道面部分に研削加工を施して、完成形状に仕上げる。前述した硬さ、残留オーステナイト量、及び残存する球状化炭化物の割合は、特許請求の範囲に記載した条件を満たす鋼材を使用し、更に、焼き入れ・焼き戻し条件を適正に規制する事によって実現できる。
[Suitable heat treatment conditions]
In carrying out the rolling bearing according to the present invention, when the bearing part satisfying the conditions described in the claims is a bearing ring, the part is subjected to hot working and turning in order, and the part. After making the shape close to the completed shape of the raceway and making it an intermediate material, the intermediate material is subjected to quenching and tempering treatment to obtain a second intermediate material. After that, at least the raceway surface portion of the second intermediate material is ground to finish the finished shape. The above-mentioned hardness, residual austenite amount, and the ratio of remaining spheroidized carbide are realized by using steel materials that satisfy the conditions described in the claims, and by properly regulating the quenching and tempering conditions. it can.

生産性を、軸受部品として一般的に使用されている、高炭素クロム軸受鋼2種(SUJ2、JIS G 4805)と同等にする為、前記鋼材を、SUJ2と同条件で焼き入れをする事が好ましい。即ち、好ましくは、焼き入れは、820〜860℃で所定の時間保持した後、油冷する。より好ましくは、安定的に、硬さ、残留オーステナイト及び残存する球状化炭化物の割合を好適な範囲にする為に、保持温度を830〜850℃とする。   In order to make the productivity equivalent to 2 types of high carbon chrome bearing steel (SUJ2, JIS G 4805), which is generally used as bearing parts, the steel material can be quenched under the same conditions as SUJ2. preferable. That is, preferably, quenching is oil-cooled after being held at 820 to 860 ° C. for a predetermined time. More preferably, the holding temperature is set to 830 to 850 ° C. in order to stably bring the ratio of hardness, retained austenite and remaining spheroidized carbide to a suitable range.

焼き戻しも、SUJ2と同条件で行う事が好ましい。即ち、160〜200℃で所定の時間保持した後、空冷或いは炉冷する事が好ましい。この焼き戻し温度が160℃未満であると、残留オーステナイト量が過剰になり、形状安定性及び寸法安定性が低下する。これに対して、焼き戻し温度が200℃を超えると、残留オーステナイト量が低下し、前述した表面起点型剥離の原因となる、圧痕縁部分の応力集中を緩和する効果を十分に得られなくなる。
但し、先に述べた様に、本発明を高温条件下で使用する転がり軸受に本発明を適用する場合には、形状安定性及び寸法安定性を重視して、200℃以上、290℃以下の温度で焼き戻しを行い、残留オーステナイト量を10容量%未満にしても良い。
尚、硬くなり易い元素を含む合金成分と、焼き入れ温度、焼き戻し温度との組み合わせによっては、これらが何れも本発明で規定する範囲内であっても、硬さの値が大きくなり(本発明の範囲から外れ)、生産性を悪化させる可能性がある。この為に本発明の場合には、熱処理後の硬さに就いても規定している。
Tempering is also preferably performed under the same conditions as SUJ2. That is, it is preferable to hold at 160 to 200 ° C. for a predetermined time, and then air or furnace cool. When the tempering temperature is less than 160 ° C., the amount of retained austenite becomes excessive, and the shape stability and dimensional stability are lowered. On the other hand, when the tempering temperature exceeds 200 ° C., the amount of retained austenite decreases, and the effect of alleviating the stress concentration at the indentation edge, which causes the above-described surface-origin separation, cannot be obtained sufficiently.
However, as described above, when the present invention is applied to a rolling bearing that uses the present invention under high temperature conditions, emphasis is placed on shape stability and dimensional stability. Tempering may be performed at a temperature so that the amount of retained austenite is less than 10% by volume.
Note that depending on the combination of the alloy components containing elements that tend to harden, the quenching temperature, and the tempering temperature, even if these are all within the range specified by the present invention, the hardness value increases (this This is out of the scope of the invention) and may deteriorate productivity. For this reason, in the case of the present invention, the hardness after heat treatment is also defined.

[好適な軌道輪の軌道溝形状]
本発明の転がり軸受は、深溝型玉軸受、アンギュラ型玉軸受、スラスト玉軸受等の玉軸受、円筒ころ軸受や円すいころ軸受、自動調心ころ軸受等のころ軸受、或いはニードル軸受等、転がり軸受の型式に制限されず適用可能である。このうち、最も一般的な玉軸受の場合には、軌道輪の軌道溝形状を、下記の様に規制する事が、玉軸受の耐久性確保と低トルク化との両立を図る面から好ましい。
[Suitable raceway groove shape]
The rolling bearing of the present invention is a ball bearing such as a deep groove type ball bearing, an angular type ball bearing, a thrust ball bearing, a roller bearing such as a cylindrical roller bearing, a tapered roller bearing, a self-aligning roller bearing, or a needle bearing. It is applicable without being limited to the type of. Among these, in the case of the most general ball bearing, it is preferable to restrict the shape of the raceway groove of the bearing ring as follows from the viewpoint of ensuring both the durability of the ball bearing and the reduction in torque.

即ち、転がり軸受に於いては、耐久性(寿命)だけでなく、回転抵抗(動トルク)が低い事(低トルク化)が求められる場合が多い。玉軸受の動トルクを低減する為には、玉の直径に対する軌道溝(の母線形状)の曲率半径の比を大きくして、各玉の転動面と軌道面との接触面積(接触楕円)を小さくする事が有効である。但し、一般的には、前記各玉の直径に対する軌道溝の曲率半径の比を大きくして、接触面積を小さくすると、接触部の面圧が大きくなり、軌道面の表面近傍部分に発生する応力が大きくなる。この為、前記軌道輪を構成する鋼中に存在する非金属介在物を起点として、バタフライ型組織変化が発生し易くなり、前記軌道輪を含む転がり軸受の寿命が低下する。   That is, in rolling bearings, not only durability (life) but also low rotational resistance (dynamic torque) (reduction in torque) is often required. In order to reduce the dynamic torque of the ball bearing, the ratio of the radius of curvature of the raceway groove (the bus bar shape) to the ball diameter is increased, and the contact area between the rolling surface and raceway surface of each ball (contact ellipse) It is effective to reduce. However, in general, when the ratio of the radius of curvature of the raceway groove to the diameter of each ball is increased and the contact area is reduced, the surface pressure of the contact portion increases and stress generated in the vicinity of the surface of the raceway surface. Becomes larger. For this reason, butterfly structure changes are likely to occur starting from non-metallic inclusions present in the steel constituting the bearing ring, and the life of the rolling bearing including the bearing ring is reduced.

これに対して、本発明の転がり軸受は、前述の様な要件を備える事により、バタフライ型組織変化を発生し難くしている為、前記各玉の直径に対する前記軌道溝の曲率半径の比を大きくしても、寿命が低下し難い。これらの事を勘案すると、本発明の転がり軸受は、低トルクでの回転が求められる用途、例えば、モータ用軸受、自動車のトランスミッション用軸受や工作機械用軸受等に好適である。
玉の直径に対する軌道溝の曲率半径の比は、一般的には51〜52%程度であるが、本発明の転がり軸受の場合には、玉の直径に対する軌道溝の曲率半径の比を53%以上、54%以下にした場合でも、一般的な鋼で造られた、玉の直径に対する軌道溝の曲率半径の比が52%の軸受と同様の寿命が得られる。
これらの事を考慮すれば、本発明を玉軸受として実施する場合に、前記各玉の直径に対する前記軌道溝の曲率半径の比を、53%以上、54%以下にする事が好ましい(請求項4に記載した発明)。
On the other hand, the rolling bearing of the present invention makes it difficult to generate a butterfly structure change by providing the above-described requirements. Therefore, the ratio of the radius of curvature of the raceway groove to the diameter of each ball is determined. Even if it is increased, the lifetime is unlikely to decrease. Considering these matters, the rolling bearing of the present invention is suitable for applications requiring rotation with low torque, for example, motor bearings, automobile transmission bearings, machine tool bearings, and the like.
The ratio of the radius of curvature of the raceway groove to the diameter of the ball is generally about 51 to 52%. However, in the case of the rolling bearing of the present invention, the ratio of the radius of curvature of the raceway groove to the diameter of the ball is 53%. Even when the ratio is 54% or less, the same life as a bearing made of general steel and having a ratio of the radius of curvature of the raceway groove to the ball diameter of 52% can be obtained.
In consideration of these matters, when the present invention is implemented as a ball bearing, the ratio of the radius of curvature of the raceway groove to the diameter of each ball is preferably 53% or more and 54% or less. 4).

本発明の対象となる転がり軸受の一種であるラジアル玉軸受の部分切断斜視図。1 is a partially cut perspective view of a radial ball bearing which is a kind of rolling bearing that is an object of the present invention. FIG. 同じくラジアル円筒ころ軸受の部分切断斜視図。The partial cutaway perspective view of a radial cylindrical roller bearing. 同じくラジアル円すいころ軸受の部分切断斜視図。The partial cut perspective view of a radial tapered roller bearing. 同じく自動調心ころ軸受の部分切断斜視図。The partial cutaway perspective view of a self-aligning roller bearing. 軌道面の近傍部分で観察された非金属介在物の2例を示す顕微鏡写真。The microscope picture which shows two examples of the nonmetallic inclusion observed in the vicinity part of a track surface.

本発明の特徴は、転がり軸受を構成する軸受部品の一部又は全部に就いて、鋼材の成分、酸化物系介在物の大きさ、焼き入れ・焼き戻し後の硬さを適切に規制する事により、酸化物系介在物や硫化物系介在物を起点として発生する剥離を抑える点にある。図面に現れる構造に関しては、前述の図1〜4に示したラジアル玉軸受1、ラジアル円筒ころ軸受9、ラジアル円すいころ軸受13、自動調心ころ軸受16を含み、従来から知られている各種転がり軸受と同様であるから、重複する説明を省略する。   The feature of the present invention is to appropriately regulate the components of steel materials, the size of oxide inclusions, and the hardness after quenching and tempering for some or all of the bearing parts constituting the rolling bearing. Therefore, it is in the point which suppresses the peeling which generate | occur | produces from an oxide type inclusion and a sulfide type inclusion. Regarding the structure appearing in the drawings, various types of conventionally known rolling elements including the radial ball bearing 1, the radial cylindrical roller bearing 9, the radial tapered roller bearing 13, and the self-aligning roller bearing 16 shown in FIGS. Since it is the same as that of a bearing, the overlapping description is abbreviate | omitted.

本発明を成す過程で行った実験に就いて説明する。実験は、下記の表1に示したA〜Oの15種類の鋼材に就いて、加工のし易さを知る為の旋削性評価試験と、所望の硬さ及び残留オーステナイト量を得られるか否かを知る為の熱処理試験と、軌道面の粗さを所望通りに仕上られるか否かを知る為の軸受試作試験と、実際に造った転がり軸受の耐久性を知る為の軸受寿命試験との、4種類の試験を行った。   An experiment conducted in the process of forming the present invention will be described. The experiment was conducted on 15 kinds of steel materials A to O shown in Table 1 below, and a turning evaluation test for knowing the ease of processing, and whether a desired hardness and a retained austenite amount can be obtained. A heat treatment test to determine whether or not the roughness of the raceway surface can be finished as desired and a bearing test to determine the durability of the actual rolling bearing. Four types of tests were conducted.

尚、この表1中、各数値の単位は質量%である。但し、Oのみは質量ppmである。又、括弧により囲んだ数値は、当該数値が本発明の技術的範囲から外れる事を表している。又、鋼種MはSUJ2である。 In Table 1, the unit of each numerical value is mass%. However, only O is mass ppm. A numerical value enclosed in parentheses indicates that the numerical value deviates from the technical scope of the present invention. Steel grade M is SUJ2.

[旋削性評価試験]
前記表1に示す組成を有する鋼材を用いて、球状化焼鈍を行った後、旋削試験を行った。この旋削試験は、切削工具(バイト)により棒材の外周を20分間旋削した後、この切削工具の逃げ面の摩耗量を測定する事で行った。試験条件を下記に示す。
切削工具 : 超硬(P20)
被切削部の周速 : 150m/min
切り込み量 : 1.0mm
切削工具の送り速度 : 0.2mm/rev
潤滑条件 : 乾式
[Turability evaluation test]
Using a steel material having the composition shown in Table 1, a spheroidizing annealing was performed, and then a turning test was performed. This turning test was performed by measuring the amount of wear on the flank of this cutting tool after turning the outer periphery of the bar for 20 minutes with a cutting tool (bite). Test conditions are shown below.
Cutting tool: Carbide (P20)
Peripheral speed of the part to be cut: 150 m / min
Cutting depth: 1.0mm
Cutting tool feed rate: 0.2 mm / rev
Lubrication condition: Dry type

この様な条件で行った実験の結果を、次の表2のうちの、「旋削試験摩耗量」の欄に示す。
この表2中、各数値の単位は、それぞれに関して前述した通りである。尚、旋削摩耗量及び溝粗さの単位はμmである。又、括弧により囲んだ数値は、当該数値が本発明の技術的範囲又は好ましい範囲から外れるか、又は、性能的に好ましく無い事を表している。
The results of the experiment conducted under such conditions are shown in the “Turning test wear amount” column in the following Table 2.
In Table 2, the unit of each numerical value is as described above for each. The unit of turning wear amount and groove roughness is μm. The numerical value enclosed in parentheses indicates that the numerical value deviates from the technical range or the preferable range of the present invention, or is not preferable in terms of performance.

この表2から明らかな通り、本発明の技術的範囲に属する実施例1〜8は、鋼材の組成が好適な範囲である為、球状化焼鈍後の旋削性は、JIS−SUJ2(比較例5)とほぼ同程度のレベルである。
一方、比較例1はSi量が、比較例3はCr量が、それぞれ本発明で規定するよりも高い為、旋削試験に於ける工具の逃げ摩耗量が大きく、旋削性が劣る。
As apparent from Table 2, since Examples 1 to 8 belonging to the technical scope of the present invention have a suitable composition of steel materials, the turning property after spheroidizing annealing is JIS-SUJ2 (Comparative Example 5). ) And almost the same level.
On the other hand, the amount of Si in Comparative Example 1 and the amount of Cr in Comparative Example 3 are higher than specified in the present invention, respectively, so that the amount of flank wear of the tool in the turning test is large and the turning performance is inferior.

[熱処理試験]
前記表1に示した組成を有する鋼材を用いて、球状化焼鈍を行った後、直径60mm、厚さ6mmの円板試験片を作製した。それらを、前記表2の「焼き入れ温度」、「焼き戻し温度」の欄にそれぞれ記載した温度により、焼き入れ・焼き戻し処理した後、表面の硬さをビッカース硬度計で測定した。又、残留オーステナイト量(残留γ、rR)も測定した。焼き入れ時の保持時間は40min、焼き戻し時の保持時間は2hrである。この様な熱処理条件は、SUJ2の熱処理条件とほぼ同じである。測定結果を、前記表2の「硬さ」の欄及び「残留γ」の欄に示す。
[Heat treatment test]
Using a steel material having the composition shown in Table 1, spheroidizing annealing was performed, and then a disk specimen having a diameter of 60 mm and a thickness of 6 mm was produced. These were subjected to quenching and tempering treatment at temperatures described in the columns of “Quenching temperature” and “Tempering temperature” in Table 2, and then the surface hardness was measured with a Vickers hardness meter. The amount of retained austenite (residual γ, rR) was also measured. The holding time during quenching is 40 min, and the holding time during tempering is 2 hr. Such heat treatment conditions are almost the same as those of SUJ2. The measurement results are shown in the “hardness” column and the “residual γ” column in Table 2.

前記表2から明らかな通り、本発明の技術的範囲に属する実施例1〜8は、鋼材の組成が好適な範囲である為、SUJ2と同条件で熱処理しても、良好な硬さ及び残留オーステナイト量を得られる。
一方、比較例2は、Mn量が本発明で規定するよりも高い為、残留オーステナイト量が高い。従って、転がり軸受として長時間使用する事を考慮すると、十分な形状安定性及び寸法安定性を得られるとは言えない。
又、比較例8は、実施例4と同じ鋼材Dを使用しているが、焼き入れ温度の相違により、硬さが本発明で規定する範囲より高い為、軸受部品の研削性及び破壊靱性値確保の面から不利になる。
又、比較例9は、実施例6と同じ鋼材Fを用いているが、焼き入れ温度の相違により、硬さが本発明で規定する範囲よりも低い為、転がり疲れ寿命確保の面から不利になる。
又、酸化物系介在物の観察も行い、極値統計法によって、30000mm中に含まれる最大の酸化物系介在物の大きさを予測した。予測した最大の酸化物系介在物の面積の平方根の値を、前記表2の酸化物系介在物最大径(単位はμm)の欄に記載した。同様にして、硫化物系介在物に就いても、30000mm中に含まれる硫化物系介在物の最大厚さ予測その値を前記表2の硫化物系介在物最大厚さ(単位はμm)の欄に記載した。
As apparent from Table 2, Examples 1 to 8 belonging to the technical scope of the present invention are in a suitable range of the steel material. Therefore, even when heat-treated under the same conditions as SUJ2, good hardness and residual properties are obtained. The amount of austenite can be obtained.
On the other hand, Comparative Example 2 has a higher amount of retained austenite because the amount of Mn is higher than that defined in the present invention. Therefore, it cannot be said that sufficient shape stability and dimensional stability can be obtained in consideration of long-term use as a rolling bearing.
In Comparative Example 8, the same steel material D as in Example 4 is used, but due to the difference in quenching temperature, the hardness is higher than the range specified in the present invention. It is disadvantageous from the aspect of securing.
Moreover, although the comparative example 9 uses the same steel material F as Example 6, since hardness is lower than the range prescribed | regulated by this invention by the difference in quenching temperature, it is disadvantageous from the surface of ensuring rolling fatigue life. Become.
In addition, the oxide inclusions were also observed, and the size of the largest oxide inclusion contained in 30000 mm 2 was predicted by an extreme value statistical method. The predicted value of the square root of the maximum area of the oxide inclusions is shown in the column of the maximum oxide inclusion diameter (unit: μm) in Table 2. Similarly, for sulfide inclusions, the maximum thickness prediction of sulfide inclusions contained in 30000 mm 2 is the same as the maximum sulfide inclusion inclusion thickness in Table 2 (unit: μm). It described in the column of.

[軸受試作(研削性評価)試験]
前記表1に記載した組成を有する鋼材を用いて、呼び番号が6206である単列深溝型の玉軸受(内径30mm、外径62mm、幅16mm)の内輪及び外輪を、以下の工程で造った。先ず、鋼材に球状化焼鈍を施して中間素材としてから、この中間素材に旋削加工及び焼き入れ・焼き戻しを施して第二中間素材とし、最後にこの第二中間素材に研削加工を施して最終形状とした。研削加工後の軌道溝(内輪軌道及び外輪軌道)の表面粗さを測定する事によって、研削性の評価とした。表面粗さの測定は、算術平均粗さRaを指標として、内輪軌道及び外輪軌道の表面のうちで、軸方向に離隔した3箇所位置ずつを測定して(各試料毎に6種類ずつの測定値の)平均値を求めた。この様にして求めた表面粗さに関する測定結果(単位はμm)を、前記表2の「溝粗さ」の欄に記載した。
[Bearing prototype (grindability evaluation) test]
Using the steel material having the composition described in Table 1, the inner ring and the outer ring of a single row deep groove type ball bearing (inner diameter 30 mm, outer diameter 62 mm, width 16 mm) having a nominal number of 6206 were manufactured in the following steps. . First, the steel material is subjected to spheroidizing annealing to be an intermediate material, and then this intermediate material is turned, quenched and tempered to become a second intermediate material, and finally the second intermediate material is ground and finished. Shaped. Grindability was evaluated by measuring the surface roughness of the raceway grooves (inner ring raceway and outer ring raceway) after grinding. The surface roughness is measured by measuring the three axially spaced positions on the inner ring raceway and outer ring raceway surface using the arithmetic average roughness Ra as an index (six kinds of measurements for each sample). The average value was calculated. The measurement results (unit: μm) regarding the surface roughness thus obtained are listed in the “groove roughness” column of Table 2 above.

この様な表2の記載から明らかな通り、本発明の技術的範囲に属する実施例1〜8は、組成及び焼き入れ・焼き戻し後の硬さが好適な範囲である為、軌道溝の表面粗さは、SUJ2と同成分の比較例5と同程度の値であり、研削性に優れている。
一方、比較例8は、焼き入れ・焼き戻し後の硬さが本発明で規定する範囲よりも高い為、軌道溝の表面粗さが大きく(悪く)、研削性に劣る。
As is clear from the description of Table 2 above, Examples 1 to 8 belonging to the technical scope of the present invention have a composition and a hardness after quenching / tempering that are in a suitable range. The roughness is the same value as that of Comparative Example 5 having the same component as SUJ2, and is excellent in grindability.
On the other hand, since the hardness after hardening and tempering is higher than the range prescribed | regulated by this invention in the comparative example 8, the surface roughness of a raceway groove | channel is large (bad), and it is inferior to grindability.

[軸受寿命試験]
上述した軸受試作試験で述べた様にして造った、呼び番号が6206である玉軸受の内輪と外輪との間に、SUJ2製の玉(直径9.525mm)を組み込み、ポリアミド樹脂製の冠型保持器により保持して、それぞれ試験軸受とした。同様に、呼び番号が6317である玉軸受(内径85mm、外径180mm、幅41mm)の内輪と外輪との間に、SUJ2製の玉(直径30.162mm)を組み込み、ポリアミド樹脂製の冠型保持器により保持して、それぞれ試験軸受とした。
寿命試験条件は下記の通りである。各実施例及び各比較例で、それぞれ4〜8個ずつの玉軸受で寿命試験を実施し、累積破損確率が10%となる寿命(L10寿命)を求めた。
「呼び番号6206に関して」
ラジアル荷重 : 13818N
回転速度 : 3900min−1
回転条件 : 内輪回転
潤滑油 : ISO−VG68相当の鉱油(強制循環方式)
「呼び番号6317に関して」
ラジアル荷重 : 66150N
回転速度 : 2000min−1
回転条件 : 内輪回転
潤滑油 : ISO−VG68相当の鉱油(強制循環方式)
尚、先に述べた各試験、旋削評価試験で不良と判定された比較例1、3、8と、残留オーステナイト量が多く、寸法安定性が劣ると判定された比較例2とに関しては、軸受寿命試験を省略した。
[Bearing life test]
A SUJ2 ball (diameter 9.525 mm) is incorporated between the inner ring and outer ring of the ball bearing 6206, which is manufactured as described in the above-mentioned bearing prototype test, and a crown shape made of polyamide resin. Each of the test bearings was held by a cage. Similarly, a SUJ2 ball (diameter 30.162 mm) is incorporated between an inner ring and an outer ring of a ball bearing (inner diameter 85 mm, outer diameter 180 mm, width 41 mm) having a nominal number 6317, and a crown shape made of polyamide resin. Each of the test bearings was held by a cage.
The life test conditions are as follows. In each example and each comparative example, a life test was performed with 4 to 8 ball bearings, and a life (L10 life) at which the cumulative failure probability was 10% was obtained.
“Regarding the reference number 6206”
Radial load: 13818N
Rotational speed: 3900 min -1
Rotating condition: Inner ring rotation Lubricating oil: Mineral oil equivalent to ISO-VG68 (forced circulation method)
“Regarding reference number 6317”
Radial load: 66150N
Rotational speed: 2000 min -1
Rotating condition: Inner ring rotation Lubricating oil: Mineral oil equivalent to ISO-VG68 (forced circulation method)
In addition, with respect to Comparative Examples 1, 3, and 8 that were determined to be defective in the above-described tests and turning evaluation tests, and Comparative Example 2 that was determined to have a large amount of retained austenite and poor dimensional stability, bearings The life test was omitted.

上述の様な条件で行った軸受寿命試験は、軌道面(内輪軌道又は外輪軌道であるが、多くの場合、内輪軌道)の表面が剥離し、玉軸受の運転に伴う振動が大きくなった場合に、当該試験片(玉軸受)は寿命に達したとした。何れの試験片に就いても、寿命試験終了後に剥離部の表面を観察しても、剥離部の表面には、剥離を引き起こす様な圧痕は見られなかった。又、剥離部断面には、水素によって生じる白色組織は観察されなかった。一方、剥離部断面の近傍には、介在物を起点とするバタフライ型組織変化が観察された。従って、各試験片は、介在物を起点として、剥離が生じた(介在物起点型剥離が発生した)ものと推定される。この様な条件で行った軸受寿命試験の結果を、前記表2の「軸受試験寿命比」の欄に記載した。尚、この軸受試験寿命比の欄に記載した数値は、SUJ2を使用した比較例5のL10寿命を1とし、それぞれの寿命を、この比較例5との比で表したものである。この様にして行った実験の結果を示す前記表2の記載から、次の事が分かる。   The bearing life test conducted under the above conditions shows that the surface of the raceway surface (inner ring raceway or outer ring raceway, but in many cases, the inner ring raceway) is peeled off and the vibration associated with the operation of the ball bearing increases. In addition, the test piece (ball bearing) reached the end of its life. For any test piece, even when the surface of the peeled portion was observed after the end of the life test, no indentation that would cause peeling was found on the surface of the peeled portion. Moreover, the white structure | tissue produced by hydrogen was not observed by the peeling part cross section. On the other hand, a butterfly structure change starting from inclusions was observed near the cross section of the peeled portion. Therefore, it is presumed that each test piece was peeled off from the inclusion as the starting point (inclusion starting point type peeling occurred). The results of the bearing life test conducted under such conditions are listed in the “Bearing test life ratio” column of Table 2 above. In addition, the numerical value described in the column of this bearing test life ratio represents L10 life of Comparative Example 5 using SUJ2 as 1, and each life is expressed as a ratio with Comparative Example 5. The following can be understood from the description in Table 2 showing the results of the experiment conducted in this manner.

本発明の技術的範囲に属する実施例1〜8に関しては、何れも、組成、酸化物系介在物の大きさ、硬さ及び算出値が、何れも本発明で規定する範囲内にある為、介在物起点型剥離に対して長寿命になる。特に、実施例1〜3は、合金組成がより好ましい範囲であり、更に、焼き入れ・焼き戻し後の残留オーステナイト量がより好ましい範囲(10〜15容量%)になっている為、寿命が長い。尚、呼び番号が6206の玉軸受は、同じく6317の玉軸受よりも小さい為、軌道輪のうちで剪断応力が大きくなる部分の体積をより小さく抑えられて、極値統計法で予測する酸化物系、硫化物系各介在物の大きさが小さい為、本発明を実施する事による耐久性向上効果が大きくなる。   For Examples 1 to 8 belonging to the technical scope of the present invention, the composition, the size of oxide inclusions, the hardness, and the calculated values are all within the range defined by the present invention. Longer life against inclusion-origin separation. In particular, in Examples 1 to 3, the alloy composition is in a more preferable range, and further, the amount of retained austenite after quenching and tempering is in a more preferable range (10 to 15% by volume), so the life is long. . Since the ball bearing with the bearing number 6206 is smaller than the ball bearing 6317, the volume of the portion of the bearing ring where the shear stress increases is reduced, and the oxide predicted by the extreme statistical method is used. Since the size of each of the system and sulfide system inclusions is small, the durability improvement effect by implementing the present invention is increased.

一方、比較例4、5は、合金鋼の組成が本発明で規定する範囲外である為、バタフライ型組織変化が生じ易くなり、転がり疲れ寿命が短くなった。
又、比較例6、7は、極値統計法で予測した酸化物系介在物又は硫化物系介在物の大きさが本発明で規定する範囲より大きく、軌道面の直下に、大きな酸化物系介在物又は硫化物系介在物が存在すると推定され、これら酸化物系介在物又は硫化物系介在物の存在に基づいて寿命が短くなったものと考えられる。
更に、比較例9は、硬さが本発明で規定する範囲より低く、この為、介在物周辺の応力集中によって、バタフライ型組織変化が生じ易く、寿命が短くなったものと考えられる。
On the other hand, in Comparative Examples 4 and 5, the composition of the alloy steel was outside the range specified in the present invention, so that the butterfly structure change was likely to occur, and the rolling fatigue life was shortened.
In Comparative Examples 6 and 7, the size of the oxide inclusions or sulfide inclusions predicted by the extreme value statistical method is larger than the range defined in the present invention, and a large oxide type is directly below the raceway surface. It is presumed that inclusions or sulfide inclusions are present, and it is considered that the lifetime is shortened based on the presence of these oxide inclusions or sulfide inclusions.
Further, in Comparative Example 9, the hardness is lower than the range defined in the present invention, and therefore, it is considered that the butterfly structure change is likely to occur due to the stress concentration around the inclusions and the life is shortened.

図5に、寿命試験後の試料の切断面の顕微鏡写真を示す。この図5のうちの(A)は、比較例5の剥離部の近傍に観察された酸化物系介在物を示している。酸化物系介在物の周辺に、白く見えるバタフライ型組織変化が発生している。又、図5の(B)は、実施例2の剥離部の近傍に観察された酸化物系介在物を示している。酸化物系介在物の大きさに関する限り、比較例5の場合と大きな相違は無いが、バタフライ型組織変化は小さい。この事から、合金鋼の組成の違いにより、組織変化が遅延して、介在物起点型剥離に関する寿命が延びたものと考えられる。   In FIG. 5, the microscope picture of the cut surface of the sample after a lifetime test is shown. FIG. 5A shows the oxide inclusions observed in the vicinity of the peeled portion of Comparative Example 5. FIG. A butterfly structure change that appears white occurs around the oxide inclusions. FIG. 5B shows oxide inclusions observed in the vicinity of the peeled portion of Example 2. As far as the size of the oxide inclusions is concerned, there is no significant difference from the case of Comparative Example 5, but the butterfly structure change is small. From this, it is considered that due to the difference in the composition of the alloy steel, the structural change was delayed, and the life regarding the inclusion-origin separation was extended.

次に、転がり軸受の大きさが及ぼす影響を知る為に行った実験に就いて説明する。この実験では、呼び番号が6320である玉軸受(内径100mm、外径215mm、幅47mm)の内輪と外輪との間に、SUJ2製の玉(直径36.512mm)を組み込み、鋼製のプレス保持器(波型保持器)により保持して、比較例10〜12である試験軸受とした。そして、これら比較例10〜12に就いて、前記表2に示した各実施例及び各比較例の場合と同様に軸受寿命試験を実施し、累積破損確率が10%となる寿命(L10寿命)を求めた。試験条件は次の通りである。
ラジアル荷重 : 86730N
回転速度 : 2000min−1
回転条件 : 内輪回転
潤滑油 : ISO−VG68相当の鉱油(強制循環方式)
Next, an experiment conducted to know the influence of the size of the rolling bearing will be described. In this experiment, a SUJ2 ball (diameter: 36.512 mm) was assembled between the inner ring and outer ring of a ball bearing (inner diameter: 100 mm, outer diameter: 215 mm, width: 47 mm) having a nominal number of 6320, and a steel press was held. A test bearing which is Comparative Examples 10 to 12 was held by a vessel (wave type cage). And about these comparative examples 10-12, a bearing life test is implemented similarly to the case of each Example and each comparative example shown in the said Table 2, and the lifetime (L10 life) in which a cumulative failure probability becomes 10%. Asked. The test conditions are as follows.
Radial load: 86730N
Rotational speed: 2000 min -1
Rotating condition: Inner ring rotation Lubricating oil: Mineral oil equivalent to ISO-VG68 (forced circulation method)

前記比較例10〜12の試験軸受を構成する外輪及び内輪の加工条件及び軸受寿命試験の結果を、下記の表3に示す。
Table 3 below shows the processing conditions of the outer ring and the inner ring constituting the test bearings of Comparative Examples 10 to 12 and the results of the bearing life test.

この表3から明らかな通り、比較例10〜12の様に軸受サイズが大きくなると、本願発明と同様の組成を有する合金鋼により造った軌道輪に本願発明の場合と同様の熱処理を施しても、軸受寿命の延長効果を得られない。一方、呼び番号が6206よりも小さい玉軸受に関しては、極値統計法により予想した大型介在物を含む可能性がより小さくなるので、本発明を実施する効果がより大きくなる事は明らかである。
以上に述べた実験結果から、軸受部品を構成する合金鋼の組成、極値統計法で予測される酸化物系介在物の大きさ、同じく硫化物系介在物の厚さ、硬さ、転がり軸受の大きさを適正範囲内とする事によって、介在物周辺に形成するバタフライ型組織変化を遅延させて、介在物起点型の剥離寿命を延長できる事が分かる。
As is apparent from Table 3, when the bearing size is increased as in Comparative Examples 10 to 12, even if the bearing ring made of the alloy steel having the same composition as the present invention is subjected to the same heat treatment as in the present invention, The bearing life cannot be extended. On the other hand, for ball bearings with an identification number smaller than 6206, the possibility of including large inclusions predicted by the extreme value statistical method becomes smaller, so it is clear that the effect of carrying out the present invention becomes larger.
From the experimental results described above, the composition of the alloy steel constituting the bearing parts, the size of the oxide inclusions predicted by the extreme value statistical method, the thickness of the sulfide inclusions, the hardness, the rolling bearing It can be seen that by setting the size of the material within the appropriate range, the butterfly structure change formed around the inclusions can be delayed to extend the inclusion-origin type peeling life.

上述した軸受寿命試験は、本発明を深溝型のラジアル玉軸受に適用した場合に就いて行ったが、本発明は、アンギュラ玉軸受やスラスト玉軸受等のその他の玉軸受、円筒ころ軸受、円すいころ軸受、自動調心ころ軸受、ニードル軸受等のころ軸受、ボールねじやリニアガイド等の特殊な転がり軸受に適用しても、同様の効果が得られる。但し、本発明を実施する事により効果が得られるサイズは、転がり軸受の種類により異なる。   The bearing life test described above was performed when the present invention was applied to a deep groove type radial ball bearing. However, the present invention is not limited to other ball bearings such as angular ball bearings and thrust ball bearings, cylindrical roller bearings, conical bearings. The same effect can be obtained when applied to roller bearings such as roller bearings, self-aligning roller bearings, needle bearings, and special rolling bearings such as ball screws and linear guides. However, the size at which the effect can be obtained by carrying out the present invention differs depending on the type of rolling bearing.

1 ラジアル玉軸受
2、2a、2b、2c 外輪軌道
3、3a、3b、3c 外輪
4、4a、4b、4c 内輪軌道
5、5a、5b、5c 内輪
6 玉
7、7a、7b、7c 保持器
8 円筒ころ
9 ラジアル円筒ころ軸受
10 内向鍔部
11 外向鍔部
12 円すいころ
13 ラジアル円すいころ軸受
14 大径側鍔部
15 小径側鍔部
16 自動調心ころ軸受
17 球面ころ
DESCRIPTION OF SYMBOLS 1 Radial ball bearing 2, 2a, 2b, 2c Outer ring raceway 3, 3a, 3b, 3c Outer ring 4, 4a, 4b, 4c Inner ring raceway 5, 5a, 5b, 5c Inner ring 6 Ball 7, 7a, 7b, 7c Cage 8 Cylindrical roller 9 Radial cylindrical roller bearing 10 Inward flange 11 Outward flange 12 Tapered roller 13 Radial tapered roller bearing 14 Large diameter flange 15 Small diameter flange 16 Spherical roller bearing 17 Spherical roller

Claims (4)

何れかの面に第一の軌道面を有する第一の軌道輪と、この第一の軌道面と対向する面に第二の軌道面を有する第二の軌道輪と、これら第一、第二の両軌道面同士の間に転動自在に設けられた複数個の転動体とを備えた転がり軸受に於いて、
前記第一の軌道輪と前記第二の軌道輪とこれら各転動体とのうちの少なくとも1種の部材である軸受部品が、
Cを0.85〜1.15質量%、Siを0.40〜0.90質量%、Mnを0.55〜1.20質量%、Crを1.30〜1.90質量%、Moを0.30質量%以下、Niを0.30質量%以下、Cuを0.20質量%以下、Sを0.025質量%以下、Pを0.020質量%以下、Oを15質量ppm以下、それぞれ含有し、残部をFeと不可避的不純物とした鋼により造られており、
この鋼により造られた前記軸受部品に関して、極値統計法により、面積30000mmに存在する酸化物系介在物の大きさに関する最大値を予測した場合に、最大の酸化物系介在物の面積の平方根が22μm以上50μm以下で、同じく面積30000mmに存在する硫化物系介在物の最大厚さを予測した場合に、この最大厚さが15μm以下であり、且つ、焼き入れ・焼き戻し後の硬さが、Hv697〜800である事を特徴とする
転がり軸受。
A first raceway having a first raceway surface on any surface, a second raceway having a second raceway surface on a surface opposite to the first raceway surface, and the first and second In a rolling bearing provided with a plurality of rolling elements provided between the raceway surfaces of the two rolling elements,
A bearing component which is at least one member of the first race ring, the second race ring, and each of the rolling elements,
C is 0.85 to 1.15% by mass, Si is 0.40 to 0.90% by mass, Mn is 0.55 to 1.20% by mass, Cr is 1.30 to 1.90% by mass, Mo is 0.30 mass% or less, Ni 0.30 mass% or less, Cu 0.20 mass% or less, S 0.025 mass% or less, P 0.020 mass% or less, O 15 mass ppm or less, Each containing, made of steel with the remainder as Fe and inevitable impurities,
When the maximum value related to the size of oxide inclusions existing in an area of 30000 mm 2 is predicted by the extreme value statistical method for the bearing part made of this steel, the area of the maximum oxide inclusions is When the maximum thickness of sulfide inclusions having a square root of 22 μm or more and 50 μm or less and also having an area of 30000 mm 2 is predicted, this maximum thickness is 15 μm or less, and the hardened material after quenching / tempering is hardened. Is a rolling bearing characterized by being Hv697-800.
前記第一、第二の軌道面が、母線形状が部分円弧形の軌道溝の表面であり、前記各転動体が玉であり、前記両軌道輪各部の直径のうちの最大直径が180mm以下で、且つ、これら各玉の直径が30.2mm以下である、請求項1に記載した転がり軸受。   The first and second raceway surfaces are surfaces of raceway grooves having a partial arc shape in the generatrix shape, the rolling elements are balls, and the maximum diameter of the diameters of each part of the raceways is 180 mm or less. The rolling bearing according to claim 1, wherein the diameter of each ball is 30.2 mm or less. 請求項1の条件を満たす鋼により造られた軸受部品の鋼中の残留オーステナイト量が、10容量%〜20容量%である、請求項1〜2のうちの何れか1項に記載した転がり軸受。   The rolling bearing according to any one of claims 1 to 2, wherein the amount of retained austenite in the steel of the bearing part made of steel satisfying the condition of claim 1 is 10% by volume to 20% by volume. . 前記各玉の直径に対する前記軌道溝の曲率半径の比が53%以上、54%以下である、請求項2又はこの請求項2を引用した請求項3に記載した転がり軸受。   The rolling bearing according to claim 2, wherein the ratio of the radius of curvature of the raceway groove to the diameter of each ball is 53% or more and 54% or less.
JP2012278595A 2012-12-20 2012-12-20 Rolling bearing Pending JP2014122378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012278595A JP2014122378A (en) 2012-12-20 2012-12-20 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012278595A JP2014122378A (en) 2012-12-20 2012-12-20 Rolling bearing

Publications (2)

Publication Number Publication Date
JP2014122378A true JP2014122378A (en) 2014-07-03
JP2014122378A5 JP2014122378A5 (en) 2015-12-03

Family

ID=51403115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012278595A Pending JP2014122378A (en) 2012-12-20 2012-12-20 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2014122378A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027726A1 (en) * 2014-08-18 2016-02-25 Ntn株式会社 Rolling component, material for same, and method for manufacturing rolling component
WO2016063558A1 (en) * 2014-10-21 2016-04-28 日本精工株式会社 Rolling bearing
WO2016088724A1 (en) * 2014-12-04 2016-06-09 日本精工株式会社 Rolling bearing for washing machine
WO2016088391A1 (en) * 2014-12-04 2016-06-09 日本精工株式会社 Rolling bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291340A (en) * 1996-02-29 1997-11-11 Kawasaki Steel Corp Bearing material
JP2006063402A (en) * 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd Steel used in parts for machinery superior in rolling fatigue life
JP2009204075A (en) * 2008-02-27 2009-09-10 Nsk Ltd Rolling bearing
JP2012220015A (en) * 2011-04-14 2012-11-12 Nsk Ltd Rolling guide device
JP2013241986A (en) * 2012-05-21 2013-12-05 Nsk Ltd Rolling bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291340A (en) * 1996-02-29 1997-11-11 Kawasaki Steel Corp Bearing material
JP2006063402A (en) * 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd Steel used in parts for machinery superior in rolling fatigue life
JP2009204075A (en) * 2008-02-27 2009-09-10 Nsk Ltd Rolling bearing
JP2012220015A (en) * 2011-04-14 2012-11-12 Nsk Ltd Rolling guide device
JP2013241986A (en) * 2012-05-21 2013-12-05 Nsk Ltd Rolling bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027726A1 (en) * 2014-08-18 2016-02-25 Ntn株式会社 Rolling component, material for same, and method for manufacturing rolling component
JP2016041955A (en) * 2014-08-18 2016-03-31 Ntn株式会社 Rolling part, rolling part material, and rolling part manufacturing method
CN106574661A (en) * 2014-08-18 2017-04-19 Ntn株式会社 Rolling component, material for same, and method for manufacturing rolling component
CN106574661B (en) * 2014-08-18 2019-08-16 Ntn株式会社 The manufacturing method of rolling member and its material and rolling member
WO2016063558A1 (en) * 2014-10-21 2016-04-28 日本精工株式会社 Rolling bearing
WO2016088724A1 (en) * 2014-12-04 2016-06-09 日本精工株式会社 Rolling bearing for washing machine
WO2016088391A1 (en) * 2014-12-04 2016-06-09 日本精工株式会社 Rolling bearing

Similar Documents

Publication Publication Date Title
JP5453839B2 (en) Rolling bearing
JP2014074212A (en) Rolling and sliding member, manufacturing method thereof, and rolling bearing
JP2015042897A (en) Method of manufacturing screw shaft of ball screw, and ball screw
JP2012224931A (en) Rolling sliding member, method of manufacturing the same, and rolling bearing
JP5998631B2 (en) Rolling bearing
JP2014122378A (en) Rolling bearing
JP5163183B2 (en) Rolling bearing
JP2013249500A (en) Rolling bearing
JP2010025311A (en) Rolling bearing and method of manufacturing the same
JP2008151236A (en) Rolling bearing
JP4968106B2 (en) Rolling bearing
JP2009242893A (en) Holder for rolling bearing and its surface treatment method
JP2010031307A (en) Roller bearing
JP5857433B2 (en) Method for manufacturing rolling guide device
JP2011190921A (en) Thrust roller bearing
JP2006328514A (en) Rolling supporting device
JP2008232212A (en) Rolling device
JP2005232543A (en) Ball screw
JP6015251B2 (en) Rolling bearing
JP2006045591A (en) Tapered roller bearing
JP5966350B2 (en) Rolling bearing
JP2010209965A (en) Cage for rolling bearing
JP5119717B2 (en) Method for manufacturing rolling bearing component and rolling bearing
JP2015232156A (en) Rolling shaft bearing
JP2019090475A (en) Rolling bearing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314