JP2012031456A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2012031456A
JP2012031456A JP2010170574A JP2010170574A JP2012031456A JP 2012031456 A JP2012031456 A JP 2012031456A JP 2010170574 A JP2010170574 A JP 2010170574A JP 2010170574 A JP2010170574 A JP 2010170574A JP 2012031456 A JP2012031456 A JP 2012031456A
Authority
JP
Japan
Prior art keywords
mass
less
content
rolling
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010170574A
Other languages
Japanese (ja)
Inventor
Masako Tsutsumi
雅子 堤
Hideyuki Uyama
英幸 宇山
Koki Yamada
紘樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010170574A priority Critical patent/JP2012031456A/en
Publication of JP2012031456A publication Critical patent/JP2012031456A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve rolling fatigue life of a rolling bearing, which is used under conditions where structure changing type peeling is likely to occur, such as a bearing for a wind turbine, and a bearing for a construction machine.SOLUTION: An inner ring 1 is formed by using a material, which is an alloy steel containing 0.95-1.1 mass% [C], 0.20-0.70 mass% [Si], 0.30-1.2 mass% [Mn], 0.90-1.6 mass% [Cr], 0.30 mass% or less [Mo], 0.20 mass% or less [Ni] and [Cu], 0.02 mass% or less [S], 0.02 mass% or less [P], and 12 ppm or less [O], and contains an oxide inclusion with a diameter 10 μm or more of 10 pieces/320 mm, and by carburizing or carbonitriding, and quenching and tempering. In a 1%D position of a raceway surface, [C+N] is 1.10-1.50 mass%; Hv is 700-800; a residual austenite amount is 20-40 vol.%; a compression residual stress is 50-200 MPa, and surface roughness is 1.0 μm or less at a maximum peak height (Rp) of a roughness curve.

Description

この発明は、転がり軸受に関する。   The present invention relates to a rolling bearing.

風力発電用風車(以下、単に「風車」と称する。)の回転軸(翼が取り付けられたロータの主軸、ロータと発電機との間に配置された変速機の入力軸および出力軸)を支持する転がり軸受としては、例えば、外径が180mm以上(特に280mm以上)である大型のころ軸受が使用されている。
転がり軸受の軌道輪と転動体は、両者の接触部に高い面圧が発生し、内部に高い剪断応力が発生するため、これに耐え得る硬さとなっている必要がある。特に、大型の軸受では、剪断応力が内部の深くまで作用するため、深い位置まで硬くなっていることが要求される。また、ころ軸受は、軌道輪と転動体の接触面積が大きいため、剪断応力が作用する領域が大きい。玉軸受の場合でも、玉(転動体)の直径が30mm以上である大形の転がり軸受では、剪断応力が作用する領域が大きい。
Supports the rotating shaft of the wind turbine for wind power generation (hereinafter simply referred to as “wind turbine”) (the main shaft of the rotor to which the blades are attached, the input shaft and the output shaft of the transmission disposed between the rotor and the generator). As the rolling bearing to be used, for example, a large roller bearing having an outer diameter of 180 mm or more (particularly 280 mm or more) is used.
Since the bearing ring and the rolling element of the rolling bearing generate a high surface pressure at the contact portion between them, and a high shear stress is generated inside, it is necessary to have a hardness that can withstand this. In particular, large bearings are required to be hardened to a deep position because shear stress acts deep inside. Moreover, since the roller bearing has a large contact area between the race and the rolling element, a region where shear stress acts is large. Even in the case of a ball bearing, a large rolling bearing having a ball (rolling element) with a diameter of 30 mm or more has a large area on which shear stress acts.

風車用軸受は、軌道輪と転動体の間に滑りが発生しやすい条件下で使用される。軌道輪と転動体の間に大きな滑りが発生すると、転動体と軌道輪との間に膜状に存在する潤滑油(油膜)が切れ易くなり、切れた部分で金属接触が生じる。金属接触が生じると一時的に金属の新生面が形成され、化学的に活性な状態となるため、潤滑油が分解して水素が発生し易くなり、発生した水素が軌道輪および転動体をなす鋼に侵入し易くなる。   A windmill bearing is used under conditions where slippage is likely to occur between the race and the rolling elements. When a large slip occurs between the raceway and the rolling element, the lubricating oil (oil film) that exists in the form of a film between the rolling element and the raceway easily breaks, and metal contact occurs at the cut part. When metal contact occurs, a newly formed metal surface is temporarily formed and chemically active, so that the lubricating oil decomposes and hydrogen is likely to be generated, and the generated hydrogen forms steel that forms the race and rolling elements. It becomes easy to invade.

また、風車用軸受は回転速度が変わりやすい。そして、回転速度が変わりやすい用途では、軌道輪と転動体の間に油膜を安定して形成するために、鉱油ではなく、ポリアルキレングリコール系などの合成油が用いられることがある。合成油のなかには、鉱油より水素を発生しやすいものがある。
潤滑油から発生した水素は、軌道輪および転動体をなす鋼に侵入して、転がり軸受の組織変化型剥離を加速させる要因となると考えられている。組織変化型剥離とは、鋼の金属組織がマルテンサイトから超微細なフェライトに変化し、フェライトになった部分が起点となって疲労亀裂が生じ、剥離に至る現象である。
Further, the rotational speed of the wind turbine bearing is likely to change. In applications where the rotational speed is variable, synthetic oil such as polyalkylene glycol is sometimes used instead of mineral oil in order to stably form an oil film between the race and the rolling elements. Some synthetic oils are more prone to generate hydrogen than mineral oil.
It is considered that hydrogen generated from the lubricating oil penetrates into the steel forming the race and rolling elements, and is a factor that accelerates the structure change type separation of the rolling bearing. The structure change-type peeling is a phenomenon in which the metal structure of steel changes from martensite to ultrafine ferrite, and fatigue cracks are generated starting from the portion where the ferrite is formed, leading to peeling.

建設機械の車軸や変速機の入出力軸を支持する転がり軸受においても、例えば、外径が180mm以上である大型の玉軸受およびころ軸受が使用されている。
建設機械は、前進と後進を繰り返しながら使用されるため、転がり軸受の回転方向もその度毎に変化する。回転方向が頻繁に変化すると、転動体と軌道輪との間の油膜が切れ易くなり、切れた部分で金属接触が生じるため、前述のように、潤滑油が分解して水素が発生し易くなり、発生した水素が軌道輪および転動体をなす鋼に侵入し易くなる。
For example, large ball bearings and roller bearings having an outer diameter of 180 mm or more are used in rolling bearings that support an axle of a construction machine and an input / output shaft of a transmission.
Since construction machines are used while repeating forward and reverse, the rotational direction of the rolling bearing changes each time. If the direction of rotation changes frequently, the oil film between the rolling element and the raceway will be easily cut, and metal contact will occur at the cut part, and as described above, the lubricating oil will decompose and hydrogen will be generated easily. The generated hydrogen is likely to enter the steel forming the race and rolling elements.

このように、風車用軸受や建設機械用軸受には組織変化型剥離が生じ易い。
従来より、転がり軸受の組織変化型剥離を抑制するための提案がなされている(特許文献1〜3等を参照)。特許文献1および2は、エンジン補機用の転がり軸受に関するものであり、使用する鋼のクロム含有率が2.5〜17%、3〜9%と高いことで、コストが高くなるとともに、熱処理特性と加工性の低下に伴って生産性が低くなる。
As described above, the structure change-type peeling is likely to occur in the wind turbine bearing and the construction machine bearing.
2. Description of the Related Art Conventionally, proposals have been made to suppress the structure change type separation of rolling bearings (see Patent Documents 1 to 3, etc.). Patent Documents 1 and 2 relate to rolling bearings for engine accessories, and the chromium content of the steel used is as high as 2.5 to 17% and 3 to 9%, resulting in high costs and heat treatment. Productivity decreases with decreasing properties and processability.

特許文献3には、風車の回転軸を支持する用途に好適なころ軸受として、内輪、外輪、およびころの何れかを、下記の構成(a) を満たす合金鋼、または構成(a) と構成(b) の両方を満たす合金鋼からなる素材を所定形状に加工した後、浸炭または浸炭窒化を行わず、焼入れ焼戻しを行って得られたものが記載されている。
(a) 炭素含有率〔C〕が0.90質量%以上1.2質量%以下、珪素含有率〔Si〕が0.20質量%以上0.70質量%以下、マンガン含有率〔Mn〕が0.30質量%以上1.2質量%以下、クロム含有率〔Cr〕が0.90質量%以上1.6質量%以下、モリブデン含有率〔Mo〕が0.30質量%以下、残部が鉄(Fe)および不可避不純物であり、下記の(1)式で表されるDI値が5.0以上9.0以下を満たす。
DI=(0.18〔C〕+0.16)(0.7〔Si〕+1.0)(3.4〔Mn〕+1.0)(2.2〔Cr〕+1.0)(3.0〔Mo〕+1.0)‥‥(1)
(b) 転走部(内輪および外輪の軌道面部、ころの転動面部)の最大厚さをt(mm)とした時に下記の(2)式を満たす。DI/t≧0.20‥‥(2)
Patent Document 3 discloses that any of an inner ring, an outer ring, and a roller as a roller bearing suitable for supporting a rotating shaft of a windmill is alloy steel satisfying the following configuration (a), or a configuration (a) and a configuration: A material obtained by processing a material made of alloy steel satisfying both of (b) into a predetermined shape and quenching and tempering without carburizing or carbonitriding is described.
(a) The carbon content [C] is 0.90% by mass or more and 1.2% by mass or less, the silicon content [Si] is 0.20% by mass or more and 0.70% by mass or less, and the manganese content [Mn] is 0.30 mass% or more and 1.2 mass% or less, chromium content [Cr] is 0.90 mass% or more and 1.6 mass% or less, molybdenum content [Mo] is 0.30 mass% or less, and the balance is iron (Fe) and inevitable impurities, the DI value represented by the following formula (1) satisfies 5.0 or more and 9.0 or less.
DI = (0.18 [C] +0.16) (0.7 [Si] +1.0) (3.4 [Mn] +1.0) (2.2 [Cr] +1.0) (3.0 [Mo] +1.0) (1)
(b) When the maximum thickness of the rolling part (the raceway surface part of the inner ring and the outer ring, the rolling surface part of the roller) is t (mm), the following formula (2) is satisfied. DI / t ≧ 0.20 (2)

特許文献3に記載された発明では、軌道輪および転動体の内部に不完全焼入れ組織があると、潤滑油の分解で生じた水素をトラップして金属組織の変化が生じやすく、これを起点とした剥離が生じて、転動疲労寿命の低下の原因となるため、軌道輪および転動体に不完全焼入れ組織が生じないようにしている。   In the invention described in Patent Document 3, if there is an incompletely hardened structure inside the raceway and the rolling element, the hydrogen generated by the decomposition of the lubricating oil is trapped and the metal structure is likely to change. As a result of the occurrence of such peeling, the rolling fatigue life is reduced, so that an incompletely hardened structure is prevented from occurring in the race and the rolling element.

特開2005−163893号公報JP 2005-163893 A 特許第4273609号公報Japanese Patent No. 4273609 特開2010−31307号公報JP 2010-31307 A

しかしながら、特許文献3に記載された転がり軸受には、組織変化型剥離が生じ易い条件で使用した場合の転動疲労寿命を長くするという点でさらなる改善の余地がある。
この発明の課題は、風車用軸受や建設機械用軸受のように、組織変化型剥離が生じ易い条件で使用する転がり軸受の転動疲労寿命を、より一層長くすることである。
However, the rolling bearing described in Patent Document 3 has room for further improvement in terms of extending the rolling fatigue life when used under conditions in which structure change-type separation is likely to occur.
An object of the present invention is to further increase the rolling fatigue life of a rolling bearing used under conditions in which structure change-type separation is likely to occur, such as a wind turbine bearing and a construction machine bearing.

上記課題を解決するために、この発明の転がり軸受は、内輪、外輪、および転動体の少なくとも何れかが、下記の構成(1) および(2) を有することを特徴とする。また、下記の構成(1) 〜(3) を有することが好ましい。
(1) 炭素含有率〔C〕が0.95質量%以上1.10質量%以下、珪素含有率〔Si〕が0.20質量%以上0.70質量%以下、マンガン含有率〔Mn〕が0.30質量%以上1.2質量%以下、クロム含有率〔Cr〕が0.90質量%以上1.6質量%以下、モリブデン含有率〔Mo〕が0.25質量%以下、ニッケル含有率〔Ni〕が0.20質量%以下、銅含有率〔Cu〕が0.20質量%以下、硫黄含有率〔S〕が0.02質量%以下、リン含有率〔P〕が0.02質量%以下、酸素含有率〔O〕が12質量ppm以下、残部が鉄(Fe)および不可避不純物である合金鋼からなり、任意の切断面で面積320mm2 当たりに存在する直径10μm以上の酸化物系介在物が10個以下である素材を所定形状に加工した後、浸炭または浸炭窒化と焼入れ焼戻しを行って得られる。
(2) 転がり面の表面(内外輪の軌道面、転動体の転動面)から転動体の直径の0.01倍に相当する深さの位置で、炭素と窒素の合計含有率〔C+N〕が1.10質量%以上1.50質量%以下、ビッカース硬さ(Hv)が700以上800以下であり、残留オーステナイト量が20体積%以上40体積%以下であり、圧縮残留応力が50MPa以上200MPa以下である。
(3) 転がり面(内外輪の軌道面、転動体の転動面)の表面粗さが、粗さ曲線の最大山高さ(Rp)で1.0μm以下である。
In order to solve the above-described problems, the rolling bearing of the present invention is characterized in that at least one of an inner ring, an outer ring, and a rolling element has the following configurations (1) and (2). Moreover, it is preferable to have the following configurations (1) to (3).
(1) Carbon content [C] is 0.95 mass% or more and 1.10 mass% or less, Silicon content [Si] is 0.20 mass% or more and 0.70 mass% or less, and manganese content [Mn] is 0.30% by mass to 1.2% by mass, chromium content [Cr] of 0.90% by mass to 1.6% by mass, molybdenum content [Mo] of 0.25% by mass or less, nickel content [Ni] is 0.20 mass% or less, copper content [Cu] is 0.20 mass% or less, sulfur content [S] is 0.02 mass% or less, and phosphorus content [P] is 0.02 mass%. %, Oxygen content [O] is 12 mass ppm or less, the balance is iron (Fe) and an inevitable impurity alloy steel, and an oxide system having a diameter of 10 μm or more per 320 mm 2 area at an arbitrary cut surface After processing a material with 10 or less inclusions into a predetermined shape, carburization or Obtained by performing carbonitride and quenching and tempering.
(2) Total content of carbon and nitrogen [C + N] at a position corresponding to 0.01 times the diameter of the rolling element from the surface of the rolling surface (the raceway surface of the inner and outer rings, the rolling surface of the rolling element) 1.10 mass% or more and 1.50 mass% or less, Vickers hardness (Hv) is 700 or more and 800 or less, residual austenite amount is 20 volume% or more and 40 volume% or less, and compressive residual stress is 50 MPa or more and 200 MPa. It is as follows.
(3) The surface roughness of the rolling surfaces (the raceway surfaces of the inner and outer rings, the rolling surfaces of the rolling elements) is 1.0 μm or less in terms of the maximum peak height (Rp) of the roughness curve.

[構成(1) で使用する合金鋼の組成について]
〔C〕を0.95質量%以上1.10質量%以下とする理由は以下の通りである。
炭素(C)は、焼入れによって基地(マトリックス)に固溶し、組織をマルテンサイト化することで鋼を強化する元素である。また、他の合金元素と結合して鋼中に硬い炭化物を形成させ、耐摩耗性を向上させる作用も有する。さらに、オーステナイトを安定化する元素であるため、残留オーステナイト量を多くする作用も有する。
[Composition of alloy steel used in configuration (1)]
The reason why [C] is 0.95 mass% or more and 1.10 mass% or less is as follows.
Carbon (C) is an element that strengthens steel by solid solution in matrix (matrix) by quenching and martensifying the structure. Moreover, it has the effect | action which combines with another alloy element and forms hard carbide | carbonized_material in steel, and improves abrasion resistance. Furthermore, since it is an element that stabilizes austenite, it also has the effect of increasing the amount of retained austenite.

残留オーステナイトの存在により鋼に侵入した水素が拡散し難くなるため、残留オーステナイト量が多いほど、水素が局所に集積し難くなって、鋼の組織変化が生じることを抑制できる。
これらの作用を得るために、炭素含有率を0.95質量%以上とする。
ただし、炭素含有率が1.10質量%を超えると、鋼中に粗大な炭化物が生成しやすくなり、靱性および加工性が不十分となる。
Since hydrogen that has penetrated into the steel becomes difficult to diffuse due to the presence of residual austenite, the larger the amount of residual austenite, the more difficult it is for hydrogen to accumulate locally, and the occurrence of structural changes in the steel can be suppressed.
In order to obtain these effects, the carbon content is set to 0.95% by mass or more.
However, if the carbon content exceeds 1.10% by mass, coarse carbides are easily generated in the steel, and the toughness and workability become insufficient.

〔Si〕を0.20質量%以上0.70質量%以下とする理由は以下の通りである。
珪素(Si)は、精鋼時に脱酸剤として作用する。また、基地に固溶して焼入れ性を向上させる作用を有する。さらに、マルテンサイトを安定化する元素であるため、水素によるマルテンサイトからフェライトへの組織変化を抑制する作用を有する。珪素含有率が0.20質量%未満であると、その作用が実質的に得られない。好ましくは0.50質量%以上とする。
ただし、珪素含有率が0.70質量%を超えると、靱性、冷間加工性および被削性が不十分となる。
The reason why [Si] is 0.20 mass% or more and 0.70 mass% or less is as follows.
Silicon (Si) acts as a deoxidizer during refining. Moreover, it has the effect | action which improves hardenability by making it dissolve in a base. Furthermore, since it is an element that stabilizes martensite, it has the effect of suppressing the structural change from martensite to ferrite due to hydrogen. If the silicon content is less than 0.20% by mass, the action cannot be substantially obtained. Preferably it is 0.50 mass% or more.
However, when the silicon content exceeds 0.70% by mass, toughness, cold workability and machinability become insufficient.

〔Mn〕を0.30質量%以上1.2質量%以下とする理由は以下の通りである。
マンガン(Mn)は、基地に固溶して焼入れ性を向上させる作用を有する。また、マルテンサイトを安定化する元素であるため、水素によるマルテンサイトからフェライトへの組織変化を抑制する作用を有する。さらに、オーステナイトを安定化する元素でもあるため、鋼の組織変化の原因となる水素の局所集積を抑制する残留オーステナイト量を多くする作用も有する。マンガン含有率が0.30質量%未満であると、その作用が実質的に得られない。好ましくは0.90質量%以上とする。
ただし、マンガン含有率が1.2質量%を超えると、残留オーステナイト量が多くなり過ぎて寸法安定性が低下する。
The reason why [Mn] is 0.30 mass% or more and 1.2 mass% or less is as follows.
Manganese (Mn) has the effect of improving the hardenability by dissolving in the matrix. Moreover, since it is an element which stabilizes martensite, it has the effect | action which suppresses the structure change from the martensite to a ferrite by hydrogen. Furthermore, since it is also an element that stabilizes austenite, it also has the effect of increasing the amount of retained austenite that suppresses local accumulation of hydrogen, which causes the structural change of steel. If the manganese content is less than 0.30% by mass, the action cannot be substantially obtained. Preferably it is 0.90 mass% or more.
However, if the manganese content exceeds 1.2% by mass, the amount of retained austenite increases too much and the dimensional stability decreases.

〔Cr〕を0.90質量%以上1.6質量%以下とする理由は以下の通りである。
クロム(Cr)は、基地に固溶して焼入れ性を向上させる作用を有する。また、炭素と結合して鋼中に硬い炭化物を形成し、耐摩耗性を向上させる作用を有する。また、マルテンサイトを安定化する元素であるため、水素によるマルテンサイトからフェライトへの組織変化を抑制する作用を有する。クロム含有率が0.90質量%未満であると、これらの作用が実質的に得られない。
ただし、クロムは高価な元素であるため含有率は少ない方が好ましい。また、クロム含有率が1.6質量%を超えると、化学的に安定した炭化物を形成するために焼入れ温度を高くする必要があるため、生産性が低下する。
The reason why [Cr] is 0.90 mass% or more and 1.6 mass% or less is as follows.
Chromium (Cr) has the effect of improving the hardenability by solid solution in the base. Moreover, it has the effect | action which combines with carbon and forms a hard carbide | carbonized_material in steel, and improves abrasion resistance. Moreover, since it is an element which stabilizes martensite, it has the effect | action which suppresses the structure change from the martensite to a ferrite by hydrogen. When the chromium content is less than 0.90% by mass, these effects are not substantially obtained.
However, since chromium is an expensive element, it is preferable that the content is small. On the other hand, when the chromium content exceeds 1.6% by mass, it is necessary to increase the quenching temperature in order to form a chemically stable carbide, and thus the productivity is lowered.

〔Mo〕を0.25質量%以下とする理由は以下の通りである。
モリブデン(Mo)は、基地に固溶して焼入れ性および焼戻し軟化抵抗性を向上させる作用を有する。また、炭素と結合して鋼中に硬い炭化物を形成し、耐摩耗性を向上させる作用を有する。また、マルテンサイトを安定化する元素であるため、水素によるマルテンサイトからフェライトへの組織変化を抑制する作用を有する。さらに、オーステナイトを安定化する元素でもあるため、鋼の組織変化の原因となる水素の局所集積を抑制する残留オーステナイト量を多くする作用も有する。
The reason for making [Mo] 0.25 mass% or less is as follows.
Molybdenum (Mo) has a function of improving the hardenability and temper softening resistance by dissolving in a matrix. Moreover, it has the effect | action which combines with carbon and forms a hard carbide | carbonized_material in steel, and improves abrasion resistance. Moreover, since it is an element which stabilizes martensite, it has the effect | action which suppresses the structure change from the martensite to a ferrite by hydrogen. Furthermore, since it is also an element that stabilizes austenite, it also has the effect of increasing the amount of retained austenite that suppresses local accumulation of hydrogen, which causes the structural change of steel.

モリブデンは高価な元素であり、必須成分ではないが、その含有率が0.01質量%未満であると、これらの作用が実質的に得られないため、モリブデンを含有させる場合にはその含有率を0.01質量%以上とする。
ただし、モリブデン含有率が0.25質量%を超えると、冷間加工性および被削性が不十分となって、生産性が低下する。
Molybdenum is an expensive element and is not an essential component, but if its content is less than 0.01% by mass, these effects cannot be substantially obtained. Is 0.01% by mass or more.
However, if the molybdenum content exceeds 0.25% by mass, the cold workability and machinability become insufficient, and the productivity decreases.

〔Ni〕を0.20質量%以下とする理由は以下の通りである。
ニッケル(Ni)は、基地に固溶して焼入れ性および靱性を向上させる作用を有する。また、オーステナイトを安定化する元素であるため、鋼の組織変化の原因となる水素の局所集積を抑制する残留オーステナイト量を多くする作用を有する。
ニッケルは高価な元素であるため、含有率を0.20質量%以下とする。また、ニッケルは必須成分ではないが、その含有率が0.01質量%未満であると、これらの作用が実質的に得られないため、ニッケルを含有させる場合にはその含有率を0.01質量%以上とする。
The reason why [Ni] is 0.20 mass% or less is as follows.
Nickel (Ni) has the effect of improving the hardenability and toughness by dissolving in the matrix. Moreover, since it is an element which stabilizes austenite, it has the effect | action which increases the amount of retained austenite which suppresses local accumulation | storage of the hydrogen which causes the structure | tissue change of steel.
Since nickel is an expensive element, the content is made 0.20% by mass or less. Nickel is not an essential component, but if its content is less than 0.01% by mass, these effects cannot be substantially obtained. Not less than mass%.

〔Cu〕を0.20質量%以下とする理由は以下の通りである。
銅(Cu)は、基地に固溶して焼入れ性および粒界強度を向上させる作用を有する。銅は必須成分ではないが、その含有率が0.02質量%未満であるとこれらの作用が実質的に得られないため、銅を含有させる場合にはその含有率を0.02質量%以上とする。
ただし、銅の含有率が0.20質量%を超えると、熱間鍛造性が不十分となって、生産性が低下する。
The reason why [Cu] is 0.20 mass% or less is as follows.
Copper (Cu) has a function of improving the hardenability and grain boundary strength by dissolving in a matrix. Copper is not an essential component, but if the content is less than 0.02% by mass, these effects cannot be substantially obtained. Therefore, when copper is contained, the content is 0.02% by mass or more. And
However, if the copper content exceeds 0.20% by mass, the hot forgeability becomes insufficient and the productivity decreases.

〔S〕を0.02質量%以下とする理由は以下の通りである。
硫黄(S)は、マンガン(Mn)と結合してMnSを形成し、介在物となるため、その含有率を0.02質量%以下にする。
〔P〕を0.02質量%以下とする理由は以下の通りである。
リン(P)は、結晶粒界に偏析して、粒界強度や破壊靱性を低下させるため、その含有率を0.02質量%以下にする。
〔O〕を12質量ppm以下とする理由は以下の通りである。
酸素(O)は、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)等と結合してAl2 3 、MgO、CaO等の酸化物を形成する。これらの酸化物は介在物となり、剥離の起点となるため、その含有率を12質量ppm以下にする。
The reason why [S] is 0.02 mass% or less is as follows.
Sulfur (S) combines with manganese (Mn) to form MnS and become inclusions, so the content is made 0.02% by mass or less.
The reason why [P] is 0.02 mass% or less is as follows.
Phosphorus (P) segregates at the crystal grain boundaries and lowers the grain boundary strength and fracture toughness, so the content is made 0.02% by mass or less.
The reason for making [O] 12 mass ppm or less is as follows.
Oxygen (O) combines with aluminum (Al), magnesium (Mg), calcium (Ca) and the like to form oxides such as Al 2 O 3 , MgO and CaO. Since these oxides become inclusions and serve as starting points for peeling, the content is made 12 mass ppm or less.

[構成(1) で使用する素材に存在する酸化物系介在物について]
鋼に大きな非金属介在物が存在すると、介在物の周りに応力が集中して、介在物を起点とした疲労亀裂が生じ、剥離の原因となる。また、鋼に侵入した水素は応力集中部に集積し易いため、大きな非金属介在物の周りには鋼の組織変化も生じ易い。
非金属介在物のうち、Al2 3 、MgO、CaO等の酸化物系介在物であって、大きさが直径10μm以上であるものは、亀裂の起点となり易い。酸化物系介在物の大きさが10μm未満の場合は、介在物を起点とした亀裂が生じる前に、鋼の基地組織が水素で変化し、これに伴う亀裂が生じる。よって、直径10μm未満の酸化物系介在物が存在していても実質的に有害にならない。
これらの観点から、介在物を起点とした疲労亀裂が生じることを抑制するために、任意の切断面で面積320mm2 当たりに存在する直径10μm以上の酸化物系介在物が10個以下である素材を用いている。
[About oxide inclusions in the material used in configuration (1)]
When large non-metallic inclusions are present in steel, stress concentrates around the inclusions, resulting in fatigue cracks starting from the inclusions and causing peeling. Further, since hydrogen that has penetrated into the steel is likely to accumulate in the stress concentration portion, the structure of the steel is likely to change around large non-metallic inclusions.
Among non-metallic inclusions, oxide inclusions such as Al 2 O 3 , MgO, CaO and the like having a diameter of 10 μm or more are likely to be the origin of cracks. When the size of the oxide inclusions is less than 10 μm, the base structure of the steel is changed by hydrogen before the cracks starting from the inclusions, and the accompanying cracks are generated. Therefore, even if oxide inclusions having a diameter of less than 10 μm are present, it is not substantially harmful.
From these viewpoints, in order to suppress the occurrence of fatigue cracks starting from inclusions, a material having 10 or less oxide inclusions having a diameter of 10 μm or more per 320 mm 2 area at an arbitrary cut surface Is used.

[構成(2) について]
前記構成(1) の素材に対して浸炭または浸炭窒化と焼入れ焼戻しを行うことで、軸受部品(内輪、外輪、転動体のいずれか)の表層部に炭素または炭素と窒素が導入される。構成(2) は、この表層部の性状を特定している。
先ず、表層部の性状を特定する位置を、転がり面の表面から転動体の直径(ころの場合は、最大直径)の0.01倍に相当する深さ(以下、「1%D」と称する。)に設定している。
1%D位置の周辺は、軌道輪と転動体との接触部の材料内部に生じる剪断応力が最大になる位置であって、水素の局所集積が生じ易いため、この位置での性状を水素による組織変化が生じないように特定する。
[Configuration (2)]
Carburizing or carbonitriding and quenching and tempering are performed on the material having the structure (1), whereby carbon or carbon and nitrogen are introduced into the surface layer portion of the bearing component (inner ring, outer ring, or rolling element). Configuration (2) specifies the properties of the surface layer.
First, the position for specifying the properties of the surface layer portion is referred to as a depth corresponding to 0.01 times the diameter of the rolling element (maximum diameter in the case of rollers) from the surface of the rolling surface (hereinafter referred to as “1% D”). .) Is set.
The area around the 1% D position is the position where the shear stress generated inside the material at the contact portion between the race and the rolling element is maximized, and local accumulation of hydrogen is likely to occur. Identifies organizational changes.

1%D位置での炭素と窒素の合計含有率〔C+N〕を1.10質量%以上1.50質量%以下とする理由は以下の通りである。
1%D位置での炭素と窒素の合計含有率〔C+N〕を1.10質量%以上とすることで、転がり面に必要な硬さを得るとともに、表層部の残留オーステナイト量を多くして組織変化の抑制作用を得る。1%D位置での炭素と窒素の合計含有率〔C+N〕が1.50質量%を超えると、転がり面に必要な靱性が不足する。
The reason why the total content [C + N] of carbon and nitrogen at the 1% D position is 1.10% by mass or more and 1.50% by mass or less is as follows.
By making the total content [C + N] of carbon and nitrogen at the 1% D position 1.10% by mass or more, the necessary hardness for the rolling surface can be obtained, and the amount of retained austenite in the surface layer portion can be increased. Get the effect of suppressing changes. When the total content [C + N] of carbon and nitrogen at the 1% D position exceeds 1.50 mass%, the toughness necessary for the rolling surface is insufficient.

1%D位置でのビッカース硬さ(Hv)を700以上800以下とする理由は以下の通りである。
1%D位置でのビッカース硬さ(Hv)を700以上とすることで、鋼に水素が侵入した場合でも局所的な塑性変形が生じ難くなるため、水素による組織変化を抑制できる。これは、水素による組織変化が鋼に局所的な塑性変形が生じることで引き起こされるという知見に基づく。1%D位置でのビッカース硬さが800を超えると、転がり面に必要な破壊靱性値が得られない。
The reason why the Vickers hardness (Hv) at the 1% D position is 700 or more and 800 or less is as follows.
By setting the Vickers hardness (Hv) at the 1% D position to 700 or more, local plastic deformation is less likely to occur even when hydrogen enters the steel, so that structural changes due to hydrogen can be suppressed. This is based on the finding that the structural change caused by hydrogen is caused by local plastic deformation in steel. If the Vickers hardness at the 1% D position exceeds 800, the fracture toughness value required for the rolling surface cannot be obtained.

1%D位置での残留オーステナイト量を20体積%以上40体積%以下とする理由は以下の通りである。
1%D位置での残留オーステナイト量を20体積%以上とすることで、残留オーステナイトによる鋼の組織変化を抑制する作用を得る。1%D位置での残留オーステナイト量が40体積%を超えると、寸法安定性が不良となる。
The reason why the amount of retained austenite at the 1% D position is 20% by volume or more and 40% by volume or less is as follows.
By setting the amount of retained austenite at the 1% D position to 20% by volume or more, an effect of suppressing the structural change of the steel due to retained austenite is obtained. If the amount of retained austenite at the 1% D position exceeds 40% by volume, the dimensional stability becomes poor.

1%D位置での圧縮残留応力を50MPa以上200MPa以下とする理由は以下の通りである。
1%D位置に存在する圧縮残留応力は、水素による組織変化から生じた亀裂の進展を抑制する作用を有する。50MPa未満ではこの作用が実質的に得られず、200MPaを超えると、圧縮残留応力と釣り合う大きさで内部に発生する引張残留応力の作用によって、亀裂の進展が促進される場合がある。
The reason why the compressive residual stress at the 1% D position is 50 MPa or more and 200 MPa or less is as follows.
The compressive residual stress existing at the 1% D position has an action of suppressing the progress of cracks caused by the structural change caused by hydrogen. If the pressure is less than 50 MPa, this effect is not substantially obtained. If the pressure exceeds 200 MPa, the progress of the crack may be promoted by the action of the tensile residual stress generated in the interior in a size that is commensurate with the compressive residual stress.

[構成(3) について]
転がり面の表面粗さが粗いと、油膜が切れ易くなり、油膜が切れた部分で軌道輪と転動体が金属接触し、組織変化の原因となる潤滑油の分解や水素の侵入が生じ易くなる。通常、転がり軸受の転がり面の表面粗さは算術平均粗さ(Ra)で管理されているが、粗さ曲線の最大山高さ(Rp)の方が油膜の切れ易さの指標としては適している。そして、転がり面の表面粗さが粗さ曲線の最大山高さ(Rp)で1.0μmを超えると、油膜が切れて部分的な金属接触が生じ易くなるため、1.0μm以下とした。
[Configuration (3)]
If the rolling surface has a rough surface, the oil film is easily cut, and the raceway and the rolling element are in metal contact at the part where the oil film is cut, which makes it easier for the lubricant to break down and to invade hydrogen, which can cause structural changes. . Normally, the surface roughness of the rolling surface of a rolling bearing is controlled by arithmetic average roughness (Ra), but the maximum peak height (Rp) of the roughness curve is more suitable as an index of oil film breakability. Yes. And, when the surface roughness of the rolling surface exceeds 1.0 μm in the maximum peak height (Rp) of the roughness curve, the oil film is cut and partial metal contact is likely to occur.

転がり面の表面粗さの粗さ曲線の最大山高さ(Rp)を1.0μm以下とすることは、研削加工で、砥石の種類、研削速度等の加工条件を最適化することにより達成できる。また、転がり面の(転がり面が玉の表面の場合は円周方向で、それ以外の場合は軸方向で)5〜10箇所について測定を行い(粗さ曲線を得)、その中での粗さ曲線の最大山高さ(Rp)が1.0μm以下となるようにする。   Setting the maximum peak height (Rp) of the roughness curve of the surface roughness of the rolling surface to 1.0 μm or less can be achieved by optimizing the processing conditions such as the type of grinding wheel and the grinding speed in the grinding process. In addition, the measurement is performed for 5 to 10 points on the rolling surface (in the circumferential direction when the rolling surface is the surface of the ball, and in the axial direction in other cases) (obtains a roughness curve), The maximum peak height (Rp) of the curvature curve is set to 1.0 μm or less.

[好適な用途]
転動体の直径が30mm以上の転がり軸受は、軌道輪と転動体の接触面積が大きいため油膜が安定して形成されにくくなり、局所的に金属接触が生じやすいことに起因して、潤滑油が分解して水素が発生し易くなり、発生した水素が軌道輪および転動体をなす鋼に侵入し易くなる。
また、歯車で動力を伝達する変速機の軸を支持し、軸に作用するトルクの方向が一時的に変化する用途では、転動体と軌道輪との間に大きな滑りが発生するため、潤滑膜が切れやすくなって金属接触が生じることに起因して、潤滑油が分解して水素が発生し易くなり、発生した水素が軌道輪および転動体をなす鋼に侵入し易くなる。
[Preferred use]
A rolling bearing having a rolling element with a diameter of 30 mm or more has a large contact area between the bearing ring and the rolling element, so that it is difficult to form an oil film stably. Hydrogen is easily generated by decomposition, and the generated hydrogen easily enters the steel forming the race and rolling elements.
Also, in applications where the shaft of a transmission that transmits power with a gear is supported and the direction of the torque acting on the shaft changes temporarily, a large slip occurs between the rolling elements and the raceway. As a result, the lubricant is easily decomposed and hydrogen is easily generated, and the generated hydrogen easily enters the steel forming the race and the rolling elements.

転がり軸受の回転方向が頻繁に変化する用途では、転動体と軌道輪との間の油膜が切れ易くなり、切れた部分で金属接触が生じるため、潤滑油が分解して水素が発生し易くなり、発生した水素が軌道輪および転動体をなす鋼に侵入し易くなる。
この発明の転がり軸受は組織変化型剥離が生じ難いものであるため、転動体の直径(ころの場合は、最大直径)が30mm以上の大形の転がり軸受として好適であり、風力発電用風車の回転軸を支持する用途、建設機械の回転軸を支持する用途で好適に使用される。より具体的には、風力発電用風車の主軸や増速機(変速機)の回転軸を支持する用途、建設機械の車軸や変速機の回転軸を支持する用途で好適に使用される。
In applications where the rolling direction of the rolling bearing changes frequently, the oil film between the rolling elements and the raceway ring is likely to break, and metal contact occurs at the cut portion, so that the lubricating oil decomposes and hydrogen is likely to be generated. The generated hydrogen is likely to enter the steel forming the race and rolling elements.
Since the rolling bearing according to the present invention is unlikely to cause structure change type separation, it is suitable as a large rolling bearing having a rolling element diameter (maximum diameter in the case of a roller) of 30 mm or more. It is suitably used in applications that support a rotating shaft and applications that support a rotating shaft of a construction machine. More specifically, it is suitably used in applications that support a main shaft of a wind turbine for wind power generation and a rotating shaft of a speed increaser (transmission), and applications that support an axle of a construction machine and a rotating shaft of a transmission.

また、風力発電用風車の変速機の入出力軸(増速機の回転軸)を支持する用途は、歯車で動力を伝達する変速機の軸を支持し、軸に作用するトルクの方向が一時的に変化する用途に含まれ、建設機械の車軸を支持する用途は、転がり軸受の回転方向が頻繁に変化する用途に含まれる。   Also, the purpose of supporting the input / output shaft of the wind turbine transmission for wind power generation (the rotating shaft of the gearbox) is to support the shaft of the transmission that transmits power with gears, and the direction of the torque acting on the shaft is temporarily The application that supports the axle of the construction machine is included in the application in which the rotation direction of the rolling bearing frequently changes.

この発明の転がり軸受によれば、風車用軸受や建設機械用軸受のように、組織変化型剥離が生じ易い条件で使用した場合の転動疲労寿命を長くすることができる。   According to the rolling bearing of the present invention, the rolling fatigue life can be extended when it is used under the condition that the structure change type separation is likely to occur, such as a windmill bearing or a construction machine bearing.

この発明の第1実施形態に相当する玉軸受を示す断面図である。It is sectional drawing which shows the ball bearing corresponded to 1st Embodiment of this invention.

以下、この発明の実施形態について説明する。
図1は、この実施形態の玉軸受を示す断面図である。この玉軸受は、内輪1、外輪2、ボール(転動体)3、および保持器4で構成されている。
図1の形状の玉軸受として、呼び番号「6317」の玉軸受(内径:85mm、外径:180mm、幅:41mm、ボール直径:30.2mm)を作製する。
外輪2とボール3は、SUJ2製の素材を用い、通常の方法で作製した。内輪1は以下の方法で作製した。内輪1用の素材として、表1の鋼種A〜Mからなる円柱状の素材をそれぞれ用意した。なお、鋼種HはSUJ2である。
Embodiments of the present invention will be described below.
FIG. 1 is a cross-sectional view showing a ball bearing of this embodiment. The ball bearing includes an inner ring 1, an outer ring 2, a ball (rolling element) 3, and a cage 4.
As a ball bearing having the shape of FIG. 1, a ball bearing having an identification number “6317” (inner diameter: 85 mm, outer diameter: 180 mm, width: 41 mm, ball diameter: 30.2 mm) is manufactured.
The outer ring 2 and the ball 3 were made by a normal method using SUJ2 material. The inner ring 1 was produced by the following method. As the material for the inner ring 1, columnar materials made of steel types A to M in Table 1 were prepared. Steel type H is SUJ2.

また、各素材の径方向を10等分にした各箇所の切断面を鏡面に研磨して、研磨面を光学顕微鏡で観察することにより、複数箇所の任意の断面で、面積320mm2 当たりに存在する「直径10μm以上の酸化物系介在物」の数を調べた。そして、この数の複数箇所の断面における最大値を、「介在物の数」として表1に示した。 In addition, by polishing the cut surface of each part with the radial direction of each material into 10 equal parts to a mirror surface and observing the polished surface with an optical microscope, the cross section exists at an area of 320 mm 2 in an arbitrary cross section The number of “oxide inclusions having a diameter of 10 μm or more” was examined. And the maximum value in the cross section of this number of several places was shown in Table 1 as "the number of inclusions."

Figure 2012031456
Figure 2012031456

先ず、円柱状の各素材を所定長さに切断した後、熱間ローリング加工、球状化焼鈍、および旋削加工を行って、内輪1の形状とした。次に、以下にア〜ウで示す種類の熱処理を行った。次いで、研削加工を行った。
<熱処理ア:浸炭→焼入れ焼戻し>
780〜880℃の各温度に調整されたRxガス+エンリッチガス雰囲気に8時間保持する浸炭処理を行った後、油冷する焼入れを行い、次いで160〜240℃の各温度で2時間保持する焼戻しを行った後、空冷する。
First, each cylindrical material was cut to a predetermined length, and then subjected to hot rolling, spheroidizing annealing, and turning to obtain the shape of the inner ring 1. Next, the following types of heat treatments indicated by A to U were performed. Next, grinding was performed.
<Heat treatment: carburization → quenching and tempering>
Carburizing treatment is performed for 8 hours in an Rx gas + enriched gas atmosphere adjusted to temperatures of 780 to 880 ° C., followed by quenching with oil cooling, and then tempering for 2 hours at temperatures of 160 to 240 ° C. After performing, air cool.

<熱処理イ:浸炭窒化→焼入れ焼戻し>
780〜880℃の各温度に調整されたRxガス+エンリッチガス+アンモニアガス雰囲気に8時間保持する浸炭窒化処理を行った後、油冷する焼入れを行い、次いで160〜240℃の各温度で2時間保持する焼戻しを行った後、空冷する。
<熱処理ウ:焼入れ焼戻し>
840℃のRxガス雰囲気に1時間保持した後、油冷する焼入れを行い、次いで180℃で2時間保持する焼戻しを行った後、空冷する。
得られた内輪1、外輪2、ボール3と、一般的な鋼板の打ち抜き形の保持器4を用いて、図1の玉軸受を各3体組み立てて、以下の条件で回転試験を行い、内輪1、外輪2、ボール3のいずれかに剥離等の破壊が生じるまでの時間(寿命)を調べた。また、剥離が生じている面に組織変化が有るかどうかを光学顕微鏡で観察した。
<Heat treatment a: carbonitriding → quenching and tempering>
After carbonitriding for 8 hours in an atmosphere of Rx gas + enriched gas + ammonia gas adjusted to each temperature of 780 to 880 ° C., quenching with oil cooling is performed, and then at each temperature of 160 to 240 ° C., 2 After tempering for a long time, air-cool.
<Heat treatment: Quenching and tempering>
After holding in an Rx gas atmosphere at 840 ° C. for 1 hour, quenching by oil cooling is performed, and then tempering by holding at 180 ° C. for 2 hours is performed, followed by air cooling.
Using the obtained inner ring 1, outer ring 2, ball 3 and general steel punched cage 4, each of the three ball bearings shown in FIG. 1 is assembled and subjected to a rotation test under the following conditions. The time (life) until breakage such as peeling occurred in any of 1, outer ring 2 and ball 3 was examined. Further, it was observed with an optical microscope whether or not there was a change in structure on the surface where peeling occurred.

<試験条件>
ラジアル荷重:66.2kN
回転速度:2000min-1
潤滑剤:高トラクション油(分解して水素が生じ易い潤滑油)
各サンプルの3体の軸受寿命の平均値(平均寿命)を算出し、各サンプルの平均寿命から、サンプルNo. 1−11の平均寿命を「1」とした相対値を算出した。その結果も表2に併せて示す。
<Test conditions>
Radial load: 66.2kN
Rotational speed: 2000 min -1
Lubricant: High traction oil (lubricating oil that is liable to decompose and generate hydrogen)
The average value (average life) of the bearing life of the three bodies of each sample was calculated, and the relative value with the average life of sample No. 1-11 as “1” was calculated from the average life of each sample. The results are also shown in Table 2.

また、得られた内輪1について、軌道面の1%D位置での炭素と窒素の合計含有率〔C+N〕を、電子線マイクロアナライザ (EPMA)で測定した。
また、得られた内輪1の軌道面を含む一部を切り出し、切断面を鏡面に研磨してビッカース硬さ測定用の試験片を作製した。この試験片を用い、マイクロビッカース硬さ測定機により、軌道面の1%D位置のビッカース硬さを10カ所で測定し、10カ所の測定値の平均値を算出した。
Further, with respect to the obtained inner ring 1, the total content [C + N] of carbon and nitrogen at the 1% D position on the raceway surface was measured with an electron beam microanalyzer (EPMA).
Further, a part including the raceway surface of the obtained inner ring 1 was cut out, and the cut surface was polished into a mirror surface to prepare a test piece for measuring Vickers hardness. Using this test piece, the Vickers hardness at the 1% D position on the raceway surface was measured at 10 locations with a micro Vickers hardness measuring machine, and the average value of the measured values at 10 locations was calculated.

また、得られた内輪1の軌道面を含む一部を切り出し、軌道面を電解研磨して1%D位置の残留オーステナイト量(体積%)と圧縮残留応力をX線回折装置により測定した。この測定を1%D位置の3カ所以上で行い、平均値を算出した。
また、得られた内輪1の軌道面の表面粗さを、軸方向の8カ所で、軸方向に各4mmの長さで測定し、算術平均粗さ(Ra)と粗さ曲線の最大山高さ(Rp)を調べた。
これらの結果を表2に併せて示す。
なお、表2の「寿命(相対値):5.0以上」は、サンプルNo. 1−11の寿命の5.0倍以上の時間が経過しても剥離が生じなかったため、試験を打ち切ったことを示す。また、剥離は全て内輪に生じ、剥離が生じていた軌道面には組織変化が生じていた。
Moreover, a part including the raceway surface of the obtained inner ring 1 was cut out, the raceway surface was electropolished, and the amount of retained austenite (volume%) and compressive residual stress at the 1% D position were measured with an X-ray diffractometer. This measurement was performed at three or more locations at the 1% D position, and an average value was calculated.
Further, the surface roughness of the raceway surface of the obtained inner ring 1 was measured at 8 points in the axial direction with a length of 4 mm each in the axial direction, and the arithmetic average roughness (Ra) and the maximum peak height of the roughness curve were measured. (Rp) was examined.
These results are also shown in Table 2.
Note that “life (relative value): 5.0 or more” in Table 2 was terminated because no peeling occurred even after 5.0 times or more of the life of sample No. 1-11 passed. It shows that. Further, all the peeling occurred on the inner ring, and the change in the structure occurred on the raceway surface where the peeling occurred.

Figure 2012031456
Figure 2012031456

No. 1−1〜1−10とNo. 1−15とNo. 1−20は、No. 1−11の3.0倍以上の寿命が得られた。このうち、No. 1−15とNo. 1−20は、内輪軌道面の1%D位置での残留オーステナイト量が40を超えており、寸法安定性の点で問題がある。
No. 1−1〜1−10は前記構成(1) および(2) を満たすものであるが、このうち鋼種A〜Cからなる素材を用いたNo. 1−1〜1−6は、鋼種A〜Cが〔Si〕と〔Mn〕の両方が好ましい範囲(0.50質量%≦〔Si〕≦0.70質量%、0.90質量%≦〔Mn〕≦1.20質量%)を満たすため、No. 1−11の5.0倍以上の寿命が得られた。
No. 1-1 to 1-10, No. 1-15 and No. 1-20 had a life of 3.0 times or more that of No. 1-11. Among these, No. 1-15 and No. 1-20 have a problem in terms of dimensional stability because the amount of retained austenite at the 1% D position of the inner ring raceway surface exceeds 40.
Nos. 1-1 to 1-10 satisfy the above-described configurations (1) and (2). Among these, Nos. 1-1 to 1-6 using a material made of steel types A to C are steel types. A to C are in a range where both [Si] and [Mn] are preferable (0.50 mass% ≦ [Si] ≦ 0.70 mass%, 0.90 mass% ≦ [Mn] ≦ 1.20 mass%). In order to satisfy, the life of 5.0 times or more of No. 1-11 was obtained.

No. 1−1〜1−6のうち、粗さ曲線の最大山高さ(Rp)が1.0μmを超える(前記構成(3) を満たさない)No. 1−1,1−3,1−5は、軌道面に組織変化が見られたが、粗さ曲線の最大山高さ(Rp)が1.0μm以下である(前記構成(3) を満たす)No. 1−2,1−4,1−6には軌道面に組織変化が見られなかった。したがって、試験を打ち切らずに続行した場合、No. 1−1,1−3,1−5はNo. 1−2,1−4,1−6より寿命が短くなると推定される。   Among No. 1-1 to 1-6, the maximum peak height (Rp) of the roughness curve exceeds 1.0 μm (does not satisfy the configuration (3)) No. 1-1, 1-3, 1- No. 1-2, 1-4, No. 1-2, 1-4, in which a change in structure was observed on the raceway surface, but the maximum peak height (Rp) of the roughness curve was 1.0 μm or less (satisfying the configuration (3)). In 1-6, no structural change was observed on the raceway surface. Therefore, when the test is continued without being terminated, it is estimated that No. 1-1, 1-3, 1-5 has a shorter life than No. 1-2, 1-4, 1-6.

以上の結果から、ボール3の直径が30.2mmである図1の玉軸受であって、前記構成(1) および(2) を満たす軸受は、前記構成(1) および(2) のいずれかを満たさない軸受よりも、水素が侵入し易い条件で使用した時の寿命が長く、特に前記構成(1) 〜(3) の全てを満たす軸受は、水素が侵入し易い条件(潤滑剤の種類と転動体の直径が30mm以上であること)で使用した時の寿命をさらに長くできることが分かる。
なお、この実施形態では玉軸受について説明しているが、この発明の転がり軸受はころ軸受も含むことは言うまでもない。また、この実施形態の玉軸受やこれと同程度の寸法の玉軸受やころ軸受は、風車の増速機(変速機)の回転軸を支持する用途や、建設機械の車軸および変速機の回転軸を支持する用途で使用される。
From the above results, the ball bearing of FIG. 1 in which the diameter of the ball 3 is 30.2 mm, and the bearing satisfying the configurations (1) and (2) is any of the configurations (1) and (2). Compared to bearings that do not satisfy the above conditions, the service life is longer when used under conditions that allow hydrogen to enter. Especially, bearings that satisfy all of the above-mentioned configurations (1) to (3) have conditions that allow hydrogen to enter (the type of lubricant). And that the rolling element has a diameter of 30 mm or more).
In this embodiment, the ball bearing is described, but it goes without saying that the rolling bearing of the present invention includes a roller bearing. In addition, the ball bearing of this embodiment or a ball bearing or roller bearing of the same size as this is used for supporting the rotating shaft of a wind turbine speed increaser (transmission), or rotating the axle of a construction machine and the transmission. Used in applications that support the shaft.

1 内輪
2 外輪
3 ボール(転動体)
4 保持器
1 Inner ring 2 Outer ring 3 Ball (rolling element)
4 Cage

Claims (5)

内輪、外輪、および転動体の少なくとも何れかは、
炭素含有率〔C〕が0.95質量%以上1.1質量%以下、珪素含有率〔Si〕が0.20質量%以上0.70質量%以下、マンガン含有率〔Mn〕が0.30質量%以上1.2質量%以下、クロム含有率〔Cr〕が0.90質量%以上1.6質量%以下、モリブデン含有率〔Mo〕が0.30質量%以下、ニッケル含有率〔Ni〕が0.20質量%以下、銅含有率〔Cu〕が0.20質量%以下、硫黄含有率〔S〕が0.02質量%以下、リン含有率〔P〕が0.02質量%以下、酸素含有率〔O〕が12ppm以下、残部が鉄(Fe)および不可避不純物である合金鋼からなり、任意の断面で面積320mm2 当たりに存在する直径10μm以上の酸化物系介在物が10個以下である素材を所定形状に加工した後、浸炭または浸炭窒化と焼入れ焼戻しを行って得られ、
転がり面の表面から転動体の直径の0.01倍に相当する深さの位置で、炭素と窒素の合計含有率〔C+N〕が1.10質量%以上1.50質量%以下、ビッカース硬さ(Hv)が700以上800以下であり、残留オーステナイト量が20体積%以上40体積%以下であり、圧縮残留応力が50MPa以上200MPa以下であることを特徴とする転がり軸受。
At least one of the inner ring, the outer ring, and the rolling element is
The carbon content [C] is 0.95 mass% to 1.1 mass%, the silicon content [Si] is 0.20 mass% to 0.70 mass%, and the manganese content [Mn] is 0.30. % By mass to 1.2% by mass, chromium content [Cr] of 0.90% by mass to 1.6% by mass, molybdenum content [Mo] of 0.30% by mass or less, nickel content [Ni] Is 0.20 mass% or less, copper content [Cu] is 0.20 mass% or less, sulfur content [S] is 0.02 mass% or less, phosphorus content [P] is 0.02 mass% or less, The oxygen content [O] is 12 ppm or less, the balance is iron (Fe) and an inevitable impurity alloy steel, and there are 10 or less oxide inclusions having a diameter of 10 μm or more per 320 mm 2 in an arbitrary cross section. After the material is processed into a predetermined shape, carburizing or carbonitriding and firing Obtained by performing tempering,
At a position corresponding to a depth corresponding to 0.01 times the diameter of the rolling element from the surface of the rolling surface, the total content of carbon and nitrogen [C + N] is 1.10 mass% or more and 1.50 mass% or less, Vickers hardness A rolling bearing characterized in that (Hv) is 700 or more and 800 or less, the amount of retained austenite is 20 volume% or more and 40 volume% or less, and the compressive residual stress is 50 MPa or more and 200 MPa or less.
転がり面の表面粗さが粗さ曲線の最大山高さ(Rp)で1.0μm以下である請求項1記載の転がり軸受。   The rolling bearing according to claim 1, wherein the surface roughness of the rolling surface is 1.0 μm or less in terms of the maximum peak height (Rp) of the roughness curve. 転動体の直径が30mm以上である請求項1または2記載の転がり軸受。   The rolling bearing according to claim 1 or 2, wherein the rolling element has a diameter of 30 mm or more. 風力発電用風車の回転軸を支持する用途で使用される請求項1または2記載の転がり軸受。   The rolling bearing according to claim 1 or 2, which is used for supporting a rotating shaft of a wind turbine for wind power generation. 建設機械の回転軸を支持する用途で使用される請求項1または2記載の転がり軸受。   The rolling bearing according to claim 1 or 2, which is used for supporting a rotating shaft of a construction machine.
JP2010170574A 2010-07-29 2010-07-29 Rolling bearing Pending JP2012031456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170574A JP2012031456A (en) 2010-07-29 2010-07-29 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170574A JP2012031456A (en) 2010-07-29 2010-07-29 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2012031456A true JP2012031456A (en) 2012-02-16

Family

ID=45845209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170574A Pending JP2012031456A (en) 2010-07-29 2010-07-29 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2012031456A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221179A (en) * 2012-04-17 2013-10-28 Nsk Ltd Rolling bearing
JP2013241986A (en) * 2012-05-21 2013-12-05 Nsk Ltd Rolling bearing
JP2014047403A (en) * 2012-08-31 2014-03-17 Nsk Ltd Rolling bearing
WO2014061699A1 (en) 2012-10-17 2014-04-24 Ntn株式会社 Bearing element, rolling bearing and process for producing bearing element
JP2014084938A (en) * 2012-10-23 2014-05-12 Nsk Ltd Rolling bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221179A (en) * 2012-04-17 2013-10-28 Nsk Ltd Rolling bearing
JP2013241986A (en) * 2012-05-21 2013-12-05 Nsk Ltd Rolling bearing
JP2014047403A (en) * 2012-08-31 2014-03-17 Nsk Ltd Rolling bearing
WO2014061699A1 (en) 2012-10-17 2014-04-24 Ntn株式会社 Bearing element, rolling bearing and process for producing bearing element
KR20150067358A (en) 2012-10-17 2015-06-17 에누티에누 가부시기가이샤 Bearing element, rolling bearing and process for producing bearing element
US9951816B2 (en) 2012-10-17 2018-04-24 Ntn Corporation Bearing part, rolling bearing, and method for manufacturing bearing part
JP2014084938A (en) * 2012-10-23 2014-05-12 Nsk Ltd Rolling bearing

Similar Documents

Publication Publication Date Title
JP4576842B2 (en) Rolling bearing and belt type continuously variable transmission using the same
JP5728844B2 (en) Rolling bearing
JP2013011010A (en) Rolling bearing and method of manufacturing the same
WO2013084800A1 (en) Rolling bearing and method for producing same
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
JP4441947B2 (en) Rolling bearing
JP4998054B2 (en) Rolling bearing
JP2012031456A (en) Rolling bearing
JP6007562B2 (en) Rolling bearing
JP5076274B2 (en) Rolling bearing
JP5998631B2 (en) Rolling bearing
JP5736937B2 (en) Rolling bearing
JP6027925B2 (en) Carbon nitride bearing parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2018021654A (en) Rolling slide member, its manufacturing method, carburization steel material and rolling bearing
JP5640528B2 (en) Rolling bearing
JP6238124B2 (en) Carbon nitrided steel with excellent surface fatigue strength and carbonitrided parts using the same
JP5999485B2 (en) Carbon nitrided parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2010031307A (en) Roller bearing
JP2011190921A (en) Thrust roller bearing
JP6448405B2 (en) Carbon nitride bearing parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2015206066A (en) rolling bearing
JP5966350B2 (en) Rolling bearing
JP2008266683A (en) Method for producing rolling bearing constituting member, and rolling bearing
JP5119717B2 (en) Method for manufacturing rolling bearing component and rolling bearing
JP2006045591A (en) Tapered roller bearing