JP2008266683A - Method for producing rolling bearing constituting member, and rolling bearing - Google Patents
Method for producing rolling bearing constituting member, and rolling bearing Download PDFInfo
- Publication number
- JP2008266683A JP2008266683A JP2007108343A JP2007108343A JP2008266683A JP 2008266683 A JP2008266683 A JP 2008266683A JP 2007108343 A JP2007108343 A JP 2007108343A JP 2007108343 A JP2007108343 A JP 2007108343A JP 2008266683 A JP2008266683 A JP 2008266683A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- content
- rolling bearing
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Articles (AREA)
- Rolling Contact Bearings (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
この発明は転がり軸受構成部材の製造方法に関する。 The present invention relates to a method for manufacturing a rolling bearing component.
転がり軸受の寿命を長くするための従来技術としては、軌道面の硬さと介在物に着目した方法が主である。軸受に用いられる鋼としては、そのまま焼入れを行って十分な表面強度が得られる高炭素鋼と、浸炭または浸炭窒化を行って表面を硬化する低炭素鋼(肌焼鋼)がある。大きな靱性や耐衝撃強度が求められる用途では、低炭素鋼を用いて表面を硬化する方法が採用されることが多い。 As a conventional technique for extending the life of a rolling bearing, a method that focuses on the hardness of the raceway surface and inclusions is mainly used. As steel used for the bearing, there are high carbon steel that can be quenched as it is to obtain sufficient surface strength, and low carbon steel (hardened steel) that is hardened by carburizing or carbonitriding. In applications where high toughness and impact strength are required, a method of hardening the surface using low carbon steel is often employed.
下記の特許文献1には、鋼製ローラの支持軸受等の大型軸受のように、軌道面に浸炭窒化層を深く形成する必要がある場合に、希土類元素の存在下で浸炭を行うことで、浸炭時間を短くすることが記載されている。
下記の特許文献2には、多段圧延機のバックアップロール用転がり軸受について、内輪の酸化物系介在物の大きさと単位面積当たりの個数を特定することにより、内輪の損傷を抑え、軸受寿命を長くすることが記載されている。
Patent Document 2 below specifies the size of the oxide inclusions in the inner ring and the number per unit area of the rolling bearing for the backup roll of the multi-high rolling mill, thereby suppressing damage to the inner ring and extending the bearing life. It is described to do.
外径が200mm以上である大型の転がり軸受では、厚さも大きく形成されるため、焼入れによる完全硬化層の深さが不十分となり、焼入れが不完全な部分に起因する疲労限度や寿命の低下が懸念される。特に、浸炭または浸炭窒化された場合には、硬化層と芯部との境界(切れ目)に引っ張りの残留応力が存在するため、この部分に応力集中元となる不完全焼入れ組織(ベイナイト)が存在すると、その部分が起点となって破壊が生じる恐れがある。 A large rolling bearing with an outer diameter of 200 mm or more is formed to have a large thickness, so that the depth of the completely hardened layer due to quenching becomes insufficient, resulting in a decrease in fatigue limit and life due to incomplete quenching. Concerned. In particular, when carburized or carbonitrided, there is a residual tensile stress at the boundary (cut) between the hardened layer and the core, and therefore there is an incompletely quenched structure (bainite) that is the source of stress concentration in this part. Then, there is a possibility that destruction will occur starting from that part.
本発明の課題は、鋼からなる素材を所定形状に加工した後、浸炭または浸炭窒化処理を行い、次いで焼入れ焼戻しを行うことで製造される、転がり軸受の内輪、外輪、および転動体において、前述のような内部起点の破壊を抑制して、転がり軸受を長寿命化することにある。 An object of the present invention is to manufacture the inner ring, outer ring, and rolling element of a rolling bearing manufactured by processing a raw material made of steel into a predetermined shape, followed by carburizing or carbonitriding, followed by quenching and tempering. It is to extend the life of the rolling bearing by suppressing the destruction of the internal starting point.
上記課題を解決するために、本発明は、鋼からなる素材を所定形状に加工した後、浸炭または浸炭窒化処理を行い、次いで焼入れ焼戻しを行うことにより、転がり軸受の内輪、外輪、および転動体からなる構成部材を製造する方法において、下記の構成(a) と(b) を満たす鋼を使用することを特徴とする転がり軸受構成部材の製造方法を提供する。
また、芯部の硬度(ビッカース硬さ:Hv)の平均値Mと標準偏差σが下記の(3)式を満たすことが好ましい。
M−4σ≧400‥‥(3)
In order to solve the above problems, the present invention provides an inner ring, an outer ring, and a rolling element of a rolling bearing by processing a raw material made of steel into a predetermined shape, followed by carburizing or carbonitriding, followed by quenching and tempering. A method for manufacturing a rolling bearing component is provided, wherein a steel satisfying the following configurations (a) and (b) is used.
Moreover, it is preferable that the average value M and the standard deviation σ of the core hardness (Vickers hardness: Hv) satisfy the following expression (3).
M-4σ ≧ 400 (3)
[構成 (a)]
炭素含有率〔C〕が0.10質量%以上0.20質量%以下、珪素含有率〔Si〕が0.10質量%以上0.50質量%以下、マンガン含有率〔Mn〕が0.20質量%以上0.60質量%以下、ニッケル含有率〔Ni〕が3.00質量%以上5.00質量%以下、クロム含有率〔Cr〕が0.50質量%以上1.50質量%以下、モリブデン含有率〔Mo〕が0.10質量%以上0.50質量%以下、銅含有率〔Cu〕が0.30質量%以下、酸素含有率〔O〕が0.01質量%以下で、残部が鉄(Fe)および不可避不純物からなる。
[Configuration (a)]
Carbon content [C] is 0.10 mass% or more and 0.20 mass% or less, Silicon content [Si] is 0.10 mass% or more and 0.50 mass% or less, and manganese content [Mn] is 0.20. Mass% or more and 0.60 mass% or less, nickel content [Ni] is 3.00 mass% or more and 5.00 mass% or less, chromium content [Cr] is 0.50 mass% or more and 1.50 mass% or less, Molybdenum content [Mo] is 0.10 mass% or more and 0.50 mass% or less, copper content [Cu] is 0.30 mass% or less, oxygen content [O] is 0.01 mass% or less, and the balance Consists of iron (Fe) and inevitable impurities.
[構成 (b)]
下記の(1)式で表されるDI値と、前記構成部材の厚さt(mm)との関係が下記の(2)式を満たす。
DI=(0.2〔C〕+0.128)(1+0.7〔Si〕)(1+3.45〔Mn〕)(1+0.07〔Ni〕+0.27〔Ni〕〔Ni〕)(1+2〔Cr〕)(1+2.5〔Mo〕)(1+0.35〔Cu〕)‥‥(1)
DI/t≧0.45‥‥(2)
[Configuration (b)]
The relationship between the DI value represented by the following formula (1) and the thickness t (mm) of the constituent member satisfies the following formula (2).
DI = (0.2 [C] +0.128) (1 + 0.7 [Si]) (1 + 3.45 [Mn]) (1 + 0.07 [Ni] +0.27 [Ni] [Ni]) (1 + 2 [Cr ] (1 + 2.5 [Mo]) (1 + 0.35 [Cu]) (1)
DI / t ≧ 0.45 (2)
[構成 (a)について]
〔C〕が0.10質量%以上0.20質量%以下の限定理由は以下の通りである。
炭素は組織をマルテンサイト化することで鋼を強化する元素である。本発明の方法では表面は浸炭または浸炭窒化で硬化するが、芯部に必要な強度を付与するために炭素含有率を0.10質量%以上とする。ただし、炭素含有率が0.20質量%を超えると、靱性および被削性が不十分となる。
[Configuration (a)]
The reason for limiting [C] to 0.10% by mass to 0.20% by mass is as follows.
Carbon is an element that strengthens steel by converting the structure to martensite. In the method of the present invention, the surface is hardened by carburizing or carbonitriding, but the carbon content is set to 0.10% by mass or more in order to give the core the necessary strength. However, if the carbon content exceeds 0.20 mass%, toughness and machinability become insufficient.
〔Si〕が0.10質量%以上0.50質量%以下の限定理由は以下の通りである。
珪素は、焼入れ後の組織を緻密化し、靱性、耐疲労性、および焼入れ性を向上させる作用を有する元素である。珪素含有率が0.10質量%未満であると、その作用が実質的に得られない。ただし、珪素含有率が0.50質量%を超えると、加工性(鍛造性や熱間加工性等)や被削性が不十分となる。
The reason for limiting [Si] to 0.10 mass% or more and 0.50 mass% or less is as follows.
Silicon is an element that has a function of densifying the structure after quenching and improving toughness, fatigue resistance, and hardenability. If the silicon content is less than 0.10% by mass, the action cannot be substantially obtained. However, if the silicon content exceeds 0.50% by mass, the workability (forgeability, hot workability, etc.) and machinability become insufficient.
〔Mn〕が0.20質量%以上0.60質量%以下の限定理由は以下の通りである。
マンガンは、製鋼時の脱酸剤および脱硫剤として作用するとともに、マトリックスに固溶して焼入れ性を向上させる元素である。マンガン含有率が0.20質量%未満であると、これらの作用が実質的に得られない。ただし、マンガン含有率が0.60質量%を超えると、加工性や被削性が不十分となる。
The reason for limiting [Mn] to 0.20 mass% or more and 0.60 mass% or less is as follows.
Manganese is an element that acts as a deoxidizing agent and a desulfurizing agent during steelmaking and improves the hardenability by dissolving in a matrix. When the manganese content is less than 0.20% by mass, these effects are not substantially obtained. However, if the manganese content exceeds 0.60% by mass, the workability and machinability become insufficient.
〔Ni〕が3.00質量%以上5.00質量%以下の限定理由は以下の通りである。
ニッケルは、鋼の焼入れ性および焼戻し後の靱性を向上させる作用を有する元素である。ニッケルの含有率が3.00質量%未満であると、その作用が実質的に得られない。ただし、ニッケルの含有率が5.00質量%を超えると、加工性や被削性が不十分となる。
The reason why Ni is 3.00 mass% or more and 5.00 mass% or less is as follows.
Nickel is an element having an effect of improving the hardenability of steel and the toughness after tempering. If the nickel content is less than 3.00% by mass, the effect is not substantially obtained. However, if the nickel content exceeds 5.00% by mass, workability and machinability become insufficient.
〔Cr〕が0.50質量%以上1.50質量%以下の限定理由は以下の通りである。
クロムは、マトリックスに固溶して焼入れ性、焼戻し軟化抵抗性を高める元素であり、転動疲労寿命を向上させる作用も有する。また、微細な炭化物や炭窒化物を形成して、靱性を向上させる作用も有する。クロム含有率が0.50質量%未満であると、これらの作用が実質的に得られない。ただし、クロム含有率が1.50質量%を超えると、表面に不動態膜が生じて浸炭を阻害する恐れがある。
The reason for limiting [Cr] to 0.50 mass% or more and 1.50 mass% or less is as follows.
Chromium is an element that improves the hardenability and temper softening resistance by solid solution in the matrix and also has the effect of improving the rolling fatigue life. Moreover, it has the effect | action which forms fine carbide | carbonized_material and carbonitride and improves toughness. When the chromium content is less than 0.50% by mass, these effects are not substantially obtained. However, if the chromium content exceeds 1.50% by mass, a passive film is formed on the surface, which may inhibit carburization.
〔Mo〕が0.10質量%以上0.50質量%以下の限定理由は以下の通りである。
モリブデンは、鋼の焼入れ性および焼戻し後の強度と靱性を向上させる作用を有する元素である。モリブデン含有率が0.10質量%未満であると、これらの作用が実質的に得られない。ただし、モリブデン含有率が0.50質量%を超えると、焼入れ性および被削性が不十分となる。
The reason for limiting [Mo] to 0.10 mass% or more and 0.50 mass% or less is as follows.
Molybdenum is an element that has the effect of improving the hardenability of steel and the strength and toughness after tempering. When the molybdenum content is less than 0.10% by mass, these effects cannot be substantially obtained. However, when the molybdenum content exceeds 0.50% by mass, the hardenability and machinability become insufficient.
〔Cu〕が0.30質量%以下の限定理由は以下の通りである。
銅は、焼入れ性および耐候性を向上させる作用を有する元素であるが、含有率が0.30質量%を超えると、加工性および靱性が不十分となる。また、高価であるため、コストも高くなる。
〔O〕が0.01質量%以下の限定理由は以下の通りである。
酸素の含有率が0.01質量%を超えると、SiO2 、Al2 O3 等の大型介在物が増加して、転がり疲れ強さが不十分となる。
The reason for limiting [Cu] to 0.30% by mass or less is as follows.
Copper is an element having an effect of improving hardenability and weather resistance. However, when the content exceeds 0.30 mass%, workability and toughness become insufficient. Moreover, since it is expensive, cost also becomes high.
The reason for limiting [O] to 0.01% by mass or less is as follows.
When the oxygen content exceeds 0.01% by mass, large inclusions such as SiO 2 and Al 2 O 3 increase, and the rolling fatigue strength becomes insufficient.
[構成 (b)について]
(1)式で表されるDI値と、前記構成部材の厚さt(mm)との関係が「DI/t≧0.45」を満たす鋼を用いて転がり軸受構成部材を作製することにより、硬化層と芯部との境界に、応力集中元となる不完全焼入れ組織(ベイナイト)が発生し難くなる。よって、この方法で作製された転がり軸受構成部材を用いて組み立てた転がり軸受に、前記境界を起点とした内部破壊が生じ難くなる。
[Configuration (b)]
By producing a rolling bearing constituent member using steel satisfying “DI / t ≧ 0.45” between the DI value represented by the formula (1) and the thickness t (mm) of the constituent member. In addition, an incompletely quenched structure (bainite) that becomes a stress concentration source hardly occurs at the boundary between the hardened layer and the core. Therefore, the internal fracture starting from the boundary is less likely to occur in the rolling bearing assembled by using the rolling bearing component produced by this method.
本発明は、また、鋼からなる素材を所定形状に加工した後、浸炭または浸炭窒化処理を行い、次いで焼入れ焼戻しを行うことにより、転がり軸受の内輪、外輪、および転動体からなる構成部材を製造する方法において、上記構成(a) と(b) を満たす鋼を使用して、X線回折によりHall-Williamson プロットから求められる芯部の局所歪みを0.70以上にすることを特徴とする転がり軸受構成部材の製造方法を提供する。
本発明はまた、本発明の方法で得られ、X線回折によりHall-Williamson プロットから求められる芯部の局所歪みが0.70以上になっている転がり軸受構成部材を提供する。
The present invention also manufactures a constituent member composed of an inner ring, an outer ring, and a rolling element of a rolling bearing by processing a material made of steel into a predetermined shape, followed by carburizing or carbonitriding, followed by quenching and tempering. A rolling method characterized by using a steel satisfying the above-mentioned constitutions (a) and (b), and making the local strain of the core obtained from the Hall-Williamson plot by X-ray diffraction be 0.70 or more. A method for manufacturing a bearing component is provided.
The present invention also provides a rolling bearing component obtained by the method of the present invention, wherein the local strain of the core portion determined from the Hall-Williamson plot by X-ray diffraction is 0.70 or more.
DI値は鋼の焼入れ性を示す値である。焼入れ性のよい鋼(DI値が大きな鋼)を使用することで、同じサイズの部材を同じ条件で熱処理した場合の芯部の局所歪みが大きくなり、疲労限度が高くなり、これに伴って転がり軸受の転がり疲労寿命が向上する。
また、局所歪みと「DI/t」は線形の関係にあり、「DI/t≧0.45」を満たす鋼を用いることで芯部の局所歪みを0.70以上にすることができる。転がり軸受構成部材の芯部の局所歪みが0.70以上であると、0.70未満である場合と比較して、転がり軸受の転がり疲労寿命が著しく長くなる。
The DI value is a value indicating the hardenability of the steel. By using steel with good hardenability (steel with a large DI value), when the same size member is heat-treated under the same conditions, the local strain of the core increases and the fatigue limit becomes higher, which causes rolling. The rolling fatigue life of the bearing is improved.
Further, the local strain and “DI / t” are in a linear relationship, and the local strain of the core can be made 0.70 or more by using steel satisfying “DI / t ≧ 0.45”. When the local strain of the core part of the rolling bearing component is 0.70 or more, the rolling fatigue life of the rolling bearing is remarkably increased as compared with the case of less than 0.70.
芯部の局所歪は以下の手順で求めることができる。先ず、X線回折で求める試料のKα1 強度曲線の半値幅βm と、標準試料(歪みのない原料鉄粉)のKα1 強度曲線の半値幅βr を測定する。次に、これらの半値幅の測定値を真の半値幅βs との関係式βs 2 =βm 2 +βr 2 に代入して真の半値幅βs を算出する。次に、真の半値幅βs を下記の(4)式で示されるHall-Williamson プロットの式に代入して局所歪みεhkl を算出する。
βs cosθ/λ=(2εhkl )sinθ/λ+(K/Dhkl )‥‥(4)
θは回折角、λは使用したX線の波長、KはScherrerの定数、Dhkl は結晶格子サイズである。
The local strain of the core can be obtained by the following procedure. First, the half-value width β m of the Kα 1 intensity curve of the sample obtained by X-ray diffraction and the half-value width β r of the Kα 1 intensity curve of the standard sample (undistorted raw iron powder) are measured. Then, to calculate the true half width beta s by substituting the measured values of these half-value width in relation β s 2 = β m 2 + β r 2 of the true half width beta s. Next, the local strain ε hkl is calculated by substituting the true half-value width β s into the Hall-Williamson plot equation shown by the following equation (4).
β s cos θ / λ = (2ε hkl ) sin θ / λ + (K / D hkl ) (4)
θ is the diffraction angle, λ is the X-ray wavelength used, K is Scherrer's constant, and D hkl is the crystal lattice size.
本発明の転がり軸受構成部材の製造方法によれば、得られた部材(転がり軸受の内輪、外輪、および転動体)の内部起点の破壊を抑制して、転がり軸受を長寿命化することができる。 According to the method for manufacturing a rolling bearing constituent member of the present invention, it is possible to extend the life of the rolling bearing by suppressing breakage of the internal starting point of the obtained members (the inner ring, outer ring, and rolling element of the rolling bearing). .
以下、本発明の実施形態について説明する。
下記の表1に示す組成の鋼からなる素材を用意し、各素材を、図1に示す、呼び番号「NU228」の円筒ころ軸受(内径:140mm、外径:250mm、幅:42mm)の内輪1、外輪2、円筒ころ(転動体)3の各形状に通常の方法で加工した。
Hereinafter, embodiments of the present invention will be described.
Prepare materials made of steel having the composition shown in Table 1 below, and each material is an inner ring of a cylindrical roller bearing (inner diameter: 140 mm, outer diameter: 250 mm, width: 42 mm) having the identification number “NU228” shown in FIG. 1, each of the outer ring 2 and the cylindrical roller (rolling element) 3 was processed by an ordinary method.
次いで、以下の手順で熱処理を行った。
先ず、浸炭処理として、RXガス雰囲気中に、温度850〜1050℃で10〜120時間保持した後に、5〜300℃/minの冷却速度で冷却する。この浸炭処理により、表層部の炭素含有率0.90〜1.05質量%、浸炭深さ5〜7mmとなるようにした。次に、焼鈍処理として、600〜700℃で1〜5時間保持した後に放冷する。次に、焼入れ処理として、780〜900℃で1〜3時間保持した後に油冷する。次に、焼戻し処理として、150〜240℃で2時間保持した後に放冷する。
Next, heat treatment was performed according to the following procedure.
First, as a carburizing treatment, after holding in an RX gas atmosphere at a temperature of 850 to 1050 ° C. for 10 to 120 hours, cooling is performed at a cooling rate of 5 to 300 ° C./min. By this carburizing treatment, the carbon content of the surface layer portion was 0.90 to 1.05% by mass, and the carburized depth was 5 to 7 mm. Next, as an annealing treatment, it is allowed to cool after being held at 600 to 700 ° C. for 1 to 5 hours. Next, as a quenching treatment, oil cooling is performed after holding at 780 to 900 ° C. for 1 to 3 hours. Next, as a tempering treatment, it is allowed to cool after being held at 150 to 240 ° C. for 2 hours.
なお、焼入れは、冷却速度が、厚さが14.5mm、29.0mm、45.0mmのリングに対する焼入れを行った時の冷却速度と同じになるように、冷媒の温度と攪拌条件を変えて行った。そのために、予め厚さが14.5mm、29.0mm、45.0mmのリングに対して、前記と同じ条件で熱処理を行って焼入れ時の芯部の冷却速度を測定した。これにより、各冷却速度で得られた内輪1、外輪2、円筒ころ3は、芯部の状態が前記各厚さのリングと同じになっている。表1の「t」はその厚さを示す。 In the quenching, the temperature of the refrigerant and the stirring conditions are changed so that the cooling rate is the same as the cooling rate when quenching a ring having a thickness of 14.5 mm, 29.0 mm, and 45.0 mm. went. Therefore, heat treatment was previously performed on rings having a thickness of 14.5 mm, 29.0 mm, and 45.0 mm under the same conditions as described above, and the cooling rate of the core during quenching was measured. As a result, the inner ring 1, the outer ring 2, and the cylindrical roller 3 obtained at each cooling rate have the same core state as the rings having the respective thicknesses. “T” in Table 1 indicates the thickness.
得られた内輪、外輪、円筒ころを用いて円筒ころ軸受を組み立てて、ラジアル荷重:P/C=0.6、回転速度:1000min-1、潤滑剤:Ro68の条件で、回転試験を行い、内輪1、外輪2、円筒ころ3のいずれかに剥離等の破壊が生じるまでの時間を軸受寿命とした。この寿命試験結果を、サンプルNo. 1〜7ではサンプルNo. 1の寿命を「1」として、No. 8〜14ではサンプルNo. 8の寿命を「1」として、No. 15〜20ではサンプルNo. 15の寿命を「1」として、それぞれ相対値を算出した。その結果も表1に併せて示す。 A cylindrical roller bearing is assembled using the obtained inner ring, outer ring, and cylindrical roller, and a rotation test is performed under the conditions of radial load: P / C = 0.6, rotation speed: 1000 min −1 , lubricant: Ro68, The time until the inner ring 1, the outer ring 2 or the cylindrical roller 3 was broken, such as peeling, was defined as the bearing life. The life test results are as follows: Sample No. 1-7 has sample No. 1 as “1”, No. 8-14 as sample No. 8 as “1”, and No. 15-20 as sample Relative values were calculated, assuming that the life of No. 15 was “1”. The results are also shown in Table 1.
また、サンプルNo. 1〜20と同じ組成の鋼からなる素材を、50mm×100mmで厚さが14.5mm、29.0mm、45.0mmの試験片とし、各試験片に対して予め防炭メッキを施すことで浸炭がなされないようにした後に、サンプル毎に上記と同じ方法で熱処理を行った。これにより、得られた試験片は表面が芯部と同じ状態にされた。そして、得られた各試験片の中心部から直径8mmの平滑回転曲げ試験用の試験片を切り出した。この試験片を用いて回転曲げ試験を行い、疲労限界を測定した。その結果も下記の表1に併せて示す。 Moreover, the raw material which consists of steel of the same composition as sample No. 1-20 is made into the test piece of thickness 14.5mm, 29.0mm, 45.0mm by 50 mm x 100 mm, and it is a carbon-proof beforehand with respect to each test piece. After preventing plating from being carburized by applying plating, each sample was heat-treated by the same method as described above. Thereby, the surface of the obtained test piece was made into the same state as a core part. And the test piece for smooth rotation bending tests with a diameter of 8 mm was cut out from the center part of each obtained test piece. Using this specimen, a rotating bending test was performed to measure the fatigue limit. The results are also shown in Table 1 below.
また、得られた各試験片(回転曲げ試験用に切り出す前の試験片)の中心から4mm以内となる領域の30カ所以上について、試験荷重4900Nで芯部のビッカース硬度を測定し、その平均値(M)と標準偏差(σ)を求めた。そして、これらの結果からM−4σを算出した。その結果も下記の表1に併せて示す。
また、これらの結果を「M−4σ」と疲労限度との関係にまとめたグラフを図2に、厚さ(t)毎に疲労限度と寿命との関係にまとめたグラフを図3〜5に、厚さ(t)毎にDI/tと寿命との関係にまとめたグラフを図6〜8にそれぞれ示す。
In addition, the Vickers hardness of the core portion was measured at a test load of 4900 N at 30 points or more in the region within 4 mm from the center of each obtained test piece (test piece before cutting for the rotational bending test), and the average value thereof (M) and standard deviation (σ) were determined. And M-4σ was calculated from these results. The results are also shown in Table 1 below.
Also, a graph summarizing these results in the relationship between “M-4σ” and the fatigue limit is shown in FIG. 2, and a graph summarizing the relationship between the fatigue limit and life for each thickness (t) is shown in FIGS. FIGS. 6 to 8 are graphs summarizing the relationship between DI / t and life for each thickness (t).
この結果から分かるように、厚さが14.5mmの場合、DI/tが0.45以上でM−4σが385以上であるNo. 3〜7は、No. 1の2倍以上の寿命が得られた。厚さが29.0mmの場合、DI/tが0.48以上でM−4σが424以上であるNo. 11〜14は、No. 8の2倍以上の寿命が得られた。厚さが45.0mmの場合、DI/tが0.53以上でM−4σが414以上であるNo. 18〜20は、No. 15の2倍以上の寿命が得られた。
また、図2のグラフから、「M−4σ」が大きいほど疲労限度が高くなることが分かる。なお、靱性を確保するという観点からは、「M−4σ」を500以下にすることが好ましい。
As can be seen from this result, when the thickness is 14.5 mm, Nos. 3 to 7 with DI / t of 0.45 or more and M-4σ of 385 or more have a lifetime that is more than twice that of No. 1. Obtained. When the thickness was 29.0 mm, Nos. 11 to 14 having a DI / t of 0.48 or more and an M-4σ of 424 or more had a life twice as long as that of No. 8. When the thickness was 45.0 mm, Nos. 18 to 20 having DI / t of 0.53 or more and M-4σ of 414 or more had a life more than twice that of No. 15.
Further, it can be seen from the graph of FIG. 2 that the fatigue limit increases as “M-4σ” increases. From the viewpoint of securing toughness, it is preferable to set “M-4σ” to 500 or less.
次に、下記の表2に示す組成の鋼からなる素材を用意し、各素材を、図1に示す、呼び番号「NU228」の円筒ころ軸受(内径:140mm、外径:250mm、幅:42mm)の内輪1、外輪2、円筒ころ(転動体)3の各形状に通常の方法で加工した。
次いで、前記と同じ方法で熱処理を行い、同じ方法で軸受寿命試験を行うとともに、同じ方法で試験片を作製して試験を行った。また、Co−Kα線を用いたX線回折法により局所歪みを測定した。その結果も下記の表2に併せて示す。なお、寿命試験結果は、厚さ(t)毎に、サンプルNo. 21〜25ではサンプルNo. 21の寿命を「1」として、No. 26〜32ではサンプルNo. 27の寿命を「1」として、No. 33〜38ではサンプルNo. 33の寿命を「1」として、それぞれ相対値を算出した。
Next, a material made of steel having the composition shown in Table 2 below is prepared, and each material is a cylindrical roller bearing having an identification number “NU228” shown in FIG. 1 (inner diameter: 140 mm, outer diameter: 250 mm, width: 42 mm). ) Of the inner ring 1, outer ring 2, and cylindrical roller (rolling element) 3.
Next, heat treatment was performed by the same method as described above, and a bearing life test was performed by the same method, and a test piece was prepared and tested by the same method. Further, local strain was measured by an X-ray diffraction method using Co—Kα rays. The results are also shown in Table 2 below. The results of the life test show that the life of sample No. 21 is “1” for sample Nos. 21 to 25 and the life of sample No. 27 is “1” for Nos. 26 to 32 for each thickness (t). As for No. 33 to 38, the life of Sample No. 33 was set to “1”, and the relative values were calculated.
また、これらの結果を、厚さ(t)毎に局所歪みとDI値との関係にまとめたグラフを図9に、局所歪みと「DI/t」との関係にまとめたグラフを図10に、局所歪みと疲労限度との関係にまとめたグラフを図11に、局所歪みと寿命との関係にまとめたグラフを図12にそれぞれ示す。 Also, FIG. 9 is a graph summarizing these results for each thickness (t) in the relationship between the local strain and the DI value, and FIG. 10 is a graph summarizing the relationship between the local strain and “DI / t” in FIG. FIG. 11 shows a graph summarizing the relationship between local strain and fatigue limit, and FIG. 12 shows a graph summarizing the relationship between local strain and life.
この結果から分かるように、厚さが14.5mmの場合、DI/tが0.53以上で局所歪みが0.70以上であるNo. 23〜25は、No. 21の2倍以上の寿命が得られた。厚さが29.0mmの場合、DI/tが0.48以上で局所歪みが0.71以上であるNo. 29〜32は、No. 27の2倍以上の寿命が得られた。厚さが45.0mmの場合、DI/tが0.53以上で局所歪みが0.72以上であるNo. 36〜38は、No. 33の2倍以上の寿命が得られた。 As can be seen from this result, when the thickness is 14.5 mm, No. 23 to 25 having DI / t of 0.53 or more and local strain of 0.70 or more are more than twice as long as No. 21. was gotten. When the thickness was 29.0 mm, Nos. 29 to 32 having a DI / t of 0.48 or more and a local strain of 0.71 or more had a life twice as long as that of No. 27. In the case where the thickness was 45.0 mm, Nos. 36 to 38 having a DI / t of 0.53 or more and a local strain of 0.72 or more had a life twice as long as that of No. 33.
図9のグラフから、DI値が大きいほど局所歪みが大きくなることが分かる。図10のグラフから局所歪みと「DI/t」は線形の関係にあることが分かる。図11のグラフから、局所歪みが大きいほど疲労限度が高くなることが分かる。図12のグラフから、局所歪みが0.70以上と0.70未満ではL10寿命に大きな差があることが分かる。 From the graph of FIG. 9, it can be seen that the greater the DI value, the greater the local distortion. It can be seen from the graph of FIG. 10 that the local distortion and “DI / t” have a linear relationship. From the graph of FIG. 11, it can be seen that the greater the local strain, the higher the fatigue limit. From the graph of FIG. 12, it can be seen that there is a large difference in the L10 life when the local strain is 0.70 or more and less than 0.70.
1 内輪
1a 軌道面
2 外輪
2a 軌道面
3 円筒ころ(転動体)
4 保持器
1 inner ring 1a raceway surface 2 outer ring 2a raceway surface 3 cylindrical roller (rolling element)
4 Cage
Claims (5)
炭素含有率〔C〕が0.10質量%以上0.20質量%以下、珪素含有率〔Si〕が0.10質量%以上0.50質量%以下、マンガン含有率〔Mn〕が0.20質量%以上0.60質量%以下、ニッケル含有率〔Ni〕が3.00質量%以上5.00質量%以下、クロム含有率〔Cr〕が0.50質量%以上1.50質量%以下、モリブデン含有率〔Mo〕が0.10質量%以上0.50質量%以下、銅含有率〔Cu〕が0.30質量%以下、酸素含有率〔O〕が0.01質量%以下で、残部が鉄(Fe)および不可避不純物からなり、
下記の(1)式で表されるDI値と、前記構成部材の厚さt(mm)との関係が下記の(2)式を満たす鋼を使用することを特徴とする転がり軸受構成部材の製造方法。
DI=(0.2〔C〕+0.128)(1+0.7〔Si〕)(1+3.45〔Mn〕)(1+0.07〔Ni〕+0.27〔Ni〕〔Ni〕)(1+2〔Cr〕)(1+2.5〔Mo〕)(1+0.35〔Cu〕)‥‥(1)
DI/t≧0.45‥‥(2) In a method of manufacturing a constituent member composed of an inner ring, an outer ring, and a rolling element of a rolling bearing by performing a carburizing or carbonitriding process after processing a material made of steel into a predetermined shape, followed by quenching and tempering,
Carbon content [C] is 0.10 mass% or more and 0.20 mass% or less, Silicon content [Si] is 0.10 mass% or more and 0.50 mass% or less, and manganese content [Mn] is 0.20. Mass% or more and 0.60 mass% or less, nickel content [Ni] is 3.00 mass% or more and 5.00 mass% or less, chromium content [Cr] is 0.50 mass% or more and 1.50 mass% or less, Molybdenum content [Mo] is 0.10 mass% or more and 0.50 mass% or less, copper content [Cu] is 0.30 mass% or less, oxygen content [O] is 0.01 mass% or less, and the balance Consists of iron (Fe) and inevitable impurities,
A rolling bearing constituent member characterized by using a steel having a relationship between a DI value represented by the following formula (1) and a thickness t (mm) of the constituent member satisfying the following formula (2): Production method.
DI = (0.2 [C] +0.128) (1 + 0.7 [Si]) (1 + 3.45 [Mn]) (1 + 0.07 [Ni] +0.27 [Ni] [Ni]) (1 + 2 [Cr ] (1 + 2.5 [Mo]) (1 + 0.35 [Cu]) (1)
DI / t ≧ 0.45 (2)
M−4σ≧400‥‥(3) The method for manufacturing a rolling bearing component according to claim 1, wherein the average value M and the standard deviation σ of the hardness of the core (Vickers hardness: Hv) satisfy the following expression (3).
M-4σ ≧ 400 (3)
炭素含有率〔C〕が0.10質量%以上0.20質量%以下、珪素含有率〔Si〕が0.10質量%以上0.50質量%以下、マンガン含有率〔Mn〕が0.20質量%以上0.60質量%以下、ニッケル含有率〔Ni〕が3.00質量%以上5.00質量%以下、クロム含有率〔Cr〕が0.50質量%以上1.50質量%以下、モリブデン含有率〔Mo〕が0.10質量%以上0.50質量%以下、銅含有率〔Cu〕が0.30質量%以下、酸素含有率〔O〕が0.01質量%以下で、残部が鉄(Fe)および不可避不純物からなり、
下記の(1)式で表されるDI値と、前記構成部材の厚さt(mm)との関係が下記の(2)式を満たす鋼を使用し、X線回折によりHall-Williamson プロットから求められる芯部の局所歪みを0.70以上にすることを特徴とする転がり軸受構成部材の製造方法。
DI=(0.2〔C〕+0.128)(1+0.7〔Si〕)(1+3.45〔Mn〕)(1+0.07〔Ni〕+0.27〔Ni〕〔Ni〕)(1+2〔Cr〕)(1+2.5〔Mo〕)(1+0.35〔Cu〕)‥‥(1)
DI/t≧0.45‥‥(2) In a method of manufacturing a constituent member composed of an inner ring, an outer ring, and a rolling element of a rolling bearing by performing a carburizing or carbonitriding process after processing a material made of steel into a predetermined shape, followed by quenching and tempering,
Carbon content [C] is 0.10 mass% or more and 0.20 mass% or less, Silicon content [Si] is 0.10 mass% or more and 0.50 mass% or less, and manganese content [Mn] is 0.20. Mass% or more and 0.60 mass% or less, nickel content [Ni] is 3.00 mass% or more and 5.00 mass% or less, chromium content [Cr] is 0.50 mass% or more and 1.50 mass% or less, Molybdenum content [Mo] is 0.10 mass% or more and 0.50 mass% or less, copper content [Cu] is 0.30 mass% or less, oxygen content [O] is 0.01 mass% or less, and the balance Consists of iron (Fe) and inevitable impurities,
Using steel satisfying the following formula (2) with the relationship between the DI value represented by the following formula (1) and the thickness t (mm) of the component member, from the Hall-Williamson plot by X-ray diffraction A method for manufacturing a rolling bearing constituent member, wherein the required local strain of the core is 0.70 or more.
DI = (0.2 [C] +0.128) (1 + 0.7 [Si]) (1 + 3.45 [Mn]) (1 + 0.07 [Ni] +0.27 [Ni] [Ni]) (1 + 2 [Cr ] (1 + 2.5 [Mo]) (1 + 0.35 [Cu]) (1)
DI / t ≧ 0.45 (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007108343A JP2008266683A (en) | 2007-04-17 | 2007-04-17 | Method for producing rolling bearing constituting member, and rolling bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007108343A JP2008266683A (en) | 2007-04-17 | 2007-04-17 | Method for producing rolling bearing constituting member, and rolling bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008266683A true JP2008266683A (en) | 2008-11-06 |
Family
ID=40046566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007108343A Pending JP2008266683A (en) | 2007-04-17 | 2007-04-17 | Method for producing rolling bearing constituting member, and rolling bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008266683A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008298192A (en) * | 2007-05-31 | 2008-12-11 | Nsk Ltd | Method of manufacturing rolling bearing constituting member, and rolling bearing |
JP2009287073A (en) * | 2008-05-28 | 2009-12-10 | Nsk Ltd | Carburized rolling bearing |
JP2010196107A (en) * | 2009-02-25 | 2010-09-09 | Nsk Ltd | Roller bearing |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1122733A (en) * | 1997-07-01 | 1999-01-26 | Nippon Seiko Kk | Rolling bearing |
JP2002206540A (en) * | 2000-09-04 | 2002-07-26 | Nsk Ltd | Rolling bearing |
JP2005090680A (en) * | 2003-09-19 | 2005-04-07 | Koyo Seiko Co Ltd | Rolling bearing part and method of manufacturing the same |
JP2006299313A (en) * | 2005-04-18 | 2006-11-02 | Nsk Ltd | Rolling supporter |
JP2006328514A (en) * | 2005-05-30 | 2006-12-07 | Nsk Ltd | Rolling supporting device |
JP2008260993A (en) * | 2007-04-11 | 2008-10-30 | Nsk Ltd | Method for manufacturing rolling bearing component member, and rolling bearing |
-
2007
- 2007-04-17 JP JP2007108343A patent/JP2008266683A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1122733A (en) * | 1997-07-01 | 1999-01-26 | Nippon Seiko Kk | Rolling bearing |
JP2002206540A (en) * | 2000-09-04 | 2002-07-26 | Nsk Ltd | Rolling bearing |
JP2005090680A (en) * | 2003-09-19 | 2005-04-07 | Koyo Seiko Co Ltd | Rolling bearing part and method of manufacturing the same |
JP2006299313A (en) * | 2005-04-18 | 2006-11-02 | Nsk Ltd | Rolling supporter |
JP2006328514A (en) * | 2005-05-30 | 2006-12-07 | Nsk Ltd | Rolling supporting device |
JP2008260993A (en) * | 2007-04-11 | 2008-10-30 | Nsk Ltd | Method for manufacturing rolling bearing component member, and rolling bearing |
JP5119717B2 (en) * | 2007-04-11 | 2013-01-16 | 日本精工株式会社 | Method for manufacturing rolling bearing component and rolling bearing |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008298192A (en) * | 2007-05-31 | 2008-12-11 | Nsk Ltd | Method of manufacturing rolling bearing constituting member, and rolling bearing |
JP2009287073A (en) * | 2008-05-28 | 2009-12-10 | Nsk Ltd | Carburized rolling bearing |
JP2010196107A (en) * | 2009-02-25 | 2010-09-09 | Nsk Ltd | Roller bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104981556B (en) | Tufftride high-frequency quenching steel part | |
JP2006322017A (en) | Rolling bearing | |
JP2014020538A (en) | Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment | |
JP5728844B2 (en) | Rolling bearing | |
JP2014074212A (en) | Rolling and sliding member, manufacturing method thereof, and rolling bearing | |
JP4998054B2 (en) | Rolling bearing | |
JP2007100126A (en) | Rolling member and ball bearing | |
JP2012031456A (en) | Rolling bearing | |
JP2007113027A (en) | Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus | |
JP2008266683A (en) | Method for producing rolling bearing constituting member, and rolling bearing | |
JP2018021654A (en) | Rolling slide member, its manufacturing method, carburization steel material and rolling bearing | |
WO2022202922A1 (en) | Track wheel and shaft | |
JP5119717B2 (en) | Method for manufacturing rolling bearing component and rolling bearing | |
JP2006299313A (en) | Rolling supporter | |
JP5668283B2 (en) | Manufacturing method of rolling sliding member | |
JP2011190921A (en) | Thrust roller bearing | |
JP2010031307A (en) | Roller bearing | |
JP2006328514A (en) | Rolling supporting device | |
WO2015199103A1 (en) | Pinion shaft and method for manufacturing same | |
JP2005337362A (en) | Full type roller bearing | |
JP2008248349A (en) | Method for manufacturing rolling bearing constituting member and rolling bearing | |
JP2006183845A (en) | Rolling bearing | |
JP2006219726A (en) | Method for manufacturing race of rolling bearing | |
CN109423575A (en) | It rolls sliding component and production rolls the method for sliding component and the rolling bearing including rolling sliding component | |
JP2005273698A (en) | Self-aligning roller bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100407 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20120925 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130205 |