JP2014101896A - Rolling bearing - Google Patents
Rolling bearing Download PDFInfo
- Publication number
- JP2014101896A JP2014101896A JP2012252311A JP2012252311A JP2014101896A JP 2014101896 A JP2014101896 A JP 2014101896A JP 2012252311 A JP2012252311 A JP 2012252311A JP 2012252311 A JP2012252311 A JP 2012252311A JP 2014101896 A JP2014101896 A JP 2014101896A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- rolling
- raceway
- alloy steel
- rolling element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/62—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/32—Balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/34—Rollers; Needles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/04—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
- F16C19/06—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/24—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
- F16C19/26—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/34—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
- F16C19/36—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
- F16C19/364—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/60—Ferrous alloys, e.g. steel alloys
- F16C2204/62—Low carbon steel, i.e. carbon content below 0.4 wt%
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/60—Ferrous alloys, e.g. steel alloys
- F16C2204/70—Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Component Parts Of Construction Machinery (AREA)
- Rolling Contact Bearings (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、転がり軸受、特に、風力発電装置の主軸、或いは、変速機、建設機械、産業用ロボットを構成する回転軸等を支持する為に使用される、比較的大型で、運転時に大きな荷重を支承する転がり軸受の改良に関する。 The present invention is a relatively large and large load during operation used to support a rolling bearing, in particular, a main shaft of a wind power generator or a rotating shaft constituting a transmission, a construction machine, an industrial robot, or the like. The present invention relates to improvements in rolling bearings that support
各種回転機械装置の回転支持部に、例えば図1に示す様なラジアル玉軸受1が組み込まれている。このラジアル玉軸受1は、内周面に外輪軌道2を有する外輪3と、外周面に内輪軌道4を有する内輪5と、これら外輪軌道2と内輪軌道4との間に設けた、それぞれが転動体である複数個の玉6、6とを備える。これら各玉6、6は、円周方向に等間隔に配置された状態で、保持器7により、転動自在に保持されている。
For example, a radial ball bearing 1 as shown in FIG. 1 is incorporated in a rotation support portion of various rotary machine devices. The radial ball bearing 1 includes an outer ring 3 having an
又、大きなラジアル荷重が加わる回転支持部には、例えば図2に示す様な、ラジアル円筒ころ軸受8が組み込まれている。このラジアル円筒ころ軸受8は、内周面に円筒凹面状の外輪軌道2aを有する外輪3aと、外周面に円筒凸面状の内輪軌道4aを有する内輪5aと、これら外輪軌道2aと内輪軌道4aとの間に、保持器7aに保持された状態で転動自在に設けられた、それぞれが転動体である複数の円筒ころ9、9とを備える。又、前記外輪3aの内周面両端部に内向鍔部10、10を、前記内輪5aの外周面一端部に外向鍔部11を、それぞれ形成している。
Further, a radial cylindrical roller bearing 8 as shown in FIG. 2, for example, is incorporated in the rotation support portion to which a large radial load is applied. The radial cylindrical roller bearing 8 includes an
更に、大きなラジアル荷重及びスラスト荷重が加わる回転支持部には、例えば図3に示す様な、転動体として円すいころを使用したラジアル円すいころ軸受12が組み込まれている。このラジアル円すいころ軸受12は、内周面に円すい凹面状の外輪軌道2bを有する外輪3bと、外周面に円すい凸面状の内輪軌道4bを有する内輪5bと、これら外輪軌道2bと内輪軌道4bとの間に、保持器7bに保持された状態で転動自在に設けられた、それぞれが転動体である複数の円すいころ13、13とを備える。又、前記内輪5bの外周面両端部のうち、大径側端部には大径側鍔部14を、小径側端部には小径側鍔部15を、それぞれ形成している。尚、この小径側鍔部15は省略する場合もある。
Further, a radial tapered roller bearing 12 using a tapered roller as a rolling element, for example, as shown in FIG. 3 is incorporated in a rotation support portion to which a large radial load and a thrust load are applied. The radial tapered roller bearing 12 includes an
上述の様なラジアル玉軸受1、ラジアル円筒ころ軸受8、ラジアル円すいころ軸受12等の転がり軸受は、例えば前記外輪3、3a、3bをハウジングに内嵌固定すると共に、前記内輪5、5a、5bを回転軸に外嵌固定する事により、この回転軸を前記ハウジングに対し、回転自在に支持する。この様な状態で使用される転がり軸受を、大きな荷重を支承しつつ運転する際には、前記外輪軌道2、2a、2bや前記内輪軌道4、4a、4b等の軌道面や、前記各玉6、6、前記各円筒ころ9、9、前記各円すいころ13、13等の転動体の表面のうちで前記軌道面と転がり接触する部分である転動面に、繰り返し大きな面圧が加わる。
Rolling bearings such as the radial ball bearing 1, the radial cylindrical roller bearing 8, the radial tapered roller bearing 12 and the like as described above fix the
この様に、大きな荷重を支承する厳しい条件下で使用される転がり軸受では、長時間に亘る運転により、金属疲労が生じて、軌道面や転動面の表面が剥離する場合がある。この様な剥離の態様としては、内部起点型剥離、圧痕起点型剥離、組織変化型剥離等が知られている。このうちの内部起点型剥離は、玉6、6、円筒ころ9、9、円すいころ13、13の転動体や、外輪3、3a、3b、内輪5、5a、5b等の軌道輪を構成する、軸受鋼等の合金鋼中に存在する酸化物や窒化物等の非金属介在物を起点として疲労亀裂が生じて剥離に至るものである。又、圧痕起点型剥離は、潤滑油中に混入した硬い異物により軌道面に生じた圧痕を起点として疲労亀裂が生じて剥離に至るものである。
Thus, in a rolling bearing used under severe conditions for supporting a large load, metal fatigue may occur due to operation for a long time, and the surfaces of the raceway surface and the rolling surface may be peeled off. As such a peeling mode, internal origin type peeling, indentation origin type peeling, tissue change type peeling, and the like are known. Of these, the internal starting type peeling constitutes rolling elements of
更に、組織変化型剥離は、使用条件の厳しい一部の用途で発生するもので、転がり軸受を構成する合金鋼の基地自体の金属組織が、マルテンサイト組織から白色組織と呼ばれる微細なフェライト粒に変化し、その組織変化部を起点として疲労亀裂が生じて剥離に至るものである。この様な組織変化型剥離は、軌道面に形成された油膜(潤滑膜)が部分的に破断される様な使用条件下で、軌道面と転動面とが接触して現れた活性な新生面が触媒となって、新生面と潤滑剤とがトライボケミカル反応を起こす事で発生した水素が鋼中の応力集中部に集積する事が原因であると考えられている。この様な組織変化型剥離は、転動体として円筒ころ又は円すいころを用いた円筒ころ軸受又は円すいころ軸受や、玉の直径が30mm以上の大型の玉軸受の場合に発生し易い。この理由は、軌道面と転動面との転がり接触部の接触面積が大きい為、この転がり接触部に潤滑膜が安定して形成され難く、この転がり接触部で局所的に金属接触が生じ易く、上述したトライボケミカル反応により水素が発生し易くなる為である。 Furthermore, the structure change type delamination occurs in some applications where the conditions of use are severe, and the metal structure of the base of the alloy steel constituting the rolling bearing itself changes from a martensite structure to fine ferrite grains called a white structure. It changes, and fatigue cracks are generated starting from the structure change portion, leading to peeling. Such a structure change type peeling is an active new surface that appears when the raceway surface and the rolling surface come into contact with each other under use conditions where the oil film (lubricant film) formed on the raceway surface is partially broken. This is considered to be caused by the fact that hydrogen generated by the tribochemical reaction between the nascent surface and the lubricant accumulates in the stress concentration part in the steel. Such a structure change type peeling is likely to occur in the case of a cylindrical roller bearing or a tapered roller bearing using a cylindrical roller or a tapered roller as a rolling element, or a large ball bearing having a ball diameter of 30 mm or more. The reason for this is that since the contact area of the rolling contact portion between the raceway surface and the rolling surface is large, it is difficult for a lubricating film to be stably formed on this rolling contact portion, and local metal contact tends to occur locally at this rolling contact portion. This is because hydrogen is easily generated by the above-described tribochemical reaction.
又、歯車で動力を伝達する変速機の回転軸の様に、伝達トルクの方向又は大きさが瞬間的又は一時的に変化する様な回転軸を支持する為の転がり軸受の場合には、伝達トルクが変化する瞬間に転動面と軌道面との転がり接触部に大きな滑りが発生し、潤滑膜が切れ易い。そして、潤滑膜が切れた場合には、この転がり接触部で局所的に金属接触が生じ、トライボケミカル反応により水素が発生し易くなる。更に、1対の軌道輪同士が相対回転する方向が頻繁に変化する様な使用形態の場合も、転がり接触部で潤滑膜が切れ易く、潤滑油の分解により水素が発生し易くなる。 In the case of a rolling bearing for supporting a rotating shaft whose direction or magnitude of transmission torque changes momentarily or temporarily, such as a rotating shaft of a transmission that transmits power by gears, At the moment when the torque changes, a large slip occurs at the rolling contact portion between the rolling surface and the raceway surface, and the lubricating film is easily cut. When the lubricating film is cut, metal contact locally occurs at the rolling contact portion, and hydrogen is easily generated by a tribochemical reaction. Further, even in a usage mode in which the direction in which the pair of race rings rotate relative to each other frequently changes, the lubricating film easily breaks at the rolling contact portion, and hydrogen is easily generated due to the decomposition of the lubricating oil.
この様な水素により引き起こされる組織変化形剥離を抑える為の技術として、例えば特許文献1〜6に記載された技術が知られている。
このうちの特許文献1、2に記載された従来技術は、転がり軸受に潤滑剤として封入するグリースの組成を工夫する事により、このグリース中の基油の分解に基づく水素の発生を抑え、組織変化型剥離を抑えて、転がり軸受の長寿命化を図るとしている。
但し、転がり軸受の用途によっては、潤滑剤としてグリースを用いずに潤滑油を用いる場合がある。特に、比較的大型の転がり軸受では、グリースよりも潤滑油を用いる場合が多く、この様な場合には、前記特許文献1、2に記載された様な、グリースの改良による組織変化型剥離の抑制は行えない。
For example, techniques described in Patent Documents 1 to 6 are known as techniques for suppressing such structure change-type peeling caused by hydrogen.
Among these, the prior arts described in
However, depending on the application of the rolling bearing, lubricating oil may be used without using grease as a lubricant. In particular, relatively large rolling bearings often use lubricating oil rather than grease. In such a case, as described in
又、特許文献3、4に記載された従来技術は、転動体や軌道輪等の転がり軸受部品の表面に被膜処理を施す事により、当該転がり軸受部品の表面である転動面又は軌道面に新生面が発生し難くする。そして、新生面と潤滑剤とのトライボケミカル反応に基づく水素の発生を抑え、組織変化型剥離を抑えて、転がり軸受の長寿命化を図るとしている。
この様な特許文献3、4に記載された従来技術の場合には、高荷重下で長期間運転される様な、厳しい使用条件下では、表面被膜が剥がれる可能性があり、その場合には組織変化型剥離の発生を抑えられない。又、被膜処理工程が増える事で製品コストが高くなる。
In addition, the prior arts described in Patent Documents 3 and 4 apply a coating treatment to the surface of a rolling bearing part such as a rolling element or a bearing ring, so that the rolling surface or the raceway surface, which is the surface of the rolling bearing part, is applied. Makes new surfaces less likely to occur. Then, the generation of hydrogen based on the tribochemical reaction between the new surface and the lubricant is suppressed, and the change in structure change type is suppressed, thereby extending the life of the rolling bearing.
In the case of such conventional techniques described in Patent Documents 3 and 4, the surface coating may be peeled off under severe use conditions such as long-term operation under a high load. The occurrence of tissue change-type peeling cannot be suppressed. In addition, the product cost increases due to the increase in the coating process.
更に、特許文献5、6に記載された従来技術は、軸受部品を構成する合金鋼の成分を規制、具体的にはCrの含有量を多くし、更に熱処理工程を規制する事で、白色組織変化の発生を遅延させるとしている。
この様な特許文献5、6に記載された従来技術の場合には、或る程度の効果を得られるが、それだけでは、例えば風力発電装置の主軸用回転支持部の様に、高荷重下で極めて長期間のメンテナンスフリーを要求される様な、非常に厳しい使用条件下で十分に満足できる効果を得る事は難しい。Crの含有量を十分に多くすれば耐久性向上を図れるが、その代わりに、転がり軸受の構成部材の加工が難しくなり、生産性の低下によるコスト上昇を招く。
Furthermore, the prior art described in
In the case of the prior arts described in
本発明は、上述の様な事情に鑑み、厳しい使用条件下でも、十分な耐久性を確保できる転がり軸受を実現すべく発明したものである。
具体的には、水素による組織変化を或る程度抑制する合金鋼を用いると共に、金属接触による新生面の形成を抑制して水素の発生自体を抑える事により、潤滑膜が切れ易い厳しい使用条件下でも、転がり軸受の長寿命化を十分に図れる技術を提供するものである。
The present invention has been invented in order to realize a rolling bearing capable of ensuring sufficient durability even under severe use conditions in view of the circumstances as described above.
Specifically, alloy steel that suppresses structural changes caused by hydrogen to some extent is used, and the formation of new surfaces due to metal contact is suppressed to suppress the generation of hydrogen itself. The present invention provides a technology that can sufficiently extend the life of a rolling bearing.
本発明の転がり軸受は、何れかの面に第一軌道面を有する合金鋼製の第一軌道輪と、この第一軌道面と対向する面に第二軌道面を有する合金鋼製の第二軌道輪と、これら第一、第二両軌道面同士の間に転動自在に設けられた、それぞれが合金鋼製である複数個の転動体とを備える。
特に、本発明の転がり軸受に於いては、前記各転動体に浸炭窒化処理又は窒化処理を施している。そして、これら各転動体の表面層のN濃度を0.2質量%以上、同じく残留オーステナイト量を30容量%以下、同じく硬さをHv780以上としている。且つ、前記各転動体の表面層の窒化物の面積率を1%以上、10%未満としている。
又、前記両軌道輪のうちの少なくとも一方(例えば条件が厳しい内輪、好ましくは両方)の軌道輪を、Cを0.10〜0.30質量%、Siを0.2〜0.9質量%、Mnを0.2〜1.2質量%、Crを2.6〜4.5質量%、Moを0.1〜0.9質量%、Niを0.9質量%以下、Cuを0.20質量%以下、Sを0.020質量%以下、Pを0.020質量%以下、それぞれ含有し、残部をFeと不可避不純物から成る合金鋼により構成している。又、この合金鋼により構成した、前記少なくとも一方の軌道輪の表面に、浸炭処理又は浸炭窒化処理を施している。そして、当該軌道輪に設けた軌道面の表面から、前記各転動体の直径の1%の深さ位置(1%位置)の硬さをHv720〜832とし、同じくCの含有量とNの含有量との和であるC+N量を0.8〜1.2質量%とし、同じく残留オーステナイト量を20〜45容量%とし、同じく圧縮残留応力を50〜300MPaとしている。
又、当該軌道輪に設けた軌道面の表面の粗さ曲線に関して、隣り合う山同士の間隔を示すRSmを8μm以上としている。
The rolling bearing of the present invention comprises a first alloy ring having a first raceway surface on any surface and a second alloy steel having a second raceway surface facing the first raceway surface. A bearing ring and a plurality of rolling elements each provided between the first and second raceway surfaces so as to be freely rollable and each made of alloy steel are provided.
In particular, in the rolling bearing of the present invention, each rolling element is subjected to carbonitriding or nitriding. The N concentration of the surface layer of each rolling element is 0.2% by mass or more, the residual austenite amount is 30% by volume or less, and the hardness is Hv780 or more. And the area ratio of the nitride of the surface layer of each said rolling element is 1% or more and less than 10%.
Further, at least one of the two race rings (for example, inner ring having strict conditions, preferably both), C is 0.10 to 0.30 mass%, Si is 0.2 to 0.9 mass%. , Mn is 0.2 to 1.2% by mass, Cr is 2.6 to 4.5% by mass, Mo is 0.1 to 0.9% by mass, Ni is 0.9% by mass or less, and Cu is 0.2% by mass. 20% by mass or less, S is 0.020% by mass or less, P is 0.020% by mass or less, and the balance is made of an alloy steel composed of Fe and inevitable impurities. Further, the surface of the at least one raceway ring made of the alloy steel is subjected to carburizing treatment or carbonitriding treatment. Then, from the surface of the raceway surface provided on the raceway, the hardness at the depth position (1% position) of 1% of the diameter of each rolling element is Hv720 to 832, and the content of C and the content of N are also the same. The amount of C + N that is the sum of the amount is 0.8 to 1.2% by mass, the amount of retained austenite is 20 to 45% by volume, and the compressive residual stress is also 50 to 300 MPa.
In addition, regarding the roughness curve of the surface of the raceway surface provided on the raceway, RSm indicating the interval between adjacent peaks is set to 8 μm or more.
更に、本発明の転がり軸受の場合には、前記各転動体を、Cを0.3〜1.2質量%、Siを0.3〜2.2質量%、Mnを0.3〜2.0質量%、Crを0.5〜2.0質量%、それぞれ含有し、且つSiの含有量とMnの含有量との比であるSi/Mnが5以下の合金鋼に、浸炭窒化焼き入れ処理及び焼き戻し処理を施して造る。そして、前記各転動体の表面に、平均粒径が0.05〜1μmの窒化物を、面積375μm2中に100個以上含有させる。 Furthermore, in the case of the rolling bearing of the present invention, each rolling element is composed of 0.3 to 1.2% by mass of C, 0.3 to 2.2% by mass of Si, and 0.3 to 2% of Mn. Carbonitriding and quenching to alloy steels containing 0% by mass and 0.5 to 2.0% by mass of Cr, respectively, and having a Si / Mn ratio of 5 or less, which is the ratio of the Si content to the Mn content It is made by processing and tempering. Then, 100 or more nitrides having an average particle diameter of 0.05 to 1 μm are contained in the surface of each rolling element in an area of 375 μm 2 .
又、本発明を実施する場合に、例えば請求項2に記載した発明の様に、前記各転動体を、円筒ころ、円すいころ、球面ころ等のころとするか、或いは、請求項3に記載した発明の様に、直径が30mm以上の玉とする。
更に、使用形態としては、請求項4に記載した発明の様に、風力発電装置の回転支持部に組み込んだ状態で使用したり、或いは、請求項5に記載した発明の様に、建設機械の回転支持部に組み込んだ状態で使用する。
In carrying out the present invention, for example, as in the invention described in
Furthermore, as a form of use, it can be used in a state where it is incorporated in a rotation support portion of a wind power generator as in the invention described in claim 4, or a construction machine can be used as in the invention described in claim 5. Used in a state where it is incorporated in the rotation support section.
上述の様に構成する本発明の転がり軸受は、各転動体に関して、表面層のN濃度、残留オーステナイト量、硬さ、及び表面の窒化物の面積率を規定する事で、転がり軸受の使用に伴う、前記各転動体の転動面の粗さの悪化を抑えられる。又、軌道輪に関して、軌道面表面の粗さ曲線の隣り合う山間の間隔を示すRSmを大きくしているので、この軌道面と前記各転動体の転動面との転がり接触部で金属接触が起きた際に接触する山の総数を減らせる。要するに、転動面の表面粗さを良好にすると共に、この転動面と接触する軌道面に存在する山の数を少なくして、転がり接触部で金属接触が発生した場合でも、この金属接触に基づいて形成される新生面の面積を抑えられ(狭くでき)、新生面の作用により発生する水素の量を少なく抑えられる。 The rolling bearing of the present invention configured as described above is used for rolling bearings by defining the N concentration of the surface layer, the amount of retained austenite, the hardness, and the area ratio of nitride on the surface for each rolling element. The accompanying deterioration of the roughness of the rolling surface of each rolling element can be suppressed. In addition, with respect to the raceway, since RSm indicating the distance between adjacent peaks of the raceway surface roughness curve is increased, metal contact is caused at the rolling contact portion between the raceway surface and the rolling surface of each rolling element. Reduce the total number of mountains that come into contact when you wake up. In short, even if metal contact occurs at the rolling contact portion by improving the surface roughness of the rolling contact surface and reducing the number of peaks existing on the raceway surface that contacts the rolling contact surface. Therefore, the area of the nascent surface formed based on this can be reduced (can be reduced), and the amount of hydrogen generated by the action of the nascent surface can be reduced.
又、前記軌道輪を構成する合金鋼の組成を工夫すると共に、剪断応力が高く、組織変化が起こり易い位置である、表面から各転動体の直径の1%の深さ位置(1%位置)の、硬さ、C+N量、残留オーステナイト量、圧縮残留応力を適切に規制している。この為、前記軌道輪を構成する合金鋼中に水素が浸入した場合に於ける、この合金鋼の組織変化を抑えられる。
これらにより、潤滑膜が切れ易い厳しい使用条件下でも、転がり軸受の長寿命化を十分に図れる。
In addition, the composition of the alloy steel constituting the bearing ring is devised, and the position where the shear stress is high and the structure is likely to change is the depth position (1% position) of the diameter of each rolling element from the surface. The hardness, the amount of C + N, the amount of retained austenite, and the compressive residual stress are appropriately regulated. For this reason, it is possible to suppress the structural change of the alloy steel when hydrogen enters the alloy steel constituting the race.
Accordingly, it is possible to sufficiently extend the life of the rolling bearing even under severe use conditions in which the lubricating film is easily cut.
更に、前記各転動体を構成する合金鋼の組成、並びにこれら各転動体の表面に存在する窒化物に関して適切に規制しているので、長期間に亙る使用によっても、これら各転動体の表面の性状が悪化する事を抑えられる(転動面を平滑なままに維持できる)。そして、転がり接触部での金属接触の発生頻度及び金属接触面の面積の低減をより有効に図れる。
以下、本発明の各要件を採用した理由、並びにこれら各要件の限定理由に就いて説明する。
Furthermore, since the composition of the alloy steel constituting each rolling element and the nitride existing on the surface of each rolling element are appropriately regulated, the surface of each rolling element can be used even for a long period of use. The deterioration of properties can be suppressed (the rolling surface can be kept smooth). Further, it is possible to more effectively reduce the frequency of occurrence of metal contact at the rolling contact portion and the area of the metal contact surface.
Hereinafter, the reasons for adopting the requirements of the present invention and the reasons for limiting these requirements will be described.
「請求項1に記載した発明の要件に関して」
[各転動体の表面のN濃度:0.2質量%以上]
これら各転動体を構成する合金鋼は、転動面に必要な硬度を持たせる為に、Si及びMnを含有する合金鋼を使用する。この様な合金鋼中のN濃度を増加させると、微細で高硬度なSi−Mn系窒化物が析出し、表層部である転動面が強化される。この転動面を十分に強化すべく、前記各転動体の表面層部分に、微細で高硬度なSi−Mn系窒化物を、十分量析出させる為には、この表面層部分のN濃度を0.2質量%以上とする必要がある。これに対して、この表面層部分のN濃度が2質量%を超えると、この表面層部分の靭性が低下する。そこで、前記各転動体の表面層部分のN濃度の上限値は、2質量%以下に抑える。
“Regarding the requirements of the invention described in claim 1”
[N concentration on the surface of each rolling element: 0.2% by mass or more]
The alloy steel constituting each of these rolling elements uses an alloy steel containing Si and Mn in order to give the rolling surface the necessary hardness. When the N concentration in such an alloy steel is increased, fine and hard Si—Mn nitride is precipitated, and the rolling surface as the surface layer portion is strengthened. In order to sufficiently strengthen this rolling surface, in order to deposit a sufficient amount of fine and hard Si-Mn nitride on the surface layer portion of each rolling element, the N concentration of this surface layer portion is set to It is necessary to be 0.2% by mass or more. On the other hand, when the N concentration of the surface layer portion exceeds 2% by mass, the toughness of the surface layer portion decreases. Therefore, the upper limit value of the N concentration in the surface layer portion of each rolling element is suppressed to 2% by mass or less.
「各転動体表面の窒化物の面積率:1%以上、10%未満]
前記各転動体の転動面の強化と言った効果を、十分に安定して得る為には、この転動面となるこれら各転動体の表面層部分に析出するSi−Mn系窒化物の量を或る程度確保する必要がある。これら各転動体の表面の窒化物の面積率が1%未満の場合には、前記転動面の強化を十分に図れない。これに対して、前記各転動体の表面層部分に析出しているSi−Mn系窒化物の量が多過ぎると、これら各転動体の表面層部分の硬度が高くなり過ぎて、これら各転動体に熱処理を施した後、これら各転動体の転動面に仕上加工を施す際の研削性が低下し、加工コストが徒に嵩むだけでなく、これら各転動体の表面層部分の靭性が低下して、この表面層部分に割れ等の損傷を発生し易くなる。研削性の低下や靭性の低下による不都合は、前記各転動体表面の窒化物の面積率が10%以上になると著しくなる。そこで、これら各転動体表面の窒化物の面積率を、1%以上、10%未満とする。
“Nitride area ratio of each rolling element surface: 1% or more and less than 10%]
In order to obtain the effect of strengthening the rolling surface of each rolling element sufficiently stably, the Si-Mn nitride deposited on the surface layer portion of each rolling element that becomes this rolling surface It is necessary to secure a certain amount. When the area ratio of nitride on the surface of each rolling element is less than 1%, the rolling surface cannot be sufficiently strengthened. On the other hand, if the amount of Si-Mn nitride deposited on the surface layer portion of each rolling element is too large, the hardness of the surface layer portion of each rolling element becomes too high and After heat-treating the rolling elements, the grindability when finishing the rolling surfaces of these rolling elements is reduced, and not only the processing cost is increased, but also the toughness of the surface layer portion of each rolling element is increased. It becomes easy to generate | occur | produce damages, such as a crack, in this surface layer part. The inconvenience due to a decrease in grindability and a decrease in toughness becomes significant when the area ratio of nitride on the surface of each rolling element is 10% or more. Therefore, the area ratio of nitride on the surface of each rolling element is set to 1% or more and less than 10%.
[各転動体の表面層部分の残留オーステナイト量:30容量%以下]
残留オーステナイトは、軟質な組織である為、前記各転動体の転動面に付く圧痕の形状に影響し、圧痕縁への応力集中を緩和する。従って、これら各転動体の表面層部分の残留オーステナイト量を或る程度確保する事で、前記傷や圧痕に起因する剥離抑制の効果を得られる。但し、前記各転動体の表面層部分の残留オーステナイト量が多過ぎると、これら各転動体の転動面の硬さが低下し、これら各転動体の転動面の転がり疲れ寿命の確保が難しくなる。そこで、各転動体の表面層部分の残留オーステナイト量を30容量%以下に、更に好ましくは15容量%以下に抑える。これに対して、前記各転動体の表面層部分の残留オーステナイト量が2容量%未満の場合には、上述した効果を得られない。そこで、前記各転動体の表面層部分の残留オーステナイト量の下限値を2容量%以上とする。
[Amount of retained austenite in the surface layer portion of each rolling element: 30% by volume or less]
Since the retained austenite is a soft structure, it affects the shape of the indentation on the rolling surface of each rolling element, and alleviates stress concentration on the indentation edge. Therefore, by securing a certain amount of retained austenite in the surface layer portion of each rolling element, it is possible to obtain an effect of suppressing peeling due to the scratches and indentations. However, if the amount of retained austenite in the surface layer portion of each rolling element is too large, the hardness of the rolling surface of each rolling element decreases, and it is difficult to ensure the rolling fatigue life of the rolling surface of each rolling element. Become. Therefore, the amount of retained austenite in the surface layer portion of each rolling element is suppressed to 30% by volume or less, more preferably 15% by volume or less. On the other hand, when the amount of retained austenite in the surface layer portion of each rolling element is less than 2% by volume, the above-described effect cannot be obtained. Therefore, the lower limit of the amount of retained austenite in the surface layer portion of each rolling element is set to 2% by volume or more.
[各転動体の表面層部分の硬さ:Hv780以上]
これら各転動体の表面層部分の硬さが低いと、転動面に傷や圧痕が付き易くなり、傷や圧痕が付いた場合には、この転動面の粗さが低下する。そして、転がり軸受の運転時に発生する騒音や振動が大きくなるだけでなく、前記転動面と前記軌道面との間で金属接触が起こり易くなる。そして、金属接触が起こると、前述した様に、水素の発生を誘発する新生面が生じ易くなる。そこで、前記各転動体の表面層部分の硬さを、Hv780以上とし、前記転動面に傷や圧痕が付き難くする。これに対して、前記各転動体の表面層部分の硬さがHv1050を越えると、これら各転動体の転動面の研削性が低下する。そこで、この硬さの上限値をHv1050以下とする。
[Hardness of surface layer portion of each rolling element: Hv780 or more]
If the hardness of the surface layer portion of each rolling element is low, scratches and indentations are likely to be made on the rolling surface, and if there are scratches or indentations, the roughness of the rolling surface is reduced. And not only the noise and vibration which generate | occur | produce at the time of operation | movement of a rolling bearing become large, but a metal contact becomes easy to occur between the said rolling surface and the said track surface. When metal contact occurs, as described above, a new surface that induces generation of hydrogen tends to occur. Therefore, the hardness of the surface layer portion of each rolling element is set to Hv 780 or more so that scratches and indentations are hardly attached to the rolling surface. On the other hand, if the hardness of the surface layer portion of each rolling element exceeds Hv1050, the grindability of the rolling surface of each rolling element deteriorates. Therefore, the upper limit value of the hardness is set to Hv1050 or less.
[軌道輪を構成する合金鋼中のCの含有量:0.10〜0.30質量%]
Cは焼き入れによって合金鋼の基地中に固溶し、硬さを向上させる元素である。軌道輪を構成する合金鋼中のCの含有量が0.10質量%未満の場合には、得られた軌道輪の芯部の硬さが不足して、この軌道輪の剛性が不十分になる。これに対して、軌道輪を構成する合金鋼中のCの含有量が0.30質量%を超えると、得られた軌道輪の芯部までもが硬くなり過ぎて、この芯部の靱性が低下してしまう。そこで、この軌道輪を構成する合金鋼中のCの含有量を、0.10〜0.30質量%とした。尚、本発明の場合には、軌道面の硬さを確保する為に、軌道輪に浸炭処理又は浸炭窒化処理を施す。この場合に、合金鋼製の軌道輪に浸炭処理或いは浸炭窒化処理を施すと、表面が硬く、内部に向かうに従って硬さが低下して、表面から或る程度の深さに達した後は、それ以上深くなっても硬さは低下しなくなる。前記芯部とは、この様に硬さが下がり切って一定になった部分を言う。
[C content in alloy steel constituting raceway ring: 0.10 to 0.30 mass%]
C is an element that dissolves in the base of the alloy steel by quenching and improves the hardness. When the content of C in the alloy steel constituting the bearing ring is less than 0.10% by mass, the hardness of the core of the obtained bearing ring is insufficient, and the rigidity of the bearing ring is insufficient. Become. On the other hand, when the content of C in the alloy steel constituting the raceway exceeds 0.30% by mass, the core part of the obtained raceway ring becomes too hard, and the toughness of this core part is too high. It will decline. Therefore, the C content in the alloy steel constituting the race is set to 0.10 to 0.30 mass%. In the case of the present invention, in order to ensure the hardness of the raceway surface, the raceway is subjected to carburizing treatment or carbonitriding treatment. In this case, when carburizing treatment or carbonitriding treatment is performed on the alloy ring raceway, the surface is hard, the hardness decreases toward the inside, and after reaching a certain depth from the surface, Hardness does not decrease even if deeper than that. The core portion is a portion where the hardness is lowered and becomes constant in this way.
[軌道輪を構成する合金鋼中のSiの含有量:0.2〜0.9質量%]
Siは、合金鋼の基地中に固溶して焼き入れ性及び焼き戻し軟化抵抗性を向上させる効果がある為、軌道輪に必要な硬さを確保する為に添加する。且つ、Siは、基地組織中のマルテンサイトを安定させて、本発明の重要な目的である、水素による組織変化を遅延させ、白色組織剥離の発生を抑える効果がある。白色組織変化遅延による寿命延長効果は、Si量が0.2質量%未満の場合には十分には得られない。一方、Siの含有量が0.9質量%を超えると、浸炭性並びに浸炭窒化性が低下して、軌道面に必要な硬さを得る為の熱処理の効果が阻害される。そこで、軌道輪を構成する合金鋼中のSiの含有量を0.2〜0.9質量%とした。
[Si content in alloy steel constituting the bearing ring: 0.2 to 0.9 mass%]
Si has the effect of improving the hardenability and temper softening resistance by solid solution in the base of the alloy steel, so it is added to ensure the necessary hardness for the race. In addition, Si has the effect of stabilizing martensite in the base structure, delaying the structural change caused by hydrogen, which is an important object of the present invention, and suppressing the occurrence of white tissue peeling. The effect of extending the life due to the white structure change delay is not sufficiently obtained when the Si content is less than 0.2% by mass. On the other hand, when the Si content exceeds 0.9 mass%, the carburizing property and the carbonitriding property are deteriorated, and the effect of heat treatment for obtaining the necessary hardness for the raceway surface is hindered. Therefore, the Si content in the alloy steel constituting the race is set to 0.2 to 0.9 mass%.
[軌道輪を構成する合金鋼中のMnの含有量:0.2〜1.2質量%]
Mnは、合金鋼の基地中に固溶して焼き入れ性を向上させる効果がある為、軌道輪に必要な硬さを確保する為に添加する。又、Mnは、オーステナイトを安定化する効果があり、熱処理後の残留オーステナイトを生成し易くする。残留オーステナイトは、金属組織中の水素の拡散、集積を遅延させる効果を有する為、Mnを添加する事により、水素による局所的な組織変化を遅延させて寿命を延長する事ができる。この様な効果は、Mnの添加量を0.2質量%以上にしなければ、十分には得られない。一方、Mnの含有量が1.2質量%を超えると、旧オーステナイト粒径が粗大化したり、熱間鍛造時の変形抵抗が上昇して、熱間鍛造性を低下させ、量産性が低下する。又、軸受部品を構成する合金鋼中の残留オーステナイトは、転がり軸受の使用に伴って少しずつ分解し、分解に伴って、僅かとは言え体積が膨張する。この為、Mnの含有量を多くする事で残留オーステナイトの量が過剰になると、前記軸受部品の形状及び寸法の安定性が低下する。そこで、この軸受部品を構成する鋼中のMnの量を、0.2〜1.2質量%の範囲とする。尚、熱間鍛造性及び寸法安定性をより安定させる為に、好ましくは、Mnの含有量を0.8質量%以下に抑える。但し、前記効果を十分に得る為に、Mnの含有量の下限値を、好ましくは0.6質量%とする。
[Mn content in alloy steel constituting the bearing ring: 0.2 to 1.2% by mass]
Mn has the effect of improving the hardenability by dissolving in the base of the alloy steel, so Mn is added to ensure the necessary hardness for the race. Further, Mn has an effect of stabilizing austenite, and makes it easy to generate retained austenite after heat treatment. Residual austenite has the effect of delaying the diffusion and accumulation of hydrogen in the metal structure. Therefore, by adding Mn, the local structure change caused by hydrogen can be delayed to extend the life. Such an effect cannot be sufficiently obtained unless the amount of Mn added is 0.2% by mass or more. On the other hand, if the content of Mn exceeds 1.2% by mass, the prior austenite grain size becomes coarse, the deformation resistance during hot forging increases, the hot forgeability decreases, and the mass productivity decreases. . Further, the retained austenite in the alloy steel constituting the bearing component is decomposed little by little with the use of the rolling bearing, and the volume expands, albeit slightly, with the decomposition. For this reason, when the amount of retained austenite becomes excessive by increasing the content of Mn, the stability of the shape and dimensions of the bearing component is lowered. Therefore, the amount of Mn in the steel constituting this bearing part is set to a range of 0.2 to 1.2% by mass. In order to further stabilize the hot forgeability and dimensional stability, the Mn content is preferably suppressed to 0.8% by mass or less. However, in order to sufficiently obtain the above effects, the lower limit value of the Mn content is preferably 0.6% by mass.
[軌道輪を構成する合金鋼中のCrの含有量:2.6〜4.5質量%]
Crは、合金鋼の基地中に固溶して、焼き入れ性を向上させる効果がある。又、Cと結合して炭化物を形成し、耐摩耗性を向上させる効果がある。更に、炭化物と基地組織中のマルテンサイトを安定化させる為、水素による組織変化を遅延させて、白色組織の生成を遅らせ、軸受部品の寿命を延長する効果がある。Crの含有量が2.6質量%未満の場合には、この様な効果を十分には得られない。一方、Crの含有量が4.5質量%を超えると、軌道輪の靱性が低下したり、浸炭性並びに浸炭窒化性が低下する。又、Crは高価な元素である為、多量に含有させる事により、軌道輪の素材となる合金鋼の調達コストが嵩む。更には、焼き入れ温度を高くしないと所定の硬さを得られなくなる為、軌道輪の生産性を低下させてしまう。そこで、軌道輪を構成する合金鋼中のCrの含有量を、2.6〜4.5質量%とする。
[Cr content in alloy steel constituting the bearing ring: 2.6 to 4.5% by mass]
Cr has the effect of improving the hardenability by dissolving in the base of the alloy steel. Moreover, it combines with C to form carbides and has the effect of improving wear resistance. Furthermore, in order to stabilize the carbide and martensite in the base structure, there is an effect of delaying the structural change caused by hydrogen, delaying the formation of the white structure, and extending the life of the bearing component. When the Cr content is less than 2.6% by mass, such an effect cannot be sufficiently obtained. On the other hand, if the Cr content exceeds 4.5 mass%, the toughness of the raceway ring is reduced, and the carburizing ability and carbonitriding ability are reduced. In addition, since Cr is an expensive element, the inclusion of a large amount increases the procurement cost of alloy steel used as a material for the race. Furthermore, if the quenching temperature is not increased, a predetermined hardness cannot be obtained, so that the productivity of the race is reduced. Therefore, the content of Cr in the alloy steel constituting the bearing ring is set to 2.6 to 4.5 mass%.
[軌道輪を構成する合金鋼中のMoの含有量:0.1〜0.9質量%]
Moは、合金鋼の基地中に固溶して、焼き入れ性及び焼き戻し軟化抵抗性を向上させ、軌道輪の軌道面の硬さを確保する効果がある。即ち、Moは、炭窒化物形成元素として機能し、この軌道面の耐摩耗性及び転がり疲労寿命を向上させる。更に、Moは、基地組織中のマルテンサイトを安定化させる為、本発明で重要な、水素による組織変化(白色組織生成)を遅延させる効果がある。この様な効果(例えば組織変化遅延効果)は、Moの含有量が0.1質量%未満の場合には十分に得られない。これに対して、合金鋼中のMoの含有量が0.9質量%を超えると、軌道輪の靱性が低下してしまう。又、Moも高価な元素である為、多量に含有させる事により、軌道輪の素材となる合金鋼の調達コストが嵩む。更には、造られた軌道輪の被削性が低下し、この軌道輪の生産性を低下させてしまう。そこで、軌道輪を構成する合金鋼中のMoの含有量を0.1〜0.9質量%、好ましくは0.1〜0.4質量%とする。
[Mo content in alloy steel constituting raceway ring: 0.1 to 0.9 mass%]
Mo dissolves in the base of the alloy steel to improve the hardenability and temper softening resistance and to secure the hardness of the raceway surface of the raceway. That is, Mo functions as a carbonitride-forming element and improves the wear resistance and rolling fatigue life of this raceway surface. Furthermore, since Mo stabilizes martensite in the base structure, it has an effect of delaying the structure change (white structure generation) due to hydrogen, which is important in the present invention. Such an effect (for example, a structure change delay effect) cannot be sufficiently obtained when the Mo content is less than 0.1% by mass. On the other hand, if the Mo content in the alloy steel exceeds 0.9 mass%, the toughness of the raceway will be reduced. Moreover, since Mo is also an expensive element, the procurement cost of the alloy steel used as the material for the bearing ring increases when it is contained in a large amount. Furthermore, the machinability of the manufactured raceway is reduced, and the productivity of this raceway is reduced. Therefore, the Mo content in the alloy steel constituting the bearing ring is set to 0.1 to 0.9 mass%, preferably 0.1 to 0.4 mass%.
[軌道輪を構成する合金鋼中のNiの含有量:0.9質量%以下]
Niは、原材料となるスクラップから混入する元素であるが、焼き入れ性を向上させる効果と、残留オーステナイトを安定化させる効果と、靭性を向上させる効果とがある。但し、多量に混入すると、残留オーステナイトの量が過剰になり、前記軸受部品の形状及び寸法の安定性が低下する。又、Niも高価な元素である為、多量に含有させる事により、軌道輪の素材となる合金鋼の調達コストが嵩む。そこで、Niに関しては、積極的には添加せず、Niの含有量を0.9質量%以下、好ましくは0.2質量%以下とする。
[Ni content in alloy steel constituting raceway ring: 0.9 mass% or less]
Ni is an element mixed from scrap as a raw material, and has the effect of improving hardenability, the effect of stabilizing retained austenite, and the effect of improving toughness. However, when a large amount is mixed, the amount of retained austenite becomes excessive, and the stability of the shape and dimensions of the bearing part is lowered. Moreover, since Ni is also an expensive element, the procurement cost of the alloy steel used as the material of the bearing ring increases when it is contained in a large amount. Therefore, Ni is not actively added, and the Ni content is 0.9 mass% or less, preferably 0.2 mass% or less.
[軌道輪を構成する合金鋼中のCuの含有量:0.20質量%以下]
Cuは、スクラップから混入する元素であるが、焼き入れ性を向上させる効果と、粒界強度を向上させる効果とがある。但し、Cuの含有量が多くなると熱間鍛造性が低下する。そこで、Cuに関しては、積極的には添加せず、その含有量を0.20質量%以下とした。
[Cu content in alloy steel constituting raceway ring: 0.20 mass% or less]
Cu is an element mixed from scrap, and has an effect of improving hardenability and an effect of improving grain boundary strength. However, when the Cu content increases, hot forgeability decreases. Therefore, Cu is not actively added, and its content is set to 0.20% by mass or less.
[軌道輪を構成する合金鋼中のSの含有量:0.020質量%以下]
Sは、MnSを形成し、介在物として作用する為、鋼中に含まれるS量は少ない程良い。但し、Sは自然界に多く存在する元素であり、Sの含有量を極端に少なく抑えようとすると、鋼材の生産性が低下し、鋼材の製造コストが上昇する為、工業上広く利用する事が難しくなる。一方、Sを0.020質量%程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、軸受部品に必要とされる耐久性を確保できる。そこで、Sの含有量の上限値を0.020質量%とした。
[S content in alloy steel constituting raceway ring: 0.020 mass% or less]
Since S forms MnS and acts as an inclusion, the smaller the amount of S contained in the steel, the better. However, S is an element that exists abundantly in the natural world, and trying to keep the S content extremely low reduces the productivity of the steel material and increases the manufacturing cost of the steel material, so it can be widely used industrially. It becomes difficult. On the other hand, even if S is contained in an amount of about 0.020% by mass, durability required for bearing parts can be ensured by making the content of other elements and the heat treatment method appropriate. Therefore, the upper limit of the S content is set to 0.020% by mass.
[軌道面の表面から各転動体の直径の1%の深さ位置(1%位置)]
本発明は、この1%位置に関して、硬さ、C+N量、残留オーステナイト量、圧縮残留応力をそれぞれ規制している。これら各パラメータを1%位置で規制した理由は、次の通りである。
転がり軸受では、各軌道輪の軌道面と各転動体の転動面との接触圧力によって、これら各軌道輪や各転動体である軸受部品の内部で、転がり接触面の直下部分に剪断応力が発生し、この剪断応力によって、金属疲労が生じて、転がり接触面の表面の剥離に至る事が知られている。この剪断応力の分布は、軌道面と転動面との接触応力と接触面積とにより決定されるので、転動体直径が剪断応力の分布に大きく影響を与える。通常の使用条件では、軌道面及び転動面の表面から転動体直径(D)の約1%程度の深さ(深さ0.01D)位置で、剪断応力が最大となり、その領域を起点として剥離が生ずる。水素による組織変化も、同様に剪断応力が最大となる、1%位置で発生し易い事が分かっている。
そこで本発明は、この1%位置で剥離に繋がる現象が発生し難くすべく、この1%位置での硬さ、C十N量、残留オーステナイト量、圧縮残留応力を、それぞれ次の通りに規制している。
[1% depth position (1% position) of the diameter of each rolling element from the raceway surface]
The present invention regulates the hardness, C + N amount, retained austenite amount, and compressive residual stress for the 1% position. The reason why these parameters are regulated at the 1% position is as follows.
In rolling bearings, due to the contact pressure between the raceway surface of each bearing ring and the rolling surface of each rolling element, a shear stress is applied directly below the rolling contact surface inside each bearing ring and the bearing component that is each rolling element. It is known that this shear stress generates metal fatigue, which leads to peeling of the surface of the rolling contact surface. Since this shear stress distribution is determined by the contact stress and the contact area between the raceway surface and the rolling surface, the rolling element diameter greatly affects the shear stress distribution. Under normal conditions of use, the shear stress becomes maximum at a position (depth 0.01D) that is about 1% of the rolling element diameter (D) from the raceway surface and the rolling surface. Delamination occurs. It has been found that the structural change caused by hydrogen is also likely to occur at the 1% position where the shear stress is similarly maximized.
Therefore, the present invention regulates the hardness, C + N amount, retained austenite amount, and compressive residual stress at the 1% position as follows in order to make it difficult for the phenomenon that leads to peeling at the 1% position. doing.
[1%位置での軌道輪の硬さ:Hv720〜832]
軌道面から軌道輪を構成する合金鋼中に浸入した水素は、この合金鋼中を動き回り、更に、応力が高い領域に集積し易い性質を有する。転がり軸受の運転時に応力が高くなる領域は、上述の通り1%位置であり、この1%位置で軌道輪内部の剪断応力が最大となる為、この1%位置に水素が集積し易くなる。本発明者等の研究により、水素による組織変化は、局所的に塑性変形が生じる事により引き起こされ、この組織変化の発生を遅延させる為には、前記1%位置での硬さを向上させ、塑性変形に対する抵抗値を向上させる事が効果がある事が分かった。そこで、前記軌道輪の1%位置の硬さを、Hv720〜832(HRC61〜65)に規制した。この1%位置の硬さがHv720未満の場合には、軌道面に大きな荷重が繰り返し負荷される様な、厳しい使用条件下で、前記1%位置の塑性変形を十分に抑えられず、水素による組織変化の発生を十分に抑えられず、前記軌道輪の転がり疲れ寿命を十分には確保できない。これに対して、前記1%位置の硬さがHv832を超えて大きくなると、前記軌道輪の靭性が不足する。尚、この1%位置での硬さは、この軌道輪を構成する合金鋼の組成を規制すると共に、C十N量と、焼き入れ及び焼き戻しの条件を制御する事により、適切に規制できる。
[Hardness of raceway at 1% position: Hv 720-832]
Hydrogen that has entered the alloy steel constituting the race ring from the raceway surface moves around in the alloy steel and has a property of being easily accumulated in a region where stress is high. The region where the stress increases during the operation of the rolling bearing is at the 1% position as described above. Since the shear stress inside the raceway is maximized at the 1% position, hydrogen tends to accumulate at the 1% position. According to the study by the present inventors, the structural change caused by hydrogen is caused by local plastic deformation, and in order to delay the occurrence of this structural change, the hardness at the 1% position is improved, It has been found that improving the resistance value against plastic deformation is effective. Therefore, the hardness at the 1% position of the raceway is regulated to Hv720-2032 (HRC61-65). When the hardness at the 1% position is less than Hv720, the plastic deformation at the 1% position cannot be sufficiently suppressed under severe use conditions such that a large load is repeatedly applied to the raceway surface. The occurrence of structural changes cannot be sufficiently suppressed, and the rolling fatigue life of the races cannot be sufficiently ensured. On the other hand, if the hardness at the 1% position exceeds Hv832, the toughness of the raceway is insufficient. The hardness at the 1% position can be properly regulated by regulating the composition of the alloy steel constituting the race and controlling the amount of C + N and the conditions of quenching and tempering. .
[1%位置での合金鋼中のC十N量:0.8〜1.2質量%]
合金鋼の基地組織中へのCやNの固溶量が多いと、この基地組織の強度が高くなり、組織変化が生じにくくなる。この様な効果は、1%位置でのC十N量が0.8質量%未満の場合には、十分には得られない。これに対して、この1%位置でのC十N量が1.2質量%を超えると、大きな炭化物又は窒化物が生成されて、その周辺に応力集中が発生して組織変化が起こり易くなる。即ち、前述した内部起点型剥離が発生し易くなる。そこで、1%位置での合金鋼中のC十N量を、0.8〜1.2質量%とした。
[Amount of C + N in alloy steel at 1% position: 0.8 to 1.2% by mass]
If the amount of C or N dissolved in the base structure of the alloy steel is large, the strength of the base structure becomes high, and the structural change is less likely to occur. Such an effect cannot be sufficiently obtained when the amount of C + N at the 1% position is less than 0.8% by mass. On the other hand, when the amount of C + N at the 1% position exceeds 1.2% by mass, a large carbide or nitride is generated, stress concentration is generated in the vicinity thereof, and the structure is likely to change. . That is, the above-described internal origin type peeling is likely to occur. Therefore, the amount of C + N in the alloy steel at the 1% position is set to 0.8 to 1.2% by mass.
[1%位置での合金鋼中の残留オーステナイト量:20〜45容量%]
金属組織中の残留オーステナイトは、合金鋼の基地組織であるマルテンサイトと結晶構造が異なっており、その結晶構造により水素の拡散定数を低下させる効果を有する。この為、前記1%位置に存在する残留オ−ステナイトは、この1%位置に水素が局所的に集積するのを遅延させ、この1%位置での組織変化の発生を遅延させる効果を奏する。この様な効果は、この1%位置での残留オーステナイト量が20容量%未満の場合には、十分には得られない。これに対して、前記1%位置の残留オーステナイト量が45容量%を超えると、軌道輪の寸法安定性が低下してしまう。そこで、前記1%位置での残留オーステナイト量を、20〜45容量%の範囲に規制した。尚、この1%位置の残留オーステナイト量は、合金鋼の成分を規制すると共に、上述したC十N量と、焼き入れ及び焼き戻しの条件を制御する事により規制できる。
[Amount of retained austenite in alloy steel at 1% position: 20 to 45% by volume]
The retained austenite in the metal structure has a crystal structure different from that of martensite, which is a base structure of the alloy steel, and has an effect of lowering the hydrogen diffusion constant due to the crystal structure. For this reason, the residual austenite existing at the 1% position has an effect of delaying the local accumulation of hydrogen at the 1% position and delaying the occurrence of the structural change at the 1% position. Such an effect cannot be sufficiently obtained when the amount of retained austenite at the 1% position is less than 20% by volume. On the other hand, if the amount of retained austenite at the 1% position exceeds 45% by volume, the dimensional stability of the bearing ring is lowered. Therefore, the amount of retained austenite at the 1% position was restricted to a range of 20 to 45% by volume. The amount of retained austenite at the 1% position can be regulated by controlling the components of the alloy steel and controlling the above-mentioned C + N amount and quenching and tempering conditions.
[1%位置での軌道輪の圧縮残留応力:50〜300MPa]
本発明で抑えようとしている組織変化型剥離は、前述した様に、前記1%位置での水素による組織変化を起点として亀裂が発生する事に基づいて発生する。一方、圧縮残留応力は、亀裂の発生を抑え、仮に亀裂が発生した場合にもこの亀裂が拡がるのを抑え込む方向に作用する。水素が集積し易く、この水素による組織変化が生じ易い1%位置に存在する圧縮残留応力は、この組織変化が亀裂の発生及びその伝播を抑える為、水素による組織変化の発生を遅延させる機能を果たす。この様な機能に基づく組織変化型剥離の防止効果は、前記1%位置での圧縮残留応力が50MPa未満の場合には十分には得られない。これに対して、この1%位置の圧縮残留応力が300MPaを超えると、この圧縮残留応力と平衡をとる為に、前記軌道輪の内部に発生する引っ張り残留応力の値が大きくなり、この引っ張り残留応力が大きくなった部分で、亀裂が発生、進展する可能性を生じる。そこで、本発明の場合には、前記1%位置の圧縮残留応力の値を、50〜300MPaの範囲に規制した。尚、この1%位置の圧縮残留応力は、合金鋼の成分を規制すると共に、浸炭時間又は浸炭窒化時間を調整して、軌道輪の表面から芯部へのC十N量の傾斜(浸炭処理又は浸炭窒化処理に基づく表面層部分の膨張量)を制御する事により規制できる。
[Compressive residual stress of raceway at 1% position: 50 to 300 MPa]
As described above, the structure change type peeling to be suppressed in the present invention occurs based on the occurrence of cracks starting from the structure change caused by hydrogen at the 1% position. On the other hand, the compressive residual stress acts to suppress the occurrence of cracks and suppress the spread of cracks even if they occur. The compressive residual stress existing at the 1% position where hydrogen is likely to accumulate and the structure change due to hydrogen is likely to occur. This structure change suppresses the generation of cracks and their propagation. Fulfill. The effect of preventing the structure change type peeling based on such a function cannot be sufficiently obtained when the compressive residual stress at the 1% position is less than 50 MPa. On the other hand, when the compressive residual stress at the 1% position exceeds 300 MPa, the value of the tensile residual stress generated inside the raceway ring increases in order to balance the compressive residual stress. There is a possibility that cracks are generated and propagated in the portion where the stress is increased. Therefore, in the case of the present invention, the value of the compressive residual stress at the 1% position is regulated within the range of 50 to 300 MPa. This compressive residual stress at the 1% position regulates the alloy steel components and adjusts the carburizing time or carbonitriding time, so that a C + N gradient from the surface of the raceway to the core (carburizing treatment). Alternatively, it can be regulated by controlling the expansion amount of the surface layer portion based on the carbonitriding process.
[軌道面表面の粗さ曲線の隣り合う山間の間隔を示すRSm:8μm以上]
この要件は、潤滑油の分解を促進する新生面の面積を少なく抑える為に必要である。前述した様に、水素は、軌道面と転動面との金属接触によって形成された新生面が触媒として機能する、トライボケミカル反応により潤滑油が分解して発生する。この様なメカニズムによる水素の発生を抑える為には、一度の金属接触によって形成される新生面の量(面積)を減らす事が考えられる。本発明者等は、この様な考えに基づいて、軌道面に関する粗さ曲線の、隣り合う山同士の間隔を示す値であるRSmに着目して、新生面の量(面積)を減らして水素の発生を抑え、組織変化型剥離の進行を抑えて、転がり軸受の寿命延長を実現した。
[RSm indicating the distance between adjacent peaks in the roughness curve of the raceway surface: 8 μm or more]
This requirement is necessary to minimize the area of the new surface that promotes the decomposition of the lubricating oil. As described above, hydrogen is generated by decomposing lubricating oil by a tribochemical reaction in which a new surface formed by metal contact between the raceway surface and the rolling surface functions as a catalyst. In order to suppress the generation of hydrogen by such a mechanism, it is conceivable to reduce the amount (area) of a new surface formed by a single metal contact. Based on this idea, the present inventors focused on RSm, which is a value indicating the interval between adjacent peaks, in the roughness curve related to the raceway surface, and reduced the amount (area) of the new surface to reduce the amount of hydrogen. Reduced the occurrence and the progress of the structure change type peeling, and extended the life of the rolling bearing.
一般的に、転がり軸受を構成する軌道輪の軌道面の表面粗さは、算術平均粗さ(Ra)や最大高さ(Ry)、十点平均粗さ(Rz)の様な、粗さ曲線の縦方向パラメータ(山と谷の高さ)で評価される。又、実際に、転がり軸受を構成する各軌道の軌道面と各転動体の転動面との転がり接触部での金属接触の起こり易さは、軌道面及び転動面の縦方向の粗さパラメータと潤滑膜の厚さとの関係から計算する事ができ、横方向の粗さパラメータである、前記RSmは関与しない。これに対して本発明では、図4の(A)→(B)に示す様に、横方向の粗さパラメータである、このRSmを大きくする事により、転がり接触部での金属接触の起こり易さではなく、一度の金属接触によって接触する山の数を減らし、この金属接触で形成される新生面の量(面積)を抑制する事とした。一度の金属接触で形成される新生面の面積を狭くできれば、この新生面の触媒作用による潤滑油の分解を抑え、この分解に伴って発生する水素の量を抑えられ、結果として、組織変化型剥離の進行を抑えられる。この様な効果は、前記RSmが大きい程顕著になり、このRSmが8μm未満の場合には、この効果を十分には得られない。好ましくは、このRSmを21μm以上とする。一方、RSmが大きい程、新生面の量(面積)を減らし、組織変化型剥離の進行を抑えられる為、このRSmの上限値に就いては、特に規定しない。即ち、このRSmの値が大きい程、新生面の面積を低減して、組織型剥離の進行を抑えられる。但し、このRSmが過大になると、前記軌道面のうちで前記各転動体の転動面と接触する山の数が少なくなり過ぎて、転がり軸受使用時の荷重条件によっては、局所的な面圧が過大になり、耐摩耗性が低下する。この様な事情を考慮した場合、前記RSmの上限値は100μm以下、より好ましくは50μm以下に抑える。 Generally, the surface roughness of the raceway surface of the bearing ring constituting the rolling bearing is a roughness curve such as arithmetic average roughness (Ra), maximum height (Ry), and ten-point average roughness (Rz). Is evaluated with the vertical parameter (height of peaks and valleys). Actually, the ease of metal contact at the rolling contact portion between the raceway surface of each raceway and the rolling surface of each rolling element constituting the rolling bearing is determined by the roughness of the raceway surface and the rolling surface in the vertical direction. The RSm, which can be calculated from the relationship between the parameter and the thickness of the lubricating film, and is a lateral roughness parameter is not involved. On the other hand, in the present invention, as shown in FIGS. 4A to 4B, by increasing this RSm, which is a roughness parameter in the lateral direction, metal contact easily occurs at the rolling contact portion. Instead, the number of ridges to be contacted by one metal contact was reduced, and the amount (area) of a new surface formed by this metal contact was suppressed. If the area of the new surface formed by a single metal contact can be reduced, the decomposition of the lubricating oil due to the catalytic action of this new surface can be suppressed, and the amount of hydrogen generated by this decomposition can be suppressed. Progress can be suppressed. Such an effect becomes more prominent as the RSm is larger. When the RSm is less than 8 μm, this effect cannot be obtained sufficiently. Preferably, this RSm is 21 μm or more. On the other hand, as the RSm is larger, the amount (area) of the new surface is reduced and the progress of the tissue change type peeling is suppressed, so the upper limit value of the RSm is not particularly defined. That is, as the value of RSm is larger, the area of the new surface is reduced, and the progress of tissue type peeling can be suppressed. However, if this RSm becomes excessive, the number of ridges in contact with the rolling surface of each rolling element in the raceway surface becomes too small, and depending on the load condition when using a rolling bearing, the local surface pressure Becomes excessive and wear resistance decreases. In consideration of such circumstances, the upper limit value of the RSm is suppressed to 100 μm or less, more preferably 50 μm or less.
[各転動体を構成する合金鋼中のCの含有量:0.3〜1.2質量%]
Cは焼き入れによって合金鋼の基地中に固溶し、硬さを向上させる元素である。転動体を構成する合金鋼中のCの含有量が0.3質量%未満の場合には、十分な強度が得られないだけでなく、浸炭窒化処理により必要な硬化層深さを得る為に必要とされる熱処理時間が長くなり、熱処理コストの増大に繋がる。この為、転動体を構成する合金鋼中のCの含有量は、0.3質量%以上、好ましくは0.5質量%以上、更に好ましくは0.95質量%以上とする。これに対して、転動体を構成する合金鋼中のCの含有量が多過ぎると製鋼時に巨大炭化物が生成され、その後の焼き入れ特性や転がり疲れ寿命に悪影響を与える他、棒状の素材を転動体に塑性加工する加工し易さ(ヘッダー性)が低下して、加工コストの上昇を招く。そこで、前記転動体を構成する合金鋼中のCの含有量の上限値を1.2質量%、好ましくは1.10質量%とする。
[C content in alloy steel constituting each rolling element: 0.3 to 1.2% by mass]
C is an element that dissolves in the base of the alloy steel by quenching and improves the hardness. When the content of C in the alloy steel constituting the rolling element is less than 0.3% by mass, not only sufficient strength cannot be obtained, but also to obtain the necessary hardened layer depth by carbonitriding. The required heat treatment time is increased, leading to an increase in heat treatment cost. For this reason, the content of C in the alloy steel constituting the rolling element is 0.3% by mass or more, preferably 0.5% by mass or more, and more preferably 0.95% by mass or more. On the other hand, if the content of C in the alloy steel constituting the rolling element is too large, giant carbides are produced during steelmaking, which adversely affects the subsequent quenching characteristics and rolling fatigue life, and the rod-shaped material is not rolled. Ease of processing (header property) for plastic processing of a moving body is reduced, and processing costs are increased. Therefore, the upper limit of the C content in the alloy steel constituting the rolling element is set to 1.2 mass%, preferably 1.10 mass%.
[各転動体を構成する合金鋼中のSiの含有量:0.3〜2.2質量%]
Siは、浸炭窒化処理に伴って、各転動体の表面層部分に十分な量のSi−Mn系窒化物を安定して析出させ、これら各転動体の転動面に必要とされる硬さを持たせる為に添加する。この様な効果は、合金鋼中のSiの含有量が0.3質量%未満の場合には必ずしも十分には得られない。これに対して、Siを2.2質量%を超えて添加すると、得られた各転動体の靭性が低下したり、これら各転動体の芯部へのNの拡散が阻害され、これら各転動体全体としての硬さを必ずしも十分に高くできない場合がある。そこで、転動体を構成する合金鋼中のSiの含有量を0.3〜2.2質量%に規制した。
[Si content in alloy steel constituting each rolling element: 0.3 to 2.2% by mass]
With the carbonitriding process, Si stably precipitates a sufficient amount of Si-Mn nitride on the surface layer portion of each rolling element, and the hardness required for the rolling surface of each rolling element Add to give Such an effect is not always sufficiently obtained when the Si content in the alloy steel is less than 0.3% by mass. On the other hand, when Si is added in excess of 2.2% by mass, the toughness of the obtained rolling elements is reduced, or the diffusion of N into the core of each rolling element is inhibited, and each rolling element is inhibited. In some cases, the hardness of the entire moving body cannot always be sufficiently high. Therefore, the content of Si in the alloy steel constituting the rolling elements is regulated to 0.3 to 2.2% by mass.
[各転動体を構成する合金鋼中のMnの含有量:0.3〜2.0質量%]
Mnは、上述したSiと合わせ、各転動体の表面層部分に十分な量のSi−Mn系窒化物を安定して析出させ、各転動体の転動面に必要とされる硬さを持たせる為に添加する。この様な効果を得る為には、合金鋼中のMnの含有量が多い程好ましく、具体的には、Mnを0.3質量%以上含有させる事が好ましい。これに対して、Mnの含有量が多過ぎると、合金鋼の鍛造性や切削性が低下したり、合金鋼中に含まれる、不純物であるSやPと化合して、内部起点型剥離の原因となる硬い介在物を形成し易くなる。そこで、前記各転動体を構成する合金鋼中のMnの含有量を、好ましくは2.0質量%以下とする。
[Mn content in alloy steel constituting each rolling element: 0.3 to 2.0 mass%]
Mn, together with Si described above, stably deposits a sufficient amount of Si-Mn nitride on the surface layer portion of each rolling element, and has the hardness required for the rolling surface of each rolling element. Add to make it. In order to acquire such an effect, it is so preferable that there is much content of Mn in alloy steel, and specifically, it is preferable to contain 0.3 mass% or more of Mn. On the other hand, if the content of Mn is too large, the forgeability and machinability of the alloy steel are reduced, or it is combined with impurities such as S and P contained in the alloy steel to cause internal origin type peeling. It becomes easy to form the hard inclusion which causes. Therefore, the content of Mn in the alloy steel constituting each rolling element is preferably set to 2.0% by mass or less.
[各転動体を構成する合金鋼中のCrの含有量:0.5〜2.0質量%]
Crは、焼き入れ性を向上させる機能を果たすと同時に、炭化物形成元素であり、材料を強化する炭化物の析出を促進し、更に微細化させる。この様な効果は、前記合金鋼中のCrの含有量が多いほど得られ、含有量が0.5質量%未満の場合には、焼き入れ性が低下して十分な硬さが得られなかったり、浸炭窒化処理の際に炭化物が粗大化したりする。これに対して、前記合金鋼中のCrの含有量が2.0質量%を越えると、浸炭窒化処理の際に、各転動体の表面にCrの酸化膜が形成されて、C及びNの拡散を阻害する。そこで、前記各転動体を構成する合金鋼中のCrの含有量を、好ましくは0.5〜2.0質量%以下とし、更に好ましくは0.9〜1.2質量%とする。
[Cr content in alloy steel constituting each rolling element: 0.5 to 2.0 mass%]
Cr functions to improve hardenability, and at the same time, is a carbide forming element and promotes precipitation of carbides that strengthen the material and further refines it. Such an effect is obtained as the Cr content in the alloy steel increases, and when the content is less than 0.5% by mass, the hardenability is lowered and sufficient hardness cannot be obtained. Or the carbides become coarse during the carbonitriding process. On the other hand, if the content of Cr in the alloy steel exceeds 2.0% by mass, a Cr oxide film is formed on the surface of each rolling element during the carbonitriding process. Inhibits diffusion. Therefore, the content of Cr in the alloy steel constituting each rolling element is preferably 0.5 to 2.0 mass% or less, more preferably 0.9 to 1.2 mass%.
[各転動体を構成する合金鋼中のSiとMnの比率:5以下]
Si−Mn系窒化物は、焼き戻し処理により生じる窒化物とは異なり、Mnを取り込みながら、NがSiと反応して形成される。従って、合金鋼中のSiの含有量に対してMnの含有量が少ないと、Nを十分に拡散させてもSi−Mn系窒化物の析出が促進されない。前述した様な理由により、Siの含有量を0.3〜2.2質量%、Mnの含有量を0.3〜2.0質量%とした合金鋼の表面に、面積率が1%以上、10%未満のSi−Mn系窒化物を析出させる為には、Si/Mnが5以下とする(MnをSiの1/5以上含ませる)事が好ましい。この比Si/Mnの下限値は、上述したSiとMnとの含有量の限界値から定まる値(Siの下限値とMnの上限値との比で、0.3/2.0=0.15)とする。
[Ratio of Si and Mn in alloy steel constituting each rolling element: 5 or less]
Unlike nitrides produced by tempering, Si—Mn nitride is formed by reacting N with Si while taking Mn. Therefore, if the Mn content is less than the Si content in the alloy steel, precipitation of Si—Mn nitride is not promoted even if N is sufficiently diffused. For the reasons described above, the area ratio is 1% or more on the surface of the alloy steel in which the Si content is 0.3 to 2.2 mass% and the Mn content is 0.3 to 2.0 mass%. In order to deposit less than 10% of Si—Mn nitride, Si / Mn is preferably 5 or less (Mn is contained by 1/5 or more of Si). The lower limit value of the ratio Si / Mn is a value determined from the above-described limit value of the content of Si and Mn (the ratio between the lower limit value of Si and the upper limit value of Mn, 0.3 / 2.0 = 0. 15).
[各転動体を構成する合金鋼中の窒化物の大きさと個数:平均粒径が0.05〜1μmの窒化物を、面積375μm2の範囲に100個以上]
各転動体の表面(転動面)に窒化物を存在させる事により、この転動面の強化を図れるが、平均粒径が1μmを超える様な、比較的大きな窒化物は、この転動面の強化にあまり寄与せず、細かい窒化物が分散している方がより強化される。この理由は、析出強化の理論上、析出物粒子間同士の間の距離の小さい方が強化能が優れるので、Si−Mn系窒化物の面積率が同じであっても、析出粒子数が多いほど、相対的に粒子間距離が短くなり、転動面が強化される程度が著しくなる為である。これらの事を考慮すれば、各転動体の転動面に析出したSi−Mn系窒化物の面積率が1〜10%の範囲で、平均粒径が0.05〜1μmである、微細な窒化物の個数を増やすのが好ましい。具体的には、面積375μm2の範囲で、0.05〜1μmのSi−Mn系窒化物が100個以上である事が好ましい。これに対して、上述した面積中の0.05〜1μmのSi−Mn系窒化物の数が2000個を超えると、前記各転動体の表面の研削性が低下する。そこで、この窒化物の数の上限を2000個、より好ましくは1000個とする。
[Size and number of nitrides in alloy steel constituting each rolling element: 100 or more nitrides having an average particle size of 0.05 to 1 μm in an area of 375 μm 2 ]
The presence of nitride on the surface (rolling surface) of each rolling element can strengthen this rolling surface, but relatively large nitrides with an average particle size exceeding 1 μm It does not contribute much to strengthening, and it is strengthened more when fine nitrides are dispersed. This is because, in theory of precipitation strengthening, the smaller the distance between the precipitate particles, the better the strengthening ability. Therefore, even if the area ratio of the Si—Mn nitride is the same, the number of precipitated particles is large. This is because the distance between the particles becomes relatively short and the degree to which the rolling surface is strengthened becomes remarkable. In consideration of these matters, the area ratio of the Si—Mn nitride deposited on the rolling surface of each rolling element is in the range of 1 to 10%, and the average particle size is 0.05 to 1 μm. It is preferable to increase the number of nitrides. Specifically, it is preferable that the number of Si—Mn nitrides of 0.05 to 1 μm is 100 or more in an area of 375 μm 2 . On the other hand, when the number of Si—Mn nitrides of 0.05 to 1 μm in the area described above exceeds 2000, the grindability of the surface of each rolling element is deteriorated. Therefore, the upper limit of the number of nitrides is 2000, more preferably 1000.
本発明の特徴は、転がり軸受を構成する各転動体及び軌道輪に就いて、合金鋼の組成、表面層のN濃度、残留オーステナイト量、硬さ、及び表面の窒化物の面積率、圧縮残留応力を適切に規定する事により、白色組織剥離を抑える点にある。図面に現れる構造に関しては、前述の図1に記載したラジアル玉軸受1や図2に記載したラジアル円筒ころ軸受8、図3に示したラジアル円すいころ軸受12を含み、従来から知られている各種構造の転がり軸受と同様であるから、重複する説明を省略する。
The feature of the present invention is that, for each rolling element and bearing ring constituting the rolling bearing, the composition of the alloy steel, the N concentration of the surface layer, the amount of retained austenite, the hardness, the area ratio of nitride on the surface, and the compression residual It is the point which suppresses white structure | tissue peeling by specifying a stress appropriately. As for the structure appearing in the drawings, the radial ball bearing 1 shown in FIG. 1, the radial cylindrical roller bearing 8 shown in FIG. 2, and the radial tapered
本発明の効果を確認する為に行った、転がり寿命評価試験に就いて説明する。
この転がり寿命試験を実施する為に、下記の表1に示す9種類の合金鋼を用いて、呼び番号が6317である、前述の図1に示す様な単列深溝型の玉軸受1(内径85mm、外径180mm、幅41mm)を構成する玉6、6を、表2に示す16種類の合金鋼を用いて、同じく呼び番号が6317である玉軸受1を構成する外輪3及び内輪5を、それぞれ造り、これら各玉6、6と、外輪3及び内輪5とを組み立てて玉軸受1とし、この玉軸受1に転がり寿命の評価試験を施した。
The rolling life evaluation test conducted for confirming the effect of the present invention will be described.
In order to carry out this rolling life test, a single-row deep groove type ball bearing 1 (inner diameter) as shown in FIG. The outer ring 3 and the inner ring 5 constituting the ball bearing 1 having the same reference number 6317 are used for the
これら表1、2にそれぞれの組成を記載した25種類の合金鋼により、次の製造工程により、玉6、6と外輪3及び内輪5とを造った。尚、表1、2中の括弧を付した数値は、特許請求の範囲(請求項1、2)に規定した範囲から外れる事を表している。又、表1中の鋼種1−D、1−Fは、Si/Mnが請求項2の範囲から外れている。又、後述する表3に記載した各試料のうちの比較例1は、玉6、6と外輪3及び内輪5とを、軸受部品を造る為に一般的に使用されている高炭素クロム軸受鋼2種(SUJ2、JIS G 4805)により造った。
The
「玉6、6の製造工程」
これら各玉6、6は、前記表1に示す組成を有する合金鋼製の線材を所定長さに切断して得た素材に、ヘッダー加工、粗研削加工を順次施して玉とした後、浸炭窒化処理を施した。この浸炭窒化処理では、800〜870℃で8時間保持した。尚、この保持温度が870℃を超えると、前記各玉6、6の表面層部分の窒化物が粗大化して、微細なSi−Mn系窒化物の個数が減少する。又、窒素の固溶限も大きくなる為、窒化物の量が少なくなり、所望の面積率(1〜10%)を得られなくなる。浸炭窒化処理工程では、初期から、Rxガスとエンリッチガスとアンモニアガスの混合ガス雰囲気とし、CP値は1.2以上、アンモニアガスの流量はRxガスの流量の1/5以上とした。更に、浸炭窒化処理後に、そのまま800〜870℃で焼き入れを行い、その後160〜270℃の範囲で焼き戻しを行った。
“Manufacturing process of
Each of these
「外輪3及び内輪5の製造工程」
外輪3及び内輪5は、前記表2に示す組成を有する合金鋼製の素材を所定のサイズに切断して、熱間ローリング、球状化焼鈍及び旋削加工を施して、外輪3又は内輪5としての形状を整えた後、浸炭窒化処理を施した。この浸炭窒化処理では、900〜980℃で14時間保持した。浸炭窒化処理工程では、初期から、Rxガスとエンリッチガスとアンモニアガスの混合ガス雰囲気とし、CP値は1.0以上とした。更に、浸炭窒化処理後、860〜880℃で1.5時間保持してから焼き入れを行い、その後160〜200℃の範囲で焼き戻しを行った。
"Manufacturing process of outer ring 3 and inner ring 5"
The outer ring 3 and the inner ring 5 are obtained by cutting a material made of alloy steel having the composition shown in Table 2 into a predetermined size and subjecting it to hot rolling, spheroidizing annealing, and turning, as the outer ring 3 or the inner ring 5. After the shape was adjusted, carbonitriding was performed. In this carbonitriding process, the temperature was maintained at 900 to 980 ° C. for 14 hours. In the carbonitriding process, a mixed gas atmosphere of Rx gas, enriched gas and ammonia gas was used from the beginning, and the CP value was 1.0 or more. Further, after carbonitriding, the steel was kept at 860 to 880 ° C. for 1.5 hours and then quenched, and then tempered in the range of 160 to 200 ° C.
玉6、6、外輪3、内輪5の何れに就いても、熱処理(焼き入れ、焼き戻し)後に、研削加工と仕上加工とをそれぞれ施した。そして、この様にして得られた玉6、6と外輪3と内輪5とを、保持器7と共に組み立てて、それぞれが転がり寿命評価試験の試料である、図1に示した様な玉軸受1とした。又、同種の試料に就いて3個ずつ、本発明(請求項2に記載した発明)の技術的範囲に属する13種類(実施例1〜13)と本発明の技術的範囲から外れる15種類(比較例1〜15)との、28種類、合計84個の試料を作成した。
For any of the
転がり寿命評価試験の試験条件は、次の通りである。
負荷荷重 : 53.2kNの純ラジアル荷重
回転速度 : 500〜2000min−1(回転速度変動)
潤滑剤 : 高トラクション油(トランスミッション用合成油)
この様な条件で行った実験の結果を、玉6、6、外輪3、内輪5の性状と共に次の表3に示す。尚、この表3に示した寿命比とは、比較例1の平均寿命を1.0とした場合の、各実施例及び各比較例の平均寿命の比である。又、寿命評価試験の結果、剥離が生じた玉軸受では、剥離は総て内輪軌道で生じ、剥離部には白色組織が観察された。尚、前記表3中の軌道輪は、総て内輪である。この理由は、上述条件下での転がり寿命試験では、内輪が優先的に剥離し易い(実際の試験でも、総て内輪軌道に剥離が生じた)為である。又、前記表3中に記載した各部の性状及び寿命は、同種の3個の試料の平均値である。
The test conditions of the rolling life evaluation test are as follows.
Load load: Pure radial load of 53.2 kN Rotational speed: 500 to 2000 min −1 (Rotational speed fluctuation)
Lubricant: High traction oil (synthetic oil for transmission)
The results of experiments conducted under such conditions are shown in Table 3 below along with the properties of the
この表3に示した結果から明らかな通り、実施例1〜13は、玉6、6と外輪3及び内輪5の何れの軸受部品に就いても、本発明で規定する組成を有する合金鋼により造っており、熱処理後の性状も、本発明で規定する範囲内であった為、何れの玉軸受1に就いても、標準的なSUJ2製の玉軸受1との比較で、寿命が5倍以上に延長し、剥離も生じなかった。更に、実施例1〜8、11〜13は、外輪3及び内輪5を構成する合金鋼の組成がより好ましい範囲であった為、水素による組織変化を遅延させる効果が特段に優れたものとなり、試験後の内輪断面の金属組織の観察でも、組織変化は観察されなかった。
As is apparent from the results shown in Table 3, Examples 1 to 13 are made of alloy steel having the composition defined in the present invention for any bearing parts of the
これに対して、合金鋼の組成、熱処理後の性状のうちの何れかの点で本発明の技術的範囲から外れる、比較例2〜15は、何れも、SUJ2製の玉軸受1(比較例1)よりは寿命が延びているにしても、実施例1〜13と比較して、転がり寿命が短かった。又、試験後の内輪断面の金属組織の観察で、水素による組織変化が観察された。その理由はそれぞれ以下の通りと考えられる。 On the other hand, all of Comparative Examples 2 to 15 that deviate from the technical scope of the present invention in any one of the composition of the alloy steel and the properties after the heat treatment are all ball bearings 1 made of SUJ2 (Comparative Example). Even though the life was extended from 1), the rolling life was shorter than in Examples 1-13. Further, in the observation of the metal structure of the inner ring cross section after the test, a change in structure due to hydrogen was observed. The reasons are considered as follows.
先ず、比較例2〜5は、何れも玉6、6を構成する合金鋼の組成又はSi/Mnが本発明の範囲外のものである。この為、これら各玉6、6の転動面の粗さの悪化を防ぐ、微細で高硬度なSi−Mn系窒化物が安定して得られない。
次に、比較例6は、各玉6、6の表面層のN濃度が低く、平均粒径が0.05〜1μmの微細な窒化物の個数が少ない。この為、前記各玉6、6の転動面の粗さの悪化を防ぐ効果が小さい。
又、比較例7、8は、各玉6、6の表面層の硬さが低い。この為、これら各玉6、6の転動面の粗さの悪化を防ぐ効果が小さい。
又、比較例9は、平均粒径が0.05〜1μmの微細な窒化物の個数が少ない。この為、転動体の粗さの悪化を防ぐ効果が小さい。
この結果、比較例2〜9は、何れに就いても、各玉6、6の転動面の悪化により、内輪軌道4に、金属接触による新生面の形成が進み、寿命が短くなったものと考えられる。
First, in Comparative Examples 2 to 5, the composition of alloy steel or Si / Mn constituting the
Next, in Comparative Example 6, the N concentration of the surface layers of the
In Comparative Examples 7 and 8, the hardness of the surface layers of the
In Comparative Example 9, the number of fine nitrides having an average particle size of 0.05 to 1 μm is small. For this reason, the effect which prevents the deterioration of the roughness of a rolling element is small.
As a result, in any of Comparative Examples 2 to 9, the formation of a new surface by the metal contact progressed to the inner ring raceway 4 due to the deterioration of the rolling surfaces of the
これに対して、比較例10は、外輪軌道2及び内輪軌道4の粗さ曲線に関するRSmが小さい為、新生面の低減による水素の発生を抑制する効果が得られず、寿命が短いものと考えられる。
更に、比較例11〜15は、何れも外輪3及び内輪5を構成する合金鋼の組成が本発明の範囲外であり、比較例11、12、14、15に就いては、熱処理後の性状も本発明の範囲外である。この為、水素による組織変化の遅延効果が十分に得られず、寿命が短いものと考えられる。
On the other hand, since the RSm regarding the roughness curves of the
Furthermore, in Comparative Examples 11 to 15, the composition of the alloy steel constituting the outer ring 3 and the inner ring 5 is outside the scope of the present invention, and in Comparative Examples 11, 12, 14, and 15, the properties after heat treatment Is also outside the scope of the present invention. For this reason, it is considered that the effect of delaying the change in structure due to hydrogen cannot be sufficiently obtained and the life is short.
本発明を実施する場合の転がり軸受の種類は、特に問わない(スラスト軸受も対象となる)が、軌道面と転動面との転がり接触部の接触面積が大きく、この転がり接触部に潤滑膜が安定して形成され難い転がり軸受は、前述した様に、この転がり接触部で局所的に金属接触が生じ易く、トライボケミカル反応により水素が発生し易くなる為、本発明による寿命延長効果を顕著に得られる。この様な転がり軸受としては、各転動体が、円筒ころ、円すいころ、球面ころ等のころであるころ軸受(請求項2に記載した発明)、或いは、玉の直径が30mm以上である大型の玉軸受(請求項3に記載した発明の場合)がある。
又、請求項4に記載した発明の様に、風力発電装置の回転支持部に組み込まれた状態で使用される転がり軸受、或いは、請求項5に記載した発明の様に、建設機械の回転支持部に組み込まれた状態で使用される転がり軸受は、回転速度、或いは回転方向が頻繁に変化する様な、厳しい条件下で使用されるので、本発明による寿命延長効果を顕著に得られる。
The type of the rolling bearing in the case of carrying out the present invention is not particularly limited (the thrust bearing is also an object), but the contact area of the rolling contact portion between the raceway surface and the rolling surface is large, and a lubricating film is formed on the rolling contact portion. As described above, a rolling bearing that is difficult to be stably formed is liable to cause metal contact locally at the rolling contact portion and easily generate hydrogen due to a tribochemical reaction. Is obtained. As such a rolling bearing, each rolling element is a roller bearing such as a cylindrical roller, a tapered roller, or a spherical roller (the invention described in claim 2), or a large-sized ball having a diameter of 30 mm or more. There is a ball bearing (in the case of the invention described in claim 3).
Further, as in the invention described in claim 4, the rolling bearing used in a state incorporated in the rotation support portion of the wind power generator, or the rotation support of the construction machine as in the invention described in claim 5. Since the rolling bearing used in the state incorporated in the part is used under severe conditions such that the rotation speed or the rotation direction frequently changes, the life extension effect according to the present invention can be remarkably obtained.
1 ラジアル玉軸受
2、2a、2b 外輪軌道
3、3a、3b 外輪
4、4a、4b 内輪軌道
5、5a、5b 内輪
6 玉
7、7a、7b 保持器
8 ラジアル円筒ころ軸受
9 円筒ころ
10 内向鍔部
11 外向鍔部
12 ラジアル円すいころ軸受
13 円すいころ
14 大径側鍔部
15 小径側鍔部
DESCRIPTION OF SYMBOLS 1
Claims (5)
前記各転動体に浸炭窒化処理又は窒化処理が施されていて、これら各転動体の表面層のN濃度が0.2質量%以上、同じく残留オーステナイト量が30%容量以下、同じく硬さがHv780以上であり、且つ、前記各転動体の表面層の窒化物の面積率が1%以上、10%未満であり、
前記両軌道輪のうちの少なくとも一方の軌道輪が、Cを0.10〜0.30質量%、Siを0.2〜0.9質量%、Mnを0.2〜1.2質量%、Crを2.6〜4.5質量%、Moを0.1〜0.9質量%、Niを0.9質量%以下、Cuを0.20質量%以下、Sを0.020質量%以下、Pを0.020質量%以下、それぞれ含有し、残部がFeと不可避不純物から成る合金鋼により構成され、その表面に浸炭処理又は浸炭窒化処理が施されていて、当該軌道輪に設けた軌道面の表面から、前記各転動体の直径の1%の深さ位置の硬さがHv720〜832であり、同じくCの含有量とNの含有量との和であるC+N量が0.8〜1.2質量%であり、同じく残留オーステナイト量が20〜45容量%であり、同じく圧縮残留応力が50〜300MPaであり、
当該軌道輪に設けた軌道面の表面の粗さ曲線に関して、隣り合う山同士の間隔を示すRSmが8μm以上であり、
前記各転動体が、Cを0.3〜1.2質量%、Siを0.3〜2.2質量%、Mnを0.3〜2.0質量%、Crを0.5〜2.0質量%、それぞれ含有し、且つSiの含有量とMnの含有量との比であるSi/Mnが5以下の合金鋼に、浸炭窒化焼き入れ処理及び焼き戻し処理を施して成るもので、表面に、平均粒径が0.05〜1μmの窒化物を、面積375μm2中に100個以上含有する事を特徴とする転がり軸受。 A first race ring made of alloy steel having a first raceway surface on any surface, a second race ring made of alloy steel having a second raceway surface facing the first raceway surface, and the first In a rolling bearing provided with a plurality of rolling elements, each of which is made of alloy steel, and is provided between the second raceway surfaces so as to be freely rollable.
Each rolling element is subjected to carbonitriding or nitriding treatment. The surface layer of each rolling element has an N concentration of 0.2% by mass or more, a residual austenite amount of 30% capacity or less, and a hardness of Hv780. And the area ratio of the nitride of the surface layer of each rolling element is 1% or more and less than 10%,
At least one of the two race rings is 0.10 to 0.30 mass% for C, 0.2 to 0.9 mass% for Si, 0.2 to 1.2 mass% for Mn, Cr is 2.6 to 4.5% by mass, Mo is 0.1 to 0.9% by mass, Ni is 0.9% by mass or less, Cu is 0.20% by mass or less, and S is 0.020% by mass or less. , P each containing 0.020% by mass or less, the balance being made of an alloy steel composed of Fe and inevitable impurities, the surface of which is carburized or carbonitrided, and provided on the raceway. From the surface, the hardness at a depth position of 1% of the diameter of each rolling element is Hv720-832, and the C + N amount, which is the sum of the C content and the N content, is 0.8- 1.2 mass%, the amount of retained austenite is 20 to 45% by volume, and the compressive residual stress is 5 Is ~300MPa,
Regarding the roughness curve of the surface of the raceway surface provided on the raceway, RSm indicating the interval between adjacent peaks is 8 μm or more,
Each said rolling element is 0.3-1.2 mass% for C, 0.3-2.2 mass% for Si, 0.3-2.0 mass% for Mn, and 0.5-2. It is formed by carbonitriding and quenching treatment and tempering treatment on an alloy steel containing 0 mass%, each containing Si / Mn, which is a ratio of Si content and Mn content, of 5 or less, A rolling bearing comprising 100 or more nitrides having an average particle size of 0.05 to 1 μm in an area of 375 μm 2 on the surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012252311A JP2014101896A (en) | 2012-11-16 | 2012-11-16 | Rolling bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012252311A JP2014101896A (en) | 2012-11-16 | 2012-11-16 | Rolling bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014101896A true JP2014101896A (en) | 2014-06-05 |
JP2014101896A5 JP2014101896A5 (en) | 2015-12-10 |
Family
ID=51024590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012252311A Pending JP2014101896A (en) | 2012-11-16 | 2012-11-16 | Rolling bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014101896A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018142654A1 (en) | 2017-02-06 | 2018-08-09 | 日本精工株式会社 | Frame structure, machining device, method for producing component, method for producing rolling bearing, method for producing vehicle, method for producing machine, and press machine |
CN108999885A (en) * | 2018-07-20 | 2018-12-14 | 西安理工大学 | A kind of semi-ring articulated precise rolling bearing |
CN111218611A (en) * | 2018-11-27 | 2020-06-02 | 斯凯孚公司 | Bearing assembly with metal matrix and alloy steel coating |
US11137031B2 (en) * | 2017-03-03 | 2021-10-05 | Ntn Corporation | Bearing part, rolling bearing, and method for manufacturing bearing part |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004353743A (en) * | 2003-05-28 | 2004-12-16 | Nsk Ltd | Self-aligning roller bearing |
JP2007314811A (en) * | 2006-05-23 | 2007-12-06 | Nsk Ltd | Rolling bearing |
JP2010156425A (en) * | 2008-12-27 | 2010-07-15 | Nsk Ltd | Self-aligning roller bearing |
JP2012031457A (en) * | 2010-07-29 | 2012-02-16 | Nsk Ltd | Rolling bearing |
-
2012
- 2012-11-16 JP JP2012252311A patent/JP2014101896A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004353743A (en) * | 2003-05-28 | 2004-12-16 | Nsk Ltd | Self-aligning roller bearing |
JP2007314811A (en) * | 2006-05-23 | 2007-12-06 | Nsk Ltd | Rolling bearing |
JP2010156425A (en) * | 2008-12-27 | 2010-07-15 | Nsk Ltd | Self-aligning roller bearing |
JP2012031457A (en) * | 2010-07-29 | 2012-02-16 | Nsk Ltd | Rolling bearing |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018142654A1 (en) | 2017-02-06 | 2018-08-09 | 日本精工株式会社 | Frame structure, machining device, method for producing component, method for producing rolling bearing, method for producing vehicle, method for producing machine, and press machine |
US11137031B2 (en) * | 2017-03-03 | 2021-10-05 | Ntn Corporation | Bearing part, rolling bearing, and method for manufacturing bearing part |
CN108999885A (en) * | 2018-07-20 | 2018-12-14 | 西安理工大学 | A kind of semi-ring articulated precise rolling bearing |
CN111218611A (en) * | 2018-11-27 | 2020-06-02 | 斯凯孚公司 | Bearing assembly with metal matrix and alloy steel coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3128803B2 (en) | Rolling bearing | |
US9394583B2 (en) | Rolling bearing | |
JP5453839B2 (en) | Rolling bearing | |
JP4810157B2 (en) | Rolling bearing | |
WO2015128973A1 (en) | Anti-friction bearing | |
JP2006348342A (en) | Rolling supporter | |
JP6040700B2 (en) | Rolling bearing | |
JP2014020538A (en) | Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment | |
JP2009192071A (en) | Roller bearing | |
JP2014101896A (en) | Rolling bearing | |
JP2013249500A (en) | Rolling bearing | |
JP2015230080A (en) | Rolling bearing for hydrogen gas atmosphere | |
JP6336238B2 (en) | Tapered roller bearings | |
JP5991026B2 (en) | Manufacturing method of rolling bearing | |
JP5070735B2 (en) | Rolling bearing | |
JP2013241986A (en) | Rolling bearing | |
JP2009204076A (en) | Rolling bearing | |
JP2015206066A (en) | rolling bearing | |
JP2011190921A (en) | Thrust roller bearing | |
JP2009250371A (en) | Rolling bearing for hydrogen gas compressor | |
JP2010031307A (en) | Roller bearing | |
JP6015251B2 (en) | Rolling bearing | |
JP2005337362A (en) | Full type roller bearing | |
JP2005337361A (en) | Roller bearing | |
JP2006045591A (en) | Tapered roller bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151026 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160830 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170228 |