JP3999457B2 - Wire rod and steel bar excellent in cold workability and manufacturing method thereof - Google Patents

Wire rod and steel bar excellent in cold workability and manufacturing method thereof Download PDF

Info

Publication number
JP3999457B2
JP3999457B2 JP2000345638A JP2000345638A JP3999457B2 JP 3999457 B2 JP3999457 B2 JP 3999457B2 JP 2000345638 A JP2000345638 A JP 2000345638A JP 2000345638 A JP2000345638 A JP 2000345638A JP 3999457 B2 JP3999457 B2 JP 3999457B2
Authority
JP
Japan
Prior art keywords
less
wire rod
vfe
steel bar
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000345638A
Other languages
Japanese (ja)
Other versions
JP2002146480A (en
Inventor
英雄 畠
浩 家口
吾郎 阿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000345638A priority Critical patent/JP3999457B2/en
Publication of JP2002146480A publication Critical patent/JP2002146480A/en
Application granted granted Critical
Publication of JP3999457B2 publication Critical patent/JP3999457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷間鍛造、冷間圧延、冷間転造等の冷間加工によって機械構造物を製造する際に使用する線材や棒鋼、およびその様な線材・棒鋼を製造する為の方法に関するものであり、殊に冷間加工前の熱処理(軟化焼鈍)を省略しても良好な冷間加工性を発揮することのできる線材・棒鋼、およびこの様な線材・棒鋼を製造することのできる有用な方法に関するものである。
【0002】
【従来の技術】
低中炭素鋼や低中炭素合金鋼からなる線材や棒鋼(線材・棒鋼)等は、機械構造用鋼として軸類、ボルト、ナット等の製造に広く用いられている。これらの線材・棒鋼は、冷間鍛造、冷間圧延、冷間転造等の冷間塑性加工によって製造されているが、その際にまず変形抵抗が低いことが要求される。これは変形抵抗が低い程加工治具の長寿命化が図れるからである。
【0003】
その一方で、線材・棒鋼には高い延性が求められている。そして高い加工率で部品を製造する際には、延性が低いと表面からクラックが生じて割れが発生することになる。こうした不都合を避ける為に、従来では軟化焼鈍や球状化焼鈍等の熱処理によって、変形抵抗を下げると同時に延性を高める方法が採用されてきた。しかしながら、こうした熱処理を行なうことは、それだけ時間がかかり、エネルギーを大きく消費するという問題があった。
【0004】
線材・棒鋼の変形抵抗を下げるという観点から、これまでにも様々提案されている。こうした技術として、例えば特許第2566068号には、変形抵抗を低下させるという観点からSiやMnの含有量を低減すると共に、これらの含有量低減に伴う焼き入れ性低下を補償する為にBを添加し、更に最終圧延出側での表面温度を700〜800℃の比較的低温とし、その後700〜500℃の温度範囲における平均冷却速度を0.05〜0.7℃/秒の徐冷とする方法が提案されている。
【0005】
しかしながら、化学成分組成は製品の機械的特性に直接的な影響を与えるものであり、SiやMn等の主要元素を低減することは、鍛造品として必要とされる機械的特性が発揮されないという問題がある。また、低温で圧延を行なうことはそれだけ設備に負担がかかり、しかも徐冷することはそれだけ大掛かりの設備が必要になり、エネルギー消費が大きくなって却ってコストアップになってしまうという問題がある。
【0006】
特開2000−8140号には、圧延材の中心〜直径/8の範囲にあるフェライト組織中に平均で25個以上/25μm2の炭化物を存在させることによって、冷間加工性を良好にした棒状鋼について開示されている。また、この技術においては、変形抵抗の低下に悪影響を与える固溶NをAlによって窒化物(AlN)として固定することによって変形抵抗を低下させることが示唆されている。しかしながら、固溶NをAlによって固定するには徐冷が必要となり、前述の如く大掛かりの設備が必要になり、エネルギー消費が大きくなって却ってコストアップになってしまうという若干の問題がある。
【0007】
更に、特開平10−121193号には、SiやMnの含有量を低減すると共に、これらの含有量低減に伴う焼き入れ性低下を補償する為にBを添加し、更にAlを添加することによって、SiやMnの低減による脱酸不足を補うばかりでなく、通常のSiおよびMnを含有する鋼に比べても酸素量および有害介在物を低減し、これによって変形抵抗が改善されることが開示されている。また、この技術では、Alの作用として、N固定による変形抵抗の低減や、酸素および有害介在物の低減による変形抵抗の向上の他に、高周波焼き入れ時の炭化物のオーステナイトへの固溶促進に効果があることが示されている。
【0008】
しかしながら、この技術においても次に示す様な解決すべき若干の問題がある。即ち、固溶NをAlによって固定するには徐冷が必要となり、前述の如く大掛かりの設備が必要になり、エネルギー消費が大きくなって却ってコストアップになってしまうことがある。またこの技術では、球状化焼鈍を行なうことを前提としてなされたものであり、圧延ままの状態での強度には言及しておらず、圧延ままの状態で良好な冷間加工性が発揮されているかは不明である。しかも、この技術では、N量が多くなるとAlNが晶出し、加工品の表面や内部に割れが生じて品質を劣化するという事態が生じることもある。
【0009】
【発明が解決しようとする課題】
本発明はこうした状況の下になされたものであって、その目的は、熱間圧延ままであっても優れた冷間加工性を有する線材・棒鋼、およびその様な線材・棒鋼を製造する為の有用な方法を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成し得た本発明の線材・棒鋼とは、C:0.1〜0.6%、Si:0.5%以下(0%を含まない)、Mn:1%以下(0%を含まない) 、Al:0.1〜1.0%を夫々含むと共に、P:0.02%以下(0%を含む)、S:0.03%以下(0%を含む)およびN:0.01%以下(0%を含む)に夫々抑制したものであり、ミクロ組織中のフェライト分率Vf(面積%)が、下記(1)式で規定されるフェライト分率Vfe1との関係で下記(2)式を満足するものである点に要旨を有するものである。
Vfe1=106.7−142.6[C]−0.256[Si]−4.219[Mn] ……(1)
但し、[C],[Si]および[Mn]は、夫々C,SiおよびMnの含有量(質量%)
を意味する。
1.05Vfe1≦Vf≦2.0Vfe1 ……(2)
【0011】
本発明の線材・棒鋼においては、必要によって、更にCr:1.5%以下(0%を含まない)、Mo:1%以下(0%を含まない)およびNi:2%以下(0%を含まない)よりなる群から選択される1種以上の元素を含有させたものであってもよく、この場合には、ミクロ組織中のフェライト分率Vf(面積%)が、下記(3)式で規定されるフェライト分率Vfe2との関係で下記(4)式を満足する様にすれば良い。

Figure 0003999457
但し、[C],[Si],[Mn],[Cr],[Mo]および[Ni]は、夫々C,Si,Mn,Cr,MoおよびNiの含有量(質量%)を意味する。
1.05Vfe2≦Vf≦2.0Vfe2 ……(4)
【0012】
また本発明の線材・棒鋼には、必要によって(1)Ti:0.2%以下(0%を含まない)、V:0.5%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上の元素、(2)B:0.0005〜0.005%等を含有させることも有効であり、これによって線材・棒鋼の特性を更に向上させることができる。
【0013】
一方、本発明の線材・棒鋼を製造するには、熱間仕上げ圧延温度を800〜1000℃とすると共に、圧延後における850〜600℃の温度領域で平均冷却速度を3℃/秒以下として冷却する様にすれば良い。
【0014】
【発明の実施の形態】
本発明者らは、上記目的を達成する為に様々な角度から検討した。その結果、化学成分組成を適正に調整すると共に、ミクロ組織中のフェライト分率が、所定の式[前記(1),(3)式]で規定されるフェライト分率Vfe1,Vfe2との関係で適切な範囲となる様に制御してやれば[前記(2),(4)式]、上記目的が見事に達成されることを見出し、本発明を完成した。
【0015】
本発明の線材・棒鋼においては、その化学成分組成を適切に調整する必要があるが、その範囲限定理由は次の通りである。
【0016】
C:0.1〜0.6%
Cは線材・棒鋼に所定の強度を与えるのに必要な元素であり、その為には少なくとも0.1%以上含有させる必要がある。また、C含有量が0.1未満では、フェライト分率が大きくなって、後述するAl添加効果が発揮されなくなる。しかしながら、Cの含有量が過剰になると、変形抵抗を著しく上昇させるのでその上限を0.6%とする必要がある。尚C含有量の好ましい下限は0.15%であり、好ましい上限は0.5%である。
【0017】
Si:0.5%以下(0%を含まない)
Siは製鋼段階で脱酸剤として添加されるが、その含有量が過剰になると、変形抵抗を著しく高めるので、その上限は0.5%とする必要がある。尚Si含有量の好ましい上限は0.25%である。
【0018】
Mn:1%以下(0%を含まない)
Mnは不純物であるSを固定して無害化するのに必要な元素であり、鋼の強度や靭性の向上の為に添加されるが、過剰に含有させると焼入れ性が向上して熱間圧延ままでベイナイトなどが生成することにより変形抵抗の上昇を招くので、1% 以下とする必要がある。尚Mn含有量の好ましい下限は、0.15%であり、好ましい上限は0.8%である。
【0019】
Al:0.1〜1.0%
Alは製鋼工程における脱酸剤として作用し、また圧延材のフェライト分率を増加させ、硬さを低下させて変形抵抗を低減させるの有効である。これらの効果を発揮させるためには、0.1%以上含有させる必要がある。しかしながら、Alを過剰に含有させると、パーライトの変態温度が低下してパーライトの硬さが上昇して引張強さを低下させるのには逆効果となるので、1.0%を上限とする。尚Al含有量の好ましい下限は0.3%であり、好ましい上限は0.8%である。
【0020】
P:0.02%以下(0%を含む),S : 0.03%以下(0%を含む)
PやSは、粒界に偏析し或は化合物として存在して冷間加工性を阻害するので、Pについては0.02%以下、Sについては0.03%以下に夫々抑制する必要がある。尚これらの元素は、いずれも好ましくは0.01%以下とするのが良い。
【0021】
N:0.01%以下(0%を含む)
Alを上記の範囲で含む線材・棒鋼にあっては、N含有量が過剰になると、粗大なAlNが生成して加工時に表面割れや内部割れを発生させるので、良好な冷間加工性を発揮させる為には、N含有量は0.01%以下に抑制する必要がある。
【0022】
本発明の線材・棒鋼における基本的な化学成分組成は上記の通りであり、残部はFeおよび不可避不純物からなるものであるが、本発明の線材・棒鋼においては、必要によって、
(1)Cr:1.5%以下(0%を含まない)、Mo:1%以下(0%を含まない)およびNi:2%以下(0%を含まない)よりなる群から選択される1種以上、
(2)Ti:0.2%以下(0%を含まない)、V:0.5以下(0%を含まない)、Nb:0.2%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上、
(3)B:0.0005〜0.005%、
等を含有させることも有効であり、これによって鋼線材の特性を更に向上させることができる。これらの元素の範囲限定理由は下記の通りである。尚これらの成分以外にも、本発明の鋼線材には、その特性を阻害しない程度の微量成分(例えば、Cu,Ca等)を含み得るものであり、こうした鋼線材も本発明の範囲に含まれものである。
【0023】
Cr:1.5%以下(0%を含まない)、Mo:1%以下(0%を含まない)およびNi:2%以下(0%を含まない)よりなる群から選択される1種以上の元素
Cr,MoおよびNiは焼入れ調整元素であり、焼入れ焼戻しによって強度と靭性を調整する為に添加される。しかしながら、過剰に含有させると変形抵抗の上昇を招くので好ましくない。こうした観点から、Crはその上限を1.5%、Moはその上限を1%、Niはその上限を2%とした。尚これらの元素添加による上記効果は、上記範囲内で含有量を増加させるにつれて大きくなるが、上記効果を発揮させる為には、いずれも0.1%以上含有させることが好ましい。
【0024】
Ti:0.2%以下(0%を含まない)、V:0.5以下(0%を含まない)Nb:0.2%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上の元素
Ti,V,NbおよびZrは、いずれも微細な炭窒化物を形成して表面近傍の組織を微細化させる為に添加される。本発明においては、Nの抑制も重要なポイントであり、これら元素の添加により、固溶NをAlでなくこれらの元素によって固定することは、Al添加効果を一層顕著にすることができる。しかしながら、過剰に含有させると変形抵抗の上昇を招くので好ましくない。こうした観点から、上限はTi,Nb,Zrについては0.2%、Vについては0.5%とした。尚これらの元素添加による上記効果は、上記範囲内で含有量を増加させるにつれて大きくなるが、上記効果を発揮させる為には、Ti,NbおよびZrは0.005%以上、Vは0.01%以上含有させることが好ましい。また、これらの元素の好ましい上限は、Tiは0.05%、Vは0.4%、NbおよびZrは0.1%である。
【0025】
B:0.0005〜0.005%
Bは焼き入れ性の確保に有効な元素であり、こうした効果を発揮させるためには0.0005%以上含有させるのが良いが、過剰に含有させると鉄との化合物を形成して加工時の割れ、表面欠陥の原因となるので、0.005%以下とするのが良い。尚、Bを含有させるときの好ましい下限は0.001%であり、好ましい上限は0.004%である。
【0026】
本発明では、化学成分を適切に調整するだけではその目的を達成することができず、ミクロ組織中のフェライト分率も適切な範囲に制御する必要がある。即ち、本発明の線材・棒鋼中のフェライト分率Vf(面積%)と、前記(1)式[または(3)式]で規定されるフェライト分率Vfe1[またはVfe2](面積%)とが、前記(2)式[または(4)式]の関係を満足する必要がある。
【0027】
前記フェライト分率Vfが1.05Vfe1未満または1.05Vfe2未満(即ち、1.05<Vf/Vfe1または1.05<Vf/Vfe2)では、フェライトの生成が少なくなって軟質化効果が発揮されず、引張り強さが低下しない。一方、前記フェライト分率Vfが2.0Vfe1または2.0Vfe2を超える(即ち、Vf/Vfe1<2.0またはVf/Vfe2<2.0)様にするには、少なくともAlの含有量を1.0%超とする必要があり、前述の如く、変形抵抗の低下(引張り強度の低下)には却って逆効果となる。
【0028】
尚、前記フェライト分率Vfは、後記実施例に示した方法によって実測した値であり、フェライト分率Vfe1またはVfe2は、前記(1)式または(3)式によって計算される計算値であり、この(1)式または(3)式は、種々の成分の鋼について、オーステナイト化後に10℃/時以下の冷却速度で冷却し、完全に焼きなました試料のフェライト分率を測定し、成分との関係を求めたものである。
【0029】
次に、本発明における製造条件について説明する。本発明方法においては、まず熱間仕上げ圧延温度を800〜1000℃として圧延を行なう必要がある。この熱間仕上げ圧延温度は、ある程度低温であった方が、オーステナイト粒径が微細化して焼き入れ性が低下するので、軟質化には好ましい。しかしながら、熱間仕上げ圧延温度が800℃未満では、圧延機に大きな負担がかかるばかりか、圧延組織が微細化してしまい、微細化による強度上昇効果が顕著になって、軟質化には逆効果となる。但し、この温度があまり高くなり過ぎると、オーステナイト粒径があまり大きくなり過ぎて、圧延後の組織が粗大組織になって軟質化が困難になる。
【0030】
圧延後の冷却工程では、850〜600℃の温度領域(線材表面の温度領域)を平均冷却速度が3℃/秒以下となる様に冷却する必要があるが、これは次の理由によるものである。まず平均冷却速度が3℃/秒よりも大きくなると、線材・棒鋼中のフェライトの生成が少なくなって(フェライト分率が低くなって)、期待する軟質化が達成されない。尚、この平均冷却速度の好ましい上限は、2.5℃/秒程度である。また、この平均冷却速度があまり小さくなり過ぎると、大掛りな設備が必要になり、エネルギー消費が大きくコストアップを招くので、0.8℃/秒程度以上とすることが好ましい。
【0031】
一方、上記の平均冷却速度で冷却すべき温度領域を850〜600℃としたのは、この温度領域が変態に最も関与する領域であり、冷却による組織調整が最も反映される温度領域であるからである。従って、本発明においては、少なくとも850〜600℃の温度領域を上記の平均冷却速度で冷却すれば良く、600℃未満若しくは850℃を超える温度領域における平均冷却速度に関してはそれほど考慮する必要がなく、例えば3℃/秒超としても良い。
【0032】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することは本発明の技術的範囲に含まれるものである。
【0033】
【実施例】
下記表1に示す化学成分組成の供試鋼を用い、下記表2に示す製造条件で直径:10mmの線材を作製した。得られた線材について、引張り試験による引張り強度TSを測定して変形抵抗の評価(TSが650MPa以下を「○」、650MPa超を「×」)を行なうと共に、表面疵の有無や線材のフェライト分率Vfを下記の方法によって調査した。尚、表面疵については、冷間加工による割れを抑制するためには、一定以下にする必要があるために調査したものである。
【0034】
(フェライト分率Vfの測定法)
試験片(線材)を切断して樹脂に埋め込んで研磨し、ナイタールで腐食させた後、光学式顕微鏡で組織を観察し、試験片の表面と中心の中間の位置で、400倍の写真を任意に10枚撮影し、画像解析によってフェライト分率を測定した。
【0035】
(表面疵の調査)
目視で検査して、幅、深さともに0.05mm、長さ5mmを評価基準とし、これよりも大きな表面疵がある場合を「×」、これよりも小さいか疵がない場合を「○」として評価した。
【0036】
これらの結果を、一括して下記表2に示す。
【0037】
【表1】
Figure 0003999457
【0038】
【表2】
Figure 0003999457
【0039】
これらの結果から明らかなように、化学成分組成およびフェライト分率を適切に調整した実施例のものでは、熱間圧延のままであっても優れた冷間鍛造性を有していることが分かる。
【0040】
次に、前記表1の鋼種Aを用い、圧延条件を下記表3となる様に変化させて、直径:10mmの線材を作製し、上記と同様して評価した。その結果を、表3に併記するが、製造条件を適切に規定してフェライト分率を適正な範囲内となる様に制御することによって良好な鍛造性が得られていることが分かる。
【0041】
【表3】
Figure 0003999457
【0042】
【発明の効果】
本発明は以上の様に構成されており、熱間圧延のままであっても優れた冷間加工性を有する鋼線材が実現できた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to wire rods and bar steels used when manufacturing a machine structure by cold working such as cold forging, cold rolling, and cold rolling, and a method for manufacturing such wire rods and bar steels. In particular, it is possible to manufacture wire rods and bar steels that can exhibit good cold workability even if heat treatment (softening annealing) before cold working is omitted, and such wire rods and bar steels can be manufactured. It relates to a useful method.
[0002]
[Prior art]
Wire rods and bar steels (wire rods and bar steels) made of low-medium carbon steel and low-medium carbon alloy steel are widely used in the manufacture of shafts, bolts, nuts, etc. as steels for machine structures. These wire rods and steel bars are manufactured by cold plastic working such as cold forging, cold rolling, cold rolling, etc., but at that time, first, the deformation resistance is required to be low. This is because the lower the deformation resistance, the longer the life of the processing jig.
[0003]
On the other hand, high ductility is required for wire rods and steel bars. When manufacturing parts at a high processing rate, if the ductility is low, cracks are generated from the surface and cracks occur. In order to avoid such inconvenience, conventionally, a method has been employed in which the deformation resistance is lowered and the ductility is increased by heat treatment such as soft annealing and spheroidizing annealing. However, performing such a heat treatment has a problem that it takes much time and consumes a lot of energy.
[0004]
Various proposals have been made so far from the viewpoint of reducing the deformation resistance of the wire rod and bar steel. As such a technique, for example, in Patent No. 2656068, B is added to reduce the content of Si and Mn from the viewpoint of reducing deformation resistance and to compensate for the hardenability reduction accompanying the reduction of these contents. Further, the surface temperature on the final rolling exit side is set to a relatively low temperature of 700 to 800 ° C., and then the average cooling rate in the temperature range of 700 to 500 ° C. is gradually cooled to 0.05 to 0.7 ° C./second. A method has been proposed.
[0005]
However, the chemical composition has a direct effect on the mechanical properties of the product, and reducing the main elements such as Si and Mn does not exhibit the mechanical properties required for forgings. There is. In addition, rolling at a low temperature places a burden on the facility, and slow cooling requires a large facility, which increases the energy consumption and increases the cost.
[0006]
Japanese Patent Laid-Open No. 2000-8140 discloses a rod shape having good cold workability by having an average of 25 or more / 25 μm 2 of carbide in the ferrite structure in the range of the center to the diameter / 8 of the rolled material. Steel is disclosed. Further, in this technique, it is suggested that the deformation resistance is lowered by fixing solute N, which adversely affects the decrease in deformation resistance, as a nitride (AlN) with Al. However, in order to fix the solid solution N with Al, slow cooling is required, and as described above, a large-scale facility is required, and there are some problems that the energy consumption increases and the cost is increased.
[0007]
Furthermore, in JP-A-10-121193, by reducing the content of Si and Mn, B is added to compensate for a decrease in hardenability associated with the reduction of these contents, and further by adding Al. Not only compensates for the lack of deoxidation due to the reduction of Si and Mn, but also reduces oxygen content and harmful inclusions compared to steel containing ordinary Si and Mn, thereby improving deformation resistance Has been. In addition, in this technique, as a function of Al, in addition to reducing deformation resistance by fixing N, improving deformation resistance by reducing oxygen and harmful inclusions, it promotes solid solution of carbide to austenite during induction hardening. It has been shown to be effective.
[0008]
However, this technique also has some problems to be solved as described below. That is, in order to fix the solid solution N with Al, slow cooling is required, and as described above, a large-scale facility is required, which may increase the energy consumption and increase the cost. In addition, this technology was made on the assumption that spheroidizing annealing was performed, and did not mention the strength in the as-rolled state, and exhibited good cold workability in the as-rolled state. Whether it is unknown. In addition, with this technique, when the amount of N increases, AlN may crystallize, causing a situation where the surface or inside of the processed product is cracked and the quality is deteriorated.
[0009]
[Problems to be solved by the invention]
The present invention has been made under these circumstances, and its purpose is to produce a wire rod and bar having excellent cold workability even when hot rolled, and such a wire rod and bar. It is in providing a useful method.
[0010]
[Means for Solving the Problems]
The wire rods and bar steels of the present invention that can achieve the above-mentioned objects are: C: 0.1 to 0.6%, Si: 0.5% or less (not including 0%), Mn: 1% or less (0 Al: 0.1 to 1.0%, P: 0.02% or less (including 0%), S: 0.03% or less (including 0%), and N : 0.01% or less (including 0%) respectively, and the ferrite fraction Vf (area%) in the microstructure is the ferrite fraction Vfe 1 defined by the following formula (1) The gist of the present invention is that it satisfies the following formula (2).
Vfe 1 = 106.7−142.6 [C] −0.256 [Si] −4.219 [Mn] (1)
However, [C], [Si] and [Mn] are the contents (mass%) of C, Si and Mn, respectively.
Means.
1.05 Vfe 1 ≤ Vf ≤ 2.0 Vfe 1 (2)
[0011]
In the wire rod and bar of the present invention, if necessary, Cr: 1.5% or less (not including 0%), Mo: 1% or less (not including 0%), and Ni: 2% or less (0%) It may be one containing at least one element selected from the group consisting of (not including), and in this case, the ferrite fraction Vf (area%) in the microstructure is expressed by the following formula (3) The following equation (4) may be satisfied in relation to the ferrite fraction Vfe 2 defined by:
Figure 0003999457
However, [C], [Si], [Mn], [Cr], [Mo] and [Ni] mean the contents (mass%) of C, Si, Mn, Cr, Mo and Ni, respectively.
1.05 Vfe 2 ≤ Vf ≤ 2.0 Vfe 2 ...... (4)
[0012]
Further, in the wire rod and bar of the present invention, as required, (1) Ti: 0.2% or less (excluding 0%), V: 0.5% or less (not including 0%), Nb: 0.2 % Or less (not including 0%) and Zr: one or more elements selected from the group consisting of 0.2% or less (not including 0%), (2) B: 0.0005 to 0.005% Etc. are also effective, and this can further improve the properties of the wire rod and bar steel.
[0013]
On the other hand, in order to produce the wire rod / steel bar of the present invention, the hot finish rolling temperature is set to 800 to 1000 ° C, and the average cooling rate is set to 3 ° C / second or less in the temperature range of 850 to 600 ° C after rolling. You should do it.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have studied from various angles in order to achieve the above object. As a result, the chemical composition is appropriately adjusted, and the ferrite fraction in the microstructure is the ferrite fractions Vfe 1 and Vfe 2 defined by the predetermined formulas [formulas (1) and (3)]. The present invention has been completed by finding that the above-mentioned object can be achieved brilliantly if the control is made so as to be within an appropriate range in relation to the above (formulas (2) and (4)).
[0015]
In the wire rod / steel bar of the present invention, it is necessary to appropriately adjust the chemical composition, but the reason for limiting the range is as follows.
[0016]
C: 0.1 to 0.6%
C is an element necessary for imparting a predetermined strength to the wire rod and bar steel, and for that purpose, it is necessary to contain at least 0.1% or more. On the other hand, if the C content is less than 0.1, the ferrite fraction increases and the effect of adding Al, which will be described later, cannot be exhibited. However, if the C content is excessive, the deformation resistance is remarkably increased, so the upper limit must be made 0.6%. In addition, the minimum with preferable C content is 0.15%, and a preferable upper limit is 0.5%.
[0017]
Si: 0.5% or less (excluding 0%)
Si is added as a deoxidizer in the steelmaking stage, but if its content is excessive, the deformation resistance is remarkably increased, so the upper limit needs to be 0.5%. In addition, the preferable upper limit of Si content is 0.25%.
[0018]
Mn: 1% or less (excluding 0%)
Mn is an element necessary to fix and detoxify the impurity S, and is added to improve the strength and toughness of the steel. However, if excessively contained, the hardenability is improved and hot rolling is performed. If bainite or the like is generated as it is, the deformation resistance is increased, so it is necessary to make it 1% or less. In addition, the minimum with preferable Mn content is 0.15%, and a preferable upper limit is 0.8%.
[0019]
Al: 0.1 to 1.0%
Al acts as a deoxidizer in the steelmaking process, and is effective in increasing the ferrite fraction of the rolled material and decreasing the hardness by reducing the hardness. In order to exhibit these effects, it is necessary to contain 0.1% or more. However, if Al is excessively contained, the transformation temperature of pearlite is lowered, and the hardness of pearlite is increased to reduce the tensile strength. Therefore, 1.0% is made the upper limit. In addition, the minimum with preferable Al content is 0.3%, and a preferable upper limit is 0.8%.
[0020]
P: 0.02% or less (including 0%), S : 0.03% or less (including 0%)
P and S segregate at the grain boundaries or exist as a compound and inhibit cold workability, so it is necessary to suppress P to 0.02% or less and S to 0.03% or less, respectively. . All of these elements are preferably 0.01% or less.
[0021]
N: 0.01% or less (including 0%)
For wire rods and steel bars containing Al in the above range, if the N content is excessive, coarse AlN is generated and surface cracks and internal cracks are generated during processing, so good cold workability is demonstrated. In order to achieve this, it is necessary to suppress the N content to 0.01% or less.
[0022]
The basic chemical component composition in the wire rod and bar of the present invention is as described above, and the balance is composed of Fe and inevitable impurities, but in the wire rod and bar of the present invention, if necessary,
(1) Cr: selected from the group consisting of 1.5% or less (not including 0%), Mo: 1% or less (not including 0%), and Ni: 2% or less (not including 0%) One or more,
(2) Ti: 0.2% or less (not including 0%), V: 0.5 or less (not including 0%), Nb: 0.2% or less (not including 0%), and Zr: 0 .One or more selected from the group consisting of 2% or less (excluding 0%),
(3) B: 0.0005 to 0.005%,
Etc. is also effective, and this can further improve the properties of the steel wire rod. The reasons for limiting the ranges of these elements are as follows. In addition to these components, the steel wire rod of the present invention can contain a trace amount component (eg, Cu, Ca, etc.) that does not impair the properties thereof, and such a steel wire rod is also included in the scope of the present invention. It is a thing.
[0023]
One or more selected from the group consisting of Cr: 1.5% or less (not including 0%), Mo: 1% or less (not including 0%), and Ni: 2% or less (not including 0%) The elements Cr, Mo and Ni are quenching control elements, and are added to adjust strength and toughness by quenching and tempering. However, excessive addition is not preferable because deformation resistance is increased. From such a viewpoint, Cr has an upper limit of 1.5%, Mo has an upper limit of 1%, and Ni has an upper limit of 2%. In addition, although the said effect by addition of these elements becomes large as content increases within the said range, in order to exhibit the said effect, it is preferable to contain all 0.1% or more.
[0024]
Ti: 0.2% or less (not including 0%), V: 0.5 or less (not including 0%) Nb: 0.2% or less (not including 0%) and Zr: 0.2% or less One or more elements selected from the group consisting of (not including 0%) Ti, V, Nb and Zr are all added to form fine carbonitrides and refine the structure near the surface Is done. In the present invention, suppression of N is also an important point. By adding these elements, fixing the solid solution N with these elements instead of Al can make the Al addition effect more remarkable. However, excessive addition is not preferable because deformation resistance is increased. From such a viewpoint, the upper limit is set to 0.2% for Ti, Nb, and Zr and 0.5% for V. The above effects due to the addition of these elements increase as the content increases within the above range, but in order to exert the above effects, Ti, Nb and Zr are 0.005% or more, and V is 0.01 % Or more is preferable. The preferable upper limit of these elements is 0.05% for Ti, 0.4% for V, and 0.1% for Nb and Zr.
[0025]
B: 0.0005 to 0.005%
B is an element effective for ensuring hardenability. In order to exert such effects, B is preferably contained in an amount of 0.0005% or more, but if excessively contained, a compound with iron is formed to form a compound during processing. Since it causes cracks and surface defects, the content is preferably 0.005% or less. In addition, a preferable lower limit when B is contained is 0.001%, and a preferable upper limit is 0.004%.
[0026]
In the present invention, the purpose cannot be achieved only by appropriately adjusting the chemical components, and the ferrite fraction in the microstructure needs to be controlled within an appropriate range. That is, the ferrite fraction Vf (area%) in the wire rod and bar of the present invention and the ferrite fraction Vfe 1 [or Vfe 2 ] (area%) defined by the above-mentioned formula (1) [or (3)] However, it is necessary to satisfy the relationship of the formula (2) [or (4) formula].
[0027]
Less than the ferrite fraction Vf is 1.05Vfe 1 or less than 1.05Vfe 2 (i.e., 1.05 <Vf / Vfe 1 or 1.05 <Vf / Vfe 2) In, softening effect ferrite production becomes less Is not exhibited, and the tensile strength does not decrease. Meanwhile, the ferrite fraction Vf exceeds 2.0Vfe 1 or 2.0Vfe 2 (i.e., Vf / Vfe 1 <2.0 or Vf / Vfe 2 <2.0) To-like, containing at least Al The amount needs to exceed 1.0%, and as described above, it is counterproductive to a decrease in deformation resistance (a decrease in tensile strength).
[0028]
The ferrite fraction Vf is a value measured by the method shown in the examples described later, and the ferrite fraction Vfe 1 or Vfe 2 is a calculated value calculated by the equation (1) or (3). Yes, this equation (1) or (3) is obtained by measuring the ferrite fraction of a sample that has been austenitized and cooled at a cooling rate of 10 ° C./hour or less after austenitizing, The relationship between and is sought.
[0029]
Next, manufacturing conditions in the present invention will be described. In the method of the present invention, it is first necessary to perform rolling at a hot finish rolling temperature of 800 to 1000 ° C. It is preferable that the hot finish rolling temperature be low to some extent, since the austenite grain size becomes finer and the hardenability is lowered, so that softening is preferred. However, when the hot finish rolling temperature is less than 800 ° C., not only the rolling mill is heavily burdened, but the rolling structure is refined, and the effect of increasing the strength due to the refinement becomes prominent. Become. However, if this temperature becomes too high, the austenite grain size becomes too large, and the structure after rolling becomes a coarse structure, and softening becomes difficult.
[0030]
In the cooling process after rolling, it is necessary to cool the temperature range of 850 to 600 ° C. (the temperature range of the wire surface) so that the average cooling rate is 3 ° C./second or less. This is due to the following reason. is there. First, when the average cooling rate is higher than 3 ° C./second, the formation of ferrite in the wire rod and bar steel decreases (the ferrite fraction decreases), and the expected softening cannot be achieved. The preferable upper limit of the average cooling rate is about 2.5 ° C./second. Further, if the average cooling rate becomes too small, large-scale equipment is required, and energy consumption is large, resulting in an increase in cost. Therefore, it is preferable to set the average cooling rate to about 0.8 ° C./second or more.
[0031]
On the other hand, the reason why the temperature region to be cooled at the above average cooling rate is set to 850 to 600 ° C. is because this temperature region is the region most involved in the transformation, and is the temperature region in which the structural adjustment by cooling is most reflected. It is. Therefore, in the present invention, it is only necessary to cool at least the temperature range of 850 to 600 ° C. at the above average cooling rate, and it is not necessary to consider so much about the average cooling rate in the temperature range below 600 ° C. or above 850 ° C. For example, it may be higher than 3 ° C./second.
[0032]
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and it is within the technical scope of the present invention to modify the design in accordance with the gist of the preceding and following descriptions. It is included.
[0033]
【Example】
Using test steels having the chemical composition shown in Table 1 below, wire rods having a diameter of 10 mm were manufactured under the manufacturing conditions shown in Table 2 below. For the obtained wire, the tensile strength TS is measured by a tensile test and the deformation resistance is evaluated (TS is “◯” when 650 MPa or less, “×” when it is over 650 MPa), and the presence or absence of surface defects and the ferrite content of the wire. The rate Vf was investigated by the following method. The surface flaws were investigated because it is necessary to keep them below a certain level in order to suppress cracking due to cold working.
[0034]
(Measurement method of ferrite fraction Vf)
After cutting the test piece (wire), embedding it in resin, polishing it, corroding it with nital, observe the structure with an optical microscope, and arbitrarily photograph 400 times at a position between the surface of the test piece and the center 10 pieces were taken and the ferrite fraction was measured by image analysis.
[0035]
(Investigation of surface defects)
Visual inspection, width and depth 0.05mm, length 5mm as the evaluation criteria, "X" if there is a surface flaw larger than this, "○" if there is a smaller or no flaw As evaluated.
[0036]
These results are collectively shown in Table 2 below.
[0037]
[Table 1]
Figure 0003999457
[0038]
[Table 2]
Figure 0003999457
[0039]
As is clear from these results, it can be seen that the examples in which the chemical composition and the ferrite fraction are appropriately adjusted have excellent cold forgeability even when hot-rolled. .
[0040]
Next, using steel type A shown in Table 1 above, the rolling conditions were changed as shown in Table 3 below, and a wire rod having a diameter of 10 mm was prepared and evaluated in the same manner as described above. The results are also shown in Table 3. It can be seen that good forgeability is obtained by appropriately defining the manufacturing conditions and controlling the ferrite fraction to be within the proper range.
[0041]
[Table 3]
Figure 0003999457
[0042]
【The invention's effect】
The present invention is configured as described above, and a steel wire material having excellent cold workability can be realized even in hot rolling.

Claims (5)

C:0.1〜0.6%(質量%の意味、以下同じ)、
Si:0.5%以下(0%を含まない)、
Mn:1%以下(0%を含まない)、
Al:0.1〜1.0%(但し、Alが0.1%の場合を除く)
Cr:1.5%以下(0%を含まない)を夫々含む他
P:0.02%以下(0%を含む)、S:0.03%以下(0%を含む)およびN:0.01%以下(0%を含む)に夫々抑制したものであり、
残部がFeおよび不可避不純物からなり、
且つミクロ組織中のフェライト分率Vf(面積%)が、下記(3)式で規定されるフェライト分率Vfe2との関係で下記(4)式を満足するものであることを特徴とする冷間加工性に優れた線材・棒鋼。
Vfe2=106.7−142.6[C]−0.256[Si]−4.219[Mn]−17.83[Cr]−0.6803[Mo]−4.074[Ni] ……(3)
但し、[C],[Si],[Mn],[Cr],[Mo]および[Ni]は、夫々C,Si,Mn,Cr,MoおよびNiの含有量(質量%)を意味する。
1.05Vfe2≦Vf≦2.0Vfe2 ……(4)
C: 0.1 to 0.6% (meaning mass%, the same shall apply hereinafter)
Si: 0.5% or less (excluding 0%),
Mn: 1% or less (excluding 0%),
Al: 0.1 to 1.0% (except when Al is 0.1%) ,
In addition to Cr: 1.5% or less (excluding 0%) ,
P: 0.02% or less (including 0%), S: 0.03% or less (including 0%) and N: 0.01% or less (including 0%), respectively,
The balance consists of Fe and inevitable impurities,
The ferrite fraction Vf (area%) in the microstructure satisfies the following formula (4) in relation to the ferrite fraction Vfe 2 defined by the following formula (3). Wire rod and steel bar with excellent inter-workability.
Vfe 2 = 106.7−142.6 [C] −0.256 [Si] −4.219 [Mn] −17.83 [Cr] −0.6803 [Mo] −4.074 [Ni] (3)
However, [C], [Si], [Mn], [Cr], [Mo] and [Ni] mean the contents (mass%) of C, Si, Mn, Cr, Mo and Ni, respectively.
1.05 Vfe 2 ≤ Vf ≤ 2.0 Vfe 2 ...... (4)
Mo:1%以下(0%を含まない)およびNi:2%以下(0%を含まない)よりなる群から選択される1種以上の元素を含むものである請求項1に記載の線材・棒鋼。The wire rod / bar according to claim 1, comprising at least one element selected from the group consisting of Mo: 1% or less (not including 0%) and Ni: 2% or less (not including 0%). Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)およびZr:0.2%以下(0%を含まない)よりなる群から選択される1種以上の元素を含むものである請求項1または2に記載の線材・棒鋼。Ti: 0.2% or less (not including 0%), Nb: 0.2% or less (not including 0%) and Zr: 0.2% or less (not including 0%) The wire rod / steel bar according to claim 1 , which contains at least one element. B:0.0005〜0.005%を含有するものである請求項1〜3のいずれかに記載の線材・棒鋼。B: The wire rod / steel bar according to any one of claims 1 to 3 , which contains 0.0005 to 0.005%. 請求項1〜のいずれかに記載の線材・棒鋼を製造するに当たり、熱間仕上げ圧延温度を800〜1000℃とすると共に、圧延後における850〜600℃の温度領域で平均冷却速度を3℃/秒以下として冷却することを特徴とする冷間加工性に優れた線材・棒鋼の製造方法。In manufacturing the wire and bar according to any one of claims 1 to 4 , the hot finish rolling temperature is set to 800 to 1000 ° C, and the average cooling rate is set to 3 ° C in a temperature range of 850 to 600 ° C after rolling. The manufacturing method of the wire rod and the steel bar excellent in cold workability characterized by cooling as below per second.
JP2000345638A 2000-11-13 2000-11-13 Wire rod and steel bar excellent in cold workability and manufacturing method thereof Expired - Fee Related JP3999457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345638A JP3999457B2 (en) 2000-11-13 2000-11-13 Wire rod and steel bar excellent in cold workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345638A JP3999457B2 (en) 2000-11-13 2000-11-13 Wire rod and steel bar excellent in cold workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002146480A JP2002146480A (en) 2002-05-22
JP3999457B2 true JP3999457B2 (en) 2007-10-31

Family

ID=18819640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345638A Expired - Fee Related JP3999457B2 (en) 2000-11-13 2000-11-13 Wire rod and steel bar excellent in cold workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3999457B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2014011861A (en) 2012-04-05 2014-11-21 Nippon Steel & Sumitomo Metal Corp Steel wire rod or steel bar having excellent cold forgeability.
ES2759002T3 (en) 2014-11-18 2020-05-07 Nippon Steel Corp Rolled steel bar or rolled wire rod for cold forged component
MX2017005945A (en) 2014-11-18 2017-06-30 Nippon Steel & Sumitomo Metal Corp Rolled steel bar or rolled wire material for cold-forged component.
KR101665825B1 (en) * 2014-12-26 2016-10-13 주식회사 포스코 Wire rod and steel wire having high strength and manufacturing method for the same
KR101758470B1 (en) 2015-11-12 2017-07-17 주식회사 포스코 Non-quenched and tempered wire rod having excellent cold workability and method for manufacturing same
KR101767838B1 (en) 2016-06-16 2017-08-14 주식회사 포스코 Wire rod and steel wire for spring having hydrogen embrittlement resistance and method for manufacturing the same
KR102415307B1 (en) * 2020-12-15 2022-07-01 주식회사 포스코 High Strength Hypoeutectoid Steel Wire and method for Manufacturing the same

Also Published As

Publication number Publication date
JP2002146480A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
JP5034308B2 (en) High strength thick steel plate with excellent delayed fracture resistance and method for producing the same
KR101599163B1 (en) Wire material for non-refined machine component steel wire for non-refined machine component non-refined machine component and method for manufacturing wire material for non-refined machine component steel wire for non-refined machine component and non-refined machine component
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP6302722B2 (en) High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
JP5257082B2 (en) Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability
KR102335655B1 (en) Steel parts and methods of manufacturing the steel parts
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2012062557A (en) High-strength hot rolled steel sheet having excellent toughness and method for producing the same
US20020084003A1 (en) Wire rod for drawing superior in twisting characteristics and method for production thereof
EP3222742A1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP4802435B2 (en) Non-tempered steel with small material anisotropy and excellent strength, toughness and machinability, and method for producing the same
EP3222743A1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP2009275252A (en) Steel wire rod excellent in cold forgeability after annealing, and method for production thereof
WO2020039696A1 (en) High strength steel sheet and production method therefor
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2011202192A (en) Method for producing steel sheet for heat treatment and steel member
JP6798557B2 (en) steel
JP5266804B2 (en) Method for producing rolled non-heat treated steel
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP2006097109A (en) High-carbon hot-rolled steel sheet and manufacturing method therefor
JP7163639B2 (en) Steel bars or steel products and their manufacturing methods
JP6459704B2 (en) Steel for cold forging parts
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Ref document number: 3999457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees