JP3527641B2 - Steel wire with excellent cold workability - Google Patents

Steel wire with excellent cold workability

Info

Publication number
JP3527641B2
JP3527641B2 JP24079498A JP24079498A JP3527641B2 JP 3527641 B2 JP3527641 B2 JP 3527641B2 JP 24079498 A JP24079498 A JP 24079498A JP 24079498 A JP24079498 A JP 24079498A JP 3527641 B2 JP3527641 B2 JP 3527641B2
Authority
JP
Japan
Prior art keywords
less
mass
steel wire
ferrite
cementite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24079498A
Other languages
Japanese (ja)
Other versions
JP2000073137A (en
Inventor
護 長尾
英雄 畠
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24079498A priority Critical patent/JP3527641B2/en
Publication of JP2000073137A publication Critical patent/JP2000073137A/en
Application granted granted Critical
Publication of JP3527641B2 publication Critical patent/JP3527641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷間鍛造、冷間圧
造、冷間転造等の冷間塑性加工によって機械構造用部品
を製造する際に使用する鋼線材に関するものであり、殊
に冷間加工前の球状化焼鈍工程を簡略化若しくは省略し
ても良好な冷間加工性を発揮でき、消費エネルギーの節
約を達成できる鋼線材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel wire rod for use in manufacturing mechanical structural parts by cold plastic working such as cold forging, cold forging, and cold rolling. The present invention relates to a steel wire rod that can exhibit good cold workability even if the spheroidizing annealing step before cold working is simplified or omitted, and that energy consumption can be saved.

【0002】[0002]

【従来の技術】比較的高い強度が要求される軸類、ボル
ト、ナット等の機械構造用部品には、低中炭素鋼、低中
炭素低合金鋼の線材が広く使用されている。この鋼線材
は、冷間鍛造、冷間圧造、冷間転造等の冷間塑性加工に
よって製造されているが、こうした鋼線材には変形抵抗
が低いことが要求される。そして鋼線材の変形抵抗を下
げて変形能を付与する目的で、鋼中の炭化物を球状化さ
せるのが一般的である。
2. Description of the Related Art Wire rods made of low-medium carbon steel and low-medium carbon low-alloy steel are widely used for mechanical structural parts such as shafts, bolts and nuts, which require relatively high strength. This steel wire rod is manufactured by cold plastic working such as cold forging, cold forging, and cold rolling. However, such steel wire rod is required to have low deformation resistance. For the purpose of lowering the deformation resistance of the steel wire and imparting the deformability, it is common to make the carbide in the steel spherical.

【0003】上記球状化処理は、熱間圧延された鋼材を
再加熱した後徐冷する処理である。しかしながら球状化
処理は、その処理時間は短いものでも10時間、長いも
のでは20時間以上も要し、製造上のコストネックにな
っている。
The spheroidizing treatment is a treatment in which a hot rolled steel material is reheated and then gradually cooled. However, the spheroidizing treatment requires 10 hours for a short treatment time and 20 hours or more for a long treatment time, which is a manufacturing cost bottleneck.

【0004】即ち、上記球状化処理は通常球状化焼鈍に
よって行なわれるが、この球状化焼鈍においても、
(1)A1 変態点以上に加熱してから徐冷する方法、
(2)A1変態点直下に保持する方法、(3)A1 変態
点上下に加熱冷却を繰り返す方法、等様々な知られてお
り、いずれの方法を採用するにいても最終的に室温まで
徐冷する必要があり、時間、エネルギーといった処理コ
ストが非常に高いという問題がある。こうしたことか
ら、球状化処理の為の時間を短縮する手段について様々
間検討が重ねられている。
That is, the spheroidizing treatment is usually performed by spheroidizing annealing.
(1) A method of gradually heating after heating above the A 1 transformation point,
There are various known methods, such as (2) holding just below the A 1 transformation point, (3) repeating heating and cooling above and below the A 1 transformation point, and even if either method is adopted, the final temperature is room temperature. There is a problem that the processing cost such as time and energy is very high because it needs to be gradually cooled. For these reasons, various studies have been conducted on various means for reducing the time required for the spheroidizing treatment.

【0005】こうした技術の一つとして、球状化処理を
行なう前に伸線のような冷間加工を施して鋼中炭化物を
破壊し、その後の球状化焼鈍での炭化物の分断凝集を促
進させる手法で処理時間を短縮させる方法が、従来から
一般的に行なわれてきている。しかしながらこの方法で
は、処理時間を短縮させるという効果はあるが、冷間加
工工程が追加されるため、製造工程全般を通じての処理
時間短縮効果はそれほど画期的なものとは言えない。
As one of such techniques, a method of performing cold working such as wire drawing before performing spheroidizing treatment to destroy carbides in steel and promoting fragmentation and aggregation of carbides in subsequent spheroidizing annealing. Conventionally, a method of shortening the processing time has been generally performed. However, this method has the effect of shortening the processing time, but since the cold working step is added, the effect of shortening the processing time throughout the manufacturing process is not so epoch-making.

【0006】また線材の熱間圧延工程を工夫することに
よって、球状化処理時間を短縮することも可能であり、
例えば特開昭59−166622号では、予め加工を与
えて炭化物を変形破壊させた後球状化焼鈍を施すことが
有効であるという周知の事実を利用し、2質量%以下の
Cを含有する鋼に対して、Ac1 以下500℃以上の
(フェライト+パーライト)2相域において10%以上
の塑性変形を与えることでパーライトを分断させ、更に
その加工熱によって(フェライト+オーステナイト)温
度域を仕上げ温度とし特定温度域を徐冷する方法が提案
されている。
Further, it is possible to shorten the spheroidizing treatment time by devising the hot rolling process of the wire.
For example, in Japanese Patent Laid-Open No. 59-166622, it is known that it is effective to pre-process the steel to deform and fracture the carbide, and then to perform spheroidizing annealing. Therefore, steel containing 2% by mass or less of C is used. On the other hand, pearlite is divided by giving a plastic deformation of 10% or more in a two-phase region of Ac 1 or less and 500 ° C. or more (ferrite + pearlite), and the (ferrite + austenite) temperature range is finished by the processing heat. A method of gradually cooling a specific temperature range has been proposed.

【0007】この方法によれば、特定温度域の冷却速度
によっては90%を超える球状化率を得ることができ、
その結果として球状化時間が1/5以下に短縮できる。
しかしながらこの方法では、鋼材に対してAc1 以下の
低温での加工を必須とする為に、圧延機の負荷が大き
く、また圧延が容易ではないという問題が生じる。
According to this method, a spheroidization rate of more than 90% can be obtained depending on the cooling rate in a specific temperature range,
As a result, the spheroidizing time can be shortened to 1/5 or less.
However, in this method, since it is essential to process the steel material at a low temperature of Ac 1 or less, there is a problem that the load of the rolling mill is large and the rolling is not easy.

【0008】更に、特開昭59−136421号には、
同じく2質量%以下のCを含有する鋼において仕上げ圧
延中に一度鋼材をAr1 点まで冷却して、(フェライト
+パーライト)組織にし、その温度から圧延することで
パーライトを分断させ、引き続きその加工熱によって
(フェライト+オーステナイト)温度域を仕上げ温度と
し徐冷する方法が提案されている。しかしながら、この
方法においては上記技術よりも更に低温であるAr1
下での鋼材の加工を必須とするので、ますます圧延機の
負荷が大きく、圧延が容易でない。
Further, in JP-A-59-136421,
Similarly, in steel containing 2% by mass or less of C, during finish rolling, the steel material is once cooled to Ar 1 point to form a (ferrite + pearlite) structure, and pearlite is divided by rolling from that temperature, and subsequently the processing is performed. A method has been proposed in which the (ferrite + austenite) temperature range is set as a finishing temperature and gradually cooled by heat. However, in this method, since it is indispensable to process the steel material at Ar 1 or lower, which is lower than the above-mentioned technique, the load on the rolling mill is further increased, and the rolling is not easy.

【0009】上記の様な圧延温度の問題を解決する方法
として、例えば特開昭59−136422号において
は、準安定オーステナイト温度域にて圧延し、加工誘起
変態を利用してAe1 以下Ar1 以上の温度域で10%
以上の塑性変形を与える方法が提示されている。しかし
この方法を持ってしても、圧延温度はAe1 を下回るこ
とが必須となり、依然として圧延負荷が大きいことに変
わりはない。
As a method for solving the problem of the rolling temperature as described above, for example, in Japanese Patent Laid-Open No. 59-136422, rolling is carried out in a metastable austenite temperature range, and by utilizing the work-induced transformation, Ae 1 or less Ar 1 10% in the above temperature range
The method of giving the above plastic deformation is proposed. However, even with this method, it is essential that the rolling temperature be lower than Ae 1 , and the rolling load is still large.

【0010】これまで提案されている上記従来例に共通
する事実として、このようなA1 変態点近傍温度域での
圧延は、炭化物と同時に生成するフェライトに蓄積され
るひずみが、その後の加工発熱や徐冷処理では十分回復
せず、球状化率が高くなる割に変形抵抗が十分低下せ
ず、冷間加工工具の寿命の点で問題がある。
As a fact common to the above-mentioned conventional examples proposed so far, in such rolling in the temperature range near the A 1 transformation point, the strain accumulated in the ferrite formed at the same time as the carbide causes the subsequent processing heat generation. However, there is a problem in terms of the life of the cold working tool because the spheroidizing rate does not sufficiently recover and the deformation resistance does not sufficiently decrease with the slow cooling treatment.

【0011】一方、特開平8−246040号には、鋼
材の昇温途中で下記(1)、(2)の各素過程を1回若
しくは2回以上組み合わせて行なうことによって、球状
化処理時間を1時間以下に短縮する急速連続球状化焼鈍
処理法が開示されており、この技術の開発によって球状
化処理時間の大幅な短縮が達成されるものと思われる。
しかしながら、この技術においても球状化焼鈍を完全に
省略するには至らず、更なる改良が望まれている。
On the other hand, in Japanese Patent Laid-Open No. 8-246040, the spheroidizing treatment time can be increased by performing each of the following elementary processes (1) and (2) once or in combination during the temperature rise of the steel material. A rapid continuous spheroidizing annealing method that shortens to 1 hour or less is disclosed, and it is considered that the development of this technique will achieve a significant reduction in the spheroidizing processing time.
However, even with this technique, the spheroidizing annealing cannot be completely omitted, and further improvement is desired.

【0012】(1)Ae1 点以上、Ae1 点+150K
以下の温度域に、1K/秒以上の昇温速度で昇温加熱
し、当該温度域内で0秒以上600秒未満の時間保持し
た後、Ae1 点以上、Ae1 点+50K〜Ae1 点+1
50Kの温度域内を5K/秒 以下の冷却速度で冷却す
るかまたは当該温度域の温度に保持すること、(2)A
1 点+80K以上、Ae1 点+270K以下の温度域
に、1K/秒以上の昇温速度で昇温加熱し、当該温度域
内で0秒以上120秒未満の時間保持した後、Ae1
以上、Ae1 点〜Ae1 点−150Kの温度域内を5K
/秒 以下の冷却速度で冷却するかまたは当該温度域の
温度に保持すること。
(1) Ae 1 point or more, Ae 1 point + 150K
The following temperature range, 1K / sec or more was heated heated at a Atsushi Nobori rate, after holding time of less than 0 seconds 600 seconds in the temperature range, Ae 1 point or more, Ae 1 point + 50K~Ae 1 point +1
Cooling within a temperature range of 50 K at a cooling rate of 5 K / sec or less, or maintaining the temperature in the temperature range, (2) A
e 1 point + 80K or more, Ae 1 point + 270K or less at a temperature rising rate of 1 K / sec or more, and after heating for 0 seconds or more and less than 120 seconds within the temperature range, Ae 1 point or more , the temperature range of Ae 1 point ~Ae 1 point -150K 5K
Cool at a cooling rate of less than 1 second / sec or keep the temperature in the temperature range.

【0013】[0013]

【発明が解決しようとする課題】上述した様に、低中炭
素鋼特にC:0.3%以上の中炭素鋼を対象として、球
状化焼鈍処理の簡略化に関する技術がこれまでも様々提
案されており、夫々その技術的意義を有するものといえ
るが、球状化焼鈍処理を完全に省略するという観点から
すればいずれも十分とはいえず、決定的な方法とはなり
得ない。
As described above, various techniques relating to simplification of the spheroidizing annealing treatment have been proposed for low-medium carbon steels, particularly medium carbon steels with C: 0.3% or more. Although each has its technical significance, none of them is sufficient from the viewpoint of completely omitting the spheroidizing annealing treatment, and cannot be a definitive method.

【0014】本発明はこうした状況の下でなされたもの
であって、その目的は、熱間圧延ままの低中炭素鋼や低
中炭素低合金鋼における変形抵抗を低減して十分な変形
能を与え、球状化焼鈍処理を簡略化若しくは省略しても
冷間加工性に優れた鋼線材を提供しようとするものであ
る。
The present invention has been made under such circumstances, and an object thereof is to reduce the deformation resistance in a low-medium carbon steel or a low-medium carbon low alloy steel that has been hot-rolled to obtain sufficient deformability. It is intended to provide a steel wire rod excellent in cold workability even if the spheroidizing annealing treatment is simplified or omitted.

【0015】[0015]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、C:0.03〜0.8質量%を含む鋼線材で
あって、フェライトの平均粒径が2〜5.5μmであ
り、且つ長径が3μm以下で(長径/短径)で示される
アスペクト比が3以下のセメンタイトが全セメンタイト
に対して70面積%以上となる領域が、表面から線径の
10%以上の領域である点に要旨を有する鋼線材であ
る。
The present invention which has achieved the above object is a steel wire containing C: 0.03 to 0.8 mass% and having an average ferrite grain size of 2 to 5. A region where the cementite with a major axis of 5 μm and a major axis of 3 μm or less and an aspect ratio represented by (major axis / minor axis) of 3 or less is 70 area% or more based on all cementites is 10% or more of the wire diameter from the surface. It is a steel wire rod having the gist in the area.

【0016】本発明の鋼線材は上記の様に線材中の結晶
組織を規定したものでありるが、この線材における具体
的な化学成分組成としては、Si:0.004〜0.5
質量%、Mn:0.05〜2質量%およびAl:0.0
1〜0.08質量%を夫々含むと共に、P:0.03質
量%以下(0%を含む)、S:0.03質量%以下(0
%を含む)およびN:0.07質量%以下(0%を含
む)に夫々抑制したものが挙げられる。
The steel wire rod of the present invention defines the crystal structure in the wire rod as described above. The specific chemical composition of the wire rod is Si: 0.004 to 0.5.
Mass%, Mn: 0.05-2 mass% and Al: 0.0
1 to 0.08 mass% respectively, P: 0.03 mass% or less (including 0%), S: 0.03 mass% or less (0
%) And N: 0.07 mass% or less (including 0%).

【0017】また本発明の鋼線材においては、必要によ
って、(1)Cr:1.5質量%以下(0%を含まな
い)、Mo:1.0質量%以下(0%を含まない)、N
i:1.0質量%以下(0%を含まない)およびB:
0.0025質量%以下(0%を含まない)よりなる群
から選ばれる1種以上、(2)Ti:0.5質量%以下
(0%を含まない)、V:0.6質量%以下(0%を含
まない)、Nb:0.4質量%以下(0%を含まない)
およびZr:0.3質量%以下(0%を含まない)より
なる群から選ばれる1種以上、等を含有させることも有
効であり、これによって鋼線材の特性を更に改善するこ
とができる。
In the steel wire rod of the present invention, if necessary, (1) Cr: 1.5% by mass or less (not including 0%), Mo: 1.0% by mass or less (not including 0%), N
i: 1.0% by mass or less (not including 0%) and B:
One or more kinds selected from the group consisting of 0.0025% by mass or less (not including 0%), (2) Ti: 0.5% by mass or less (not including 0%), V: 0.6% by mass or less (0% is not included), Nb: 0.4 mass% or less (0% is not included)
It is also effective to add Zr: at least one selected from the group consisting of 0.3% by mass or less (not including 0%), and the like, whereby the characteristics of the steel wire rod can be further improved.

【0018】尚フェライトの平均粒径とは、線材断面を
研磨・エッチングして光学顕微鏡または走査型電子顕微
鏡(SEM)によって観察される組織において、測定さ
れるフェライトの平均粒切片の大きさである。
The average grain size of ferrite is the average grain size of ferrite measured in a structure observed by an optical microscope or a scanning electron microscope (SEM) after polishing and etching the cross section of a wire. .

【0019】[0019]

【発明の実施の形態】本発明者らは、冷間加工の際のク
ラック発生場所について詳細に調査したところ、殆どの
場合に部品、即ち圧延線材表面近傍であることを見出し
た。より詳しくは、線材表面から直径の約10%の深さ
までの領域にクラックが発生して割れに至ることが判明
した。この領域は、部品としての冷間加工中で最もひず
みが大きい領域に相当するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have made detailed investigations on the locations of cracks generated during cold working, and have found that they are in the vicinity of the surface of a part, that is, a rolled wire, in most cases. More specifically, it has been found that cracks are generated in the region from the surface of the wire to a depth of about 10% of the diameter, leading to breakage. This region corresponds to the region having the largest strain during cold working as a part.

【0020】更に、クラック発生の起点は、5.5μm
以上の大きさのフェライトと第2相(ここではパーライ
ト)の界面またはパーライト内部、または表面の微細傷
である事がわかった。この領域以外に発生するクラック
は粗大介在物などによるものであり、介在物除去などの
製鋼技術で解決できる問題である。
Furthermore, the origin of cracks is 5.5 μm.
It was found that this was a fine scratch on the interface between the ferrite and the second phase (here, pearlite) having the above size, the inside of pearlite, or the surface. The cracks generated outside this region are due to coarse inclusions and the like, which is a problem that can be solved by steelmaking technology such as removal of inclusions.

【0021】従って、フェライトの粒径を5.5μm以
下にして、第2相と接する界面を小さくすることでクラ
ック発生頻度を抑制できると考えた。
Therefore, it is considered that the frequency of cracks can be suppressed by reducing the grain size of ferrite to 5.5 μm or less and reducing the interface in contact with the second phase.

【0022】こうした着想に加えて、冷間加工性に要求
されるもう一つの特性である変形抵抗については、球状
化処理によって変形抵抗、変形能が向上するという既知
の事実からも容易に理解できるとおり、パーライトがで
きるだけ球状化に近い分断組織になっているほうが、変
形抵抗を効果的に低下させることができる。
In addition to such an idea, the deformation resistance, which is another characteristic required for the cold workability, can be easily understood from the known fact that the spheroidizing treatment improves the deformation resistance and the deformability. As described above, the deformation resistance can be effectively reduced when the pearlite has a divided structure that is as close to spherical as possible.

【0023】しかし、通常の球状化処理ではセメンタイ
トの球状化は進行するが、フェライト粒径を制御するこ
とは難しく、たとえば文献(Materials Sc
ience and Engineering 62号
(1983) p163〜171)にあるように、線材
断面全体でフェライトの平均粒径は5.8〜15μm程
度にしか制御できない。
However, although the spheroidization of cementite proceeds by the usual spheroidization treatment, it is difficult to control the ferrite grain size. For example, see References (Materials Sc).
As described in "Ience and Engineering 62 (1983) p163-171", the average grain size of ferrite can be controlled only to about 5.8 to 15 µm in the entire cross section of the wire.

【0024】そこで本発明者らは鋭意研究を進めた結
果、冷間加工に短時間の高周波加熱を併用することで、
分断セメンタイト組織中のフェライトを微細化すること
に成功した。この方法の原理は次のようなものである。
Therefore, as a result of intensive studies by the present inventors, by using high-frequency heating for a short time together with cold working,
We succeeded in refining the ferrite in the fractured cementite structure. The principle of this method is as follows.

【0025】まず鋼線材に減面率5%程度のスキンパス
を行う。次に、この線材を加熱速度400℃/s以上の
急速加熱により、フェライト(α)+オーステナイト
(γ)2相温度域のAc3 点直下まで加熱する。ここで
のAc3 点は連続加熱中に完全にαが消失し、γ単相に
なる温度である。そして所定温度になるまで加熱した
後、直ちに加熱をやめ、冷却速度10℃/s以上且つ臨
界冷却速度以下にて冷却する。以上のプロセスを3ない
し4回繰り返す。こうした処理によって、パーライト組
織は分断が進行し、しかもαの微細化が進行する。
First, a steel wire rod is subjected to a skin pass with a surface reduction rate of about 5%. Next, this wire is heated to a point immediately below the Ac 3 point in the ferrite (α) + austenite (γ) two-phase temperature region by rapid heating at a heating rate of 400 ° C./s or more. The Ac 3 point here is the temperature at which α disappears completely during continuous heating and becomes a γ single phase. Then, after heating to a predetermined temperature, the heating is immediately stopped and cooling is performed at a cooling rate of 10 ° C./s or more and a critical cooling rate or less. The above process is repeated 3 to 4 times. By such a treatment, the pearlite structure is divided, and α is further refined.

【0026】これは、次のような組織変化が起きる結果
であると考えることができる。まず急速にAc3 点直下
に加熱することによって、パーライト組織は急速に分解
するが、Ac3 直下で直ちに冷却を開始することで鋼中
にはγに変態しきらなかった初析αが残存することにな
る。
It can be considered that this is a result of the following tissue change. First, the pearlite structure is rapidly decomposed by heating immediately under the Ac 3 point, but by immediately starting the cooling immediately under the Ac 3 , the pro-eutectoid α which has not been transformed into γ remains in the steel. It will be.

【0027】一方、パーライト中で板状に析出している
セメンタイト(θ)も分解するが、均一に分解するので
はなく、炭素の拡散の速い粒界付近や格子欠陥付近で優
先的に分解し、球状のセメンタイトが残存する。このθ
の分解過程は従来知られている球状化処理でのθ分解過
程と同じである。しかしながら、通常の球状化処理での
加熱温度はAl 点近傍であるのに対し、この急速加熱処
理はより高温であるところに特徴がある。このため初析
αの微細化が容易に達成できる条件となる。
On the other hand, the cementite (θ) precipitated in a plate shape in pearlite is also decomposed, but it is not decomposed uniformly, but is preferentially decomposed in the vicinity of grain boundaries where carbon diffuses rapidly and in the vicinity of lattice defects. , Spherical cementite remains. This θ
The decomposition process of is the same as the θ decomposition process in the conventionally known spheroidizing process. However, the heating temperature in the usual spheroidizing treatment is in the vicinity of the Al point, while this rapid heating treatment is characterized in that it is at a higher temperature. For this reason, it becomes a condition that it is possible to easily achieve the refinement of pro-eutectoid α.

【0028】また上記の条件による冷却では、分解しき
らなかったθはそのまま残存し、γ−α界面で新しい初
析αを析出しつつパーライト変態が進行することにな
る。
Further, in the cooling under the above conditions, the undissolved θ remains as it is, and the pearlite transformation proceeds while depositing new pro-eutectoid α at the γ-α interface.

【0029】従って、1回の急速加熱および冷却によっ
て、微細な初析セメンタイト、分断セメンタイトおよび
パーライトが共存した組織が得られる。
Therefore, a structure in which fine pro-eutectoid cementite, fragmented cementite and pearlite coexist is obtained by one rapid heating and cooling.

【0030】上記の様な処理を繰り返すことによって、
ラメラ組織を呈するパーライトの体積率が減少し、分断
θと微細αからなる球状化処理材に近いミクロ組織を有
する鋼材を得ることができる。但し、ここで示した製造
方法は、あくまで本発明の鋼材組織を得る為の一例を示
したものであって、この他の製造方法になんら制限を加
えるものではない。
By repeating the above processing,
The volume ratio of pearlite exhibiting a lamellar structure is reduced, and a steel material having a microstructure close to a spheroidized material composed of divided θ and fine α can be obtained. However, the manufacturing method shown here is merely an example for obtaining the steel material structure of the present invention, and does not impose any limitation to the other manufacturing methods.

【0031】本発明の鋼線材の特徴は、その組織を規定
した点にあるが、本発明で規定した各要件の限定理由に
ついて説明する。
The characteristic of the steel wire rod of the present invention lies in the fact that its structure is regulated, but the reasons for limiting each requirement prescribed in the present invention will be explained.

【0032】フェライトの平均粒径:2〜5.5μm 本発明の鋼線材においては、表面から線径の10%以上
の領域におけるフェライトの平均粒径が2〜5.5μm
である必要がある。フェライトの平均粒径が2μm未満
となると、クラック発生の抑制には効果があるが、結晶
粒微細化による強度上昇が著しくなり、却って変形抵抗
の増大を引き起こすことになる。また上述のとおり、フ
ェライトの平均粒径が5.5μmを上回ると、従来の球
状化処理材と同等の変形抵抗、変形能にしか到達しない
ため、上限を5.5μm以下とした。尚フェライトの平
均粒径を5.5μm以下とする為の方法としては、上述
のとおり短時間の高周波加熱冷却などが挙げられるが、
その他の手法であっても何ら支障はない。
Average particle size of ferrite: 2 to 5.5 μm In the steel wire rod of the present invention, the average particle size of ferrite is 2 to 5.5 μm in the region of 10% or more of the wire diameter from the surface.
Must be If the average grain size of ferrite is less than 2 μm, although it is effective in suppressing the occurrence of cracks, the increase in strength due to the refinement of the crystal grains becomes remarkable, and rather the deformation resistance increases. Further, as described above, if the average grain size of ferrite exceeds 5.5 μm, the deformation resistance and deformability equivalent to those of the conventional spheroidized material are reached, so the upper limit was made 5.5 μm or less. As a method for controlling the average grain size of ferrite to 5.5 μm or less, high-frequency heating / cooling for a short time can be mentioned as described above.
There is no problem even if other methods are used.

【0033】長径が3μm以下で(長径/短径)で示さ
れるアスペクト比が3以下 本発明の線材では、分断セメンタイトの長径が3μm以
下で(長径/短径)で示されるアスペクト比が3以下と
するものである。まず長径が3μmを越えるセメンタイ
トは、フェライトとの界面で早期にクラック、ボイドを
発生する起点となりやすいためである。またアスペクト
比を3以下と規定したのは、これより長いセメンタイト
は、冷間加工時の塑性流動の障害となり、特に鋼材表面
近傍でのボイド発生の起点となりやすいためである。こ
れより小さなセメンタイトからのボイド発生頻度は顕著
に低下する。
Shown by (major axis / minor axis) when major axis is 3 μm or less
In the wire of the present invention, the major axis of the segmented cementite is 3 μm or less, and the aspect ratio represented by (major axis / minor axis) is 3 or less. First, cementite having a major axis of more than 3 μm is likely to be a starting point for early generation of cracks and voids at the interface with ferrite. Further, the aspect ratio is defined as 3 or less because cementite longer than this becomes an obstacle to the plastic flow during cold working and is particularly likely to be a starting point of void generation near the surface of the steel material. The void occurrence frequency from cementite smaller than this is remarkably reduced.

【0034】全セメンタイトに対して70面積%以上 分断セメンタイトの分率は、全セメンタイトに対して7
0面積%以上である必要があるが、70面積%未満の分
率では、本発明の意図する分断セメンタイトならびに微
細フェライトによる冷間加工性の向上効果が明確に現れ
ないためである。尚この分率の上限は特に限定されず、
製造方法にも依存するが、変形抵抗の低減効果から10
0%に近いことが望ましい。
70% by area or more with respect to all cementites The fraction of fractured cementites is 7 with respect to all cementites.
This is because it is necessary to be 0 area% or more, but if the fraction is less than 70 area%, the effect of improving the cold workability by the split cementite and the fine ferrite intended by the present invention does not clearly appear. The upper limit of this fraction is not particularly limited,
Although it depends on the manufacturing method, it is 10 from the effect of reducing deformation resistance.
It is desirable to be close to 0%.

【0035】表面から線径の10%以上の領域 本発明の線材においては、上記分率が70面積%以上の
分断セメンタイトは、全領域が上記の組織(フェライト
の平均粒径が2〜5.5μmであり、且つ分断セメンタ
イトの分率が全セメンタイトに対して70面積%以上)
を呈することで、通常の球状化材なみの変形抵抗に加え
て飛躍的に変形能が向上し、複雑な形状への加工を容易
にする。しかしながら、表面から10%程度の領域だけ
が上記の組織となるだけでも、現行の球状化処理の時間
を短縮する効果を有する。10%を下回る領域だけでは
球状化焼鈍短縮効果が小さいので、本発明では表面から
線径の10%以上と規定した。尚表面から線径の10%
の領域とは、線材全体として見たときは、線径に対して
20%の領域が、上記分率が70面積%以上の分断セメ
ンタイトとなっていることを意味し、従ってこの領域が
50%となったときには、線材全体に亘って上記分率が
70面積%以上の分断セメンタイトとなっていることを
意味する。
Region from the surface to 10% or more of the wire diameter In the wire rod of the present invention, the split cementite having the above-mentioned fraction of 70% by area or more has the above-mentioned structure (the average grain size of ferrite is 2 to 5. 5 μm and the fraction of fragmented cementite is 70 area% or more based on the total cementite)
By exhibiting, the deformability is dramatically improved in addition to the deformation resistance similar to that of the ordinary spheroidizing material, and the processing into a complicated shape is facilitated. However, even if only the region of about 10% from the surface has the above-mentioned structure, it has an effect of shortening the time of the current spheroidizing treatment. Since the effect of shortening spheroidizing annealing is small only in the region of less than 10%, in the present invention, it was defined as 10% or more of the wire diameter from the surface. 10% of wire diameter from the surface
The region of means that the region of 20% with respect to the wire diameter is divided cementite with the above-mentioned fraction of 70 area% or more when viewed as a whole wire, and therefore this region is 50%. When it becomes, it means that the fraction is 70% by area or more and is divided cementite over the entire wire.

【0036】本発明の鋼線材は、基本的にCを0.03
〜0.8%含むものであるが、また具体的な化学成分組
成としては、Si:0.004〜0.5質量%、Mn:
0.05〜2質量%およびAl:0.01〜0.08質
量%を夫々含むと共に、P:0.03質量%以下(0%
を含む)、S:0.03質量%以下(0%を含む)およ
びN:0.07質量%以下(0%を含む)に夫々抑制し
たものが挙げられるが、これらの元素の範囲限定理由は
下記の通りである。
The steel wire rod of the present invention basically has a C content of 0.03.
.About.0.8%, but as a specific chemical component composition, Si: 0.004 to 0.5 mass%, Mn:
0.05 to 2 mass% and Al: 0.01 to 0.08 mass%, respectively, and P: 0.03 mass% or less (0%
, S: 0.03 mass% or less (including 0%) and N: 0.07 mass% or less (including 0%), respectively, but the reasons for limiting the range of these elements are included. Is as follows.

【0037】C:0.03〜0.8質量% Cは線材に所望の強度を与える為に必須の元素であり、
その為には少なくとも0.03質量%以上含有させる必
要がある。しかしながら、C含有量が過剰になると必要
以上の変形抵抗上昇と靭性の低下を招くため、0.8質
量%を上限とする。尚C含有量の好ましい下限は0.2
0質量%であり、好ましい上限は0.60%である。
C: 0.03 to 0.8% by mass C is an essential element for giving desired strength to the wire,
Therefore, it is necessary to contain at least 0.03 mass% or more. However, if the C content becomes excessive, the deformation resistance increases more than necessary and the toughness decreases, so the upper limit is 0.8% by mass. The preferable lower limit of the C content is 0.2
It is 0% by mass, and the preferable upper limit is 0.60%.

【0038】Si:0.004〜0.5質量% Siは製鋼過程において脱酸剤として添加されるが、そ
の為には0.004質量%以上含有させる必要がある。
しかしながら、Siの含有量が過剰になると、変形抵抗
を著しく上昇させるために、その上限は0.5質量%を
上限とする。尚Si含有量の好ましい下限は0.01質
量%であり、好ましい上限は0.3質量%である。
Si: 0.004 to 0.5 mass% Si is added as a deoxidizing agent in the steel making process, but for that purpose, it is necessary to contain 0.004 mass% or more.
However, if the Si content is excessive, the deformation resistance is significantly increased, so the upper limit is 0.5% by mass. The preferable lower limit of the Si content is 0.01% by mass, and the preferable upper limit is 0.3% by mass.

【0039】Mn:0.05〜2質量% Mnは、不純物であるSを固定して無害化するために必
要であり、また調質処理後の鋼の強度を調整するため必
要な元素である。また靭性を向上させるためにも有効で
ある。これらの効果を発揮させる為には、Mnは少なく
とも0.05質量%以上含有させる必要があるが、過剰
に含有させると焼入れ性が向上して熱間圧延ままでベイ
ナイトなどの生成により変形抵抗の上昇を招くので、2
質量%以下とする必要がある。尚Mn含有量の好ましい
下限は0.4質量%であり、好ましい上限は1.2質量
%である。
Mn: 0.05 to 2 mass% Mn is an element necessary for fixing S, which is an impurity, to render it harmless, and for adjusting the strength of the steel after tempering. . It is also effective for improving toughness. In order to exert these effects, it is necessary to contain Mn in an amount of at least 0.05 mass% or more. However, if it is contained in excess, the hardenability is improved, and bainite or the like is generated during hot rolling to cause deformation resistance. 2 because it causes a rise
It needs to be less than or equal to mass%. The preferable lower limit of the Mn content is 0.4% by mass, and the preferable upper limit is 1.2% by mass.

【0040】Al:0.01〜0.08質量% Alは製鋼工程での脱酸剤として作用し、またAlNと
してNを固定して固溶Nを減少させて変形抵抗を低減さ
せるために必要である。こうした効果を発揮させる為に
は、0.01質量%以上含有させる必要がある。しかし
ながら、Alを過剰に含有させると粗大AlNとして冷
間加工性を悪化させるので、0.08質量%を上限とす
る。
Al: 0.01 to 0.08 mass% Al acts as a deoxidizing agent in the steelmaking process, and is necessary for fixing N as AlN to reduce solid solution N and reduce deformation resistance. Is. In order to exert such effects, it is necessary to contain 0.01% by mass or more. However, if Al is contained excessively, it becomes coarse AlN and deteriorates the cold workability, so 0.08 mass% is made the upper limit.

【0041】P:0.03%質量以下(0%を含む)、
S:0.03質量%以下(0%を含む) これらの元素は粒界に偏析、または化合物介在物として
存在し、冷間加工性を阻害するために、0.03質量%
以下にする必要がある。尚これらの元素は、好ましくは
いずれも0.016質量%以下とするのが良い。
P: 0.03% or less by mass (including 0%),
S: 0.03% by mass or less (including 0%) These elements are segregated at the grain boundaries or exist as compound inclusions, and 0.03% by mass to prevent cold workability.
Must be: The content of each of these elements is preferably 0.016 mass% or less.

【0042】N:0.07質量%以下(0%を含む) Nは顕著に変形抵抗を上昇させるので、良好な冷間加工
性を得るためには0.07%以下に抑制する必要があ
る。またこうした観点からして、N含有量は好ましく
は、0.010質量%以下とするのが良い。
N: 0.07% by Mass or Less (Including 0%) N significantly increases the deformation resistance, so it is necessary to suppress it to 0.07% or less in order to obtain good cold workability. . From this viewpoint, the N content is preferably 0.010 mass% or less.

【0043】本発明の鋼線材における基本的な化学成分
組成は上記の通りであり、残部はFeおよび不可避不純
物からなるものであるが、本発明の鋼線材においては必
要によって、(1)Cr:1.5質量%以下(0%を含
まない)、Mo:1.0質量%以下(0%を含まな
い)、Ni:1.0質量%以下(0%を含まない)およ
びB:0.0025質量%以下(0%を含まない)より
なる群から選ばれる1種以上の元素、(2)Ti:0.
5質量%以下(0%を含まない)、V:0.6質量%以
下(0%を含まない)、Nb:0.4質量%以下(0%
を含まない)およびZr:0.3質量%以下(0%を含
まない)よりなる群から選ばれる1種以上の元素、等を
含有させることも有効であり、これによって鋼線材の特
性を更に向上させることができる。これらの元素の範囲
限定理由は下記の通りである。尚本発明の鋼線材には、
これら以外にも線材の特性を阻害しない程度の微量成分
を含み得るものであり、こうした鋼線材も本発明の範囲
に含まれるものである。
The basic chemical composition of the steel wire rod of the present invention is as described above, and the balance consists of Fe and inevitable impurities. In the steel wire rod of the present invention, (1) Cr: 1.5% by mass or less (not including 0%), Mo: 1.0% by mass or less (not including 0%), Ni: 1.0% by mass or less (not including 0%) and B: 0. One or more elements selected from the group consisting of 0025 mass% or less (not including 0%), (2) Ti: 0.
5 mass% or less (0% is not included), V: 0.6 mass% or less (0% is not included), Nb: 0.4 mass% or less (0%
It is also effective to add one or more elements selected from the group consisting of Zr: 0.3 mass% or less (not including 0%), and the like, thereby further improving the characteristics of the steel wire rod. Can be improved. The reasons for limiting the ranges of these elements are as follows. The steel wire rod of the present invention includes
In addition to these, trace amounts of components that do not impair the characteristics of the wire may be included, and such steel wire is also included in the scope of the present invention.

【0044】Cr:1.5質量%以下(0%を含まな
い)、Mo:1.0質量%以下(0%を含まない)、N
i:1.0質量%以下(0%を含まない)およびB:
0.0025質量%以下(0%を含まない)よりなる群
から選ばれる1種以上の元素 Cr、Mo、NiおよびBは焼入れ調整元素であり、焼
入れ焼戻しによって強度と靭性を調整するために添加さ
れる。しかしながら、過剰に含有させると変形抵抗の上
昇を招くので好ましくない。こうした観点から、Crは
その上限を1.5質量%とし、MoおよびNiはその上
限を1.0質量%とし、Bはその上限を0.0025質
量%とした。尚これらの元素添加による上記効果は、上
記範囲内で含有量を増加させるにつれて大きくなるが、
上記効果を発揮させる為には、Crで0.03質量%以
上、MoおよびNiで0.01質量%以上、Bで0.0
003質量%以上含有させることが好ましい。
[0044]Cr: 1.5% by mass or less (0% is not included
I), Mo: 1.0 mass% or less (not including 0%), N
i: 1.0% by mass or less (not including 0%) and B:
Group consisting of 0.0025% by mass or less (not including 0%)
One or more elements selected from Cr, Mo, Ni and B are quenching adjusting elements, and
Added to adjust strength and toughness by quenching and tempering
Be done. However, if it is contained excessively, it will increase the deformation resistance.
It is not preferable because it causes rise. From this viewpoint, Cr is
The upper limit is set to 1.5% by mass, and Mo and Ni are
The limit is 1.0% by mass, and the upper limit of B is 0.0025
The amount was set to%. In addition, the above effects due to the addition of these elements are
It increases as the content increases within the above range,
In order to exert the above effect, Cr is 0.03 mass% or less.
Above, 0.01% by mass or more for Mo and Ni, 0.0 for B
It is preferable to contain 003 mass% or more.

【0045】Ti:0.5質量%以下(0%を含まな
い)、V:0.6質量%以下(0%を含まない)、N
b:0.4質量%以下(0%を含まない)およびZr:
0.3質量%以下(0%を含まない)よりなる群から選
ばれる1種以上の元素 Ti、V、NbおよびZrはいずれも微細な炭窒化物を
形成し、析出硬化による調質材の強度延性バランスを調
整する目的で添加される。しかしながら、過剰に含有さ
せると変形抵抗の上昇を招くので好ましくない。こうし
た観点から、いずれもその上限を0.2質量%とした。
尚これらの元素添加による上記効果は、上記範囲内で含
有量を増加させるにつれて大きくなるが、上記効果を発
揮させる為には、Tiで0.015質量%以上、V,N
bおよびZrで0.010質量%以上含有させることが
好ましい。
[0045]Ti: 0.5% by mass or less (not including 0%
), V: 0.6 mass% or less (not including 0%), N
b: 0.4 mass% or less (not including 0%) and Zr:
Select from the group consisting of 0.3 mass% or less (not including 0%)
One or more elements exposed Ti, V, Nb and Zr are all fine carbonitrides
Formed and adjusted the strength and ductility balance of the heat-treated material by precipitation hardening
It is added for the purpose of adjusting. However, excessive content
If so, deformation resistance is increased, which is not preferable. This way
From the viewpoint, the upper limit of each is set to 0.2% by mass.
In addition, the above-mentioned effects due to the addition of these elements are included within the above range.
It increases as the abundance increases, but the above effects are produced.
In order to vaporize, 0.015 mass% or more of Ti, V, N
b and Zr may be contained in an amount of 0.010 mass% or more.
preferable.

【0046】以下,本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に徴して設計変更することは
いずれも本発明の技術的範囲に含まれるものである。尚
以下の実施例では、ミクロ組織の判定は次の手順に従っ
た。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention, and any modification of the design of the present invention can be made without departing from the spirit of the preceding and the following. Are included in the technical scope of. In the examples below, the microstructure was determined according to the following procedure.

【0047】[フェライト粒径調査]線材断面を研磨・
エッチングして光学顕微鏡またはSEMによって観察さ
れる組織において、フェライトの平均粒切片を測定し
た。測定は100μm×250μmの領域を、5視野以
上観察して測定して平均を求めた。
[Ferrite grain size investigation] Polishing of wire cross section
The average grain section of ferrite was measured in the structure that was etched and observed by an optical microscope or SEM. The measurement was carried out by observing an area of 100 μm × 250 μm in five or more visual fields and measuring the average.

【0048】[分断セメンタイト相調査]線材横断面の
観察視野で、倍率1000倍のSEMで撮影される組織
写真を、画像解析にかけ、SEM写真上で白く見えるセ
メンタイト中の長径3μm以下、アスペクト比3以下の
部分の分断セメンタイト面積率を測定した。測定は、フ
ェライト粒径調査と同様、5視野以上を観察して平均を
求めた。
[Investigation of Split Cementite Phase] A structural photograph taken with an SEM at a magnification of 1000 times in an observation field of a cross-section of a wire was subjected to image analysis. The divided cementite area ratios of the following parts were measured. The measurement was performed by observing five or more fields of view and averaging the same as in the ferrite grain size survey.

【0049】[長径、短径の決め方]セメンタイトの最
長切片を長径とし、この長径に垂直な方向での最長切片
を短径とした。
[Determination of major axis and minor axis] The longest section of cementite was defined as the major axis, and the maximum section in the direction perpendicular to this major axis was defined as the minor axis.

【0050】[組織深さの決め方]任意の半径におい
て、表面から5%きざみに中心に向かって観察し、上記
の[フェライト粒径調査]および[分断セメンタイト相
調査]を実施し、5視野における平均値を求めた。そし
てフェライト粒径および分断セメンタイトのいずれの条
件をも満足する表面からの深さを組織深さとした。この
とき観察暗視野の中間に組織深さがある場合には、いず
れも傾斜平均によって中間値を求めて、組織深さ(本発
明で規定する組織を満足する領域)とした。
[Determination of Microstructure Depth] At an arbitrary radius, observation is performed from the surface in steps of 5% toward the center, and the [Ferrite grain size inspection] and [Separation cementite phase inspection] described above are carried out to obtain 5 fields of view. The average value was calculated. The depth from the surface that satisfies both the conditions of the ferrite grain size and the fragmented cementite was defined as the texture depth. At this time, when there is a tissue depth in the middle of the observed dark field, the median value was obtained by the gradient averaging in all cases, and made the tissue depth (a region satisfying the tissue defined in the present invention).

【0051】[0051]

【実施例】[実施例1]JIS S30C相当組成鋼を
使って、高周波による急速加熱試験を実施し、冷間加工
性への影響を検討した。即ち、下記表1に示す化学成分
組成の線径:16mmの鋼線材を、伸線−高周波加熱試
験にかけ、微細フェライト+分断セメンタイト組織の試
作を実施した。
[Example] [Example 1] Using a steel composition equivalent to JIS S30C, a rapid heating test by high frequency was conducted to examine the influence on cold workability. That is, a steel wire rod having a chemical composition shown in Table 1 below and having a wire diameter of 16 mm was subjected to a wire drawing-high frequency heating test, and a trial production of a fine ferrite + divided cementite structure was carried out.

【0052】[0052]

【表1】 [Table 1]

【0053】下記表2に、試作条件と得られた組織を示
す。尚表2中の「繰り返し回数」とは、(高周波加熱→
冷却)のプロセスを繰り返した回数を示す。また「組織
深さ」とは、前述の通り、フェライト粒径および分断セ
メンタイト組織のいずれの条件をも満足する領域の表面
からの深さ(線径に対する%)を示しており、0%は全
くなし、50%は線材断面全体で得られている状態を意
味する。試験No.1のものは従来例であり、通常の球
状化処理を施したものであり、このときの球状化処理条
件は加熱温度:740℃、全体の球状化処理温度は20
時間である。
Table 2 below shows the experimental conditions and the obtained structures. In addition, "repetition number" in Table 2 means (high frequency heating →
The number of times the cooling process is repeated is shown. As described above, the "structural depth" indicates the depth (% of the wire diameter) from the surface of the region that satisfies both the conditions of the ferrite grain size and the divided cementite structure, and 0% means no None, 50% means the state obtained on the entire cross section of the wire. Test No. No. 1 is a conventional example, which has been subjected to ordinary spheroidizing treatment, and the spheroidizing treatment conditions at this time are a heating temperature of 740 ° C. and an overall spheroidizing treatment temperature of 20.
It's time.

【0054】[0054]

【表2】 [Table 2]

【0055】図1に、試験No.1〜5のもの(従来
例、および組織深さが50%以上のもの)についての冷
間加工性(割れ発生限界据込率、引張強さTS)の評価
結果を示す。この結果から明らかなように、本発明で規
定する要件を満足するものでは(試験No.2〜4)、
球状化処理を施していないが、通常の球状化処理材なみ
のTSを有し、しかも5%以上もの割れ発生限界据込率
の上昇があり、著しく冷間加工性が改善されていること
が分かる。
FIG. 1 shows the test No. The evaluation results of the cold workability (cracking limit upsetting ratio, tensile strength TS) of Nos. 1 to 5 (conventional example, and those having a structure depth of 50% or more) are shown. As is clear from this result, when the requirements specified in the present invention are satisfied (test Nos. 2 to 4),
Although not subjected to spheroidization treatment, it has TS similar to that of ordinary spheroidization treatment material, and has an increase in crack generation limit upset rate of 5% or more, which indicates that cold workability is remarkably improved. I understand.

【0056】また組織深さが50%に満たなかった試験
No.7〜9のものについては、2時間の球状化処理を
実施した。これらの冷間加工性の評価結果を、試験N
o.1の従来例と共に図2に示すが、この図2から明ら
かなように、本発明で規定する要件を満足するものでは
(試験No.7、8)、通常の球状化処理の1/10の
時間でも従来例同等の冷間加工性を有しており、処理時
間短縮が可能であることが分かる。
Further, the test No. in which the tissue depth was less than 50%. The spheroidizing treatments of 7 to 9 were carried out for 2 hours. The evaluation results of these cold workability were tested N
o. 2 is shown together with the conventional example of No. 1, but as is clear from FIG. 2, when the requirements specified by the present invention are satisfied (Test Nos. 7 and 8), it is 1/10 of the usual spheroidizing treatment. It can be seen that the cold workability is equivalent to that of the conventional example even in terms of time, and the processing time can be shortened.

【0057】[実施例2]次に、化学成分組成の影響を
検討するため、表3に示す各種鋼材を準備し、実施例1
と同様に伸線−高周波加熱によって組織を調整した。こ
のとき伸線率は一様に5%、繰り返し回数は全て4回と
し、最高加熱温度を夫々の試料におけるAc3 点の直下
とした。化学成分組成が好ましい範囲内にある試料(N
o.1〜15)については、組織深さが50%となった
ものはそのまま、50%に満たなかったものは2時間の
簡略球状化処理を実施してから冷間加工性を調査した。
また、化学成分組成が好ましい範囲を外れる試料(N
o.16〜29)については、全ての試料について簡略
球状化処理を施してその効果を確認した。
Example 2 Next, in order to study the influence of the chemical composition, various steel materials shown in Table 3 were prepared, and Example 1 was used.
The tissue was prepared by wire drawing-high frequency heating in the same manner as in. At this time, the wire drawing ratio was 5% uniformly, the number of repetitions was all 4 times, and the maximum heating temperature was right below the Ac 3 point in each sample. Samples whose chemical composition is within the preferred range (N
o. With respect to 1 to 15), those having a microstructure depth of 50% were left as they were, and those having a microstructure depth of less than 50% were subjected to a simple spheroidizing treatment for 2 hours, and then cold workability was investigated.
In addition, a sample whose chemical composition is out of the preferable range (N
o. 16-29), all the samples were subjected to a simple spheroidizing treatment to confirm the effect.

【0058】[0058]

【表3】 [Table 3]

【0059】下記表4に、得られた組織と冷間加工性の
結果を示す。この表から明らかなように、本発明の好ま
しい化学成分組成に該当する組成鋼(試料No.1〜1
5)では、組織深さが50%になるものはそのままで、
また50%に満たないものは2時間の簡略球状化処理を
施すことで、いずれも従来例として示しているS30C
球状化処理材と同等もしくはそれを上回る冷間加工性を
有していることが分かる。
Table 4 below shows the obtained structures and the results of cold workability. As is clear from this table, composition steels (Sample Nos. 1 to 1) that correspond to the preferred chemical composition of the present invention.
In 5), the one with a tissue depth of 50% remains the same,
If less than 50%, a simple spheroidizing treatment is performed for 2 hours, and all of them are shown as conventional examples in S30C.
It can be seen that it has cold workability equal to or higher than that of the spheroidized material.

【0060】これに対して、本発明の好ましい化学成分
組成を外れる組成鋼(試料No.16〜29)では、簡
略球状化処理を実施してもなお割れ発生限界が低かった
り、変形抵抗が高くなっていることが分かる。
On the other hand, in the composition steels (Sample Nos. 16 to 29) which deviate from the preferable chemical composition of the present invention, even if the simple spheroidizing treatment is carried out, the crack generation limit is low and the deformation resistance is high. You can see that

【0061】[0061]

【表4】 [Table 4]

【0062】[0062]

【発明の効果】本発明は以上の様に構成されており、本
発明に係る鋼線材は、球状化焼鈍処理を大幅に短縮でき
るとともに、必要によって球状化焼鈍を完全に省略する
ことも可能となる。
EFFECTS OF THE INVENTION The present invention is constituted as described above, and the steel wire rod according to the present invention can greatly reduce the spheroidizing annealing treatment and, if necessary, can completely omit the spheroidizing annealing. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】表2の試験No.1〜5のものについての冷間
加工性の評価結果を示すグラフである。
1 is a test No. of Table 2. It is a graph which shows the evaluation result of cold workability about 1-5.

【図2】表2の試験No.7〜9についての冷間加工性
の評価結果を示すグラフである。
FIG. 2 Test No. of Table 2 It is a graph which shows the evaluation result of the cold workability about 7-9.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−268546(JP,A) 特開 平2−213415(JP,A) 特開 昭63−69914(JP,A) 特開 平5−339677(JP,A) 特開 平5−339676(JP,A) 特開 昭63−20419(JP,A) 特開 昭62−139817(JP,A) 特開 平8−295933(JP,A) 特開 昭57−52540(JP,A) 特開 昭55−94447(JP,A) 特開 昭49−115928(JP,A) 特開 昭49−40221(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-268546 (JP, A) JP-A-2-213415 (JP, A) JP-A-63-69914 (JP, A) JP-A-5- 339677 (JP, A) JP-A 5-339676 (JP, A) JP-A 63-20419 (JP, A) JP-A 62-139817 (JP, A) JP-A 8-295933 (JP, A) JP-A-57-52540 (JP, A) JP-A-55-94447 (JP, A) JP-A-49-115928 (JP, A) JP-A-49-40221 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.03〜0.8質量%、Si:
0.004〜0.5質量%、Mn:0.05〜2質量%
およびAl:0.01〜0.08質量%を夫々含むと共
に、P:0.03質量%以下(0%を含む)、S:0.
03質量%以下(0%を含む)およびN:0.07質量
%以下(0%を含む)に夫々抑制し、残部鉄および不可
避不純物からなる鋼線材であって、表面から線径の10
%以上の領域において、フェライトの平均粒径が2〜
5.5μmであり、且つ長径が3μm以下で(長径/短
径)で示されるアスペクト比が3以下のセメンタイトが
全セメンタイトに対して70面積%以上であることを特
徴とする冷間加工性に優れた鋼線材。
1. C: 0.03 to 0.8% by mass , Si:
0.004 to 0.5 mass%, Mn: 0.05 to 2 mass%
And Al: 0.01 to 0.08% by mass, respectively.
, P: 0.03 mass% or less (including 0%), S: 0.
03 mass% or less (including 0%) and N: 0.07 mass
% Or less (including 0%), and balance iron
A steel wire rod made of evasive impurities , having a diameter of 10 mm from the surface.
%, The average grain size of ferrite is 2 to
The cold workability is characterized in that the cementite having an aspect ratio of 3 or less and having a major axis of 3 μm or less and a major axis of 3 μm or less is 70 area% or more with respect to the total cementite. Excellent steel wire rod.
【請求項2】 更に、Cr:1.5質量%以下(0%を
含まない)、Mo:1.0質量%以下(0%を含まな
い)、Ni:1.0質量%以下(0%を含まない)およ
びB:0.0025質量%以下(0%を含まない)より
なる群から選ばれる1種以上を含むものである請求項
記載の鋼線材。
2. A further, Cr: 1.5 wt% or less (not including 0%), Mo: 1.0 wt% or less (not including 0%), Ni: 1.0 wt% or less (0% the exclusive) and B: 0.0025 mass% or less (claim 1 is intended to include one or more selected from the group consisting of 0%)
Steel wire material according to.
【請求項3】 更に、Ti:0.5質量%以下(0%を
含まない)、V:0.6質量%以下(0%を含まな
い)、Nb:0.4質量%以下(0%を含まない)およ
びZr:0.3質量%以下(0%を含まない)よりなる
群から選ばれる1種以上を含むものである請求項1また
は2に記載の鋼線材。
3. A further, Ti: 0.5 wt% or less (not including 0%), V: 0.6 mass% or less (not including 0%), Nb: 0.4 wt% or less (0% 1) or more and Zr: 0.3 mass% or less (0% is not included) selected from the group consisting of 1.
Is a steel wire rod according to 2.
JP24079498A 1998-08-26 1998-08-26 Steel wire with excellent cold workability Expired - Fee Related JP3527641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24079498A JP3527641B2 (en) 1998-08-26 1998-08-26 Steel wire with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24079498A JP3527641B2 (en) 1998-08-26 1998-08-26 Steel wire with excellent cold workability

Publications (2)

Publication Number Publication Date
JP2000073137A JP2000073137A (en) 2000-03-07
JP3527641B2 true JP3527641B2 (en) 2004-05-17

Family

ID=17064797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24079498A Expired - Fee Related JP3527641B2 (en) 1998-08-26 1998-08-26 Steel wire with excellent cold workability

Country Status (1)

Country Link
JP (1) JP3527641B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013246A (en) 2012-06-08 2015-02-04 신닛테츠스미킨 카부시키카이샤 Steel wire rod or bar steel
CN109321840A (en) * 2018-10-24 2019-02-12 首钢京唐钢铁联合有限责任公司 280 MPa-level low-alloy high-strength steel and manufacturing method thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742820B1 (en) * 2005-12-27 2007-07-25 주식회사 포스코 Steel wire having excellent cold heading quality and quenching property and method for producing the same
KR101053409B1 (en) 2008-10-30 2011-08-01 주식회사 포스코 In-line spheroidized steel wire, and a manufacturing method thereof
KR101143170B1 (en) * 2009-04-23 2012-05-08 주식회사 포스코 Steel wire rod having high strength and excellent toughness
JP5459065B2 (en) * 2010-05-21 2014-04-02 新日鐵住金株式会社 Rolled steel for induction hardening and method for producing the same
JP5459062B2 (en) * 2010-05-21 2014-04-02 新日鐵住金株式会社 Rolled steel for induction hardening and method for producing the same
JP5357994B2 (en) 2011-12-19 2013-12-04 株式会社神戸製鋼所 Machine structural steel for cold working and method for producing the same
JP5776623B2 (en) * 2012-05-08 2015-09-09 新日鐵住金株式会社 Steel wire rods / bars with excellent cold workability and manufacturing method thereof
JP6497146B2 (en) * 2015-03-16 2019-04-10 新日鐵住金株式会社 Steel wire rod with excellent cold workability
KR101797349B1 (en) * 2016-03-23 2017-11-14 주식회사 포스코 High-carbon steel wire rod for cold forging without spheroidizing heat treatment, processed good using the same, and methods for manufacturing thereof
KR102170944B1 (en) * 2018-11-09 2020-10-29 주식회사 포스코 Steel wire rod for cold forging and method for manufacturing the same
WO2020230880A1 (en) 2019-05-16 2020-11-19 日本製鉄株式会社 Steel wire and hot-rolled wire material
CN111154956B (en) * 2019-12-27 2021-11-30 安徽应流集团霍山铸造有限公司 Heat treatment method of medium-carbon low-alloy steel
CN112981228A (en) * 2021-01-20 2021-06-18 江阴兴澄特种钢铁有限公司 Steel bar with good cold forging performance for transmission gear shaft and manufacturing method
KR20230159706A (en) * 2021-03-31 2023-11-21 가부시키가이샤 고베 세이코쇼 Steel wire for mechanical structural parts and manufacturing method thereof
KR20230159707A (en) * 2021-03-31 2023-11-21 가부시키가이샤 고베 세이코쇼 Steel wire for mechanical structural parts and manufacturing method thereof
WO2022210125A1 (en) * 2021-03-31 2022-10-06 株式会社神戸製鋼所 Steel wire for mechanical structural component and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013246A (en) 2012-06-08 2015-02-04 신닛테츠스미킨 카부시키카이샤 Steel wire rod or bar steel
CN109321840A (en) * 2018-10-24 2019-02-12 首钢京唐钢铁联合有限责任公司 280 MPa-level low-alloy high-strength steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000073137A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP3527641B2 (en) Steel wire with excellent cold workability
JP6461360B2 (en) Spring steel wire and spring
JP5776623B2 (en) Steel wire rods / bars with excellent cold workability and manufacturing method thereof
JP5397247B2 (en) Hot rolled steel bar or wire rod
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP3764715B2 (en) Steel wire for high-strength cold forming spring and its manufacturing method
WO2011004913A1 (en) Steel wire for high-strength spring
MX2013001724A (en) Special steel steel-wire and special steel wire material.
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
WO2012005373A1 (en) Drawn and heat-treated steel wire for high-strength spring, and undrawn steel wire for high-strength spring
JP3742232B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
EP0637636B1 (en) Graphite structural steel having good free-cutting and good cold-forging properties and process of making this steel
JP2001240940A (en) Bar wire rod for cold forging and its production method
JP2011225897A (en) Hot-rolled steel bar or wire rod for cold forging
JP2002235151A (en) High strength heat treated stel wire for spring
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP2001294981A (en) High strength wire rod excellent in delayed fracture resistance and forgeability and/or under head toughness and its producing method
JP3536684B2 (en) Steel wire with excellent wire drawing workability
JP3737323B2 (en) Steel wire rod and bar steel excellent in cold forgeability after spheronization and manufacturing method thereof
JP3715802B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
JP3443285B2 (en) Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same
JP3909939B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
JP2003089846A (en) High carbon steel sheet for working having reduced plane anisotropy, and production method therefor
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees