JP2000073137A - Steel wire rod excellent in cold workability - Google Patents

Steel wire rod excellent in cold workability

Info

Publication number
JP2000073137A
JP2000073137A JP24079498A JP24079498A JP2000073137A JP 2000073137 A JP2000073137 A JP 2000073137A JP 24079498 A JP24079498 A JP 24079498A JP 24079498 A JP24079498 A JP 24079498A JP 2000073137 A JP2000073137 A JP 2000073137A
Authority
JP
Japan
Prior art keywords
mass
less
steel
steel wire
cementite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24079498A
Other languages
Japanese (ja)
Other versions
JP3527641B2 (en
Inventor
Mamoru Nagao
護 長尾
Hideo Hatake
英雄 畠
Hiroshi Kako
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24079498A priority Critical patent/JP3527641B2/en
Publication of JP2000073137A publication Critical patent/JP2000073137A/en
Application granted granted Critical
Publication of JP3527641B2 publication Critical patent/JP3527641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel wire rod provided with sufficient deformability by the reduction of deformation resistance in low-medium carbon steel and low-medium carbon low alloy steel as hot-rolled and excellent in cold workability even if spheroidizing annealing treatment is simplified or omitted. SOLUTION: This steel wire material is the one contg. by mass, 0.03 to 0.8% C in which the average grain size of ferrite is 2 to 5.5 μm and also, the region in which the ratio of cementite having <=3 μm major axis and <=3 aspect ratio shown by (the major axis/the minor axis) becomes >=70 area % to the whole cementite is the region of >=10% of the wire diameter from the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷間鍛造、冷間圧
造、冷間転造等の冷間塑性加工によって機械構造用部品
を製造する際に使用する鋼線材に関するものであり、殊
に冷間加工前の球状化焼鈍工程を簡略化若しくは省略し
ても良好な冷間加工性を発揮でき、消費エネルギーの節
約を達成できる鋼線材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel wire used for manufacturing a machine structural component by cold plastic working such as cold forging, cold forging, cold rolling, and the like. The present invention relates to a steel wire rod capable of exhibiting good cold workability even if the spheroidizing annealing step before cold working is simplified or omitted, and achieving energy savings.

【0002】[0002]

【従来の技術】比較的高い強度が要求される軸類、ボル
ト、ナット等の機械構造用部品には、低中炭素鋼、低中
炭素低合金鋼の線材が広く使用されている。この鋼線材
は、冷間鍛造、冷間圧造、冷間転造等の冷間塑性加工に
よって製造されているが、こうした鋼線材には変形抵抗
が低いことが要求される。そして鋼線材の変形抵抗を下
げて変形能を付与する目的で、鋼中の炭化物を球状化さ
せるのが一般的である。
2. Description of the Related Art Low-medium carbon steel and low-medium carbon low alloy steel wires are widely used for shafts, bolts, nuts, and other mechanical structural parts requiring relatively high strength. This steel wire is manufactured by cold plastic working such as cold forging, cold forging, cold rolling and the like, and such a steel wire is required to have low deformation resistance. In general, carbides in steel are spheroidized for the purpose of imparting deformability by lowering the deformation resistance of the steel wire.

【0003】上記球状化処理は、熱間圧延された鋼材を
再加熱した後徐冷する処理である。しかしながら球状化
処理は、その処理時間は短いものでも10時間、長いも
のでは20時間以上も要し、製造上のコストネックにな
っている。
[0003] The spheroidizing treatment is a treatment in which a hot-rolled steel material is reheated and then gradually cooled. However, the spheroidizing process requires a short processing time of 10 hours and a long processing time of 20 hours or more, which is a manufacturing cost bottleneck.

【0004】即ち、上記球状化処理は通常球状化焼鈍に
よって行なわれるが、この球状化焼鈍においても、
(1)A1 変態点以上に加熱してから徐冷する方法、
(2)A1変態点直下に保持する方法、(3)A1 変態
点上下に加熱冷却を繰り返す方法、等様々な知られてお
り、いずれの方法を採用するにいても最終的に室温まで
徐冷する必要があり、時間、エネルギーといった処理コ
ストが非常に高いという問題がある。こうしたことか
ら、球状化処理の為の時間を短縮する手段について様々
間検討が重ねられている。
That is, the spheroidizing treatment is usually performed by spheroidizing annealing.
(1) a method of heating to a temperature not lower than the A 1 transformation point and then slowly cooling;
Various methods are known, such as (2) a method of holding immediately below the A 1 transformation point, and (3) a method of repeating heating and cooling above and below the A 1 transformation point. There is a problem that it is necessary to gradually cool, and the processing cost such as time and energy is very high. For these reasons, various studies have been made on means for shortening the time required for the spheroidizing treatment.

【0005】こうした技術の一つとして、球状化処理を
行なう前に伸線のような冷間加工を施して鋼中炭化物を
破壊し、その後の球状化焼鈍での炭化物の分断凝集を促
進させる手法で処理時間を短縮させる方法が、従来から
一般的に行なわれてきている。しかしながらこの方法で
は、処理時間を短縮させるという効果はあるが、冷間加
工工程が追加されるため、製造工程全般を通じての処理
時間短縮効果はそれほど画期的なものとは言えない。
[0005] As one of such techniques, a technique of performing cold working such as wire drawing before performing spheroidizing treatment to break carbides in the steel and promoting the segregation and aggregation of carbides in the subsequent spheroidizing annealing. Conventionally, a method for shortening the processing time has been generally performed. However, although this method has the effect of shortening the processing time, the effect of shortening the processing time throughout the entire manufacturing process is not so innovative because a cold working step is added.

【0006】また線材の熱間圧延工程を工夫することに
よって、球状化処理時間を短縮することも可能であり、
例えば特開昭59−166622号では、予め加工を与
えて炭化物を変形破壊させた後球状化焼鈍を施すことが
有効であるという周知の事実を利用し、2質量%以下の
Cを含有する鋼に対して、Ac1 以下500℃以上の
(フェライト+パーライト)2相域において10%以上
の塑性変形を与えることでパーライトを分断させ、更に
その加工熱によって(フェライト+オーステナイト)温
度域を仕上げ温度とし特定温度域を徐冷する方法が提案
されている。
[0006] In addition, by devising the hot rolling step of the wire rod, it is possible to shorten the spheroidizing time,
For example, Japanese Patent Application Laid-Open No. 59-166622 utilizes a well-known fact that it is effective to apply spheroidizing annealing after deforming and breaking a carbide in advance by giving a work in advance to a steel containing 2% by mass or less of C. On the other hand, pearlite is divided by giving a plastic deformation of 10% or more in a (Ferrite + Pearlite) two-phase region of 500 ° C. or more of Ac 1 or less, and the (ferrite + austenite) temperature range is further reduced by the processing heat. A method of gradually cooling a specific temperature range has been proposed.

【0007】この方法によれば、特定温度域の冷却速度
によっては90%を超える球状化率を得ることができ、
その結果として球状化時間が1/5以下に短縮できる。
しかしながらこの方法では、鋼材に対してAc1 以下の
低温での加工を必須とする為に、圧延機の負荷が大き
く、また圧延が容易ではないという問題が生じる。
According to this method, a spheroidizing ratio exceeding 90% can be obtained depending on a cooling rate in a specific temperature range,
As a result, the spheroidization time can be reduced to 1/5 or less.
However, in this method, since the steel material must be processed at a low temperature of Ac 1 or less, there is a problem that the load of the rolling mill is large and the rolling is not easy.

【0008】更に、特開昭59−136421号には、
同じく2質量%以下のCを含有する鋼において仕上げ圧
延中に一度鋼材をAr1 点まで冷却して、(フェライト
+パーライト)組織にし、その温度から圧延することで
パーライトを分断させ、引き続きその加工熱によって
(フェライト+オーステナイト)温度域を仕上げ温度と
し徐冷する方法が提案されている。しかしながら、この
方法においては上記技術よりも更に低温であるAr1
下での鋼材の加工を必須とするので、ますます圧延機の
負荷が大きく、圧延が容易でない。
Further, JP-A-59-136421 discloses that
Similarly, in the steel containing 2% by mass or less of C, the steel material is once cooled to Ar 1 point during the finish rolling to form a (ferrite + pearlite) structure, and the pearlite is cut by rolling from that temperature, and the processing is continued. There has been proposed a method in which a temperature range of (ferrite + austenite) is set as a finishing temperature and gradually cooled by heat. However, in this method, it is necessary to process a steel material at a temperature of Ar 1 or lower, which is lower in temperature than the above technique, so that the load on the rolling mill is further increased and rolling is not easy.

【0009】上記の様な圧延温度の問題を解決する方法
として、例えば特開昭59−136422号において
は、準安定オーステナイト温度域にて圧延し、加工誘起
変態を利用してAe1 以下Ar1 以上の温度域で10%
以上の塑性変形を与える方法が提示されている。しかし
この方法を持ってしても、圧延温度はAe1 を下回るこ
とが必須となり、依然として圧延負荷が大きいことに変
わりはない。
As a method of solving the above-mentioned problem of the rolling temperature, for example, in Japanese Patent Application Laid-Open No. Sho 59-136422, rolling is carried out in a metastable austenite temperature range, and Ae 1 or less Ar 1 is utilized by utilizing the work-induced transformation. 10% in the above temperature range
A method of giving the above plastic deformation has been proposed. However, even with this method, the rolling temperature must be lower than Ae 1 , and the rolling load is still large.

【0010】これまで提案されている上記従来例に共通
する事実として、このようなA1 変態点近傍温度域での
圧延は、炭化物と同時に生成するフェライトに蓄積され
るひずみが、その後の加工発熱や徐冷処理では十分回復
せず、球状化率が高くなる割に変形抵抗が十分低下せ
ず、冷間加工工具の寿命の点で問題がある。
[0010] In fact common to the conventional example have been proposed heretofore, rolling at such A 1 transformation point temperature near zone, the strain is accumulated in the ferrite to produce at the same time as the carbides, subsequent processing heating However, the spheroidizing rate does not sufficiently recover, and the deformation resistance does not sufficiently decrease in spite of the increase in the spheroidization rate, and there is a problem in the life of the cold working tool.

【0011】一方、特開平8−246040号には、鋼
材の昇温途中で下記(1)、(2)の各素過程を1回若
しくは2回以上組み合わせて行なうことによって、球状
化処理時間を1時間以下に短縮する急速連続球状化焼鈍
処理法が開示されており、この技術の開発によって球状
化処理時間の大幅な短縮が達成されるものと思われる。
しかしながら、この技術においても球状化焼鈍を完全に
省略するには至らず、更なる改良が望まれている。
On the other hand, Japanese Patent Application Laid-Open No. 8-246040 discloses that the elementary processes of the following (1) and (2) are performed once or in combination of two or more times during the heating of a steel material, so that the spheroidizing treatment time is reduced. A rapid continuous spheroidizing annealing method that reduces the time to one hour or less is disclosed, and it is believed that the development of this technique will achieve a significant reduction in the spheroidizing time.
However, even in this technique, spheroidizing annealing has not been completely omitted, and further improvement is desired.

【0012】(1)Ae1 点以上、Ae1 点+150K
以下の温度域に、1K/秒以上の昇温速度で昇温加熱
し、当該温度域内で0秒以上600秒未満の時間保持し
た後、Ae1 点以上、Ae1 点+50K〜Ae1 点+1
50Kの温度域内を5K/秒 以下の冷却速度で冷却す
るかまたは当該温度域の温度に保持すること、(2)A
1 点+80K以上、Ae1 点+270K以下の温度域
に、1K/秒以上の昇温速度で昇温加熱し、当該温度域
内で0秒以上120秒未満の時間保持した後、Ae1
以上、Ae1 点〜Ae1 点−150Kの温度域内を5K
/秒 以下の冷却速度で冷却するかまたは当該温度域の
温度に保持すること。
(1) Ae 1 point or more, Ae 1 point + 150K
The following temperature range, 1K / sec or more was heated heated at a Atsushi Nobori rate, after holding time of less than 0 seconds 600 seconds in the temperature range, Ae 1 point or more, Ae 1 point + 50K~Ae 1 point +1
Cooling in a temperature range of 50 K at a cooling rate of 5 K / sec or less, or maintaining the temperature in the temperature range, (2) A
e 1 point + 80K or more, Ae 1 point + 270K or less, heating at a heating rate of 1K / sec or more, heating for 0 to less than 120 seconds, and Ae 1 point or more , the temperature range of Ae 1 point ~Ae 1 point -150K 5K
Cool at a cooling rate of not more than / sec or maintain the temperature within the temperature range.

【0013】[0013]

【発明が解決しようとする課題】上述した様に、低中炭
素鋼特にC:0.3%以上の中炭素鋼を対象として、球
状化焼鈍処理の簡略化に関する技術がこれまでも様々提
案されており、夫々その技術的意義を有するものといえ
るが、球状化焼鈍処理を完全に省略するという観点から
すればいずれも十分とはいえず、決定的な方法とはなり
得ない。
As described above, various techniques for simplifying the spheroidizing annealing treatment have been proposed for low-medium carbon steel, especially medium carbon steel of C: 0.3% or more. However, from the viewpoint of completely omitting the spheroidizing annealing, none of these methods is sufficient and cannot be a definitive method.

【0014】本発明はこうした状況の下でなされたもの
であって、その目的は、熱間圧延ままの低中炭素鋼や低
中炭素低合金鋼における変形抵抗を低減して十分な変形
能を与え、球状化焼鈍処理を簡略化若しくは省略しても
冷間加工性に優れた鋼線材を提供しようとするものであ
る。
The present invention has been made under such circumstances, and an object of the present invention is to reduce the deformation resistance of hot-rolled low-medium-carbon steel or low-medium-carbon low-alloy steel to obtain sufficient deformability. It is intended to provide a steel wire excellent in cold workability even if the spheroidizing annealing treatment is simplified or omitted.

【0015】[0015]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、C:0.03〜0.8質量%を含む鋼線材で
あって、フェライトの平均粒径が2〜5.5μmであ
り、且つ長径が3μm以下で(長径/短径)で示される
アスペクト比が3以下のセメンタイトが全セメンタイト
に対して70面積%以上となる領域が、表面から線径の
10%以上の領域である点に要旨を有する鋼線材であ
る。
Means for Solving the Problems The present invention, which has achieved the above object, is a steel wire rod containing C: 0.03 to 0.8% by mass and having an average ferrite particle diameter of 2 to 5%. The area where the cementite having a length of 5 μm and a major axis of 3 μm or less and having an aspect ratio of 3 or less (major axis / minor axis) of 70% by area or more with respect to the total cementite is 10% or more of the wire diameter from the surface. This is a steel wire rod having a gist at a point that is an area.

【0016】本発明の鋼線材は上記の様に線材中の結晶
組織を規定したものでありるが、この線材における具体
的な化学成分組成としては、Si:0.004〜0.5
質量%、Mn:0.05〜2質量%およびAl:0.0
1〜0.08質量%を夫々含むと共に、P:0.03質
量%以下(0%を含む)、S:0.03質量%以下(0
%を含む)およびN:0.07質量%以下(0%を含
む)に夫々抑制したものが挙げられる。
The steel wire of the present invention defines the crystal structure in the wire as described above. The specific chemical composition of the wire is Si: 0.004 to 0.5.
% By mass, Mn: 0.05 to 2% by mass, and Al: 0.0
1 to 0.08% by mass, P: 0.03% by mass or less (including 0%), S: 0.03% by mass or less (0%
%) And N: 0.07% by mass or less (including 0%).

【0017】また本発明の鋼線材においては、必要によ
って、(1)Cr:1.5質量%以下(0%を含まな
い)、Mo:1.0質量%以下(0%を含まない)、N
i:1.0質量%以下(0%を含まない)およびB:
0.0025質量%以下(0%を含まない)よりなる群
から選ばれる1種以上、(2)Ti:0.5質量%以下
(0%を含まない)、V:0.6質量%以下(0%を含
まない)、Nb:0.4質量%以下(0%を含まない)
およびZr:0.3質量%以下(0%を含まない)より
なる群から選ばれる1種以上、等を含有させることも有
効であり、これによって鋼線材の特性を更に改善するこ
とができる。
In the steel wire of the present invention, if necessary, (1) Cr: 1.5% by mass or less (excluding 0%), Mo: 1.0% by mass or less (excluding 0%), N
i: 1.0% by mass or less (excluding 0%) and B:
At least one selected from the group consisting of 0.0025% by mass or less (excluding 0%), (2) Ti: 0.5% by mass or less (excluding 0%), V: 0.6% by mass or less (Excluding 0%), Nb: 0.4% by mass or less (excluding 0%)
It is also effective to include at least one selected from the group consisting of Zr: 0.3% by mass or less (not including 0%), and the like, whereby the properties of the steel wire can be further improved.

【0018】尚フェライトの平均粒径とは、線材断面を
研磨・エッチングして光学顕微鏡または走査型電子顕微
鏡(SEM)によって観察される組織において、測定さ
れるフェライトの平均粒切片の大きさである。
The average grain size of ferrite is the size of an average grain section of ferrite measured in a structure observed by an optical microscope or a scanning electron microscope (SEM) after polishing and etching a cross section of a wire. .

【0019】[0019]

【発明の実施の形態】本発明者らは、冷間加工の際のク
ラック発生場所について詳細に調査したところ、殆どの
場合に部品、即ち圧延線材表面近傍であることを見出し
た。より詳しくは、線材表面から直径の約10%の深さ
までの領域にクラックが発生して割れに至ることが判明
した。この領域は、部品としての冷間加工中で最もひず
みが大きい領域に相当するものである。
DETAILED DESCRIPTION OF THE INVENTION The inventors of the present invention have conducted detailed investigations on cracks occurring during cold working, and have found that almost all parts are near the surface of a rolled wire rod in most cases. More specifically, it was found that cracks occurred in a region from the surface of the wire to a depth of about 10% of the diameter, leading to cracking. This region corresponds to a region where the strain is the largest during cold working as a part.

【0020】更に、クラック発生の起点は、5.5μm
以上の大きさのフェライトと第2相(ここではパーライ
ト)の界面またはパーライト内部、または表面の微細傷
である事がわかった。この領域以外に発生するクラック
は粗大介在物などによるものであり、介在物除去などの
製鋼技術で解決できる問題である。
Further, the starting point of crack generation is 5.5 μm
It was found that there were fine scratches on the interface between ferrite and the second phase (here, pearlite) of the above size, inside pearlite, or on the surface. Cracks occurring outside this region are caused by coarse inclusions and the like, and are problems that can be solved by steelmaking techniques such as removal of inclusions.

【0021】従って、フェライトの粒径を5.5μm以
下にして、第2相と接する界面を小さくすることでクラ
ック発生頻度を抑制できると考えた。
Therefore, it was considered that the frequency of cracks can be suppressed by reducing the grain size of ferrite to 5.5 μm or less and reducing the interface in contact with the second phase.

【0022】こうした着想に加えて、冷間加工性に要求
されるもう一つの特性である変形抵抗については、球状
化処理によって変形抵抗、変形能が向上するという既知
の事実からも容易に理解できるとおり、パーライトがで
きるだけ球状化に近い分断組織になっているほうが、変
形抵抗を効果的に低下させることができる。
In addition to such an idea, deformation resistance, which is another property required for cold workability, can be easily understood from the known fact that deformation resistance and deformability are improved by spheroidizing treatment. As described above, when the pearlite has a divided structure as close to spheroidization as possible, the deformation resistance can be effectively reduced.

【0023】しかし、通常の球状化処理ではセメンタイ
トの球状化は進行するが、フェライト粒径を制御するこ
とは難しく、たとえば文献(Materials Sc
ience and Engineering 62号
(1983) p163〜171)にあるように、線材
断面全体でフェライトの平均粒径は5.8〜15μm程
度にしか制御できない。
However, in the ordinary spheroidizing treatment, although the spheroidization of cementite proceeds, it is difficult to control the ferrite particle size. For example, the literature (Materials Sc)
As described in “Ice and Engineering 62, No. 62 (1983), pp. 163 to 171), the average grain size of ferrite can be controlled only to about 5.8 to 15 μm in the entire wire cross section.

【0024】そこで本発明者らは鋭意研究を進めた結
果、冷間加工に短時間の高周波加熱を併用することで、
分断セメンタイト組織中のフェライトを微細化すること
に成功した。この方法の原理は次のようなものである。
The inventors of the present invention have conducted intensive studies and as a result, by using high-frequency heating for a short time together with cold working,
We succeeded in reducing the size of ferrite in the fragmented cementite structure. The principle of this method is as follows.

【0025】まず鋼線材に減面率5%程度のスキンパス
を行う。次に、この線材を加熱速度400℃/s以上の
急速加熱により、フェライト(α)+オーステナイト
(γ)2相温度域のAc3 点直下まで加熱する。ここで
のAc3 点は連続加熱中に完全にαが消失し、γ単相に
なる温度である。そして所定温度になるまで加熱した
後、直ちに加熱をやめ、冷却速度10℃/s以上且つ臨
界冷却速度以下にて冷却する。以上のプロセスを3ない
し4回繰り返す。こうした処理によって、パーライト組
織は分断が進行し、しかもαの微細化が進行する。
First, the steel wire is subjected to a skin pass with a reduction in area of about 5%. Next, this wire is heated to a temperature just below the Ac 3 point in the two-phase temperature region of ferrite (α) + austenite (γ) by rapid heating at a heating rate of 400 ° C./s or more. The Ac 3 point here is the temperature at which α completely disappears during continuous heating to become a γ single phase. Then, after heating to a predetermined temperature, the heating is immediately stopped, and cooling is performed at a cooling rate of 10 ° C./s or more and a critical cooling rate or less. The above process is repeated three or four times. By such a treatment, the pearlite structure is further divided, and further, α is refined.

【0026】これは、次のような組織変化が起きる結果
であると考えることができる。まず急速にAc3 点直下
に加熱することによって、パーライト組織は急速に分解
するが、Ac3 直下で直ちに冷却を開始することで鋼中
にはγに変態しきらなかった初析αが残存することにな
る。
This can be considered to be a result of the following organizational change. First, the pearlite structure is rapidly decomposed by heating immediately below the Ac 3 point, but by immediately starting cooling immediately below Ac 3 , pro-eutectoid α that has not been transformed into γ remains in the steel. Will be.

【0027】一方、パーライト中で板状に析出している
セメンタイト(θ)も分解するが、均一に分解するので
はなく、炭素の拡散の速い粒界付近や格子欠陥付近で優
先的に分解し、球状のセメンタイトが残存する。このθ
の分解過程は従来知られている球状化処理でのθ分解過
程と同じである。しかしながら、通常の球状化処理での
加熱温度はAl 点近傍であるのに対し、この急速加熱処
理はより高温であるところに特徴がある。このため初析
αの微細化が容易に達成できる条件となる。
On the other hand, cementite (θ) precipitated in a plate shape in pearlite is also decomposed, but is not decomposed uniformly, but preferentially decomposed in the vicinity of a grain boundary where carbon is rapidly diffused or in the vicinity of lattice defects. However, spherical cementite remains. This θ
Is the same as the θ decomposition process in the conventionally known spheroidizing process. However, while the heating temperature in the ordinary spheroidizing treatment is near the Al point, this rapid heating treatment is characterized by a higher temperature. For this reason, it is a condition under which the refinement of the primary α can be easily achieved.

【0028】また上記の条件による冷却では、分解しき
らなかったθはそのまま残存し、γ−α界面で新しい初
析αを析出しつつパーライト変態が進行することにな
る。
Further, under cooling under the above conditions, θ which has not been completely decomposed remains as it is, and pearlite transformation proceeds while precipitating new primary α at the γ-α interface.

【0029】従って、1回の急速加熱および冷却によっ
て、微細な初析セメンタイト、分断セメンタイトおよび
パーライトが共存した組織が得られる。
Thus, a structure in which fine pro-eutectoid cementite, fragmented cementite and pearlite coexist is obtained by one rapid heating and cooling.

【0030】上記の様な処理を繰り返すことによって、
ラメラ組織を呈するパーライトの体積率が減少し、分断
θと微細αからなる球状化処理材に近いミクロ組織を有
する鋼材を得ることができる。但し、ここで示した製造
方法は、あくまで本発明の鋼材組織を得る為の一例を示
したものであって、この他の製造方法になんら制限を加
えるものではない。
By repeating the above processing,
The volume ratio of pearlite exhibiting a lamellar structure is reduced, and a steel material having a microstructure close to that of a spheroidized material composed of divided θ and fine α can be obtained. However, the manufacturing method shown here is merely an example for obtaining the steel structure of the present invention, and does not limit the other manufacturing methods at all.

【0031】本発明の鋼線材の特徴は、その組織を規定
した点にあるが、本発明で規定した各要件の限定理由に
ついて説明する。
The feature of the steel wire according to the present invention resides in that its structure is specified. The reason for limiting each requirement specified in the present invention will be described.

【0032】フェライトの平均粒径:2〜5.5μm 本発明の鋼線材においては、表面から線径の10%以上
の領域におけるフェライトの平均粒径が2〜5.5μm
である必要がある。フェライトの平均粒径が2μm未満
となると、クラック発生の抑制には効果があるが、結晶
粒微細化による強度上昇が著しくなり、却って変形抵抗
の増大を引き起こすことになる。また上述のとおり、フ
ェライトの平均粒径が5.5μmを上回ると、従来の球
状化処理材と同等の変形抵抗、変形能にしか到達しない
ため、上限を5.5μm以下とした。尚フェライトの平
均粒径を5.5μm以下とする為の方法としては、上述
のとおり短時間の高周波加熱冷却などが挙げられるが、
その他の手法であっても何ら支障はない。
Average grain size of ferrite: 2 to 5.5 μm In the steel wire rod of the present invention, the average grain size of ferrite in a region of 10% or more of the wire diameter from the surface is 2 to 5.5 μm.
Needs to be When the average grain size of the ferrite is less than 2 μm, it is effective in suppressing the occurrence of cracks, but the increase in strength due to the refinement of the crystal grains becomes remarkable, causing the deformation resistance to increase. Further, as described above, when the average particle size of ferrite exceeds 5.5 μm, only the same deformation resistance and deformability as those of the conventional spheroidizing material are reached, so the upper limit is set to 5.5 μm or less. As a method for reducing the average particle diameter of ferrite to 5.5 μm or less, high-frequency heating and cooling for a short time may be mentioned as described above.
There is no problem with other methods.

【0033】長径が3μm以下で(長径/短径)で示さ
れるアスペクト比が3以下 本発明の線材では、分断セメンタイトの長径が3μm以
下で(長径/短径)で示されるアスペクト比が3以下と
するものである。まず長径が3μmを越えるセメンタイ
トは、フェライトとの界面で早期にクラック、ボイドを
発生する起点となりやすいためである。またアスペクト
比を3以下と規定したのは、これより長いセメンタイト
は、冷間加工時の塑性流動の障害となり、特に鋼材表面
近傍でのボイド発生の起点となりやすいためである。こ
れより小さなセメンタイトからのボイド発生頻度は顕著
に低下する。
When the major axis is 3 μm or less, it is indicated by (major axis / minor axis).
In the wire rod of the present invention, the major axis of the divided cementite is 3 μm or less, and the aspect ratio indicated by (major axis / minor axis) is 3 or less. First, cementite having a major axis exceeding 3 μm is likely to be a starting point for early generation of cracks and voids at the interface with ferrite. The reason why the aspect ratio is specified to be 3 or less is that cementite longer than this will hinder plastic flow during cold working and tends to be a starting point of void generation particularly near the steel material surface. The frequency of void generation from smaller cementite is significantly reduced.

【0034】全セメンタイトに対して70面積%以上 分断セメンタイトの分率は、全セメンタイトに対して7
0面積%以上である必要があるが、70面積%未満の分
率では、本発明の意図する分断セメンタイトならびに微
細フェライトによる冷間加工性の向上効果が明確に現れ
ないためである。尚この分率の上限は特に限定されず、
製造方法にも依存するが、変形抵抗の低減効果から10
0%に近いことが望ましい。
70% by area or more of the total cementite
Although it is necessary to be 0 area% or more, if the fraction is less than 70 area%, the effect of improving the cold workability by the divided cementite and fine ferrite intended by the present invention does not clearly appear. The upper limit of this fraction is not particularly limited.
Although it depends on the manufacturing method, 10
Desirably, it is close to 0%.

【0035】表面から線径の10%以上の領域 本発明の線材においては、上記分率が70面積%以上の
分断セメンタイトは、全領域が上記の組織(フェライト
の平均粒径が2〜5.5μmであり、且つ分断セメンタ
イトの分率が全セメンタイトに対して70面積%以上)
を呈することで、通常の球状化材なみの変形抵抗に加え
て飛躍的に変形能が向上し、複雑な形状への加工を容易
にする。しかしながら、表面から10%程度の領域だけ
が上記の組織となるだけでも、現行の球状化処理の時間
を短縮する効果を有する。10%を下回る領域だけでは
球状化焼鈍短縮効果が小さいので、本発明では表面から
線径の10%以上と規定した。尚表面から線径の10%
の領域とは、線材全体として見たときは、線径に対して
20%の領域が、上記分率が70面積%以上の分断セメ
ンタイトとなっていることを意味し、従ってこの領域が
50%となったときには、線材全体に亘って上記分率が
70面積%以上の分断セメンタイトとなっていることを
意味する。
[0035] In the wire rod 10% or more regions present invention with a wire diameter from the surface, said fraction is 70 area% or more of the split cementite average particle size of the total area above tissues (ferrite 2-5. 5 μm, and the fraction of fragmented cementite is 70% by area or more based on all cementite)
In addition to this, in addition to the deformation resistance of a normal spheroidized material, the deformability is dramatically improved, and processing into a complicated shape is facilitated. However, even if only the region of about 10% from the surface has the above-mentioned structure, it has the effect of shortening the time of the current spheroidizing treatment. Since the effect of shortening the spheroidizing annealing is small only in the region of less than 10%, in the present invention, it is specified as 10% or more of the wire diameter from the surface. 10% of the wire diameter from the surface
Means that when viewed as a whole wire, a region of 20% with respect to the wire diameter is a fragmented cementite having the above fraction of 70% by area or more. When it becomes, it means that the above-mentioned fraction is the cementite of 70 area% or more over the entire wire.

【0036】本発明の鋼線材は、基本的にCを0.03
〜0.8%含むものであるが、また具体的な化学成分組
成としては、Si:0.004〜0.5質量%、Mn:
0.05〜2質量%およびAl:0.01〜0.08質
量%を夫々含むと共に、P:0.03質量%以下(0%
を含む)、S:0.03質量%以下(0%を含む)およ
びN:0.07質量%以下(0%を含む)に夫々抑制し
たものが挙げられるが、これらの元素の範囲限定理由は
下記の通りである。
The steel wire of the present invention basically has a C of 0.03
However, the specific chemical composition is as follows: Si: 0.004 to 0.5% by mass, Mn:
0.05 to 2% by mass and Al: 0.01 to 0.08% by mass, and P: 0.03% by mass or less (0%
), S: 0.03% by mass or less (including 0%) and N: 0.07% by mass or less (including 0%), respectively. Is as follows.

【0037】C:0.03〜0.8質量% Cは線材に所望の強度を与える為に必須の元素であり、
その為には少なくとも0.03質量%以上含有させる必
要がある。しかしながら、C含有量が過剰になると必要
以上の変形抵抗上昇と靭性の低下を招くため、0.8質
量%を上限とする。尚C含有量の好ましい下限は0.2
0質量%であり、好ましい上限は0.60%である。
C: 0.03 to 0.8% by mass C is an essential element for imparting a desired strength to the wire.
For that purpose, it is necessary to contain at least 0.03% by mass or more. However, if the C content is excessive, an excessive increase in deformation resistance and a decrease in toughness are caused, so the upper limit is 0.8% by mass. The preferred lower limit of the C content is 0.2.
0% by mass, and a preferable upper limit is 0.60%.

【0038】Si:0.004〜0.5質量% Siは製鋼過程において脱酸剤として添加されるが、そ
の為には0.004質量%以上含有させる必要がある。
しかしながら、Siの含有量が過剰になると、変形抵抗
を著しく上昇させるために、その上限は0.5質量%を
上限とする。尚Si含有量の好ましい下限は0.01質
量%であり、好ましい上限は0.3質量%である。
Si: 0.004 to 0.5% by Mass Si is added as a deoxidizing agent in the steel making process, but for that purpose, it must be contained in an amount of 0.004% by mass or more.
However, when the Si content is excessive, the deformation resistance is significantly increased, so that the upper limit is 0.5% by mass. The preferred lower limit of the Si content is 0.01% by mass, and the preferred upper limit is 0.3% by mass.

【0039】Mn:0.05〜2質量% Mnは、不純物であるSを固定して無害化するために必
要であり、また調質処理後の鋼の強度を調整するため必
要な元素である。また靭性を向上させるためにも有効で
ある。これらの効果を発揮させる為には、Mnは少なく
とも0.05質量%以上含有させる必要があるが、過剰
に含有させると焼入れ性が向上して熱間圧延ままでベイ
ナイトなどの生成により変形抵抗の上昇を招くので、2
質量%以下とする必要がある。尚Mn含有量の好ましい
下限は0.4質量%であり、好ましい上限は1.2質量
%である。
Mn: 0.05 to 2% by mass Mn is an element necessary for fixing S, which is an impurity, to render it harmless and for adjusting the strength of the steel after the tempering treatment. . It is also effective for improving toughness. In order to exert these effects, Mn needs to be contained at least 0.05% by mass or more. However, if Mn is contained excessively, quenching properties are improved, and deformation resistance is reduced due to formation of bainite or the like as hot rolled. 2
It is necessary to be not more than mass%. The preferred lower limit of the Mn content is 0.4% by mass, and the preferred upper limit is 1.2% by mass.

【0040】Al:0.01〜0.08質量% Alは製鋼工程での脱酸剤として作用し、またAlNと
してNを固定して固溶Nを減少させて変形抵抗を低減さ
せるために必要である。こうした効果を発揮させる為に
は、0.01質量%以上含有させる必要がある。しかし
ながら、Alを過剰に含有させると粗大AlNとして冷
間加工性を悪化させるので、0.08質量%を上限とす
る。
Al: 0.01 to 0.08% by mass Al acts as a deoxidizing agent in the steel making process, and is necessary for fixing N as AlN to reduce solid solution N and reduce deformation resistance. It is. In order to exert such effects, it is necessary to contain 0.01% by mass or more. However, if Al is excessively contained, the cold workability is deteriorated as coarse AlN, so the upper limit is 0.08% by mass.

【0041】P:0.03%質量以下(0%を含む)、
S:0.03質量%以下(0%を含む) これらの元素は粒界に偏析、または化合物介在物として
存在し、冷間加工性を阻害するために、0.03質量%
以下にする必要がある。尚これらの元素は、好ましくは
いずれも0.016質量%以下とするのが良い。
P: not more than 0.03% by mass (including 0%),
S: 0.03% by mass or less (including 0%) These elements segregate at the grain boundaries or exist as compound inclusions, and inhibit the cold workability.
It must be: It is to be noted that each of these elements is preferably set to 0.016% by mass or less.

【0042】N:0.07質量%以下(0%を含む) Nは顕著に変形抵抗を上昇させるので、良好な冷間加工
性を得るためには0.07%以下に抑制する必要があ
る。またこうした観点からして、N含有量は好ましく
は、0.010質量%以下とするのが良い。
N: 0.07% by mass or less (including 0%) Since N significantly increases deformation resistance, it must be suppressed to 0.07% or less in order to obtain good cold workability. . From such a viewpoint, the N content is preferably set to 0.010% by mass or less.

【0043】本発明の鋼線材における基本的な化学成分
組成は上記の通りであり、残部はFeおよび不可避不純
物からなるものであるが、本発明の鋼線材においては必
要によって、(1)Cr:1.5質量%以下(0%を含
まない)、Mo:1.0質量%以下(0%を含まな
い)、Ni:1.0質量%以下(0%を含まない)およ
びB:0.0025質量%以下(0%を含まない)より
なる群から選ばれる1種以上の元素、(2)Ti:0.
5質量%以下(0%を含まない)、V:0.6質量%以
下(0%を含まない)、Nb:0.4質量%以下(0%
を含まない)およびZr:0.3質量%以下(0%を含
まない)よりなる群から選ばれる1種以上の元素、等を
含有させることも有効であり、これによって鋼線材の特
性を更に向上させることができる。これらの元素の範囲
限定理由は下記の通りである。尚本発明の鋼線材には、
これら以外にも線材の特性を阻害しない程度の微量成分
を含み得るものであり、こうした鋼線材も本発明の範囲
に含まれるものである。
The basic chemical composition of the steel wire of the present invention is as described above, and the balance is composed of Fe and unavoidable impurities. In the steel wire of the present invention, if necessary, (1) Cr: 1.5 mass% or less (excluding 0%), Mo: 1.0 mass% or less (excluding 0%), Ni: 1.0 mass% or less (excluding 0%), and B: 0. At least one element selected from the group consisting of 0025% by mass or less (excluding 0%);
5% by mass or less (excluding 0%), V: 0.6% by mass or less (excluding 0%), Nb: 0.4% by mass or less (0%
) And at least one element selected from the group consisting of Zr: 0.3% by mass or less (excluding 0%), etc., is also effective, thereby further improving the properties of the steel wire. Can be improved. The reasons for limiting the range of these elements are as follows. The steel wire of the present invention has
In addition to these, it may contain a trace component that does not impair the properties of the wire, and such a steel wire is also included in the scope of the present invention.

【0044】Cr:1.5質量%以下(0%を含まな
い)、Mo:1.0質量%以下(0%を含まない)、N
i:1.0質量%以下(0%を含まない)およびB:
0.0025質量%以下(0%を含まない)よりなる群
から選ばれる1種以上の元素 Cr、Mo、NiおよびBは焼入れ調整元素であり、焼
入れ焼戻しによって強度と靭性を調整するために添加さ
れる。しかしながら、過剰に含有させると変形抵抗の上
昇を招くので好ましくない。こうした観点から、Crは
その上限を1.5質量%とし、MoおよびNiはその上
限を1.0質量%とし、Bはその上限を0.0025質
量%とした。尚これらの元素添加による上記効果は、上
記範囲内で含有量を増加させるにつれて大きくなるが、
上記効果を発揮させる為には、Crで0.03質量%以
上、MoおよびNiで0.01質量%以上、Bで0.0
003質量%以上含有させることが好ましい。
Cr: 1.5% by mass or less (excluding 0%)
Mo): 1.0% by mass or less (excluding 0%), N
i: 1.0% by mass or less (excluding 0%) and B:
Group consisting of 0.0025% by mass or less (excluding 0%)
At least one element selected from the group consisting of Cr, Mo, Ni and B is a quenching adjusting element, and is added to adjust strength and toughness by quenching and tempering. However, an excessive content is not preferable because deformation resistance is increased. From such a viewpoint, Cr has an upper limit of 1.5% by mass, Mo and Ni have an upper limit of 1.0% by mass, and B has an upper limit of 0.0025% by mass. The effect of the addition of these elements increases as the content increases within the above range,
In order to exert the above-mentioned effects, Cr is 0.03% by mass or more, Mo and Ni are 0.01% by mass or more, and B is 0.03% by mass or more.
It is preferable to contain 003% by mass or more.

【0045】Ti:0.5質量%以下(0%を含まな
い)、V:0.6質量%以下(0%を含まない)、N
b:0.4質量%以下(0%を含まない)およびZr:
0.3質量%以下(0%を含まない)よりなる群から選
ばれる1種以上の元素 Ti、V、NbおよびZrはいずれも微細な炭窒化物を
形成し、析出硬化による調質材の強度延性バランスを調
整する目的で添加される。しかしながら、過剰に含有さ
せると変形抵抗の上昇を招くので好ましくない。こうし
た観点から、いずれもその上限を0.2質量%とした。
尚これらの元素添加による上記効果は、上記範囲内で含
有量を増加させるにつれて大きくなるが、上記効果を発
揮させる為には、Tiで0.015質量%以上、V,N
bおよびZrで0.010質量%以上含有させることが
好ましい。
Ti: 0.5% by mass or less (excluding 0%)
V): 0.6% by mass or less (excluding 0%), N
b: 0.4% by mass or less (excluding 0%) and Zr:
Selected from the group consisting of 0.3% by mass or less (excluding 0%)
At least one of the elements Ti, V, Nb and Zr to be formed forms fine carbonitrides and is added for the purpose of adjusting the balance between the strength and ductility of the heat-treated material by precipitation hardening. However, an excessive content is not preferable because deformation resistance is increased. From these viewpoints, the upper limit is set to 0.2% by mass.
Note that the above effects due to the addition of these elements increase as the content increases within the above range. However, in order to exhibit the above effects, Ti is used in an amount of 0.015% by mass or more, V, N
It is preferable to contain b and Zr in an amount of 0.010% by mass or more.

【0046】以下,本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に徴して設計変更することは
いずれも本発明の技術的範囲に含まれるものである。尚
以下の実施例では、ミクロ組織の判定は次の手順に従っ
た。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention. It is included in the technical range of. In the following examples, the microstructure was determined according to the following procedure.

【0047】[フェライト粒径調査]線材断面を研磨・
エッチングして光学顕微鏡またはSEMによって観察さ
れる組織において、フェライトの平均粒切片を測定し
た。測定は100μm×250μmの領域を、5視野以
上観察して測定して平均を求めた。
[Survey of Ferrite Particle Size]
The average grain section of ferrite was measured in the structures etched and observed with an optical microscope or SEM. The measurement was performed by observing an area of 100 μm × 250 μm in five or more visual fields and measuring the average.

【0048】[分断セメンタイト相調査]線材横断面の
観察視野で、倍率1000倍のSEMで撮影される組織
写真を、画像解析にかけ、SEM写真上で白く見えるセ
メンタイト中の長径3μm以下、アスペクト比3以下の
部分の分断セメンタイト面積率を測定した。測定は、フ
ェライト粒径調査と同様、5視野以上を観察して平均を
求めた。
[Investigation of the Cementite Cementite Phase] A photograph of the structure taken with a SEM at a magnification of 1000 times in the observation visual field of the cross section of the wire rod was subjected to image analysis. The area ratio of the divided cementite in the following portions was measured. The measurement was performed by observing five visual fields or more as in the ferrite particle size survey, and the average was obtained.

【0049】[長径、短径の決め方]セメンタイトの最
長切片を長径とし、この長径に垂直な方向での最長切片
を短径とした。
[How to determine the major axis and minor axis] The longest section of cementite was defined as the major axis, and the longest section in the direction perpendicular to the major axis was defined as the minor axis.

【0050】[組織深さの決め方]任意の半径におい
て、表面から5%きざみに中心に向かって観察し、上記
の[フェライト粒径調査]および[分断セメンタイト相
調査]を実施し、5視野における平均値を求めた。そし
てフェライト粒径および分断セメンタイトのいずれの条
件をも満足する表面からの深さを組織深さとした。この
とき観察暗視野の中間に組織深さがある場合には、いず
れも傾斜平均によって中間値を求めて、組織深さ(本発
明で規定する組織を満足する領域)とした。
[Method of Determining Depth of Structure] At an arbitrary radius, observation is made from the surface toward the center in 5% increments, and the above-mentioned [Investigation of ferrite particle size] and [Investigation of fragmented cementite phase] are carried out. The average was determined. The depth from the surface satisfying any of the conditions of the ferrite grain size and the fragmented cementite was defined as the structure depth. At this time, when there was a tissue depth in the middle of the observed dark field, the median value was obtained by tilt average in each case, and the result was defined as the tissue depth (a region satisfying the tissue defined in the present invention).

【0051】[0051]

【実施例】[実施例1]JIS S30C相当組成鋼を
使って、高周波による急速加熱試験を実施し、冷間加工
性への影響を検討した。即ち、下記表1に示す化学成分
組成の線径:16mmの鋼線材を、伸線−高周波加熱試
験にかけ、微細フェライト+分断セメンタイト組織の試
作を実施した。
EXAMPLES [Example 1] Using a steel composition equivalent to JIS S30C, a rapid heating test with high frequency was performed to examine the effect on cold workability. That is, a steel wire rod having a chemical composition shown in Table 1 below and having a wire diameter of 16 mm was subjected to a drawing-high-frequency heating test, and a trial production of a fine ferrite + fractionated cementite structure was performed.

【0052】[0052]

【表1】 [Table 1]

【0053】下記表2に、試作条件と得られた組織を示
す。尚表2中の「繰り返し回数」とは、(高周波加熱→
冷却)のプロセスを繰り返した回数を示す。また「組織
深さ」とは、前記分断セメンタイト組織が得られている
領域の表面からの深さ(線径に対する%)を示してお
り、0%は全くなし、50%は線材断面全体で得られて
いる状態を意味する。試験No.1のものは従来例であ
り、通常の球状化処理を施したものであり、このときの
球状化処理条件は加熱温度:740℃、全体の球状化処
理時間は20時間である。
Table 2 below shows the trial production conditions and the obtained structures. The “repetition count” in Table 2 means (high-frequency heating →
(Cooling) is shown. The “texture depth” indicates the depth (% of the wire diameter) from the surface of the region where the divided cementite structure is obtained. 0% is not used at all, and 50% is obtained over the entire wire section. Means the state that is being done. Test No. No. 1 is a conventional example, in which ordinary spheroidizing treatment was performed. The conditions of the spheroidizing treatment were heating temperature: 740 ° C., and the entire spheroidizing time was 20 hours.

【0054】[0054]

【表2】 [Table 2]

【0055】図1に、試験No.1〜6のもの(従来
例、および組織深さが50%のもの)について冷間加工
性(割れ発生限界据込率、引張り強さTS)の評価結果
を示す。この結果から明らかなように、本発明で規定す
る要件を満足するものでは(試験No.2〜4)、球状
化処理を施していないが、通常の球状化処理材なみのT
Sを有し、しかも5%以上もの限界据込率の上昇があ
り、著しく冷間加工性が改善されていることが分かる。
FIG. The evaluation results of cold workability (crack occurrence limit upsetting rate, tensile strength TS) are shown for samples 1 to 6 (conventional example and those having a structure depth of 50%). As is clear from the results, those satisfying the requirements specified in the present invention (Test Nos. 2 to 4) have not been subjected to the spheroidizing treatment, but have a T like that of the ordinary spheroidized material.
It has S, and there is an increase in the critical upsetting rate of 5% or more, and it can be seen that the cold workability is remarkably improved.

【0056】また組織深さが50%に満たなかった試験
No.7〜9のものについては、2時間の球状化処理を
実施した。これらの冷間加工性の評価結果を、試験N
o.1の従来例と共に図2に示すが、この図2から明ら
かなように、本発明で規定する要件を満足するものでは
(試験No.7、8)、通常の球状化処理の1/10の
時間でも従来例同等の冷間加工性を有しており、処理時
間短縮が可能であることが分かる。
In Test No. where the tissue depth was less than 50%. For those of Nos. 7 to 9, spheroidizing treatment was performed for 2 hours. The evaluation results of the cold workability are shown in Test N
o. FIG. 2 shows the conventional spheroidizing process along with the conventional example 1 as shown in FIG. 2. As is clear from FIG. It can be seen that the cold workability is equivalent to that of the conventional example even in time, and that the processing time can be reduced.

【0057】[実施例2]次に、化学成分組成の影響を
検討するため、表3に示す各種鋼材を準備し、実施例1
と同様に伸線−高周波加熱によって組織を調整した。こ
のとき伸線率は一様に5%、繰り返し回数は全て4回と
し、最高加熱温度を夫々の試料におけるAc3 点の直下
とした。化学成分組成が好ましい範囲内にある試料(N
o.1〜15)については、組織深さが50%となった
ものはそのまま、50%に満たなかったものは2時間の
簡略球状化処理を実施してから冷間加工性を調査した。
また、化学成分組成が好ましい範囲を外れる試料(N
o.16〜29)については、全ての試料について簡略
球状化処理を施してその効果を確認した。
Example 2 Next, in order to examine the influence of the chemical composition, various steel materials shown in Table 3 were prepared.
The tissue was adjusted by wire drawing and high frequency heating in the same manner as described above. At this time, the wire drawing rate was uniformly 5%, the number of repetitions was all four, and the maximum heating temperature was just below the Ac 3 point in each sample. Sample (N
o. Regarding 1 to 15), those having a structure depth of 50% were subjected to the simple spheroidizing treatment for 2 hours, and those having a structure depth of less than 50% were examined for cold workability.
In addition, samples (N
o. Regarding the samples 16 to 29), the effect was confirmed by performing a simple spheroidizing treatment on all the samples.

【0058】[0058]

【表3】 [Table 3]

【0059】下記表4に、得られた組織と冷間加工性の
結果を示す。この表から明らかなように、本発明の好ま
しい化学成分組成に該当する組成鋼(試料No.1〜1
5)では、組織深さが50%になるものはそのままで、
また50%に満たないものは2時間の簡略球状化処理を
施すことで、いずれも従来例として示しているS30C
球状化処理材と同等もしくはそれを上回る冷間加工性を
有していることが分かる。
Table 4 below shows the obtained structure and the results of the cold workability. As is clear from this table, the composition steel (sample Nos. 1 to 1) corresponding to the preferred chemical composition of the present invention.
In 5), the one where the organization depth becomes 50% remains as it is,
Those less than 50% are subjected to a simple spheroidizing treatment for 2 hours, so that any of the S30Cs shown as conventional examples is used.
It can be seen that the material has a cold workability equal to or higher than that of the spheroidized material.

【0060】これに対して、本発明の好ましい化学成分
組成を外れる組成鋼(試料No.16〜29)では、簡
略球状化処理を実施してもなお割れ発生限界が低かった
り、変形抵抗が高くなっていることが分かる。
On the other hand, in the steel composition (sample Nos. 16 to 29) which deviates from the preferred chemical composition of the present invention, the crack generation limit is still low and the deformation resistance is high even after the simple spheroidizing treatment is performed. You can see that it has become.

【0061】[0061]

【表4】 [Table 4]

【0062】[0062]

【発明の効果】本発明は以上の様に構成されており、本
発明に係る鋼線材は、球状化焼鈍処理を大幅に短縮でき
るとともに、必要によって球状化焼鈍を完全に省略する
ことも可能となる。
The present invention is configured as described above, and the steel wire according to the present invention can greatly reduce the spheroidizing annealing treatment, and can completely omit the spheroidizing annealing if necessary. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】表2の試験No.1〜6のものについて冷間加
工性の評価結果を示すグラフである。
FIG. 1 is a table showing test Nos. It is a graph which shows the evaluation result of cold workability about 1-6.

【図2】表2の試験No.7〜9のものについての冷間
加工性の評価結果を示すグラフである。
FIG. 2 shows test Nos. It is a graph which shows the evaluation result of cold workability about 7-9.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.03〜0.8質量%を含む鋼線
材であって、フェライトの平均粒径が2〜5.5μmで
あり、且つ長径が3μm以下で(長径/短径)で示され
るアスペクト比が3以下のセメンタイトが全セメンタイ
トに対して70面積%以上となる領域が、表面から線径
の10%以上の領域であることを特徴とする冷間加工性
に優れた鋼線材。
1. A steel wire rod containing C: 0.03 to 0.8% by mass, wherein the average particle diameter of ferrite is 2 to 5.5 μm and the major axis is 3 μm or less (major axis / minor axis). Characterized by the fact that the area in which the cementite having an aspect ratio of not more than 3 is 70% or more of the total cementite is 10% or more of the wire diameter from the surface, the steel having excellent cold workability. wire.
【請求項2】 Si:0.004〜0.5質量%、M
n:0.05〜2質量%およびAl:0.01〜0.0
8質量%を夫々含むと共に、P:0.03質量%以下
(0%を含む)、S:0.03質量%以下(0%を含
む)およびN:0.07質量%以下(0%を含む)に夫
々抑制したものである請求項1に記載の鋼線材。
2. Si: 0.004 to 0.5% by mass, M
n: 0.05 to 2% by mass and Al: 0.01 to 0.0
8% by mass, P: 0.03% by mass or less (including 0%), S: 0.03% by mass or less (including 0%), and N: 0.07% by mass or less (0% The steel wire according to claim 1, wherein
【請求項3】 Cr:1.5質量%以下(0%を含まな
い)、Mo:1.0質量%以下(0%を含まない)、N
i:1.0質量%以下(0%を含まない)およびB:
0.0025質量%以下(0%を含まない)よりなる群
から選ばれる1種以上を含むものである請求項1または
2に記載の鋼線材。
3. Cr: 1.5% by mass or less (excluding 0%), Mo: 1.0% by mass or less (excluding 0%), N:
i: 1.0% by mass or less (excluding 0%) and B:
The steel wire according to claim 1, comprising at least one selected from the group consisting of 0.0025% by mass or less (not including 0%).
【請求項4】 Ti:0.5%質量以下(0%を含まな
い)、V:0.6質量%以下(0%を含まない)、N
b:0.4質量%以下(0%を含まない)およびZr:
0.3質量%以下(0%を含まない)よりなる群から選
ばれる1種以上を含むものである請求項1〜3のいずれ
かに記載の鋼線材。
4. Ti: 0.5% by mass or less (excluding 0%), V: 0.6% by mass or less (excluding 0%), N
b: 0.4% by mass or less (excluding 0%) and Zr:
The steel wire according to any one of claims 1 to 3, wherein the steel wire comprises at least one selected from the group consisting of 0.3% by mass or less (not including 0%).
JP24079498A 1998-08-26 1998-08-26 Steel wire with excellent cold workability Expired - Fee Related JP3527641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24079498A JP3527641B2 (en) 1998-08-26 1998-08-26 Steel wire with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24079498A JP3527641B2 (en) 1998-08-26 1998-08-26 Steel wire with excellent cold workability

Publications (2)

Publication Number Publication Date
JP2000073137A true JP2000073137A (en) 2000-03-07
JP3527641B2 JP3527641B2 (en) 2004-05-17

Family

ID=17064797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24079498A Expired - Fee Related JP3527641B2 (en) 1998-08-26 1998-08-26 Steel wire with excellent cold workability

Country Status (1)

Country Link
JP (1) JP3527641B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527638A (en) * 2005-12-27 2009-07-30 ポスコ Steel wire rod excellent in cold workability and hardenability, and manufacturing method thereof
KR101053409B1 (en) 2008-10-30 2011-08-01 주식회사 포스코 In-line spheroidized steel wire, and a manufacturing method thereof
JP2011241468A (en) * 2010-05-21 2011-12-01 Sumitomo Metal Ind Ltd Rolled steel material for induction hardening and method for manufacturing the same
JP2011241465A (en) * 2010-05-21 2011-12-01 Sumitomo Metal Ind Ltd Rolled steel material for induction hardening and method for manufacturing the same
US20120037283A1 (en) * 2009-04-23 2012-02-16 Posco High-Strength, High-Toughness Steel Wire Rod, and Method for Manufacturing Same
WO2013094475A1 (en) 2011-12-19 2013-06-27 株式会社神戸製鋼所 Steel for mechanical structure for cold working, and method for manufacturing same
JP2013234349A (en) * 2012-05-08 2013-11-21 Nippon Steel & Sumitomo Metal Corp Steel wire rod/steel bar having excellent cold-workability, and method for producing the same
WO2013183648A1 (en) * 2012-06-08 2013-12-12 新日鐵住金株式会社 Steel wire rod or bar steel
JP2016172888A (en) * 2015-03-16 2016-09-29 新日鐵住金株式会社 Steel wire excellent in cold working and manufacturing method therefor
KR101797349B1 (en) * 2016-03-23 2017-11-14 주식회사 포스코 High-carbon steel wire rod for cold forging without spheroidizing heat treatment, processed good using the same, and methods for manufacturing thereof
CN111154956A (en) * 2019-12-27 2020-05-15 安徽应流集团霍山铸造有限公司 Heat treatment method of medium-carbon low-alloy steel
KR20200053972A (en) * 2018-11-09 2020-05-19 주식회사 포스코 Steel wire rod for cold forging and method for manufacturing the same
CN112981228A (en) * 2021-01-20 2021-06-18 江阴兴澄特种钢铁有限公司 Steel bar with good cold forging performance for transmission gear shaft and manufacturing method
KR20210130212A (en) 2019-05-16 2021-10-29 닛폰세이테츠 가부시키가이샤 Steel Wire and Hot Rolled Wire Rod
WO2022210126A1 (en) * 2021-03-31 2022-10-06 株式会社神戸製鋼所 Steel wire for machine structural component and manufacturing method thereof
WO2022210124A1 (en) * 2021-03-31 2022-10-06 株式会社神戸製鋼所 Steel wire for machine structural component and manufacturing method therefor
WO2022210125A1 (en) * 2021-03-31 2022-10-06 株式会社神戸製鋼所 Steel wire for mechanical structural component and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109321840A (en) * 2018-10-24 2019-02-12 首钢京唐钢铁联合有限责任公司 280 MPa-level low-alloy high-strength steel and manufacturing method thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527638A (en) * 2005-12-27 2009-07-30 ポスコ Steel wire rod excellent in cold workability and hardenability, and manufacturing method thereof
KR101053409B1 (en) 2008-10-30 2011-08-01 주식회사 포스코 In-line spheroidized steel wire, and a manufacturing method thereof
US20120037283A1 (en) * 2009-04-23 2012-02-16 Posco High-Strength, High-Toughness Steel Wire Rod, and Method for Manufacturing Same
JP2011241468A (en) * 2010-05-21 2011-12-01 Sumitomo Metal Ind Ltd Rolled steel material for induction hardening and method for manufacturing the same
JP2011241465A (en) * 2010-05-21 2011-12-01 Sumitomo Metal Ind Ltd Rolled steel material for induction hardening and method for manufacturing the same
WO2013094475A1 (en) 2011-12-19 2013-06-27 株式会社神戸製鋼所 Steel for mechanical structure for cold working, and method for manufacturing same
JP2013234349A (en) * 2012-05-08 2013-11-21 Nippon Steel & Sumitomo Metal Corp Steel wire rod/steel bar having excellent cold-workability, and method for producing the same
CN104350167B (en) * 2012-06-08 2016-08-31 新日铁住金株式会社 Steel wire rod or bar steel
KR20150013246A (en) * 2012-06-08 2015-02-04 신닛테츠스미킨 카부시키카이샤 Steel wire rod or bar steel
CN104350167A (en) * 2012-06-08 2015-02-11 新日铁住金株式会社 Steel wire rod or bar steel
JPWO2013183648A1 (en) * 2012-06-08 2016-02-01 新日鐵住金株式会社 Steel wire rod or bar
WO2013183648A1 (en) * 2012-06-08 2013-12-12 新日鐵住金株式会社 Steel wire rod or bar steel
KR101655006B1 (en) 2012-06-08 2016-09-06 신닛테츠스미킨 카부시키카이샤 Steel wire rod or bar steel
JP5655986B2 (en) * 2012-06-08 2015-01-21 新日鐵住金株式会社 Steel wire rod or bar
JP2016172888A (en) * 2015-03-16 2016-09-29 新日鐵住金株式会社 Steel wire excellent in cold working and manufacturing method therefor
KR101797349B1 (en) * 2016-03-23 2017-11-14 주식회사 포스코 High-carbon steel wire rod for cold forging without spheroidizing heat treatment, processed good using the same, and methods for manufacturing thereof
KR102170944B1 (en) 2018-11-09 2020-10-29 주식회사 포스코 Steel wire rod for cold forging and method for manufacturing the same
KR20200053972A (en) * 2018-11-09 2020-05-19 주식회사 포스코 Steel wire rod for cold forging and method for manufacturing the same
KR20210130212A (en) 2019-05-16 2021-10-29 닛폰세이테츠 가부시키가이샤 Steel Wire and Hot Rolled Wire Rod
CN111154956A (en) * 2019-12-27 2020-05-15 安徽应流集团霍山铸造有限公司 Heat treatment method of medium-carbon low-alloy steel
CN112981228A (en) * 2021-01-20 2021-06-18 江阴兴澄特种钢铁有限公司 Steel bar with good cold forging performance for transmission gear shaft and manufacturing method
WO2022210126A1 (en) * 2021-03-31 2022-10-06 株式会社神戸製鋼所 Steel wire for machine structural component and manufacturing method thereof
WO2022210124A1 (en) * 2021-03-31 2022-10-06 株式会社神戸製鋼所 Steel wire for machine structural component and manufacturing method therefor
WO2022210125A1 (en) * 2021-03-31 2022-10-06 株式会社神戸製鋼所 Steel wire for mechanical structural component and manufacturing method therefor

Also Published As

Publication number Publication date
JP3527641B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
US8142577B2 (en) High strength wire rod excellent in drawability and method of producing same
US8864920B2 (en) High strength wire rod excellent in drawability and method of producing same
JP3527641B2 (en) Steel wire with excellent cold workability
JP3954338B2 (en) High-strength steel wire excellent in strain aging embrittlement resistance and longitudinal crack resistance and method for producing the same
JP4435953B2 (en) Bar wire for cold forging and its manufacturing method
EP1559805A1 (en) High carbon steel wire rod superior in wire-drawability and method for producing the same
JP3997867B2 (en) Steel wire, method for producing the same, and method for producing steel wire using the steel wire
MX2013001724A (en) Special steel steel-wire and special steel wire material.
JP3742232B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
JPH0971843A (en) High toughness oil tempered wire for spring and its production
EP0637636B1 (en) Graphite structural steel having good free-cutting and good cold-forging properties and process of making this steel
EP1203829A2 (en) Wire rod for drawing superior in twisting characteristics and method for production thereof
JP2002235151A (en) High strength heat treated stel wire for spring
JP3909949B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JP4425368B2 (en) Manufacturing method of high carbon steel sheet with excellent local ductility
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3536684B2 (en) Steel wire with excellent wire drawing workability
JP2001294981A (en) High strength wire rod excellent in delayed fracture resistance and forgeability and/or under head toughness and its producing method
WO2016063867A1 (en) Steel wire for bearing with excellent wire drawability and coil formability after wiredrawing
JP3737323B2 (en) Steel wire rod and bar steel excellent in cold forgeability after spheronization and manufacturing method thereof
JPH08283867A (en) Production of hyper-eutectoid steel wire rod for wiredrawing
JP3909939B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JP2000178685A (en) Steel wire rod excellent in fatigue characteristic and wire drawability and its production
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees