JPH08283867A - Production of hyper-eutectoid steel wire rod for wiredrawing - Google Patents

Production of hyper-eutectoid steel wire rod for wiredrawing

Info

Publication number
JPH08283867A
JPH08283867A JP11382195A JP11382195A JPH08283867A JP H08283867 A JPH08283867 A JP H08283867A JP 11382195 A JP11382195 A JP 11382195A JP 11382195 A JP11382195 A JP 11382195A JP H08283867 A JPH08283867 A JP H08283867A
Authority
JP
Japan
Prior art keywords
wire
temp
wire rod
transformation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11382195A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ofuji
善弘 大藤
Kenji Aihara
賢治 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11382195A priority Critical patent/JPH08283867A/en
Publication of JPH08283867A publication Critical patent/JPH08283867A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To stably produce a hyper-eutectoid steel wire rod for wiredrawing, having high wiredrawability and ductility, on an industrial scale. CONSTITUTION: At the time of producing a wire rod for wiredrawing a small- diameter high strength steel wire, a hyper-eutectoid steel wire rod, having a composition containing, by weight, >0.9-1.2% C, 0.1-1.5% Si, 0.1-1.5% Mn, and 0-1.0% Cr, is used as a wire rod. In a patenting treatment stage before the final wiredrawing, the wire rod is first heated to 1123-1373K in the austenitic temp. region and then cooled down to a temp. in the region of 1023 to 823K at 'a cooling rate in the range causing not temp. fall down to a temp. below the pearlitic transformation temp. in the isothermal transformation diagram' and subjected to plastic working in this temp. region at 15-80% draft. Then, transformation is allowed to occur at a temp. between 823 and 923K and, in the temp. region satisfying inequality 1233-380X<=T<=1293-380X [where T is transformation temp. (K) and X is C content (%) in the steel], by which the structure of the wire rod is formed into a pearlitic structure free from both pro-eutectoid ferrite and pro-eutectoid cementite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、伸線加工性及び延性
に優れた“細径高強度鋼線伸線用の過共析鋼線材”を製
造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a "hypereutectoid steel wire rod for wire drawing of small diameter high strength steel wire" which is excellent in wire drawing workability and ductility.

【0002】[0002]

【従来技術とその課題】高強度を必要とするタイヤ用の
コ−ドワイヤ−等には、一般に直径が0.2mm 前後の細径
高炭素鋼フィラメントをストランドに撚ったものが使用
されてきたが、近年の高性能化要求に応えるべく最近は
フィラメント強度:3.14GPa(320kgf/mm2)前後の細径高強
度鋼線が多用されるようになっている。
2. Description of the Related Art Cord wires for tires requiring high strength have generally been formed by twisting a thin high carbon steel filament with a diameter of about 0.2 mm into a strand. In order to meet the recent demand for higher performance, thin-diameter high-strength steel wire with a filament strength of about 3.14 GPa (320 kgf / mm 2 ) has been widely used.

【0003】このコ−ドワイヤ−は、一般に次の工程で
製造されている。即ち、まず、直径が 5.5mmφ程度の高
炭素鋼線材を素材とし、これにパテンティング(LP)
と伸線の処理を繰り返し施して 1.2mmφ前後の線材とし
た後、約1173Kの温度に加熱してから873K前後
の鉛浴に浸漬するという条件の最終パテンティング工程
にて引張強さが1.23GPa(125kgf/mm2)前後の伸線用鋼線
材とする。次いで、この伸線用鋼線材に酸洗とメッキの
処理を施してから 0.2mmφ前後まで伸線し、引張強さ:
3.14GPa(320kgf/mm2)前後の強度を持つ最終製品ワイヤ
−とする。
This cord wire is generally manufactured in the following steps. That is, first of all, a high carbon steel wire rod with a diameter of about 5.5 mmφ is used as a material, and patenting (LP)
And the wire drawing process are repeated to make a wire with a diameter of about 1.2 mmφ, and the tensile strength is 1.23 GPa in the final patenting process under the conditions of heating to a temperature of about 1173K and immersing in a lead bath at about 873K. (125kgf / mm 2 ) Steel wire for wire drawing before and after. Then, this steel wire rod for wire drawing is subjected to pickling and plating, and then drawn up to around 0.2 mmφ, and the tensile strength is:
The final product wire has a strength of around 3.14 GPa (320 kgf / mm 2 ).

【0004】しかしながら、従来採用されていた上記工
程・条件では、加えられる伸線加工度εは 3.2{但しε
= Ln(母材の面積/伸線材の断面積)}程度が限度であ
り、製品強度向上のために伸線加工度εを更に上げるこ
とは延性不足のため不可能であった。
However, under the above-mentioned processes and conditions that have been conventionally adopted, the wire drawing workability ε to be added is 3.2 {however, ε
= Ln (area of base material / cross-sectional area of wire drawing material)} is the limit, and it was impossible to further increase the wire drawing workability ε to improve product strength due to insufficient ductility.

【0005】そこで、特開平3−240919号公報に
は、高炭素鋼線材の伸線加工性を向上させる熱処理方法
が提案されている。この方法は、 0.7〜 0.9%(以降、
成分割合を表す%は重量%とする)のCを含有する鋼線
材をAc3点以上のオ−ステナイト域に加熱し、恒温変態
曲線のパ−ライト変態開始温度を切らない冷却速度でA
e1点以下773K以上の温度域に冷却した“過冷オ−ス
テナイト状態の線材”を、加工度20%以上で加工した
後に変態させて伸線用の鋼線材とする技術手法にて成る
ものであるが、この場合には過冷オ−ステナイトの加工
がなされるのでパ−ライトコロニ−が5μm前後まで微
細化され、そのため引張強さ:1.13GPa(115kgf/mm2)ク
ラスの伸線用素材が得られる。そして、この伸線用素材
は、最終的には伸線加工度ε:4.9近くまで伸線すること
ができ、それ故 4.02GPa(410kgf/mm2)程度の引張強さを
持つ最終製品ワイヤ−を得ることができる。但し、パ−
ライトコロニ−とはパ−ライト中のセメンタイト板が一
定方向にそろっている範囲を言う。
Therefore, Japanese Patent Application Laid-Open No. 3-240919 proposes a heat treatment method for improving the wire drawing workability of a high carbon steel wire. This method uses 0.7-0.9% (
A steel wire rod containing C (% representing the composition ratio is% by weight) is heated to an austenite region of three or more points of Ac, and A is cooled at a cooling rate that does not cut the pearlite transformation start temperature of the isothermal transformation curve.
e A technical method of converting a "supercooled austenite state wire" cooled to a temperature of 773K or more below one point into a steel wire for wire drawing after processing at a workability of 20% or more However, in this case, supercooled austenite is processed, so the pearlite colony is miniaturized to around 5 μm, and therefore tensile strength: 1.13 GPa (115 kgf / mm 2 ) class for wire drawing Material is obtained. Finally, this wire drawing material can be drawn up to a wire drawing degree ε: close to 4.9, and therefore the final product wire with a tensile strength of about 4.02 GPa (410 kgf / mm 2 ). Can be obtained. However,
The light colony is a range where the cementite plates in pearlite are aligned in a certain direction.

【0006】しかし、一方で、上記方法によった場合に
は変態時に初析フェライトが生成することとなり、これ
が最終伸線過程での延性低下や加工硬化不足の原因とな
るため、その後の最終製品ワイヤ−への伸線工程で更な
る高強度化を達成する上での阻害要因となった。従っ
て、前記方法にて得られる“引張強さが1.13GPa(115kgf
/mm2)クラスの伸線加工性が良好な伸線用素材”でも付
加可能な伸線加工度の限度は前述したε=4.9 を超える
ものではなく、この伸線用素材を限度一杯の伸線加工度
ε:4.9近くまで伸線したとしても引張強さが最高で4.02
GPa(410kgf/mm2)程度の最終製品ワイヤ−しか得ること
ができなかった。その上、高い加工度で伸線を行うこと
が内部欠陥を誘発する原因となって最終製品ワイヤ−の
延性が低くなると共に、疲労強度も劣化するという問題
も指摘された。
On the other hand, on the other hand, in the case of the above method, proeutectoid ferrite is generated during transformation, which causes decrease in ductility in the final drawing process and insufficient work hardening. It became an impediment factor in achieving higher strength in the wire drawing process to the wire. Therefore, the “tensile strength obtained by the above method is 1.13 GPa (115 kgf
/ mm 2 ) class of wire drawing material with good wire drawing workability does not exceed the above-mentioned ε = 4.9, and the wire drawing material can be drawn to the maximum extent. The maximum tensile strength is 4.02 even if the wire drawing degree is close to 4.9.
Only the final product wire with GPa (410 kgf / mm 2 ) was obtained. In addition, it has been pointed out that drawing a wire with a high workability causes internal defects, which reduces the ductility of the final product wire and also deteriorates the fatigue strength.

【0007】ところで、従前から、高炭素鋼線の強度向
上にC含有量を更に高めるのが効果的であることが知ら
れており、この方法によると安価にして高い効果が得ら
れることから工業的にも望ましい強度向上策と考えられ
た。しかしながら、C含有量が 0.9%を超えるような過
共析鋼では、伸線素材を得るためのパテンティング処理
を行う際、オ−ステナイト域からの冷却過程でパ−ライ
ト変態に先立ってオ−ステナイト粒界に沿って脆い初析
セメンタイトが生成するという問題があった。そのた
め、この素材をそのまま伸線加工すると前記初析セメン
タイトに沿って粒界割れが発生し、断線が頻発した。こ
のように、過共析鋼において生成する初析セメンタイト
は伸線加工性劣化の大きな原因となるため、コ−ドワイ
ヤ−等の素材に過共析鋼を使用することは実際上敬遠さ
れる傾向にあった。
By the way, it has been known for some time that it is effective to further increase the C content in order to improve the strength of a high carbon steel wire. According to this method, the cost can be reduced and a high effect can be obtained. It was considered to be a desirable strength improvement measure. However, in the case of hyper-eutectoid steel having a C content of more than 0.9%, during the patenting treatment for obtaining a wire drawing material, in the cooling process from the austenite region, prior to the pearlite transformation, the austenite transformation occurs. There was a problem that brittle pro-eutectoid cementite was formed along the grain boundaries of stenite. Therefore, when this material was drawn as it was, intergranular cracks occurred along the pro-eutectoid cementite and frequent wire breakage occurred. As described above, since pro-eutectoid cementite generated in hyper-eutectoid steel is a major cause of deterioration of wire drawing workability, it is practically avoided to use hyper-eutectoid steel for materials such as cord wire. There was

【0008】もっとも、近年、過共析鋼の伸線加工性を
向上させようとの提案も幾つかなされている。例えば、
特開平5−295448号公報には、1.1 〜1.3 %のC
を含有する過共析鋼を線材圧延した後、1223〜10
23Kで巻取り、その後直ちに773〜923Kに保持
された溶融塩浴中に浸漬して該溶融塩浴中で変態を完了
させ、これにより初析セメンタイトを含まないパ−ライ
ト組織を得る方法が開示されている。しかし、この方法
では初析セメンタイトを含まない過共析鋼線材を得るこ
とができるので大いなる伸線加工性の向上が期待された
が、実際にはそれほど十分な伸線加工性,延性は達成さ
れず、細径高強度鋼線伸線用の線材として満足できるも
のは得られなかった。
In recent years, however, some proposals have been made to improve the wire drawability of hyper-eutectoid steel. For example,
Japanese Patent Laid-Open No. 5-295448 discloses a C content of 1.1 to 1.3%.
After wire-rolling the hypereutectoid steel containing
Disclosed is a method of obtaining a pearlite structure containing no proeutectoid cementite by winding the film at 23 K and immediately thereafter immersing it in a molten salt bath held at 773 to 923 K to complete the transformation in the molten salt bath. Has been done. However, with this method, a hypereutectoid steel wire that does not contain pro-eutectoid cementite can be obtained, so a great improvement in wire drawability was expected, but in actuality, such sufficient wire drawability and ductility were achieved. As a result, a satisfactory wire rod for drawing small diameter high strength steel wire could not be obtained.

【0009】このように、従来の技術では、十分に高い
伸線加工性,延性を持つ伸線用過共析鋼線材を工業的に
安定生産することは不可能であった。そこで、本発明の
目的は、高い伸線加工性,延性を持つ伸線用過共析鋼線
材を工業的規模で安定製造できる手段を確立することに
置かれた。
As described above, it has been impossible to industrially stably produce a hyper-eutectoid steel wire rod for wire drawing having sufficiently high wire drawability and ductility by the conventional techniques. Therefore, an object of the present invention was to establish means for stably producing a hypereutectoid steel wire rod for wire drawing having high wire drawing workability and ductility on an industrial scale.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく研究を進めて行く過程で、「前述した特開
平3−240919号公報所載の技術に照らして考える
ならば、 前記特開平5−295448号公報所載の方法
で十分な伸線加工性,延性を得ることができなかった理
由は“形成されるパ−ライトコロニ−の微細化不足”に
ある」との推論を立て、微細なパ−ライトコロニ−を得
るために過冷オ−ステナイト域で加工した後に変態させ
る実験を種々繰り返した。その結果、過冷オ−ステナイ
ト域で加工した後に変態を行わせてパ−ライトコロニ−
の微細化を図ろうとすると、今度は、C含有量が 0.9%
を超える過共析鋼の場合であっても変態温度によっては
初析フェライト又は初析セメンタイトの生成を招くこと
が明らかとなった。
Means for Solving the Problems In the process of advancing research to achieve the above-mentioned object, the inventors of the present invention "if considering in view of the technique disclosed in the above-mentioned JP-A-3-240919, The reason why sufficient drawing workability and ductility could not be obtained by the method described in the above-mentioned Japanese Patent Laid-Open No. 5-295448 is due to "insufficient miniaturization of the formed pearlite colony". In order to obtain a fine pearlite colony, various experiments were repeated in which the alloy was processed in the supercooled austenite region and then transformed. As a result, after being processed in the supercooled austenite region, transformation is performed and the pearlite colony is formed.
In order to reduce the size of carbon, the C content was 0.9%.
Even in the case of a hyper-eutectoid steel exceeding the above range, it was revealed that the formation of proeutectoid ferrite or proeutectoid cementite is caused depending on the transformation temperature.

【0011】この初析フェライトや初析セメンタイト
は、強度が高くかつ伸線加工性の優れた鋼線材を得る上
では有害なものである。そこで、更に、過冷オ−ステナ
イト域で加工した後にパ−ライト変態させる工程を採用
した場合でも初析フェライトや初析セメンタイトが生成
しない“C濃度と変態温度の組み合わせ条件”が存在す
るか否かの検討を行った。そして、「素材鋼のC含有率
(量)に応じてパ−ライト変態温度を適切に選びさえす
れば、 オ−ステナイト域から恒温変態曲線におけるパ−
ライト変態開始温度を切らない冷却速度範囲で冷却した
“過冷オ−ステナイト組織を有する過共析鋼線材”を特
定の加工度で加工した後、 所定の温度範囲で変態させる
と、 初析フェライト,初析セメンタイトが生成せず、 か
つパ−ライトコロニ−サイズが 5.0μm以下の微細なパ
テンティング組織が得られる」という新たな知見を得る
ことができた。
The pro-eutectoid ferrite and pro-eutectoid cementite are harmful in obtaining a steel wire having high strength and excellent wire drawability. Therefore, whether or not there is a "combination condition of C concentration and transformation temperature" in which pro-eutectoid ferrite or pro-eutectoid cementite is not formed even when a process of performing pearlite transformation after processing in the supercooled austenite region is adopted. I examined. And, "If the pearlite transformation temperature is appropriately selected according to the C content (amount) of the material steel, the perusal temperature transformation curve from the austenite region
After processing a "hypereutectoid steel wire with a supercooled austenite structure" that has been cooled in a cooling rate range that does not cut the light transformation start temperature at a specific working degree and then transforming it in a prescribed temperature range, proeutectoid ferrite , Pro-eutectoid cementite is not formed, and a fine patenting structure with a pearlite colony size of 5.0 μm or less is obtained ”.

【0012】即ち、本発明者等は、表1に示す成分組成
を有した真空溶解鋼の熱間圧延線材から直径5mm,高さ
7mmの円柱状試験片を複数個作成し、次いでこれらを真
空中にて1273Kの温度に誘導加熱してオ−ステナイ
ト化してから、恒温変態曲線におけるパ−ライト変態温
度を切らない範囲の冷却速度で923Kまで冷却し、こ
の温度で加工度40%の塑性加工(圧延)を施した後、
それぞれを948K,923K,898K,873K,
848K,823Kに等温保持し変態させた。
That is, the inventors of the present invention prepared a plurality of cylindrical test pieces having a diameter of 5 mm and a height of 7 mm from a hot-rolled wire rod of vacuum-melted steel having the composition shown in Table 1, and then vacuum-formed them. After induction heating to a temperature of 1273K to form austenite, it is cooled to 923K at a cooling rate within a range not exceeding the pearlite transformation temperature in the isothermal transformation curve, and at this temperature, plastic working with a working rate of 40% is performed. After applying (rolling),
948K, 923K, 898K, 873K,
Isothermally maintained at 848K and 823K for transformation.

【0013】[0013]

【表1】 [Table 1]

【0014】そして、冷却後の試料を研磨し、ピクラ−
ルでエッチングしてから走査型電子顕微鏡を用いて組織
観察を行い、初析フェライト,初析セメンタイトの生成
状況を観察した。この観察結果を図1に示す。
Then, the sample after cooling is polished and pickled.
After the etching, the microstructure was observed using a scanning electron microscope and the formation of pro-eutectoid ferrite and pro-eutectoid cementite was observed. The results of this observation are shown in FIG.

【0015】この図1から、初析フェライト,初析セメ
ンタイトの生成状況とC含有量並びに変態温度との関係
を明確に把握することができる。即ち、図1のハッチン
グを付した領域が初析フェライト,初析セメンタイトの
生成しない領域であり、この領域より左側では初析フェ
ライトが生成し、右側では初析セメンタイトが生成す
る。このハッチングを付した領域をC含有量と変態温度
との関係で数式化すると、下記 (1)式のようになる。 1233−380X ≦ T ≦ 1293−380X ……(1) 〔但し、 T:変態温度(K),X:鋼のC含有量
(%)〕 なお、この領域は後述する本発明に係る化学成分組成の
過共析鋼の何れにも当てはまるものであった。
From FIG. 1, it is possible to clearly understand the relationship between the formation state of pro-eutectoid ferrite and pro-eutectoid cementite, the C content, and the transformation temperature. That is, the hatched region in FIG. 1 is a region where pro-eutectoid ferrite and pro-eutectoid cementite are not formed, and pro-eutectoid ferrite is produced on the left side of this region and pro-eutectoid cementite is produced on the right side. When the hatched region is mathematically expressed by the relationship between the C content and the transformation temperature, the following formula (1) is obtained. 1233-380X ≤ T ≤ 1293-380X (1) [however, T: transformation temperature (K), X: C content (%) of steel] In this region, the chemical composition of the present invention described later. Was applicable to any of the hyper-eutectoid steels.

【0016】本発明は、上記知見事項等に基づいてなさ
れたものであり、「細径高強度鋼線伸線用の線材を製造
するに当り、 重量割合でC: 0.9超〜 1.2%, Si:
0.1〜 1.5%, Mn: 0.1〜 1.5%,Cr:0〜 1.0%
を含む過共析鋼線材を素材として用いると共に、 これか
ら前記伸線用線材を得るための最終伸線前のパテンティ
ング処理工程において、 まず1123〜1373Kのオ
−ステナイト域温度に加熱してから“恒温変態曲線にお
けるパ−ライト変態温度を切らない範囲の冷却速度”で
1023〜823Kの温度範囲に冷却し、この温度域で
加工度:15〜80%の塑性加工を行った後、 823〜
923Kの温度範囲内であってしかも式 1233−380X ≦ T ≦ 1293−380X 〔但し、 T:変態温度(K),X:鋼のC含有量
(%)〕を満足する温度域で変態させ、 線材の組織を初
析フェライト及び初析セメンタイトの両者を含まないパ
−ライト組織とすることによって、 高い伸線加工性,延
性を有する伸線用過共析鋼線材を安定製造できるように
した点」に大きな特徴を有している。
The present invention has been made on the basis of the above findings and the like. "When manufacturing a wire rod for drawing thin and high strength steel wire, the weight ratio of C: more than 0.9 to 1.2%, Si :
0.1 to 1.5%, Mn: 0.1 to 1.5%, Cr: 0 to 1.0%
In the patenting treatment step before the final wire drawing for obtaining the wire rod for wire drawing from the above, a hyper-eutectoid steel wire rod containing is used as a raw material, and is first heated to an austenite region temperature of 1123 to 1373K, and then " After cooling to a temperature range of 1023 to 823K at a cooling rate within a range that does not cut the pearlite transformation temperature in the isothermal transformation curve, and performing plastic working at a working rate of 15 to 80% in this temperature range, 823 to
In the temperature range of 923K, and in the temperature range satisfying the formula 1233-380X ≤ T ≤ 1293-380X [where T: transformation temperature (K), X: C content (%) of steel] is transformed, By making the wire structure a pearlite structure that does not contain both proeutectoid ferrite and proeutectoid cementite, it has become possible to stably manufacture hypereutectoid steel wire for wire drawing with high wire drawability and ductility. Has a great feature.

【0017】なお、前記過冷オ−ステナイト域にて施す
「塑性加工」は、“圧延機を使った圧延”又は“温間ダ
イスを使った引抜き" あるいはその他の適宜方法で実施
すれば良い。
The "plastic working" performed in the supercooled austenite region may be carried out by "rolling using a rolling mill", "pulling using a warm die", or any other suitable method.

【0018】続いて、本発明において素材の化学成分組
成及び処理条件を前記の如くに限定した理由を、その作
用と共に説明する。
Next, the reason why the chemical composition of the material and the processing conditions are limited as described above in the present invention will be explained together with its action.

【作用】[Action]

(A) 素材の化学成分組成 a) C 変態温度が823〜923Kでかつ前記 (1)式の条件を
満足するC含有量の範囲は0.82〜 1.2%である。しかし
ながら、C含有量が 0.9%以下では伸線後の強度が4.12
GPa(420kgf/mm2)に達しない。従って、C含有量は 0.9
超〜 1.2%と定めた。
(A) Chemical composition of material a) C The transformation temperature is 823 to 923K, and the range of C content satisfying the condition of the above formula (1) is 0.82 to 1.2%. However, when the C content is 0.9% or less, the strength after wire drawing is 4.12.
It does not reach GPa (420kgf / mm 2 ). Therefore, the C content is 0.9
Determined as super ~ 1.2%.

【0019】b) Si Siは鋼線材の強度上昇に有効な成分であるほか、脱酸剤
として必要な成分でもある。しかし、その含有量が 0.1
%未満であると十分な脱酸効果が得られず、一方、1.5
%を超えてSiを含有させると伸線加工性が低下する。従
って、Si含有量は 0.1〜 1.5%と定めた。
B) Si Si is a component effective for increasing the strength of the steel wire rod, and is also a component necessary as a deoxidizing agent. However, its content is 0.1
If it is less than%, a sufficient deoxidizing effect cannot be obtained, while
If Si is contained in excess of%, the wire drawing workability decreases. Therefore, the Si content is set to 0.1 to 1.5%.

【0020】c) Mn Mnも鋼線材の強度上昇に有効な成分であるほか、脱酸剤
としても必要な成分である。しかし、その含有量が 0.1
%未満であると十分な脱酸効果が得られず、一方、1.5
%を超えてMnを含有させるとパ−ライトの延性が低下す
る。従って、Mn含有量は 0.1〜 1.5%と定めた。
C) Mn Mn is also a component effective for increasing the strength of the steel wire rod, and is also a component necessary as a deoxidizing agent. However, its content is 0.1
If it is less than%, a sufficient deoxidizing effect cannot be obtained, while
If Mn is contained in excess of%, the ductility of pearlite decreases. Therefore, the Mn content is set to 0.1 to 1.5%.

【0021】d) Cr 素材鋼にCrを添加しなくても目標とする強度,絞り値を
得ることができるが、Cr添加を行うとパ−ライトのラメ
ラ間隔が狭まり鋼線材の強度を一層安定に向上させるこ
とが可能となる。しかしながら、Cr含有量が 1.0%を超
えると伸線加工性が低下することから、Cr含有量は0〜
1.0%と定めた。
D) Cr It is possible to obtain the target strength and reduction value without adding Cr to the steel material, but if Cr is added, the lamella spacing of the pearlite is narrowed and the strength of the steel wire is further stabilized. It is possible to improve. However, if the Cr content exceeds 1.0%, the wire drawability decreases, so the Cr content is 0 to
1.0%.

【0022】(B) 製造条件 さて、本発明法の素材として供される上記化学成分組成
の過共析鋼線材は、通常通り、転炉溶製,連続鋳造,熱
間圧延によって製造することができる(通常は直径:5.5
mmの線材とされる)。
(B) Manufacturing Conditions The hypereutectoid steel wire rod having the above chemical composition, which is used as a raw material for the method of the present invention, can be manufactured by converter melting, continuous casting and hot rolling as usual. Yes (usually diameter: 5.5
mm and the wire).

【0023】そして、本発明法では、まず上記素材鋼線
材は1123〜1373Kのオ−ステナイト域温度に加
熱される。ここで、加熱温度を1123K以上としたの
は、オ−ステナイト中に炭化物を完全に固溶させるため
である。一方、加熱温度が1373Kを超えるとオ−ス
テナイト粒が粗大化し、微細なパ−ライトコロニ−の組
織が得られない。
In the method of the present invention, the raw steel wire is first heated to an austenite temperature range of 1123 to 1373K. Here, the heating temperature is set to 1123 K or higher in order to completely dissolve the carbide in the austenite. On the other hand, if the heating temperature exceeds 1373 K, the austenite grains become coarse and a fine pearlite colony structure cannot be obtained.

【0024】上記オ−ステナイト域温度に加熱した素材
鋼線材は、続いて“恒温変態曲線におけるパ−ライト変
態開始温度を切らない範囲の冷却速度”で1023〜8
23Kの温度にまで冷却される。この冷却は加工終了ま
でパ−ライト変態を開始させないためのものであり、そ
の際の冷却速度は“恒温変態曲線におけるパ−ライト変
態開始温度を切らない範囲の冷却速度”であれば特に制
限されるものではない。なお、パ−ライト変態を開始さ
せない冷却速度は、AISI規格−C1080鋼(C:
0.80%,Si:0.20%,Mn:0.45%)の場合でも、通常、
180℃/秒以上であれば十分である。
The material steel wire rod heated to the austenite region temperature is subsequently cooled at 1023 to 8 at "cooling rate within a range not exceeding the pearlite transformation start temperature in the isothermal transformation curve".
It is cooled to a temperature of 23K. This cooling is for not starting the pearlite transformation until the end of processing, and the cooling rate at that time is not particularly limited as long as it is "the cooling rate within the range not exceeding the pearlite transformation start temperature in the constant temperature transformation curve". Not something. The cooling rate at which pearlite transformation is not started is AISI standard-C1080 steel (C:
0.80%, Si: 0.20%, Mn: 0.45%)
A temperature of 180 ° C./sec or more is sufficient.

【0025】ところで、合金元素であるSi,Mn,Crは恒
温変態曲線におけるパ−ライト変態開始温度を長時間側
へ移動させるため、これら合金元素の添加量を増加する
ことによって冷却速度を遅くすることが可能である。従
って、例えばC:0.93%,Si:0.24%,Mn:0.80%,C
r:0.30%の化学成分組成の鋼では、冷却速度が30℃
/秒以上であればパ−ライト変態は起こらない。
By the way, since the alloying elements Si, Mn and Cr shift the pearlite transformation start temperature in the isothermal transformation curve to the longer side, the cooling rate is slowed by increasing the addition amount of these alloying elements. It is possible. Therefore, for example, C: 0.93%, Si: 0.24%, Mn: 0.80%, C
For steel with a chemical composition of r: 0.30%, the cooling rate is 30 ° C.
Perlite transformation does not occur for more than 1 second.

【0026】このようにして1023〜823Kの加工
温度にまで冷却された素材鋼線材には、次いで加工度:
15〜80%の塑性加工が施される。この塑性加工とし
ては“圧延機を使った圧延”が好ましいと言えるが、
“温間ダイスを使った引抜き”や“その他の加工方法”
を適用しても差し支えがないことは勿論である。
The material steel wire rod cooled to the working temperature of 1023 to 823K in this manner has the following working degree:
15-80% plastic working is performed. It can be said that “rolling using a rolling mill” is preferable for this plastic working,
"Pulling using a warm die" and "other processing methods"
Of course, there is no problem in applying.

【0027】なお、このときの加工温度を1023〜8
23Kと、また加工度を15〜80%とそれぞれ定めた
理由は次の通りである。即ち、本発明者等は、C:0.93
%,Si:0.24%,Mn:0.80%,Cr:0.30%の化学成分組
成の真空溶解鋼の熱間圧延線材から直径5mm,高さ7mm
の円柱状試験片を複数個作成し、次いでこれらを真空中
にて1273Kの温度に誘導加熱してオ−ステナイト化
してから、恒温変態曲線におけるパ−ライト変態温度を
切らない範囲の冷却速度で種々の加工温度まで冷却し、
この温度で種々加工度の塑性加工(圧延)を施した後、
873Kに等温保持し変態させた。そして、冷却後の試
料を研磨し、ピクラ−ルでエッチングしてから走査型電
子顕微鏡を用いて組織観察を行い、パ−ライトコロニ−
サイズを調査した。ここで、パ−ライトコロニ−サイズ
は伸線加工性,延性に大きな影響を及ぼす因子であり、
このパ−ライトコロニ−サイズが5μm以下にまで微細
化されないと十分な伸線加工性,延性を得ることができ
ない。このようにして把握した「パ−ライトコロニ−サ
イズに及ぼす加工温度,加工度の影響」を図2にまとめ
て示す。
The processing temperature at this time is 1023 to 8
The reason why the working degree is set to 23K and the working degree is set to 15 to 80% is as follows. That is, the present inventors have found that C: 0.93
%, Si: 0.24%, Mn: 0.80%, Cr: 0.30% vacuum melted steel hot-rolled wire with a chemical composition 5 mm in diameter and 7 mm in height
A plurality of cylindrical test pieces of No. 1 were prepared, and then these were induction-heated in vacuum to a temperature of 1273K to be austenitized, and then at a cooling rate within a range not exceeding the pearlite transformation temperature in the isothermal transformation curve. Cooling to various processing temperatures,
After performing plastic working (rolling) with various working degrees at this temperature,
It was kept isothermal at 873K and transformed. Then, the cooled sample was polished and etched with a picular, and then the structure was observed with a scanning electron microscope to obtain a pearlite colony.
I checked the size. Here, the pearlite colony size is a factor that greatly affects the wire drawing workability and ductility,
Unless the pearlite colony size is reduced to 5 μm or less, sufficient wire drawability and ductility cannot be obtained. The "effects of processing temperature and processing degree on the pearlite colony size" thus grasped are summarized in Fig. 2.

【0028】図2に示される結果からも明らかなよう
に、加工温度が1023K以下、加工度が15%以上の
範囲でパ−ライトコロニ−サイズの微細化(5.0μm以
下)が達成されことが分かる。
As is clear from the results shown in FIG. 2, the fine pearlite colony size (5.0 μm or less) can be achieved at a processing temperature of 1023 K or less and a processing degree of 15% or more. I understand.

【0029】一方、上記加工温度が823K未満である
と伸線加工性が低下し、また上記加工度が80%を超え
るとパ−ライトの層状組織の発達が不十分となってやは
り伸線加工性が低下することも確認された。なお、上記
条件は本発明に係る化学成分組成の過共析鋼の何れにも
当てはまることは確認済である。従って、上記塑性加工
における加工温度を1023〜823K、加工度を15
〜80%にそれぞれ限定した。
On the other hand, if the working temperature is lower than 823K, the wire drawing workability is deteriorated, and if the working ratio exceeds 80%, the pearlite layered structure is not sufficiently developed and the wire drawing work is also performed. It was also confirmed that the sex was reduced. It has been confirmed that the above conditions apply to any of the hypereutectoid steels having the chemical composition according to the present invention. Therefore, the working temperature in the plastic working is 1023 to 823K, and the working degree is 15
Each was limited to ~ 80%.

【0030】次に、上記の条件で塑性加工を終了後、線
材は823〜923Kの温度範囲内であって、かつ式 1233−380X ≦ T ≦ 1293−380X 〔但し、 T:変態温度(K),X:鋼のC含有量
(%)〕の条件を満足する温度域で変態せしめられる。
ここで、変態温度が823K(550℃)未満ではベイ
ナイトを生成して伸線加工性が劣化する。また、変態温
度が923Kを超えるとパ−ライトのラメラ間隔が広く
なってやはり伸線加工性が劣化する。更に、前記式で示
した条件を満たさない温度範囲では初析フェライト又は
初析セメンタイトが生成するため、これによって伸線加
工性が低下する。
Next, after the plastic working is completed under the above-mentioned conditions, the wire is within the temperature range of 823 to 923K and has the formula 1233-380X ≤ T ≤ 1293-380X [where T: transformation temperature (K)]. , X: C content (%) of steel] is transformed in a temperature range satisfying the condition.
Here, if the transformation temperature is less than 823 K (550 ° C.), bainite is generated and wire drawability deteriorates. Further, if the transformation temperature exceeds 923K, the lamellar spacing of pearlite becomes wide and the wire drawability also deteriorates. Further, proeutectoid ferrite or proeutectoid cementite is produced in a temperature range that does not satisfy the conditions shown by the above formula, which deteriorates the wire drawing workability.

【0031】次いで、本発明を実施例により説明する。Next, the present invention will be described with reference to examples.

【実施例】まず、表2に示す化学成分組成の鋼A〜Rを
それぞれ150kg真空溶解炉で溶製し、熱間圧延により
直径:5.5mmφの素材鋼線材に圧延した。
EXAMPLES First, steels A to R each having the chemical composition shown in Table 2 were melted in a 150 kg vacuum melting furnace and hot-rolled into a raw steel wire rod having a diameter of 5.5 mmφ.

【0032】[0032]

【表2】 [Table 2]

【0033】次に、これら素材鋼線材を冷間伸線によっ
て直径:2.3mmφにまで加工し、これを表3及び表4に示
した条件で加工・熱処理して伸線用鋼線材(母材)を得
た。そして、これら各母材の組織検査と機械的性質の調
査を行うと共に、これらを伸線限界まで伸線し、その限
界加工度及び伸線材の機械的性質を調査した。これらの
調査結果を表3及び表4に併せて示す。
Next, these raw steel wire rods were processed by cold drawing to a diameter of 2.3 mmφ and processed and heat-treated under the conditions shown in Tables 3 and 4 to draw steel wire rods (base metal). ) Got. Then, the structure of each of the base materials was inspected and the mechanical properties thereof were investigated. At the same time, these were drawn to the wire drawing limit, and the limit workability and the mechanical properties of the wire drawn materials were investigated. The results of these investigations are also shown in Tables 3 and 4.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】表3及び表4に示される結果からは、次の
ことを確認することができる。即ち、試験番号1,2,
4,5,7,8,24は、変態温度が図1に示した初析フ
ェライト又は初析セメンタイトを生成する領域であるた
め、得られる母材の限界加工度が低く、また伸線材は十
分な強度を得られない。また、試験番号21では、変態温
度が923Kを超えているため得られる母材の限界加工
度が低い。
From the results shown in Tables 3 and 4, the following can be confirmed. That is, test numbers 1, 2,
Nos. 4, 5, 7, 8 and 24 are regions where the transformation temperature produces pro-eutectoid ferrite or pro-eutectoid cementite as shown in Fig. 1, so the obtained base metal has a low limit workability, and the wire drawing material is sufficient. I can't get enough strength. Further, in Test No. 21, the transformation temperature exceeds 923 K, and thus the obtained base material has a low limit working degree.

【0037】一方、試験番号9は、加熱温度が1123
K未満であったため炭化物が完全に固溶せず、従って母
材の限界加工度が低く、また伸線材は十分な強度を得ら
れない。逆に、試験番号12は、加熱温度が1373Kを
超えたため、得られる母材のパ−ライトブロックの大き
さが5μm以下にならず、限界加工度が低い。
On the other hand, the test number 9 has a heating temperature of 1123.
Since it was less than K, the carbides were not completely solid-dissolved, so that the base material had a low limit workability, and the wire-drawn material could not obtain sufficient strength. On the other hand, in Test No. 12, the heating temperature exceeded 1373 K, so that the size of the obtained pearlite block of the base material was not 5 μm or less, and the limit workability was low.

【0038】試験番号14は、加工温度が1023Kを超
えているため、得られる母材のパ−ライトコロニ−の大
きさが5μm以下にならず、やはり限界加工度が低い。
試験番号15は、加工温度が823K未満であるために得
られる母材の限界加工度が低くなっている。
In the test No. 14, since the working temperature exceeds 1023K, the size of the pearlite colony of the obtained base material does not become 5 μm or less, and the limit working degree is also low.
Test No. 15 has a low limit working degree of the base material obtained because the working temperature is less than 823K.

【0039】そして、試験番号16は、加工度が15%未
満であるため、得られる母材のパ−ライトコロニ−の大
きさが5μm以下にならず、限界加工度が低い。また、
試験番号20は、加工度が80%を超えるために得られる
母材の限界加工度が低くなっている。
In Test No. 16, since the workability is less than 15%, the pearlite colony of the obtained base material does not have a size of 5 μm or less and the limit workability is low. Also,
Test No. 20 has a low limit workability of the base material obtained because the workability exceeds 80%.

【0040】試験番号28は、Si含有率が 1.5%を、試験
番号31はMn含有率が 1.5%を、そして試験番号33はCr含
有率が 1.0%をそれぞれ超えているので得られる母材の
限界加工度が低く、そのため伸線材の強度は低くなって
いる。
Test number 28 has a Si content of 1.5%, test number 31 has a Mn content of 1.5%, and test number 33 has a Cr content of more than 1.0%. The limit workability is low, and therefore the strength of the drawn wire is low.

【0041】これに対して、本発明の規定条件に従って
製造された母材(伸線用過共析鋼線材)は何れも限界加
工度が高く、更に伸線材は引張強さ:4.12GPa(420kgf/mm
2)以上の強度を持ち、絞り値も40%以上の値を示すな
ど、優れた特性が得られていることが分かる。
On the other hand, all of the base materials (hyper-eutectoid steel wire for wire drawing) manufactured according to the specified conditions of the present invention have a high limit workability, and the wire drawing material has a tensile strength of 4.12 GPa (420 kgf). / mm
It can be seen that excellent properties are obtained such as having a strength of 2 ) or more and an aperture value of 40% or more.

【0042】[0042]

【効果の総括】以上に説明した如く、この発明によれ
ば、高強度でかつ伸線加工性に優れた伸線加工用過共析
鋼線材を安定製造することが可能となるなど、産業上有
用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, it becomes possible to stably manufacture a hyper-eutectoid steel wire rod for wire drawing having high strength and excellent wire drawing workability. It has a useful effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】素材鋼線材のC含有率並びにパ−ライト変態温
度と初析フェライト,初析セメンタイトの生成状況との
関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the C content of a raw steel wire and the pearlite transformation temperature and the formation of proeutectoid ferrite and proeutectoid cementite.

【図2】パ−ライト変態前の塑性加工における加工温
度,加工量がパ−ライトコロニ−サイズに及ぼす影響を
示したグラフである。
FIG. 2 is a graph showing the influence of the working temperature and the working amount in the plastic working before the pearlite transformation on the pearlite colony size.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 細径高強度鋼線伸線用の線材を製造する
に当り、重量割合でC: 0.9超〜 1.2%, Si: 0.1
〜 1.5%, Mn: 0.1〜 1.5%,Cr:0〜 1.0%を含
む過共析鋼線材を素材として用いると共に、これから前
記伸線用線材を得るための最終伸線前のパテンティング
処理工程において、まず1123〜1373Kのオ−ス
テナイト域温度に加熱してから“恒温変態曲線における
パ−ライト変態温度を切らない範囲の冷却速度”で10
23〜823Kの温度範囲に冷却し、この温度域で加工
度:15〜80%の塑性加工を行った後、823〜92
3Kの温度範囲内であってしかも下記式を満足する温度
域で変態させ、線材の組織を初析フェライト及び初析セ
メンタイトの両者を含まないパ−ライト組織とすること
を特徴とする、伸線用過共析鋼線材の製造方法。 1233−380X ≦ T ≦ 1293−380X 〔但し、 T:変態温度(K),X:鋼のC含有量
(%)〕
1. When manufacturing a wire rod for drawing thin high-strength steel wire, C: more than 0.9 to 1.2% and Si: 0.1 by weight.
In the patenting process before final drawing for obtaining a wire for hyperdrawing from a hypereutectoid steel wire containing ~ 1.5%, Mn: 0.1-1.5%, Cr: 0-1.0% as a raw material. First, after heating to an austenite region temperature of 1123 to 1373 K, "10" at "cooling rate within a range not exceeding the pearlite transformation temperature in the isothermal transformation curve"
After cooling to a temperature range of 23 to 823 K and performing plastic working with a working ratio of 15 to 80% in this temperature range, 823 to 92
The wire drawing is characterized in that the structure of the wire is a pearlite structure not containing both proeutectoid ferrite and proeutectoid cementite by transforming within a temperature range of 3 K and satisfying the following formula. For manufacturing hyper-eutectoid steel wire rods for automobiles. 1233-380X ≤ T ≤ 1293-380X [where, T: transformation temperature (K), X: C content (%) of steel]
JP11382195A 1995-04-15 1995-04-15 Production of hyper-eutectoid steel wire rod for wiredrawing Pending JPH08283867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11382195A JPH08283867A (en) 1995-04-15 1995-04-15 Production of hyper-eutectoid steel wire rod for wiredrawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11382195A JPH08283867A (en) 1995-04-15 1995-04-15 Production of hyper-eutectoid steel wire rod for wiredrawing

Publications (1)

Publication Number Publication Date
JPH08283867A true JPH08283867A (en) 1996-10-29

Family

ID=14621897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11382195A Pending JPH08283867A (en) 1995-04-15 1995-04-15 Production of hyper-eutectoid steel wire rod for wiredrawing

Country Status (1)

Country Link
JP (1) JPH08283867A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2792002A1 (en) * 1999-04-06 2000-10-13 Kobe Steel Ltd High carbon steel, especially for radial reinforcing cords or wires of automobile tires, has a pearlitic structure with a low surface ferrite content for increased longitudinal cracking resistance
EP1203829A2 (en) * 2000-11-06 2002-05-08 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Wire rod for drawing superior in twisting characteristics and method for production thereof
US6783609B2 (en) 2001-06-28 2004-08-31 Kabushiki Kaisha Kobe Seiko Sho High-carbon steel wire rod with superior drawability and method for production thereof
WO2011092905A1 (en) 2010-02-01 2011-08-04 新日本製鐵株式会社 Wire material, steel wire, and processes for production of those products
JP2011219829A (en) * 2010-04-12 2011-11-04 Bridgestone Corp High carbon steel wire rod and method for producing the same
US8470099B2 (en) 2009-04-21 2013-06-25 Nippon Steel & Sumitomo Metal Corporation Wire rod, steel wire, and manufacturing method thereof
KR101428174B1 (en) * 2012-07-13 2014-08-07 주식회사 포스코 Steel wire having excellent torsion property and method for manufacturing thereof
KR101428173B1 (en) * 2012-07-13 2014-08-07 주식회사 포스코 High carbon steel wire having excellent corrosion resistance and method for manufacturing thereof
US9212405B2 (en) 2009-04-21 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Wire rod, steel wire, and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2792002A1 (en) * 1999-04-06 2000-10-13 Kobe Steel Ltd High carbon steel, especially for radial reinforcing cords or wires of automobile tires, has a pearlitic structure with a low surface ferrite content for increased longitudinal cracking resistance
EP1203829A2 (en) * 2000-11-06 2002-05-08 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Wire rod for drawing superior in twisting characteristics and method for production thereof
US6645319B2 (en) 2000-11-06 2003-11-11 Kobe Steel Ltd. Wire rod for drawing superior in twisting characteristics and method for production thereof
EP1203829A3 (en) * 2000-11-06 2005-05-11 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Wire rod for drawing superior in twisting characteristics and method for production thereof
US6783609B2 (en) 2001-06-28 2004-08-31 Kabushiki Kaisha Kobe Seiko Sho High-carbon steel wire rod with superior drawability and method for production thereof
US8470099B2 (en) 2009-04-21 2013-06-25 Nippon Steel & Sumitomo Metal Corporation Wire rod, steel wire, and manufacturing method thereof
US9212405B2 (en) 2009-04-21 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Wire rod, steel wire, and manufacturing method thereof
WO2011092905A1 (en) 2010-02-01 2011-08-04 新日本製鐵株式会社 Wire material, steel wire, and processes for production of those products
JP2011219829A (en) * 2010-04-12 2011-11-04 Bridgestone Corp High carbon steel wire rod and method for producing the same
KR101428174B1 (en) * 2012-07-13 2014-08-07 주식회사 포스코 Steel wire having excellent torsion property and method for manufacturing thereof
KR101428173B1 (en) * 2012-07-13 2014-08-07 주식회사 포스코 High carbon steel wire having excellent corrosion resistance and method for manufacturing thereof

Similar Documents

Publication Publication Date Title
EP2557191B1 (en) Wire material for saw wire and method for producing same
JP4888277B2 (en) Hot rolled steel bar or wire rod
JP3954338B2 (en) High-strength steel wire excellent in strain aging embrittlement resistance and longitudinal crack resistance and method for producing the same
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JP2005206853A (en) High carbon steel wire rod having excellent wire drawability, and production method therefor
WO2016158901A1 (en) High-carbon steel wire material with excellent wire drawability, and steel wire
JP2002235151A (en) High strength heat treated stel wire for spring
WO2020256140A1 (en) Wire rod
JP2000073137A (en) Steel wire rod excellent in cold workability
JP2010229469A (en) High-strength wire rod excellent in cold working characteristic and method of producing the same
JP5796781B2 (en) Steel wire for high strength spring excellent in spring workability, manufacturing method thereof, and high strength spring
JPH08283867A (en) Production of hyper-eutectoid steel wire rod for wiredrawing
JP3536684B2 (en) Steel wire with excellent wire drawing workability
CN112840044B (en) Hot-rolled wire
JP3965010B2 (en) High-strength direct patenting wire and method for producing the same
JP2000309849A (en) Steel wire rod, steel wire, and their manufacture
JP3277878B2 (en) Wire drawing reinforced high-strength steel wire and method of manufacturing the same
JP2004359992A (en) Wire rod for high strength steel wire, high strength steel wire, and their production method
JP2004011002A (en) Element wire for drawing and wire
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JP3216404B2 (en) Method of manufacturing wire for reinforced high strength steel wire
JP4392093B2 (en) High-strength direct patenting wire and method for producing the same
JP6501036B2 (en) Steel wire
JPH05295436A (en) Production of hypereutectoid steel wire rod
JP2984887B2 (en) Bainite wire or steel wire for wire drawing and method for producing the same