JPWO2013183648A1 - Steel wire rod or bar - Google Patents

Steel wire rod or bar Download PDF

Info

Publication number
JPWO2013183648A1
JPWO2013183648A1 JP2014520014A JP2014520014A JPWO2013183648A1 JP WO2013183648 A1 JPWO2013183648 A1 JP WO2013183648A1 JP 2014520014 A JP2014520014 A JP 2014520014A JP 2014520014 A JP2014520014 A JP 2014520014A JP WO2013183648 A1 JPWO2013183648 A1 JP WO2013183648A1
Authority
JP
Japan
Prior art keywords
steel
less
content
depth
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014520014A
Other languages
Japanese (ja)
Other versions
JP5655986B2 (en
Inventor
門田 淳
淳 門田
慶 宮西
慶 宮西
真吾 山崎
真吾 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014520014A priority Critical patent/JP5655986B2/en
Application granted granted Critical
Publication of JP5655986B2 publication Critical patent/JP5655986B2/en
Publication of JPWO2013183648A1 publication Critical patent/JPWO2013183648A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Abstract

化学成分が質量%で、C:0.1〜0.6%、Si:0.01〜1.5%、Mn:0.05〜2.5%、Al:0.015〜0.3%、N:0.004〜0.015%であり、さらに所定の任意元素を含有しても良く、残部が鉄と不純物であり、前記不純物におけるP及びSが、P:0.035%以下、S:0.025%以下である鋼線材又は棒鋼であって、表面から断面半径の15%の深さまでの表層領域は、平均粒径が1〜15μmのフェライトと、平均アスペクト比が2以下で、平均粒径が0.1〜2μmの球状化セメンタイトである鋼組織であり、表面から断面半径の25%の深さから中心までの内部領域は、平均粒径が15〜40μmのフェライトと、パーライト及び/又は球状化セメンタイトとからなる鋼組織であり、表面スケールを除去した後の表面の円周方向の表面粗さRaが4μm以下であり、表面の粒界酸化層の深さが30μm以下である鋼線材又は棒鋼。Chemical component is mass%, C: 0.1-0.6%, Si: 0.01-1.5%, Mn: 0.05-2.5%, Al: 0.015-0.3% , N: 0.004 to 0.015%, may further contain a predetermined optional element, the balance is iron and impurities, and P and S in the impurities are P: 0.035% or less, S: Steel wire rod or steel bar of 0.025% or less, and the surface layer region from the surface to a depth of 15% of the cross-sectional radius is ferrite having an average particle diameter of 1 to 15 μm and an average aspect ratio of 2 or less. , A steel structure that is spheroidized cementite having an average particle diameter of 0.1 to 2 μm, and an internal region from the surface to a depth of 25% of the cross-sectional radius to the center includes ferrite having an average particle diameter of 15 to 40 μm, It is a steel structure composed of pearlite and / or spheroidized cementite and has a surface scale. Circumferential surface roughness Ra of the surface after removal of the is at 4μm or less, the steel wire rod or steel bar depth of the grain boundary oxidized layer on the surface is 30μm or less.

Description

本発明は、冷間鍛造等に好適な、鋼線材又は棒鋼(バーインコイルを含む。以下同じ)に関する。本願は、2012年6月8日に日本に出願された特願2012−131316号に基づき優先権を主張し、その内容をここに援用する。   The present invention relates to a steel wire rod or steel bar (including a burn-in coil, the same applies hereinafter) suitable for cold forging and the like. This application claims priority based on Japanese Patent Application No. 2012-131316 for which it applied to Japan on June 8, 2012, and uses the content here.

近年、生産性の向上から切削を代表とする機械加工の低減や省略から、中炭素鋼について冷間鍛造への適用のニーズが高まっている。しかし中炭素鋼は低炭素鋼や低合金鋼と比べ変形抵抗が高く、変形能(延性)に乏しいため、金型割れや鋼材割れを生じやすい課題がある。そのため、冷間鍛造に供する鋼材には変形抵抗の低減や変形能の改善を狙い、セメンタイトを球状化させる球状化焼鈍を施すのが一般的である。特許文献1は、表面から棒線材半径×0.15の深さまで領域は、フェライトの組織面積率が10%以下で、残部が焼戻しマルテンサイト、または、焼戻しマルテンサイトと、ベイナイトおよびパーライトのうちの1種または2種とからなり、中心部はフェライトパーライトである球状化焼鈍後の冷間鍛造用棒線材を開示している。   In recent years, there has been a growing need for cold forging application of medium carbon steel because of the reduction and omission of machining represented by cutting due to the improvement of productivity. However, medium carbon steel has higher deformation resistance than low carbon steel and low alloy steel, and has poor deformability (ductility), so there is a problem that mold cracks and steel material cracks are likely to occur. Therefore, it is common to subject the steel material used for cold forging to spheroidizing annealing for spheroidizing cementite with the aim of reducing deformation resistance and improving deformability. In Patent Document 1, the region from the surface to the depth of the rod wire radius × 0.15 has a ferrite structure area ratio of 10% or less, the balance being tempered martensite or tempered martensite, and bainite and pearlite. It discloses a bar wire rod for cold forging after spheroidizing annealing, which is composed of one or two types and the center portion is ferrite pearlite.

特許文献2は、鋼材表層部に0.01〜0.5mmの深さのフェライト脱炭層を有し、且つ該フェライト脱炭層を含む全脱炭領域層を鋼材半径に対する比として0.039〜0.37の範囲に有し、内部を球状化セメンタイト組織にすることで加工性に優れた冷間鍛造用鋼材を開示している。   Patent Document 2 has a ferrite decarburized layer having a depth of 0.01 to 0.5 mm in the steel surface layer portion, and the total decarburized region layer including the ferrite decarburized layer is 0.039 to 0 as a ratio to the steel material radius. The steel for cold forging having excellent workability by having a spheroidized cementite structure in the range of .37 is disclosed.

特許文献3は、表面から10%以上の領域において、フェライトの粒径2〜5.5μmであり、且つ長径が3μm以下で、長径/短径で示されるアスペクト比が3以下のセメンタイトが全セメンタイトに対し70%である、冷間加工に優れた鋼線材を開示している。   Patent Document 3 discloses that in a region of 10% or more from the surface, cementite having a ferrite particle diameter of 2 to 5.5 μm, a major axis of 3 μm or less, and an aspect ratio of 3 or less represented by the major axis / minor axis is total cementite. The steel wire material which is 70% with respect to this and excellent in cold work is disclosed.

特許文献4は、フェライト粒径、セメンタイト粒径、セメンタイトのアスペクト比、セメンタイト密度比を規定することで優れた冷間加工性と焼入れ性を有する高炭素鋼帯を開示している。   Patent Document 4 discloses a high-carbon steel strip having excellent cold workability and hardenability by defining ferrite grain size, cementite grain size, cementite aspect ratio, and cementite density ratio.

特許文献5は、平均粒径が1.1μm以下で平均アスペクト比が1.5以下のセメンタイト及び平均粒径が2μm以上のフェライト粒を形成させる、成形性及び焼入れ性に優れた高炭素鋼鈑の製造方法を開示している。   Patent Document 5 discloses a high-carbon steel sheet excellent in formability and hardenability that forms cementite having an average particle diameter of 1.1 μm or less and an average aspect ratio of 1.5 or less and ferrite grains having an average particle diameter of 2 μm or more. The manufacturing method is disclosed.

特許文献6は、表面から深さが線径の5〜30%までの領域を表面層としたとき、該表面層の平均粒径が5μm以下であると共に、前記表面層のうち再表面から0.3〜0.4mm深さ位置を最表面層としたとき、該最表面層の平均粒径が2μm以上であり、且つ前記表面層より内部の平均粒径が10μm以下である、冷間加工性に優れた鋼線材を開示している。   In Patent Document 6, when the surface layer has a depth of 5 to 30% of the wire diameter as a surface layer, the average particle diameter of the surface layer is 5 μm or less, and 0% from the resurface of the surface layer. Cold working, wherein the average particle diameter of the outermost surface layer is 2 μm or more and the average particle diameter inside the surface layer is 10 μm or less when the depth position of 3 to 0.4 mm is the outermost surface layer. A steel wire having excellent properties is disclosed.

特許文献7は、表面から線径の10%以上の領域において、フェライトの平均粒径が2〜5.5μmであり、かつ長径が3μm以下で、長径/短径で示されるアスペクト比が3以下のセメンタイトが全セメンタイト対して70%以上である、冷間加工性に優れた鋼線材を開示している。しかし、フェライトとセメンタイトの鋼材組織のみの規定に留まり、本来冷間鍛造で割れに大きく影響する表面粗さと表面の粒界酸化深さついては規定されていない。   In Patent Document 7, in the region of 10% or more of the wire diameter from the surface, the average particle diameter of ferrite is 2 to 5.5 μm, the major axis is 3 μm or less, and the aspect ratio indicated by the major axis / minor axis is 3 or less. Discloses a steel wire material excellent in cold workability in which no cementite is 70% or more of the total cementite. However, only the steel structure of ferrite and cementite is specified, and the surface roughness and the intergranular oxidation depth of the surface that have a large effect on cracking by cold forging are not specified.

特許文献1〜7に開示の方法は、加工度の大きい冷間加工で本質的に問題となる鋼材の割れを防止する技術に関するものであるが、最近では、さらなる冷間鍛造性の向上が要求されている。   The methods disclosed in Patent Documents 1 to 7 relate to a technique for preventing cracking of a steel material, which is essentially a problem in cold working with a high degree of work, but recently, further improvements in cold forgeability are required. Has been.

特許4435954号公報Japanese Patent No. 4435954 特許3167550号公報Japanese Patent No. 3167550 特開2000−192148号公報JP 2000-192148 A 特許3468172号公報Japanese Patent No. 3468172 特許3577957号公報Japanese Patent No. 3577957 特開2000−119806号公報JP 2000-119806 A 特許3527641号公報Japanese Patent No. 3527641

本発明は、上述した実情に鑑みて創案されたものである。本発明は、加工度の高い加工において冷間鍛造化の阻害要因となっている鋼材の割れを防止できる鋼線材又は棒鋼を提供することを課題とする。   The present invention has been made in view of the above-described circumstances. This invention makes it a subject to provide the steel wire which can prevent the crack of the steel materials which are the obstructive factor of cold forging in the process with a high workability, or a bar steel.

本発明者らは、上記課題を解決すべく鋭意検討した。その結果、本発明者らは、冷間鍛造時の鋼材の割れを防止する変形能の改善には鋼材成分、球状化焼鈍後の鋼組織に加え、鋼材の表面粗さと粒界酸化層の深さを適切に制御することが有用であることを知見した。   The present inventors diligently studied to solve the above problems. As a result, the present inventors have improved the deformability to prevent cracking of the steel during cold forging, in addition to the steel composition and the steel structure after spheroidizing annealing, as well as the surface roughness of the steel and the depth of the grain boundary oxide layer. It was found that it is useful to appropriately control the thickness.

本発明は以上の新規なる知見にもとづいてなされたものであり、本発明の要旨は以下のとおりである。   The present invention has been made on the basis of the above novel findings, and the gist of the present invention is as follows.

(1)
化学成分が、質量%で、
C :0.1〜0.6%、
Si:0.01〜1.5%、
Mn:0.05〜2.5%、
Al:0.015〜0.3%、
N :0.004〜0.015%、
Cr:0〜3.0%、
Mo:0〜1.5%、
Cu:0〜2.0%、
Ni:0〜5.0%、
B:0〜0.0035%、
Ca:0〜0.005%、
Zr:0〜0.005%、
Mg:0〜0.005%、
Rem:0〜0.015%、
Ti:0〜0.2%、
Nb:0〜0.1%、
V:0〜1.0%、
W:0〜1.0%、
Sb:0〜0.0150%、
Sn:0〜2.0%、
Zn:0〜0.5%、
Te:0〜0.2%、
Bi:0〜0.5%、
Pb:0〜0.5%、
であり、残部が鉄と不純物からなり、
前記不純物におけるP及びSが、
P:0.035%以下、
S:0.025%以下、
である鋼線材又は棒鋼であって、表面から断面半径の15%の深さまでの表層領域は、平均粒径が1〜15μmのフェライトと、平均アスペクト比が2以下で、かつ平均粒径が0.1〜2μmの球状化セメンタイトとからなる鋼組織であり、表面から断面半径の25%の深さから中心までの内部領域は、平均粒径が15〜40μmのフェライトと、パーライト及び/又は球状化セメンタイトとからなる鋼組織であり、表面スケールを除去した後の表面の円周方向の表面粗さRaが4μm以下であり、表面の粒界酸化層の深さが30μm以下である、鋼線材又は棒鋼。
(1)
Chemical composition is mass%,
C: 0.1 to 0.6%
Si: 0.01 to 1.5%,
Mn: 0.05 to 2.5%
Al: 0.015-0.3%,
N: 0.004 to 0.015%,
Cr: 0 to 3.0%,
Mo: 0 to 1.5%,
Cu: 0 to 2.0%,
Ni: 0 to 5.0%,
B: 0 to 0.0035%,
Ca: 0 to 0.005%,
Zr: 0 to 0.005%,
Mg: 0 to 0.005%,
Rem: 0 to 0.015%,
Ti: 0 to 0.2%,
Nb: 0 to 0.1%,
V: 0 to 1.0%
W: 0 to 1.0%
Sb: 0 to 0.0150%,
Sn: 0 to 2.0%,
Zn: 0 to 0.5%
Te: 0 to 0.2%,
Bi: 0 to 0.5%
Pb: 0 to 0.5%,
The balance consists of iron and impurities,
P and S in the impurity are
P: 0.035% or less,
S: 0.025% or less,
In the steel wire rod or steel bar, the surface layer region from the surface to a depth of 15% of the cross-sectional radius is ferrite having an average particle diameter of 1 to 15 μm, an average aspect ratio of 2 or less, and an average particle diameter of 0. .1 to 2 μm spheroidized cementite steel structure, the inner region from the surface to the depth of 25% of the cross-sectional radius to the center is ferrite with an average particle size of 15 to 40 μm, pearlite and / or spherical A steel structure comprising a cementitious cementite, the surface roughness Ra in the circumferential direction after removing the surface scale is 4 μm or less, and the depth of the grain boundary oxide layer on the surface is 30 μm or less. Or steel bar.

(2)
質量%で、
Cr:0.1〜3.0%、
Mo:0.01〜1.5%、
Cu:0.1〜2.0%、
Ni:0.1〜5.0%、
B:0.0005〜0.0035%、
のうちの1種又は2種以上を含有する、(1)に記載の鋼線材又は棒鋼。
(2)
% By mass
Cr: 0.1 to 3.0%
Mo: 0.01 to 1.5%,
Cu: 0.1 to 2.0%,
Ni: 0.1 to 5.0%,
B: 0.0005 to 0.0035%,
The steel wire rod or steel bar according to (1), containing one or more of them.

(3)
Ca:0.0002〜0.005%、
Zr:0.0003〜0.005%、
Mg:0.0003〜0.005%、
Rem:0.0001〜0.015%、
のうちの1種又は2種以上を含有する、(1)または(2)に記載の鋼線材又は棒鋼。
(3)
Ca: 0.0002 to 0.005%,
Zr: 0.0003 to 0.005%,
Mg: 0.0003 to 0.005%,
Rem: 0.0001 to 0.015%,
The steel wire or steel bar according to (1) or (2), containing one or more of the above.

(4)
Ti:0.001〜0.2%、
Nb:0.01〜0.1%、
V:0.03〜1.0%、
W:0.01〜1.0%、
のうちの1種又は2種以上を含有する、(1)〜(3)のいずれかに記載の鋼線材又は棒鋼。
(4)
Ti: 0.001 to 0.2%,
Nb: 0.01 to 0.1%,
V: 0.03-1.0%,
W: 0.01 to 1.0%
The steel wire rod or steel bar according to any one of (1) to (3), containing one or more of them.

(5)
Sb:0.0005〜0.0150%、
Sn:0.005〜2.0%、
Zn:0.0005〜0.5%、
Te:0.0003〜0.2%、
Bi:0.005〜0.5%、
Pb:0.005〜0.5%、
のうちの1種又は2種以上を含有する、(1)〜(4)のいずれかに記載の鋼線材又は棒鋼。
(5)
Sb: 0.0005 to 0.0150%,
Sn: 0.005 to 2.0%,
Zn: 0.0005 to 0.5%
Te: 0.0003 to 0.2%,
Bi: 0.005 to 0.5%,
Pb: 0.005 to 0.5%,
The steel wire rod or steel bar according to any one of (1) to (4), containing one or more of them.

本発明は、冷間鍛造時に発生する鋼材の割れを防止することにより、従来不可能であった加工度の大きい冷間鍛造の実現、あるいは、従来中間焼鈍無しでは冷間鍛造が不可能であった工程の中間焼鈍の省略を可能とする。   In the present invention, by preventing cracking of the steel material that occurs during cold forging, it is possible to achieve cold forging with a high degree of workability, which was impossible in the past, or cold forging is impossible without conventional intermediate annealing. This makes it possible to omit intermediate annealing in the process.

本発明に関わる圧延ラインの概要を例示する図である。It is a figure which illustrates the outline | summary of the rolling line in connection with this invention. 本発明に関わる圧延直後の急冷の概要を例示する図である。It is a figure which illustrates the outline | summary of the rapid cooling immediately after rolling concerning this invention.

以下、本発明を実施するための形態を詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail.

まず、本発明の化学成分の限定理由について説明する。以下、組成における%は、質量%を意味する。   First, the reasons for limiting the chemical components of the present invention will be described. Hereinafter,% in the composition means mass%.

C:0.1〜0.6%
Cは、鋼材の基本強度に大きな影響を及ぼす元素である。しかしながら、C含有量が0.1%未満の場合、十分な強度が得られず、他の合金元素をさらに多量に投入せざるを得なくなる。一方、C含有量が0.6%を超えると、素材硬さが上昇し、変形抵抗の著しい増加や被削性の大幅低下を招く。よって、本発明においては、C含有量を0.1〜0.6%とする。なお、本発明はC含有量が0.1%、0.6%の場合を含む。部品としての強度を確保するために高周波焼入れする場合は、C含有量は0.3〜0.6%、さらに好ましくはC含有量は0.4〜0.6%である。
C: 0.1 to 0.6%
C is an element that greatly affects the basic strength of steel. However, if the C content is less than 0.1%, sufficient strength cannot be obtained, and a larger amount of other alloy elements must be added. On the other hand, if the C content exceeds 0.6%, the material hardness increases, leading to a significant increase in deformation resistance and a significant decrease in machinability. Therefore, in the present invention, the C content is set to 0.1 to 0.6%. In addition, this invention includes the case where C content is 0.1% and 0.6%. In the case of induction hardening in order to ensure the strength as a part, the C content is 0.3 to 0.6%, more preferably the C content is 0.4 to 0.6%.

Si:0.01〜1.5%
Siは、鋼の脱酸に有効な元素であり、フェライトの強化及び焼戻し軟化抵抗を向上するのに有効な元素でもある。Siは0.01%未満ではその効果が不十分であり、1.5%を超えると脆化し、被削性の大幅な低下、さらには浸炭性が阻害されるため、Si量を0.01〜1.5%の範囲内にする必要がある。なお、本発明はSi含有量が0.01%、1.5%の場合を含む。
Si: 0.01 to 1.5%
Si is an element effective for deoxidation of steel, and is also an element effective for improving the strengthening and temper softening resistance of ferrite. If Si is less than 0.01%, the effect is insufficient, and if it exceeds 1.5%, it becomes brittle, a significant reduction in machinability, and further, carburization is hindered. It must be in the range of ~ 1.5%. In addition, this invention includes the case where Si content is 0.01% and 1.5%.

Mn:0.05〜2.5%
Mnは、鋼中SをMnSとして固定・分散させる。またMnは、マトリックスに固溶し焼入れ性の向上や焼入れ後の強度を確保するために必要な元素である。しかしながら、Mn含有量が0.05%未満であると、鋼中のSがFeと結合してFeSとなり、鋼が脆くなる。一方、Mn含有量が増えると、具体的には、Mn含有量が2.5%を超えると、素地の硬さが高くなり冷間加工性が低下すると共に、強度や焼入れ性に及ぼす影響も飽和する。よって、Mn含有量は0.05%〜2.5%とする。なお、本発明はMn含有量が0.05%、2.5%の場合を含む。好適範囲は0.30〜1.25%である。
Mn: 0.05 to 2.5%
Mn fixes and disperses S in steel as MnS. Mn is an element necessary for solid solution in the matrix to improve the hardenability and ensure the strength after quenching. However, if the Mn content is less than 0.05%, S in the steel combines with Fe to become FeS, and the steel becomes brittle. On the other hand, when the Mn content is increased, specifically, when the Mn content exceeds 2.5%, the hardness of the substrate is increased and the cold workability is lowered, and the influence on the strength and hardenability is also affected. Saturates. Therefore, the Mn content is 0.05% to 2.5%. In addition, this invention includes the case where Mn content is 0.05% and 2.5%. The preferred range is 0.30 to 1.25%.

Al:0.015〜0.3%
Alは、鋼の脱酸の他、窒化物を生成して結晶粒の粗大化を抑制する。またAlは、鋼中に存在する固溶NをAlNとして固定し、鋼中にBを含有する場合には、固溶Bを確保するのに有用である。上記の効果を得るためには0.015%以上必要である。しかし、0.3%を超えるとAl2O3を過度に生成し、疲労強度の低下や冷間鍛造割れを引き起こす原因となるため、Al含有量を0.015〜0.3%とした。なお、本発明はAl含有量が0.015%、0.3%の場合を含む。
Al: 0.015-0.3%
In addition to deoxidizing steel, Al generates nitrides and suppresses coarsening of crystal grains. Further, Al is useful for securing the solid solution B when the solid solution N existing in the steel is fixed as AlN and B is contained in the steel. In order to acquire said effect, 0.015% or more is required. However, if it exceeds 0.3%, Al2O3 is excessively generated, causing a decrease in fatigue strength and cold forging cracks, so the Al content was made 0.015 to 0.3%. In addition, this invention includes the case where Al content is 0.015% and 0.3%.

N:0.004〜0.015%
Nは、鋼中でAl、Ti、Nb、V、と結合して窒化物又は炭窒化物を生成し、結晶粒の粗大化を抑制する。また、0.004%未満では、その効果が不十分であり、0.015%を超えるとその効果が飽和するのに加え、熱間圧延時又は熱間鍛造加熱時に未固溶の炭窒化物が残存し、結晶粒の粗大化を抑制するのに有効な微細な炭窒化物の増量が難しくなる。そのため、Nの含有量を0.0040〜0.015%の範囲内にする必要がある。なお、本発明はN含有量が0.004%、0.015%の場合を含む。
N: 0.004 to 0.015%
N combines with Al, Ti, Nb, and V in steel to form nitrides or carbonitrides, and suppresses the coarsening of crystal grains. In addition, if it is less than 0.004%, the effect is insufficient, and if it exceeds 0.015%, the effect is saturated, and insoluble carbonitride during hot rolling or hot forging heating As a result, it becomes difficult to increase the amount of fine carbonitride effective for suppressing the coarsening of crystal grains. Therefore, the N content needs to be in the range of 0.0040 to 0.015%. In addition, this invention includes the case where N content is 0.004% and 0.015%.

さらに、焼入れ性の向上や強度付与のために、任意含有元素として、Cr、Mo、Cu、Ni、Bの1種又は2種以上を含有しても良い。   Furthermore, you may contain 1 type (s) or 2 or more types of Cr, Mo, Cu, Ni, and B as an arbitrary containing element for the improvement of hardenability or provision of intensity | strength.

Cr:0〜3.0%
Crは、焼入れ性を向上させると共に、焼戻し軟化抵抗を付与する元素であり、高強度化が必要な鋼はCrを含有しても良い。これらの効果を安定して得るには、Crは0.1%以上含有することが好ましい。また、Crを多量(具体的には3.0%超)に含有すると、Cr炭化物が生成して鋼が脆化する。よって、Crを含有する場合は、その含有量を3.0%以下とする。なお、本発明はCr含有量が3.0%の場合を含む。
Cr: 0 to 3.0%
Cr is an element that improves hardenability and imparts temper softening resistance, and steel that requires high strength may contain Cr. In order to stably obtain these effects, Cr is preferably contained in an amount of 0.1% or more. Further, when Cr is contained in a large amount (specifically, more than 3.0%), Cr carbide is generated and the steel becomes brittle. Therefore, when it contains Cr, the content shall be 3.0% or less. In addition, this invention includes the case where Cr content is 3.0%.

Mo:0〜1.5%
Moは、焼戻し軟化抵抗を付与すると共に、焼入れ性を向上させる元素であり、高強度化が必要な鋼はMoを含有しても良い。これらの効果を安定して得るには、Moは0.01%以上含有することが望ましい。また、1.5%を超えてMoを含有しても、その効果は飽和する。よって、Moを含有する場合は、その含有量を1.5%以下とする。なお、本発明はMo含有量が1.5%の場合を含む。
Mo: 0 to 1.5%
Mo is an element that imparts resistance to temper softening and improves hardenability, and steel that requires high strength may contain Mo. In order to stably obtain these effects, Mo is desirably contained in an amount of 0.01% or more. Moreover, even if it contains Mo exceeding 1.5%, the effect will be saturated. Therefore, when it contains Mo, the content shall be 1.5% or less. In addition, this invention includes the case where Mo content is 1.5%.

Cu:0〜2.0%
Cuは、フェライトを強化すると共に、焼入れ性向上及び耐食性向上にも有効な元素である。これらの効果を安定して得るには、Cuは0.1%以上含有することが望ましい。また、2.0%を超えてCuを含有しても、機械的性質の点では効果が飽和する。よって、Cuを含有する場合は、その含有量を2.0%以下とする。なお、本発明はCu含有量が2.0%の場合を含む。Cuは、特に熱間延性を低下させ、圧延時の疵の原因となりやすいため、Niと同時に添加することが好ましい。
Cu: 0 to 2.0%
Cu is an element effective for strengthening ferrite and improving hardenability and corrosion resistance. In order to stably obtain these effects, it is desirable to contain Cu by 0.1% or more. Moreover, even if it contains Cu exceeding 2.0%, an effect will be saturated in terms of mechanical properties. Therefore, when it contains Cu, the content shall be 2.0% or less. In addition, this invention includes the case where Cu content is 2.0%. Cu is particularly preferable to be added at the same time as Ni because it lowers the hot ductility and tends to cause defects during rolling.

Ni:0〜5.0%
Niはフェライトを強化し、延性を向上させると共に、焼入れ性向上及び耐食性向上にも有効な元素である。これらの効果を安定して得るには、Niは0.1%以上含有することが望ましい。また、5.0%を超えてNiを含有しても、機械的性質の点では効果が飽和し、被削性が低下する。よって、Niを含有する場合は、その含有量を5.0%以下とする。なお、本発明はNi含有量が5.0%の場合を含む。
Ni: 0 to 5.0%
Ni strengthens ferrite, improves ductility, and is an element effective for improving hardenability and corrosion resistance. In order to stably obtain these effects, Ni is desirably contained in an amount of 0.1% or more. Moreover, even if it contains Ni exceeding 5.0%, an effect will be saturated in terms of mechanical properties, and machinability will fall. Therefore, when it contains Ni, the content shall be 5.0% or less. In addition, this invention includes the case where Ni content is 5.0%.

B:0〜0.0035%
固溶Bは粒界に偏析し、焼入性を向上させると共に粒界強度を向上させ、機械部品としての疲労強度や衝撃強度を向上する。これらの効果を安定して得るには、Bは0.0005%以上含有することが望ましい。また、0.0035%を超えてBを含有しても機械的性質の点では効果は飽和すること、さらには熱間延性を著しく低下する。よって、Bを含有する場合は、その含有量を0.0035%以下とする。なお、本発明はB含有量が0.0035%の場合を含む。
B: 0 to 0.0035%
The solid solution B segregates at the grain boundary, improves the hardenability and improves the grain boundary strength, and improves the fatigue strength and impact strength as a machine part. In order to stably obtain these effects, B is preferably contained in an amount of 0.0005% or more. Moreover, even if it contains B exceeding 0.0035%, the effect is saturated in terms of mechanical properties, and further, hot ductility is remarkably reduced. Therefore, when it contains B, the content shall be 0.0035% or less. In addition, this invention includes the case where B content is 0.0035%.

さらに、任意含有元素として、Ca、Zr、Mg、Remの1種又は2種以上を含有しても良い。   Furthermore, you may contain 1 type (s) or 2 or more types of Ca, Zr, Mg, and Rem as an arbitrary containing element.

Ca:0〜0.005%
Caは、脱酸元素であり、酸化物を生成する。本発明鋼のように全Al(T−Al)として0.015%以上を含有する鋼では、Caを含有すると、カルシウムアルミネート(CaOAl2O3)が形成される。このCaOAl2O3は、Al2O3に比べて低融点酸化物であるため、高速切削時に工具保護膜となり、被削性を向上させる。被削性を安定して向上させるためには、Ca含有量は0.0002%以上であることが望ましい。また、Ca含有量が0.005%を超えると、鋼中にCaSが生成し、却って被削性を低下する。よって、Caを含有する場合は、その含有量を0.005%以下とする。なお、本発明はCa含有量が0.005%の場合を含む。
Ca: 0 to 0.005%
Ca is a deoxidizing element and generates an oxide. In steel containing 0.015% or more as total Al (T-Al) like the steel of the present invention, when Ca is contained, calcium aluminate (CaOAl2O3) is formed. Since CaOAl2O3 is a low melting point oxide compared to Al2O3, it becomes a tool protective film during high-speed cutting and improves machinability. In order to stably improve the machinability, the Ca content is preferably 0.0002% or more. Moreover, when Ca content exceeds 0.005%, CaS will produce | generate in steel and on the contrary, machinability will fall. Therefore, when it contains Ca, the content is made into 0.005% or less. In addition, this invention includes the case where Ca content is 0.005%.

Zr:0〜0.005%
Zrは脱酸元素であり、鋼中で酸化物を生成する。その酸化物はZrO2と考えられている。このZrO2がMnSの析出核となるため、MnSの析出サイトを増やし、MnSを均一分散させる効果がある。また、Zrは、MnSに固溶して複合硫化物を生成し、その変形能を低下させ、圧延及び熱間鍛造時にMnS形状の伸延を抑制する働きもある。このように、Zrは異方性の低減に有効な元素であり、これらの効果を有効に安定して得るにはZr含有量が0.0003%以上であることが望ましい。一方、0.005%を超えてZrを含有しても、歩留まりが極端に悪くなる。加えて、ZrO2およびZrS等の硬質な化合物が大量に生成し、却って被削性、衝撃値及び疲労特性等の機械的性質が低下する。よって、Zrを含有する場合は、その含有量を0.005%以下する。なお、本発明はZr含有量が0.005%の場合を含む。
Zr: 0 to 0.005%
Zr is a deoxidizing element and generates an oxide in steel. The oxide is believed to be ZrO2. Since this ZrO2 becomes a precipitation nucleus of MnS, there is an effect of increasing MnS precipitation sites and uniformly dispersing MnS. Zr also has a function of forming a composite sulfide in MnS, reducing its deformability, and suppressing the elongation of the MnS shape during rolling and hot forging. Thus, Zr is an element effective for reducing anisotropy, and in order to obtain these effects effectively and stably, the Zr content is preferably 0.0003% or more. On the other hand, even if the Zr content exceeds 0.005%, the yield is extremely deteriorated. In addition, a large amount of hard compounds such as ZrO 2 and ZrS are generated, and mechanical properties such as machinability, impact value, and fatigue characteristics are lowered. Therefore, when it contains Zr, the content is made 0.005% or less. In addition, this invention includes the case where Zr content is 0.005%.

Mg:0〜0.005%
Mgは脱酸元素であり、鋼中で酸化物を生成する。そして、Al脱酸が前提の場合には、被削性に有害なAl2O3を、比較的軟質で微細に分散するMgO又はAl2O3及びMgOに改質する。また、その酸化物はMnSの核となりやすく、MnSを微細分散させる効果もある。これらの効果を安定して得るには、Mg含有量が0.0003%以上であることが望ましい。また、Mgは、MnSとの複合硫化物を生成して、MnSを球状化するが、Mgを過剰に含有すると、具体的には、Mg含有量が0.005%を超えると、単独のMgS生成が促進され、被削性が劣化する。よって、Mgを含有する場合は、その含有量を0.005%以下とする。なお、本発明はMg含有量が0.005%の場合を含む。
Mg: 0 to 0.005%
Mg is a deoxidizing element and generates an oxide in steel. If Al deoxidation is premised, Al2O3 harmful to machinability is modified into MgO or Al2O3 and MgO that are relatively soft and finely dispersed. In addition, the oxide tends to be a nucleus of MnS and has an effect of finely dispersing MnS. In order to stably obtain these effects, the Mg content is desirably 0.0003% or more. In addition, Mg forms a composite sulfide with MnS and spheroidizes MnS. When Mg is excessively contained, specifically, when Mg content exceeds 0.005%, a single MgS is formed. Generation is promoted and machinability deteriorates. Therefore, when it contains Mg, the content shall be 0.005% or less. In addition, this invention includes the case where Mg content is 0.005%.

Rem:0〜0.015%
Rem(希土類元素)は脱酸元素であり、低融点酸化物を生成し、鋳造時ノズル詰りを抑制する。加えて、MnSに固溶又は結合し、その変形能を低下させて、圧延及び熱間鍛造時にMnS形状の伸延を抑制する働きもある。このように、Remは異方性の低減に有効な元素であり、効果を安定して得るにはRem含有量が総量で0.0001%以上であることが望ましい。また、Rem含有量が0.015%を超えると、Remの硫化物が大量に生成され、被削性が悪化する。よって、Remを含有する場合は、その含有量を0.015%以下とする。なお、本発明はRem含有量が0.015%の場合を含む。
Rem: 0 to 0.015%
Rem (rare earth element) is a deoxidizing element, generates a low melting point oxide, and suppresses nozzle clogging during casting. In addition, it has a function of suppressing the elongation of the MnS shape at the time of rolling and hot forging by dissolving or bonding to MnS to reduce its deformability. Thus, Rem is an element effective for reducing anisotropy, and the Rem content is desirably 0.0001% or more in total in order to stably obtain the effect. On the other hand, if the Rem content exceeds 0.015%, a large amount of Rem sulfide is generated, and the machinability deteriorates. Therefore, when it contains Rem, the content shall be 0.015% or less. In addition, this invention includes the case where Rem content is 0.015%.

さらに、炭窒化物の形成による高強度化や炭窒化物の増量によるオーステナイト粒の整細粒化のために、任意含有元素として、Ti、Nb、V、Wの1種又は2種以上を含有しても良い。   Furthermore, to increase the strength by forming carbonitride and to refine austenite grains by increasing the amount of carbonitride, it contains one or more of Ti, Nb, V, W as optional elements You may do it.

Ti:0〜0.2%
Tiは炭窒化物を形成し、オーステナイト粒の成長の抑制や強化に寄与する元素であり、高強度化が必要な鋼、及び低歪を要求される鋼には、粗大粒防止のための整粒化元素として使用される。また、Tiは脱酸元素でもあり、軟質酸化物を形成させることにより、被削性を向上させる効果もある。以上の効果を安定して得るには0.001%以上の含有量とするのが望ましい。また、Ti含有量が0.2%を超えると、熱間割れの原因となる未固溶の粗大な炭窒化物が析出し、却って機械的性質が損なわれる。よって、本発明においてTiを含有する場合は、その含有量を0.2%以下とする。なお、本発明はTi含有量が0.2%の場合を含む。
Ti: 0 to 0.2%
Ti is an element that forms carbonitrides and contributes to the suppression and strengthening of austenite grain growth. For steels that require high strength and steels that require low strain, adjustment is required to prevent coarse grains. Used as a granulating element. Ti is also a deoxidizing element and has the effect of improving machinability by forming a soft oxide. In order to stably obtain the above effects, the content is preferably 0.001% or more. On the other hand, if the Ti content exceeds 0.2%, undissolved coarse carbonitrides that cause hot cracking precipitate, and the mechanical properties are impaired. Therefore, when Ti is contained in the present invention, the content is made 0.2% or less. In addition, this invention includes the case where Ti content is 0.2%.

Nb:0〜0.1%
Nbも炭窒化物を形成し、二次析出硬化による鋼の強化、オーステナイト粒の成長の抑制及び強化に寄与する元素であり、高強度化が必要な鋼及び低歪を要求される鋼には、粗大粒防止のための整粒化元素として使用される。この効果を安定して得るには、Nb含有量が0.01%以上であることが望ましい。また、0.1%を超えてNbを添加すると、熱間割れの原因となる未固溶の粗大な炭窒化物が析出され、却って機械的性質が損なわれる。よってNbを含有する場合は、その含有量を0.1%以下とする。なお、本発明はNb含有量が0.1%の場合を含む。
Nb: 0 to 0.1%
Nb is also an element that forms carbonitrides and contributes to steel strengthening by secondary precipitation hardening, suppression of austenite grain growth and strengthening, and steel that requires high strength and steel that requires low strain It is used as a sizing element for preventing coarse grains. In order to obtain this effect stably, the Nb content is desirably 0.01% or more. On the other hand, when Nb is added in excess of 0.1%, undissolved coarse carbonitrides that cause hot cracking are precipitated, and mechanical properties are impaired. Therefore, when it contains Nb, the content is made 0.1% or less. In addition, this invention includes the case where Nb content is 0.1%.

V:0〜1.0%
Vも炭窒化物を形成し、二次析出硬化による鋼の強化、オーステナイト粒の成長の抑制及び強化に寄与する元素であり、高強度化が必要な鋼及び低歪を要求される鋼には、粗大粒防止のための整粒化元素として使用される。この効果を安定して得るには、V含有量が0.03%以上であることが望ましい。また、1.0%を超えてVを含有すると、熱間割れの原因となる未固溶の粗大な炭窒化物を析出し、却って機械的性質が損なわれる。よって、Vを含有する場合は、その含有量を1.0%以下とする。なお、本発明はV含有量が1.0%の場合を含む。
V: 0 to 1.0%
V is also an element that forms carbonitrides and contributes to steel strengthening by secondary precipitation hardening, suppression of austenite grain growth and strengthening, and steel that requires high strength and steel that requires low strain. It is used as a sizing element for preventing coarse grains. In order to stably obtain this effect, the V content is preferably 0.03% or more. On the other hand, if V is contained in excess of 1.0%, undissolved coarse carbonitride that causes hot cracking is precipitated, and mechanical properties are impaired. Therefore, when it contains V, the content shall be 1.0% or less. In addition, this invention includes the case where V content is 1.0%.

W:0〜1.0%
Wも炭窒化物を形成し、二次析出硬化により鋼を強化することができる元素である。この効果を安定して得るには、W含有量が0.01%以上であることが望ましい。また、1.0%を超えてWを含有すると、熱間割れの原因となる未固溶の粗大な炭窒化物を析出し、却って機械的性質が損なわれる。よって、Wを含有する場合は、その含有量を1.0%以下とする。なお、本発明はW含有量が1.0%の場合を含む。
W: 0 to 1.0%
W is also an element that forms carbonitride and can strengthen steel by secondary precipitation hardening. In order to stably obtain this effect, the W content is desirably 0.01% or more. Moreover, when it contains W exceeding 1.0%, the undissolved coarse carbonitride which causes a hot crack will precipitate and a mechanical property will be impaired on the contrary. Therefore, when it contains W, the content shall be 1.0% or less. In addition, this invention includes the case where W content is 1.0%.

さらに、被削性を向上させるために、任意含有元素として、Sb、Sn、Zn、Te、Bi、Pbの1種又は2種以上を含有しても良い。   Furthermore, in order to improve machinability, you may contain 1 type (s) or 2 or more types of Sb, Sn, Zn, Te, Bi, and Pb as an arbitrary containing element.

Sb:0〜0.0150%
Sbはフェライトを適度に脆化し被削性を向上させる。その効果は特に固溶Al量が多い場合に顕著であり、Sb含有量が0.0005%以上であることが望ましい。また、Sb含有量が増えると、具体的には0.0150%を超えると、Sbのマクロ偏析が過多となり衝撃値が大きく低下する。よってSb含有量は0.0150%以下とする。なお、本発明はSb含有量が0.0150%の場合を含む。
Sb: 0 to 0.0150%
Sb moderately embrittles ferrite and improves machinability. The effect is particularly remarkable when the amount of dissolved Al is large, and the Sb content is preferably 0.0005% or more. Further, when the Sb content increases, specifically, when it exceeds 0.0150%, the macrosegregation of Sb becomes excessive and the impact value is greatly reduced. Therefore, the Sb content is 0.0150% or less. In addition, this invention includes the case where Sb content is 0.0150%.

Sn:0〜2.0%
Snは、フェライトを脆化させて工具寿命を延ばすと共に、切削加工後の表面粗さを向上させる効果がある。その効果を安定して得るには、Sn含有量が0.005%以上であることが望ましい。また、2.0%を超えてSnを含有しても、その効果は飽和する。よって、Snを含有する場合は、その含有量を2.0%以下とする。なお、本発明はSn含有量が2.0%の場合を含む。
Sn: 0 to 2.0%
Sn has the effect of making the ferrite brittle and extending the tool life and improving the surface roughness after cutting. In order to obtain the effect stably, the Sn content is desirably 0.005% or more. Moreover, even if it contains Sn exceeding 2.0%, the effect will be saturated. Therefore, when it contains Sn, the content shall be 2.0% or less. In addition, this invention includes the case where Sn content is 2.0%.

Zn:0〜0.5%
Znはフェライトを脆化させて工具寿命を延ばすと共に、切削加工後の表面粗さを向上させる効果がある。その効果を安定して得るには、Zn含有量が0.0005%以上であることが望ましい。また、0.5%を超えてZnを含有しても、その効果は飽和する。よって、Znを含有する場合は、その含有量を0.5%以下とする。なお、本発明はZn含有量が0.5%の場合を含む。
Zn: 0 to 0.5%
Zn has the effect of embrittlement of ferrite to extend the tool life and improve the surface roughness after cutting. In order to obtain the effect stably, the Zn content is preferably 0.0005% or more. Moreover, the effect will be saturated even if it contains Zn exceeding 0.5%. Therefore, when it contains Zn, the content shall be 0.5% or less. In addition, this invention includes the case where Zn content is 0.5%.

Te:0〜0.2%
Teは被削性向上元素である。また、MnTeの生成、MnSと共存することでMnSの変形能を低下させ、MnS形状の伸延を抑制する働きがある。このように、Teは異方性の低減に有効な元素である。これらの効果を安定的に得るには、Te含有量が0.0003%以上であることが望ましい。また、Te含有量が0.2%を超えると、その効果が飽和するだけでなく、熱間延性が低下して疵の原因になりやすい。よって、Teを含有する場合は、その含有量を0.2%以下とする。なお、本発明はTe含有量が0.2%の場合を含む。
Te: 0 to 0.2%
Te is a machinability improving element. In addition, the generation of MnTe and coexistence with MnS have the effect of reducing the deformability of MnS and suppressing the extension of the MnS shape. Thus, Te is an element effective for reducing anisotropy. In order to stably obtain these effects, the Te content is desirably 0.0003% or more. On the other hand, if the Te content exceeds 0.2%, not only the effect is saturated, but also the hot ductility is lowered, which tends to cause wrinkles. Therefore, when it contains Te, the content is made 0.2% or less. In addition, this invention includes the case where Te content is 0.2%.

Bi:0〜0.5%
Biは、被削性を向上させる元素である。この効果を安定して得るには、Bi含有量が0.005%以上であることが望ましい。また、0.5%を超えてBiを含有しても、被削性向上効果が飽和するだけでなく、熱間延性が低下して疵の原因となりやすい。よって、Biを含有する場合は、その含有量を0.5%以下とする。なお、本発明はBi含有量が0.5%の場合を含む。
Bi: 0 to 0.5%
Bi is an element that improves machinability. In order to stably obtain this effect, the Bi content is desirably 0.005% or more. Moreover, even if Bi is contained exceeding 0.5%, not only the machinability improving effect is saturated, but also the hot ductility is lowered and it is liable to cause flaws. Therefore, when it contains Bi, the content is made 0.5% or less. In addition, this invention includes the case where Bi content is 0.5%.

Pb:0〜0.5%
Pbは、被削性向上元素である。この効果を安定して得るには、Pb含有量が0.005%以上であることが望ましい。また、0.5%を超えてPbを含有しても、被削性向上効果が飽和するだけでなく、熱間延性が低下して疵の原因となりやすい。よって、Pbを含有する場合は、その含有量を0.5%以下とする。なお、本発明はPb含有量が0.5%の場合を含む。
Pb: 0 to 0.5%
Pb is a machinability improving element. In order to stably obtain this effect, the Pb content is desirably 0.005% or more. Further, if Pb is contained in excess of 0.5%, not only the machinability improving effect is saturated, but also the hot ductility is lowered, which tends to cause wrinkles. Therefore, when it contains Pb, the content is made 0.5% or less. In addition, this invention includes the case where Pb content is 0.5%.

本発明の鋼線材又は棒鋼は、以上の必須元素および必要に応じて任意含有元素を含有し、残部が鉄と不純物からなる。不純物とは、鉱石やスクラップ等の原材料に含まれるもの、製造環境から混入するものである。但し、不純物におけるPとSは下記の範囲に制限される。   The steel wire rod or steel bar of the present invention contains the above essential elements and optionally contained elements as necessary, and the balance consists of iron and impurities. Impurities are those contained in raw materials such as ores and scrap, and are introduced from the manufacturing environment. However, P and S in the impurity are limited to the following ranges.

P:0.035%以下
Pは鋼中に不純物として含有される。しかし、P含有量が0.035%を超えると、鋼中において素地の硬さが大きくなり、冷間加工性だけでなく、熱間加工性及び鋳造特性も低下する。よってP含有量は0.035%以下とする。なお、本発明はP含有量が0.035%の場合を含む。
P: 0.035% or less P is contained as an impurity in the steel. However, when the P content exceeds 0.035%, the hardness of the substrate increases in the steel, and not only cold workability but also hot workability and casting characteristics are deteriorated. Therefore, the P content is 0.035% or less. In addition, this invention includes the case where P content is 0.035%.

S:0.025%以下
Sは鋼中に不純物として含有される。しかし、S含有量が0.025%を超えるとMnSが粗大化し冷間加工時に割れの起点になる。以上の理由から、Sの含有量を0.025%以下にする必要がある。なお、本発明はS含有量が0.025%の場合を含む。好適範囲は0.01%以下である。
S: 0.025% or less S is contained as an impurity in the steel. However, if the S content exceeds 0.025%, MnS becomes coarse and becomes a starting point of cracking during cold working. For these reasons, the S content needs to be 0.025% or less. In addition, this invention includes the case where S content is 0.025%. The preferred range is 0.01% or less.

次に、本発明の鋼組織、及び表面性状の規定理由について説明する。
本発明者は、冷間鍛造用鋼材の延性向上の方策について鋭意研究した。その結果、冷間鍛造時の変形抵抗の上昇を抑制しながら、変形能を向上し、鍛造割れを防止するためには、表層の鋼組織のフェライトを微細化し、セメンタイトを粗大化させ、さらに表面粗さ、表面の粒界酸化層の深さを低減することが有効であることを知見した。
Next, the steel structure of the present invention and the reason for defining the surface properties will be described.
The present inventor has intensively studied on measures for improving the ductility of steel for cold forging. As a result, in order to improve the deformability and prevent forging cracks while suppressing an increase in deformation resistance during cold forging, the ferrite of the surface steel structure is refined, cementite is coarsened, and the surface is further increased. It has been found that it is effective to reduce the roughness and the depth of the grain boundary oxide layer on the surface.

即ち、本発明は、表面から断面半径の15%の深さまでの表層領域は、平均粒径が1〜15μmのフェライトと、平均アスペクト比が2以下で、かつ平均粒径が0.1〜2μmの球状化セメンタイトとからなる組織であり、表面から断面半径の25%の深さから中心までの内部領域は、平均粒径が15〜40μmのフェライトと、パーライト及び/又は球状化セメンタイトとからなる鋼組織であり、表面スケール除去後の表面の円周方向の表面粗さRaが4μm以下であり、表面の粒界酸化層の深さが30μm以下である鋼線材又は棒鋼である。   That is, in the present invention, the surface layer region from the surface to a depth of 15% of the cross-sectional radius is a ferrite having an average particle diameter of 1 to 15 μm, an average aspect ratio of 2 or less, and an average particle diameter of 0.1 to 2 μm. The inner region from the surface to a depth of 25% of the cross-sectional radius to the center is composed of ferrite with an average particle diameter of 15 to 40 μm and pearlite and / or spheroidized cementite. It is a steel wire rod or steel bar that has a steel structure and has a surface roughness Ra in the circumferential direction of the surface after removal of the surface scale of 4 μm or less and a depth of the grain boundary oxide layer on the surface of 30 μm or less.

円柱の鋼材を据え込んだ場合のフェライト粒径の影響を実験的に調査した結果、表層領域のフェライトの粒径が15μmを超えると、冷間鍛造時の変形能の指標である限界圧縮率が低下した。そのため、表層領域の平均フェライト粒径は15μm以下と制限した。より変形能が必要な場合は好ましくは平均フェライト粒径7μm以下、さらに好ましくは4μm以下とすればよい。平均フェライト粒径が1μm未満の超微細粒鋼となると硬さが著しく上昇し、冷間鍛造時の変形抵抗が増加し金型寿命が低下するので、1μm以上と下限を規定した。なお、本発明は表層領域の平均フェライト粒径が15μmの場合および1μmの場合の両方を含む。   As a result of experimentally investigating the effect of ferrite grain size when a cylindrical steel material is installed, if the ferrite grain size in the surface layer exceeds 15 μm, the critical compressibility, which is an index of deformability during cold forging, is reduced. Declined. For this reason, the average ferrite grain size in the surface layer region is limited to 15 μm or less. When more deformability is required, the average ferrite particle size is preferably 7 μm or less, more preferably 4 μm or less. When an ultrafine-grained steel having an average ferrite grain size of less than 1 μm is obtained, the hardness is remarkably increased, the deformation resistance during cold forging is increased, and the die life is reduced. Therefore, the lower limit is defined as 1 μm or more. The present invention includes both cases where the average ferrite grain size in the surface layer region is 15 μm and 1 μm.

表層領域の球状化セメンタイトの粒径は、粗大であるほど限界圧縮率が向上するが、平均粒径が0.1μm未満では、その効果が発揮されない。そのため、0.1μm以上と規定した。好ましくは1μm以上である。平均粒径が2μmを超えると、限界圧縮率の向上が鈍化し、球状化焼鈍時間が長くなり工業的に生産できないので、上限を2μmとした。なお、本発明は表層領域の球状化セメンタイトの平均粒径が2μmの場合および0.1μmの場合の両方を含む。球状化セメンタイトの平均アスペクト比は、2を超えると限界圧縮率が低下するので、2以下とした。なお、本発明は球状化セメンタイトの平均アスペクト比が2の場合を含む。   As the particle size of the spheroidized cementite in the surface layer region is larger, the limit compression ratio is improved. However, when the average particle size is less than 0.1 μm, the effect is not exhibited. Therefore, it was defined as 0.1 μm or more. Preferably it is 1 micrometer or more. When the average particle diameter exceeds 2 μm, the improvement in the critical compression rate becomes slow, and the spheroidizing annealing time becomes long and cannot be industrially produced. Therefore, the upper limit is set to 2 μm. In addition, this invention includes both the case where the average particle diameter of the spheroidized cementite in the surface layer region is 2 μm and 0.1 μm. When the average aspect ratio of the spheroidized cementite exceeds 2, the critical compression ratio decreases, so it was set to 2 or less. The present invention includes the case where the average aspect ratio of spheroidized cementite is 2.

全断面を微細なフェライトとすると冷間鍛造時の変形抵抗が増加し金型寿命が低下する。よって、限界圧縮率の向上のために微細フェライトとするのは表面からの深さが断面半径の15%までの表層領域とした。そして、表面から断面半径の25%の深さから中心までの内部領域の平均フェライト粒径は、15μm以上と規定し、変形抵抗の上昇を抑制した。平均フェライト粒径が40μmを超えて過剰に粗大な場合は伸びや絞りが低下する。そのため、表面から断面半径の25%の深さから中心までの内部領域の平均フェライト粒径の上限を40μm以下と規定した。なお、本発明は内部領域の平均フェライト粒径が40μmの場合および15μmの場合の両方を含む。内部領域の鋼組織は、フェライトの他、パーライト及び/又は球状化セメンタイトとする。しかし、内部領域は鍛造時に圧縮状態にあるので、限界圧縮率の向上の観点からは、球状化セメンタイトの粒径、及びアスペクト比について特に限定されない。表面から断面半径の15%深さから25%深さまでの中間領域は、表層領域の鋼組織から内部領域の鋼組織への遷移領域である。   If the entire cross section is made of fine ferrite, the deformation resistance during cold forging increases and the die life is reduced. Therefore, in order to improve the critical compressibility, the fine ferrite is a surface region whose depth from the surface is up to 15% of the cross-sectional radius. And the average ferrite particle diameter of the internal region from the depth of 25% of the cross-sectional radius to the center to the center was defined as 15 μm or more, and the increase in deformation resistance was suppressed. When the average ferrite particle size exceeds 40 μm and is excessively coarse, elongation and drawing are reduced. For this reason, the upper limit of the average ferrite grain size in the inner region from the depth of 25% of the cross-sectional radius to the center to the center is defined as 40 μm or less. In addition, this invention includes both the case where the average ferrite particle diameter of an internal area | region is 40 micrometers, and the case of 15 micrometers. The steel structure in the inner region is pearlite and / or spheroidized cementite in addition to ferrite. However, since the inner region is in a compressed state during forging, the particle size and aspect ratio of the spheroidized cementite are not particularly limited from the viewpoint of improving the critical compression ratio. The intermediate region from the surface to the depth of 15% to 25% of the cross-sectional radius is a transition region from the steel structure in the surface layer region to the steel structure in the inner region.

上記の組織を得るための製造条件の一例を示す。750〜950℃で仕上げ圧延した直後の鋼材表面に注水することにより、鋼材表面温度を一旦Ms点温度以下に冷却する。次に、注水を停止し、内部の保有熱で200〜700℃まで鋼材表面温度を復熱させる。引き続き、または、一旦、室温まで空冷した後、Ac1+5℃〜Ac3−5℃の範囲で20分保定し、Ac1−70℃まで5.5℃/h以下の冷却速度で徐冷する球状化焼鈍を行う。仕上げ温度はフェライト粒径に影響し、仕上げ温度を低温にすることで圧延直後のオーステナイトが微細化され、鋼材表面に注水して焼入れした後の組織も微細化され、球状化焼鈍後のフェライト粒径も微細化される。球状化焼鈍の冷却速度はセメンタイト粒径に影響し、冷却速度を遅くすることでセメンタイト粒径は粗大化し、過度に冷却速度が遅いと、表層領域において、セメンタイト粒径は2μmを超える。冷却速度が過度に速いとパーライトが発生し球状化が不良となる。よって、その球状化焼鈍の冷却速度の好適範囲は0.5〜5.5℃/hである。ここでの、Ms点温度は(1)式より計算でき、Ac1点温度は(2)式より計算できる(「改訂4版 金属データブック」丸善、平成16年2月29日発行、P162参照)。またAc3点温度は(3)式(「鋼の熱処理 改訂5版」丸善、昭和56年8月20日発行、P651参照)より計算できる。
Ms(℃)=550-361×(%C)-39×(%Mn)-35×(%V)-20×(%Cr)-17×(%Ni)-10×(%Cu)-5×(%Mn+%W)+15×(%Co)+30×(%Al) ・・・(1)
Ac1(℃)=723-10.7×(%Mn)-16.9×(%Ni)+29.1×(%Si)+16.9×(%Cr)+6.38×(%W) ・・・(2)
Ac3(℃)=908-223.7×(%C)+438.5×(%P)+30.49×(%Si)-34.43(%Mn)-23×(%Ni)+2×{100×(%C)-54+6×(%Ni)} ・・・(3)
An example of manufacturing conditions for obtaining the above structure is shown. By pouring water on the surface of the steel material immediately after finish rolling at 750 to 950 ° C., the steel material surface temperature is once cooled below the Ms point temperature. Next, water injection is stopped, and the steel material surface temperature is reheated to 200 to 700 ° C. with internal heat retention. Continuously or after air cooling to room temperature, spheroidizing annealing is carried out for 20 minutes in the range of Ac1 + 5 ° C. to Ac3-5 ° C., and gradually cooled to Ac1-70 ° C. at a cooling rate of 5.5 ° C./h or less. Do. The finishing temperature affects the ferrite grain size, and by lowering the finishing temperature, the austenite immediately after rolling is refined, the structure after water quenching is performed on the steel surface, and the ferrite grains after spheroidizing annealing are refined. The diameter is also refined. The cooling rate of spheroidizing annealing affects the cementite particle size, and slowing the cooling rate coarsens the cementite particle size. If the cooling rate is excessively slow, the cementite particle size exceeds 2 μm in the surface layer region. If the cooling rate is excessively high, pearlite is generated and the spheroidization becomes poor. Therefore, the suitable range of the cooling rate of the spheroidizing annealing is 0.5 to 5.5 ° C./h. Here, the Ms point temperature can be calculated from the equation (1), and the Ac1 point temperature can be calculated from the equation (2) (see “Revised 4th edition Metal Data Book” Maruzen, published on February 29, 2004, P162). . Further, the Ac3 point temperature can be calculated from the equation (3) (“Steel Heat Treatment Revised 5th Edition” Maruzen, issued on August 20, 1981, P651).
Ms (° C.) = 550−361 × (% C) −39 × (% Mn) −35 × (% V) −20 × (% Cr) −17 × (% Ni) −10 × (% Cu) −5 × (% Mn +% W) + 15 × (% Co) + 30 × (% Al) (1)
Ac1 (° C.) = 723-10.7 × (% Mn) −16.9 × (% Ni) + 29.1 × (% Si) + 16.9 × (% Cr) + 6.38 × (% W (2)
Ac3 (° C.) = 908−223.7 × (% C) + 438.5 × (% P) + 30.49 × (% Si) −34.43 (% Mn) −23 × (% Ni) +2 × {100 × (% C) −54 + 6 × (% Ni)} (3)

圧延した直後の鋼材表面に注水において、表面からの深さが断面半径の25%から中心までの内部領域は、表面からの深さが断面半径の15%以下の表層領域より冷却速度が遅くなる。そのため、注水後、マルテンサイトもしくはベイナイトの焼入れ組織とはならず、フェライトとパーライトが混合した組織となる。球状化焼鈍後は、フェライトと、パーライト及び/又は球状化セメンタイトとからなる組織となる。また、表層から中心に行くに従いフェライト粒径は粗大となる。   When water is poured on the surface of the steel material immediately after rolling, the cooling rate is lower in the inner region where the depth from the surface is 25% of the cross-sectional radius to the center than the surface layer region where the depth from the surface is 15% or less of the cross-sectional radius. . Therefore, after water injection, it does not become a quenched structure of martensite or bainite, but a structure in which ferrite and pearlite are mixed. After spheroidizing annealing, a structure composed of ferrite and pearlite and / or spheroidized cementite is formed. In addition, the ferrite grain size becomes coarser from the surface layer toward the center.

次に表面粗さと粒界酸化深さの規定理由について説明する。   Next, the reasons for defining the surface roughness and the grain boundary oxidation depth will be described.

球状化焼鈍後の鋼線材又は棒鋼を長手方向に対して垂直方向に切断した試験片で据え込みした場合の限界割れ特性は、素地の表面粗さの影響を受ける。種々の条件でショットブラスト又は酸洗し、表面粗さを大きく変更した棒鋼の表面粗さと限界割れ特性を調査した結果、表面粗さが大きい程、限界割れ特性は低下するが、Raが4μm以下に表面粗さを小さくすれば、限界割れ特性が低下しなくなるので、表面粗さRa4μm以下に規定した。なお、本発明は表面粗さRaが4μmの場合を含む。   The critical crack characteristics when the steel wire rod or steel bar after spheroidizing annealing is installed with a test piece cut in a direction perpendicular to the longitudinal direction is affected by the surface roughness of the substrate. As a result of investigating the surface roughness and critical cracking properties of steel bars that have been shot blasted or pickled under various conditions and the surface roughness has been greatly changed, the critical cracking properties decrease as the surface roughness increases, but Ra is 4 μm or less. If the surface roughness is made smaller, the critical cracking characteristics will not be lowered, so the surface roughness Ra is specified to be 4 μm or less. In addition, this invention includes the case where surface roughness Ra is 4 micrometers.

球状化焼鈍を施した鋼線材又は棒鋼を長手方向に対して垂直方向に切断した試験片で据え込みした場合の限界割れ特性は、表面の粒界酸化層の深さの影響を受ける。熱間圧延で生成したスケールが鋼線材及び棒鋼の表面に残存したまま球状化焼鈍されると、スケールが酸素供給元となり、球状化焼鈍中にFeよりも酸素との親和力が強いSi、Mn、Crが優先的に酸化し、表面から粒界に沿って粒界酸化層が発生する。粒界酸化層の深さを大きく変更した球状化焼鈍後の鋼線材及び棒鋼について、粒界酸化層の深さと限界割れ特性を調査した。その結果、粒界酸化層の深さが深いほど限界割れ特性は低下するが、粒界酸化層の深さを30μm以下とすることで、限界割れ特性が低下しないことを知見した。よって、粒化酸化層の深さを30μm以下に規定した。   The critical cracking property when a steel wire or steel bar subjected to spheroidizing annealing is installed with a test piece cut in a direction perpendicular to the longitudinal direction is affected by the depth of the surface grain boundary oxide layer. When the scale generated by hot rolling remains spheroidized while remaining on the surface of the steel wire rod and steel bar, the scale becomes an oxygen supply source, and Si, Mn, which has a stronger affinity for oxygen than Fe during spheroidizing annealing, Cr is preferentially oxidized, and a grain boundary oxide layer is generated along the grain boundary from the surface. The depth of the grain boundary oxide layer and the critical crack characteristics were investigated for the steel wire rod and steel bar after spheroidizing annealing in which the depth of the grain boundary oxide layer was greatly changed. As a result, it has been found that the limit cracking property decreases as the depth of the grain boundary oxide layer increases, but the limit cracking property does not decrease by setting the depth of the grain boundary oxide layer to 30 μm or less. Therefore, the depth of the granulated oxide layer was specified to be 30 μm or less.

表面粗さRaが4μm以下で粒界酸化層の深さが30μm以下とするには、球状化焼鈍前のスケール除去が、酸洗、ショットブラストなどの方法で、適切に行われることが必要である。過剰な酸洗やショットブラストは鋼材の表面粗さを悪化させる。逆に不十分な酸洗やショットブラストでは、鋼材表面のスケールが残り、球状化焼鈍後の粒界酸化層の深さを悪化させる。表面粗さRaが4μm以上、粒界酸化層の深さ30μm以下とするには、酸洗する場合は濃度10mass%、温度60℃の塩酸溶液中に4〜14分(好ましくは4〜12分、より好ましくは5〜10分)、浸漬させるのがよい。酸洗には塩酸のほか硫酸を使用してもよい。ショットブラストを行う場合は、直径0.5mm、硬さ47.3HRCのスチールボールを投射密度90kg/m2以上、投射速度70m/sで投射する。なお投射密度X(kg/m2)は単位時間当たりに投射される投射材の質量W(kg/min)、投射材の投射幅B(m)、鋼材搬送速度V(m/min)から(4)式で定義される。
X=W/(B×V) ・・・(4)式
In order for the surface roughness Ra to be 4 μm or less and the depth of the grain boundary oxide layer to be 30 μm or less, it is necessary to appropriately remove the scale before spheroidizing annealing by a method such as pickling or shot blasting. is there. Excess pickling or shot blasting deteriorates the surface roughness of the steel material. Conversely, inadequate pickling or shot blasting leaves a scale on the surface of the steel material, which worsens the depth of the grain boundary oxide layer after spheroidizing annealing. When the surface roughness Ra is 4 μm or more and the depth of the grain boundary oxide layer is 30 μm or less, when pickling, it is 4 to 14 minutes (preferably 4 to 12 minutes) in a hydrochloric acid solution having a concentration of 10 mass% and a temperature of 60 ° C. , More preferably 5 to 10 minutes). For pickling, sulfuric acid may be used in addition to hydrochloric acid. When shot blasting is performed, a steel ball having a diameter of 0.5 mm and a hardness of 47.3 HRC is projected at a projection density of 90 kg / m 2 or more and a projection speed of 70 m / s. The projection density X (kg / m 2) is calculated from the mass W (kg / min) of the projection material projected per unit time, the projection width B (m) of the projection material, and the steel material conveyance speed V (m / min) (4 ) Expression.
X = W / (B × V) (4) formula

以下に本発明を実施例によって具体的に説明する。なお、これらの実施例は本発明を説明するためのものであって、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be specifically described by way of examples. These examples are for explaining the present invention, and do not limit the scope of the present invention.

表1に示す化学成分を有する162mm角のビレットを表2の条件でφ45mmの棒鋼に圧延し、圧延直後に急冷し復熱させた後は空冷した。圧延仕上げ温度、冷却温度、復熱温度は放射温度計で測定した。各放射温度計、圧延機、水冷装置、冷却床の位置関係を図1に、温度推移を図2に例示する。すなわち、本発明に関わる圧延ラインの概要を例示する図1に示すように、加熱炉1で加熱したビレットを熱間圧延機2にて圧延し、仕上げ温度を仕上げ放射温度計3で測定した。圧延直後に水冷装置4で急冷し、冷却後の温度を水冷放射温度計5で測定した。復熱させた後に復熱温度は復熱放射温度計6で測定し、冷却床7で空冷した。そして、本発明に関わる圧延直後の急冷の概要を例示する図2に示すように、A1点以上の750〜950℃の仕上げ温度8で仕上げ圧延した直後の鋼材表面に、注水することにより、鋼材表層部11の温度推移は、Ms点温度以下の冷却温度9に冷却された後に、内部の保有熱で200〜700℃までの復熱温度10に復熱した後、冷却床で空冷された。一方、鋼材中心部の温度推移は鋼材表層温度を仕上げ温度、復熱温度の実測値から二次元の非定常熱伝導差分モデルにより計算した結果、鋼材中心部12の温度推移は表層部より冷却速度が遅くなるので、Ms点温度以下に冷却されなかった。   A 162 mm square billet having the chemical components shown in Table 1 was rolled into a φ45 mm steel bar under the conditions shown in Table 2, quenched immediately after rolling, reheated, and then air cooled. The rolling finishing temperature, cooling temperature, and recuperation temperature were measured with a radiation thermometer. The positional relationship among each radiation thermometer, rolling mill, water cooling device, and cooling bed is illustrated in FIG. 1, and the temperature transition is illustrated in FIG. That is, as shown in FIG. 1 illustrating the outline of the rolling line according to the present invention, the billet heated in the heating furnace 1 was rolled with a hot rolling mill 2 and the finishing temperature was measured with a finishing radiation thermometer 3. Immediately after rolling, it was quenched with a water cooling device 4, and the temperature after cooling was measured with a water-cooled radiation thermometer 5. After the recuperation, the recuperation temperature was measured with a recuperation radiation thermometer 6 and air cooled with a cooling bed 7. And as shown in FIG. 2 which illustrates the outline of the rapid cooling immediately after rolling according to the present invention, the steel material is poured by pouring water onto the surface of the steel material immediately after finish rolling at a finishing temperature 8 of 750 to 950 ° C. above the A1 point. The temperature transition of the surface layer portion 11 was cooled to a cooling temperature 9 below the Ms point temperature, then reheated to a recuperation temperature 10 of 200 to 700 ° C. with internal retained heat, and then air-cooled on the cooling bed. On the other hand, the temperature transition of the steel material center part is calculated from the surface temperature of the steel material by the two-dimensional unsteady heat conduction difference model from the measured values of the finishing temperature and the recuperation temperature. As a result, it was not cooled below the Ms point temperature.

得られた鋼材は、酸洗もしくはショットブラストによりスケール除去したのち球状化焼鈍した。球状化焼鈍後、棒鋼から試験片を採取し、ミクロ組織、表面粗さを調査した。また、長手方向に圧延直径の1.5倍の高さとなる長さで、長手方向に対し垂直方向に切断した圧縮試験片にて据え込み試験を行い、限界圧縮率を調査した。結果をまとめて表3に示す。
〔ミクロ組織〕
球状セメンタイトの平均粒子径とアスペクト比は走査型電子顕微鏡写真を画像解析することにより求めた。表層領域は棒鋼を長手方向に対し垂直方向に切断した切断面(C断面)の、中心角が90度異なる4方向の表層から、200μm深さ、半径の15%の深さの部位の計8箇所において、内部領域はC断面の、中心角が90度異なる4方向の半径の25%の深さ、半径の50%の深さ、中心部の計9箇所において、それぞれ3000倍の倍率で観察し、撮影写真を画像解析装置にて解析した。平均粒子径は円相当径とした。アスペクト比は(長径の長さ)/(短径の長さ)とした。表層領域(8箇所)、内部領域(9箇所)の平均値を求めた。
The obtained steel material was subjected to spheroidizing annealing after scale removal by pickling or shot blasting. After spheroidizing annealing, specimens were collected from the steel bars and examined for microstructure and surface roughness. In addition, an upsetting test was performed on a compression test piece cut in a direction perpendicular to the longitudinal direction at a length that is 1.5 times the rolling diameter in the longitudinal direction, and the limit compression rate was investigated. The results are summarized in Table 3.
[Microstructure]
The average particle diameter and aspect ratio of spherical cementite were determined by image analysis of scanning electron micrographs. The surface layer region is a total of 8 parts with a depth of 200 μm and a depth of 15% of the radius from the surface layer in the 4 directions different from the central angle of the cut surface (C cross section) obtained by cutting the steel bar in the direction perpendicular to the longitudinal direction. In each part, the inner region is observed at a magnification of 3000 times in a total of nine places in the center section, 25% depth of the radius in four directions, 50% of the radius, and 90% of the center angle. The photograph was analyzed with an image analyzer. The average particle diameter was the equivalent circle diameter. The aspect ratio was (length of major axis) / (length of minor axis). The average values of the surface layer regions (8 locations) and the internal regions (9 locations) were determined.

フェライト粒径の測定には走査型電子顕微鏡に付属したElectron-Back-Scattering-Diffraction(EBSB)装置を用いた。表層領域は、棒線材のC断面の、中心角が90度異なる4方向の表層から、200μm深さ、半径の15%の深さの部位の計8箇所において、それぞれ400×400μmの領域を測定したフェライトの結晶方位マップから、方位差15度以上となる境界をフェライト粒界とし、Johnson−Saltykovの方法(「計量形態学」内田老鶴圃、S47.7.30発行、原著:R.T.DeHoff,F.N.Rhiness.P189参照)にて平均粒径を求めた。内部領域は、棒線材のC断面の、中心角が90度異なる4方向の半径の25%の深さ、半径の50%の深さ、中心部の計9箇所において、それぞれ400×400μmの領域を測定し、上記と同様の方法で平均粒径を求めた。
〔表面粗さ〕
円周方向の粗さを測定し、JIS B0601:’82で定義されるRaを算出した。
〔粒界酸化層の深さ〕
C断面を樹脂で埋めて研磨したものをナイタールエッチし、光学顕微鏡により倍率400倍で全円周観察し、最も粒界酸化層の深い位置と表層までの距離を測定した。
〔限界圧縮率〕
限界圧縮率は圧縮速度10mm/minとなる条件の据え込み試験から破損確率50%となる圧縮率を調査した。割れは亀裂長さが0.05mm以上のものを割れとした。破損確率は割れの発生率である。金型面圧の関係上、圧縮率は80%を上限とした。80%で割れが発生しない場合(破損確率50%未満の場合)は限界圧縮率を80%とした。
〔変形抵抗〕
変形抵抗は、ひずみ速度10s−1相当で圧縮し、相当ひずみ2の時点での相当応力から求めた。表2から明らかなように、発明例(No.1〜24)の限界圧縮率は比較例(No.25〜34)の限界圧縮率に比べ顕著に優れていることがわかる。
An Electron-Back-Scattering-Diffraction (EBSB) apparatus attached to the scanning electron microscope was used for the measurement of the ferrite particle size. As for the surface layer area, 400 x 400 μm area was measured in each of the 8 areas of 200 μm depth and 15% depth of the radius from the surface layer of the C direction of the bar wire in 4 directions with different central angles of 90 degrees. From the ferrite crystal orientation map, the boundary with an orientation difference of 15 degrees or more is defined as the ferrite grain boundary, and the Johnson-Saltykov method (“Metric morphology” by Uchida Otsutsuru, S47.30, original work: RT) DeHoff, F. N. Rhiness. P189), the average particle size was determined. The inner region is a region of 400 × 400 μm at a total of nine locations of 25% depth, 50% depth, and central portion of the radius in four directions with a 90 ° difference in the central angle of the cross section of the rod and wire. And the average particle size was determined by the same method as described above.
〔Surface roughness〕
The roughness in the circumferential direction was measured, and Ra defined in JIS B0601: '82 was calculated.
[Depth of grain boundary oxide layer]
The C cross-section filled with resin and polished was subjected to nital etching, and the entire circumference was observed with an optical microscope at a magnification of 400 times, and the distance between the deepest grain boundary oxide layer and the surface layer was measured.
[Limit compression ratio]
The compression rate at which the fracture probability was 50% was investigated from an upsetting test under the condition that the compression rate was 10 mm / min. A crack having a crack length of 0.05 mm or more was regarded as a crack. The failure probability is the occurrence rate of cracks. Due to the mold surface pressure, the upper limit of the compression rate is 80%. When cracking did not occur at 80% (when the failure probability was less than 50%), the critical compression ratio was set to 80%.
(Deformation resistance)
The deformation resistance was obtained by compressing at a strain rate equivalent to 10 s-1 and calculating from the equivalent stress at the time of equivalent strain 2. As is clear from Table 2, it can be seen that the critical compression ratio of the inventive examples (No. 1 to 24) is significantly superior to that of the comparative example (No. 25 to 34).

比較例No.25は圧延仕上げ温度が低く、限界圧縮率は十分であるが、中心部までフェライト粒が微細なため変形抵抗が高く、金型寿命が低下するので好ましくない。   Comparative Example No. No. 25 has a low rolling finishing temperature and a sufficient critical compression ratio, but is not preferable because ferrite grains are fine up to the center and deformation resistance is high and the mold life is reduced.

比較例No.26は球状化焼鈍時の冷却速度が遅く平均セメンタイト粒径が粗大化し本願規定を超えたため限界圧縮率が低下した。比較例No.27は圧延仕上げ温度が高く、平均フェライト粒径が粗大化し本願規定を超えたため限界圧縮率が低下した。比較例No.28は球状化焼鈍時の冷却速度が速く、冷却中にパーライトが発生したことで平均セメンタイトアスペクト比が大きくなり本願の規定を超えたため、限界圧縮率が低下した。   Comparative Example No. In No. 26, the cooling rate during spheroidizing annealing was slow, the average cementite particle size was coarsened and exceeded the provisions of the present application, so the critical compression ratio was lowered. Comparative Example No. No. 27 had a high rolling finish temperature, and the average ferrite grain size was coarsened and exceeded the provisions of the present application, so the critical compression ratio decreased. Comparative Example No. No. 28 had a high cooling rate during spheroidizing annealing, and pearlite was generated during cooling, so that the average cementite aspect ratio increased and exceeded the provisions of the present application.

比較例No.29、30は冷間加工性を低下するPまたはSの化学成分が本願の規定を超えており、その結果、加工限界が低下した。   Comparative Example No. In Nos. 29 and 30, the chemical component of P or S that decreases the cold workability exceeds the provisions of the present application, and as a result, the processing limit decreases.

比較例No.31はショットブラストが過剰なため、比較例No.34は酸洗が過剰なため、表面粗さが大きくなり本願の規定を超えており、限界圧縮率が低下した。   Comparative Example No. Since No. 31 has excessive shot blasting, Comparative Example No. Since the pickling 34 was excessively pickled, the surface roughness increased and exceeded the provisions of the present application, and the critical compression ratio decreased.

比較例No.32、33はスケール除去が不十分なまま球状化焼鈍したことで、深さ30μm以上の粒界酸化層が発生し、本願の規定を超えており、限界圧縮率が低下した。   Comparative Example No. Nos. 32 and 33 were subjected to spheroidizing annealing with insufficient scale removal, and a grain boundary oxidation layer having a depth of 30 μm or more was generated, exceeding the provisions of the present application, and the critical compression ratio was lowered.

Figure 2013183648
Figure 2013183648

Figure 2013183648
Figure 2013183648

Figure 2013183648
Figure 2013183648

1 加熱炉
2 熱間圧延機
3 仕上げ放射温度計
4 水冷装置
5 水冷放射温度計
6 復熱放射温度計
7 冷却床
8 仕上げ温度
9 Ms点温度以下の冷却温度
10 復熱温度
11 鋼材表層部
12 鋼材中心部
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Hot rolling mill 3 Finishing radiation thermometer 4 Water cooling device 5 Water cooling radiation thermometer 6 Recuperated radiation thermometer 7 Cooling floor 8 Finishing temperature 9 Cooling temperature below Ms point temperature 10 Recuperated temperature 11 Steel material surface layer part 12 Steel center

Claims (5)

化学成分が、質量%で、
C :0.1〜0.6%、
Si:0.01〜1.5%、
Mn:0.05〜2.5%、
Al:0.015〜0.3%、
N :0.004〜0.015%、
Cr:0〜3.0%、
Mo:0〜1.5%、
Cu:0〜2.0%、
Ni:0〜5.0%、
B:0〜0.0035%、
Ca:0〜0.005%、
Zr:0〜0.005%、
Mg:0〜0.005%、
Rem:0〜0.015%、
Ti:0〜0.2%、
Nb:0〜0.1%、
V:0〜1.0%、
W:0〜1.0%
Sb:0〜0.0150%、
Sn:0〜2.0%、
Zn:0〜0.5%、
Te:0〜0.2%、
Bi:0〜0.5%、
Pb:0〜0.5%、
であり、残部が鉄と不純物からなり、
前記不純物におけるP及びSが、
P:0.035%以下、
S:0.025%以下、
である鋼線材又は棒鋼であって、
表面から断面半径の15%の深さまでの表層領域は、平均粒径が1〜15μmのフェライトと、平均アスペクト比が2以下で、かつ平均粒径が0.1〜2μmの球状化セメンタイトとからなる鋼組織であり、
表面から断面半径の25%の深さから中心までの内部領域は、平均粒径が15〜40μmのフェライトと、パーライト及び/又は球状化セメンタイトとからなる鋼組織であり、
表面スケールを除去した後の表面の円周方向の表面粗さRaが4μm以下であり、
表面の粒界酸化層の深さが30μm以下である、鋼線材又は棒鋼。
Chemical composition is mass%,
C: 0.1 to 0.6%
Si: 0.01 to 1.5%,
Mn: 0.05 to 2.5%
Al: 0.015-0.3%,
N: 0.004 to 0.015%,
Cr: 0 to 3.0%,
Mo: 0 to 1.5%,
Cu: 0 to 2.0%,
Ni: 0 to 5.0%,
B: 0 to 0.0035%,
Ca: 0 to 0.005%,
Zr: 0 to 0.005%,
Mg: 0 to 0.005%,
Rem: 0 to 0.015%,
Ti: 0 to 0.2%,
Nb: 0 to 0.1%,
V: 0 to 1.0%
W: 0 to 1.0%
Sb: 0 to 0.0150%,
Sn: 0 to 2.0%,
Zn: 0 to 0.5%
Te: 0 to 0.2%,
Bi: 0 to 0.5%
Pb: 0 to 0.5%,
The balance consists of iron and impurities,
P and S in the impurity are
P: 0.035% or less,
S: 0.025% or less,
A steel wire or a steel bar,
The surface layer region from the surface to a depth of 15% of the cross-sectional radius is composed of ferrite having an average particle diameter of 1 to 15 μm and spheroidized cementite having an average aspect ratio of 2 or less and an average particle diameter of 0.1 to 2 μm. Steel structure
The inner region from the surface to a depth of 25% of the cross-sectional radius to the center is a steel structure composed of ferrite having an average particle size of 15 to 40 μm and pearlite and / or spheroidized cementite,
The surface roughness Ra in the circumferential direction of the surface after removing the surface scale is 4 μm or less,
A steel wire rod or steel bar having a surface grain boundary oxide layer depth of 30 μm or less.
質量%で、
Cr:0.1〜3.0%、
Mo:0.01〜1.5%、
Cu:0.1〜2.0%、
Ni:0.1〜5.0%、
B:0.0005〜0.0035%、
のうちの1種又は2種以上を含有する、請求項1に記載の鋼線材又は棒鋼。
% By mass
Cr: 0.1 to 3.0%
Mo: 0.01 to 1.5%,
Cu: 0.1 to 2.0%,
Ni: 0.1 to 5.0%,
B: 0.0005 to 0.0035%,
The steel wire rod or steel bar of Claim 1 containing 1 type, or 2 or more types.
Ca:0.0002〜0.005%、
Zr:0.0003〜0.005%、
Mg:0.0003〜0.005%、
Rem:0.0001〜0.015%、
のうちの1種又は2種以上を含有する、請求項1または2に記載の鋼線材又は棒鋼。
Ca: 0.0002 to 0.005%,
Zr: 0.0003 to 0.005%,
Mg: 0.0003 to 0.005%,
Rem: 0.0001 to 0.015%,
The steel wire rod or steel bar according to claim 1 or 2, containing one or more of them.
Ti:0.001〜0.2%、
Nb:0.01〜0.1%、
V:0.03〜1.0%、
W:0.01〜1.0%、
のうちの1種又は2種以上を含有する、請求項1〜3のいずれかに記載の鋼線材又は棒鋼。
Ti: 0.001 to 0.2%,
Nb: 0.01 to 0.1%,
V: 0.03-1.0%,
W: 0.01 to 1.0%
The steel wire rod or steel bar in any one of Claims 1-3 containing 1 type, or 2 or more types.
Sb:0.0005〜0.0150%、
Sn:0.005〜2.0%、
Zn:0.0005〜0.5%、
Te:0.0003〜0.2%、
Bi:0.005〜0.5%、
Pb:0.005〜0.5%、
のうちの1種又は2種以上を含有する、請求項1〜4のいずれかに記載の鋼線材又は棒鋼。
Sb: 0.0005 to 0.0150%,
Sn: 0.005 to 2.0%,
Zn: 0.0005 to 0.5%
Te: 0.0003 to 0.2%,
Bi: 0.005 to 0.5%,
Pb: 0.005 to 0.5%,
The steel wire rod or steel bar in any one of Claims 1-4 containing 1 type, or 2 or more types of these.
JP2014520014A 2012-06-08 2013-06-04 Steel wire rod or bar Active JP5655986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014520014A JP5655986B2 (en) 2012-06-08 2013-06-04 Steel wire rod or bar

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012131316 2012-06-08
JP2012131316 2012-06-08
PCT/JP2013/065496 WO2013183648A1 (en) 2012-06-08 2013-06-04 Steel wire rod or bar steel
JP2014520014A JP5655986B2 (en) 2012-06-08 2013-06-04 Steel wire rod or bar

Publications (2)

Publication Number Publication Date
JP5655986B2 JP5655986B2 (en) 2015-01-21
JPWO2013183648A1 true JPWO2013183648A1 (en) 2016-02-01

Family

ID=49712037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014520014A Active JP5655986B2 (en) 2012-06-08 2013-06-04 Steel wire rod or bar

Country Status (4)

Country Link
JP (1) JP5655986B2 (en)
KR (1) KR101655006B1 (en)
CN (1) CN104350167B (en)
WO (1) WO2013183648A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039864A (en) * 2015-07-13 2015-11-11 江苏曜曜铸业有限公司 Alloy used for spindle box mould
CN106436697A (en) * 2015-08-13 2017-02-22 江鹏财 Concrete pipe pile for roads and bridges
CN106436695A (en) * 2015-08-13 2017-02-22 江鹏财 Precast pile column for large-span bridge architecture
CN105507235A (en) * 2015-08-20 2016-04-20 喻良军 Prefabricated pile for expressway bridge
CN108138276B (en) * 2015-10-09 2021-05-25 江阴贝卡尔特钢丝制品有限公司 Elongated steel wire with a metal coating for corrosion resistance
CN105296892A (en) * 2015-11-03 2016-02-03 合肥海源机械有限公司 Method for manufacturing high-chromium low-carbon abrasion-resistant alloy hydraulic cylinder
JP2017106048A (en) * 2015-12-07 2017-06-15 株式会社神戸製鋼所 Steel wire for machine structural component
JP6642237B2 (en) * 2016-04-22 2020-02-05 日本製鉄株式会社 Cold forging steel and method for producing the same
JP6642236B2 (en) * 2016-04-22 2020-02-05 日本製鉄株式会社 Cold forging steel
CN105734424A (en) * 2016-05-09 2016-07-06 周常 Alloy material for offshore drilling platform freshwater cooling system and preparation method thereof
CN105839008A (en) * 2016-05-23 2016-08-10 安徽鑫宏机械有限公司 Casting method of low-temperature-resistant and impact-resistant compound stop valve body
WO2017222122A1 (en) * 2016-06-21 2017-12-28 현대제철 주식회사 Reinforcing bar and manufacturing method therefor
KR20190027848A (en) * 2016-07-04 2019-03-15 신닛테츠스미킨 카부시키카이샤 Steel for machine structural use
JP6614349B2 (en) * 2016-07-05 2019-12-04 日本製鉄株式会社 Rolled wire rod
KR102226488B1 (en) * 2016-09-30 2021-03-11 닛폰세이테츠 가부시키가이샤 Cold forging steel and its manufacturing method
CN106834935A (en) * 2016-12-27 2017-06-13 芜湖倍思科创园有限公司 A kind of wear-resistant ball of high rigidity high-hardenability energy and preparation method thereof
CN107761016A (en) * 2017-10-18 2018-03-06 博尔德南通汽车零部件有限公司 Corrosion-resistant spring machining process
RU2651065C1 (en) * 2017-11-20 2018-04-18 Юлия Алексеевна Щепочкина Iron-based alloy
KR102057765B1 (en) * 2017-12-29 2019-12-19 현대제철 주식회사 Steel reinforcement and method of manufacturing the same
US11459644B2 (en) * 2018-02-01 2022-10-04 Sumitomo Electric Industries, Ltd. Copper-coated steel wire and canted coil spring
CN108330391B (en) * 2018-02-13 2020-07-17 鞍钢股份有限公司 Chromium-molybdenum alloy cold heading steel wire rod and production method thereof
KR102089167B1 (en) * 2018-07-26 2020-03-13 현대제철 주식회사 Shape steel and method of manufacturing the same
KR102166592B1 (en) * 2018-09-27 2020-10-16 현대제철 주식회사 Steel reinforcement and method of manufacturing the same
US20220025493A1 (en) * 2019-01-11 2022-01-27 Nippon Steel Corporation Steel material
CN113316651B (en) * 2019-01-21 2023-06-20 日本制铁株式会社 Steel material and component
CN113710821B (en) * 2019-05-16 2023-06-23 日本制铁株式会社 Steel wire and hot rolled wire rod
KR20220063244A (en) * 2019-11-13 2022-05-17 닛폰세이테츠 가부시키가이샤 hot rolled steel
CN112359294B (en) * 2020-10-29 2021-08-31 浦江中宝机械有限公司 Preparation process of large-scale offshore wind power steel ball
KR102429603B1 (en) * 2020-11-27 2022-08-05 주식회사 포스코 Wire rod for cold working with improved stress corrosion resistance and method for manufacturing the same
CN113969376B (en) * 2021-11-01 2022-05-10 新疆八一钢铁股份有限公司 Preparation method of wire rod for suspension cable steel wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073137A (en) * 1998-08-26 2000-03-07 Kobe Steel Ltd Steel wire rod excellent in cold workability
JP2000192148A (en) * 1998-12-25 2000-07-11 Kobe Steel Ltd Steel wire rod excellent in cold workability and its production
JP2012041587A (en) * 2010-08-17 2012-03-01 Nippon Steel Corp Wire for machine part excellent in high strength and hydrogen embrittlement resistance characteristic, steel wire, and the machine part and method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756533B2 (en) * 1989-02-14 1998-05-25 トーア・スチール株式会社 Manufacturing method of high strength, high toughness steel bars
JP3167550B2 (en) * 1994-10-12 2001-05-21 新日本製鐵株式会社 Cold forging steel with excellent workability
JP3577957B2 (en) * 1998-07-29 2004-10-20 Jfeスチール株式会社 Method for producing high carbon steel sheet excellent in formability and hardenability
JP2000119806A (en) * 1998-10-08 2000-04-25 Kobe Steel Ltd Steel wire rod excellent in cold workability, and its manufacture
JP3468172B2 (en) * 1999-09-10 2003-11-17 住友金属工業株式会社 High carbon steel strip excellent in cold workability and hardenability and method for producing the same
JP4435954B2 (en) * 1999-12-24 2010-03-24 新日本製鐵株式会社 Bar wire for cold forging and its manufacturing method
WO2005106060A1 (en) * 2004-04-09 2005-11-10 National Institute For Materials Science Excellent cold-workability exhibiting high-strength steel wire or steel bar, or high-strength shaped article and process for producing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073137A (en) * 1998-08-26 2000-03-07 Kobe Steel Ltd Steel wire rod excellent in cold workability
JP2000192148A (en) * 1998-12-25 2000-07-11 Kobe Steel Ltd Steel wire rod excellent in cold workability and its production
JP2012041587A (en) * 2010-08-17 2012-03-01 Nippon Steel Corp Wire for machine part excellent in high strength and hydrogen embrittlement resistance characteristic, steel wire, and the machine part and method for manufacturing the same

Also Published As

Publication number Publication date
JP5655986B2 (en) 2015-01-21
KR20150013246A (en) 2015-02-04
CN104350167B (en) 2016-08-31
CN104350167A (en) 2015-02-11
KR101655006B1 (en) 2016-09-06
WO2013183648A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5655986B2 (en) Steel wire rod or bar
KR101799711B1 (en) Rod steel
JP4423254B2 (en) High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
US9476112B2 (en) Steel wire rod or steel bar having excellent cold forgeability
TWI424067B (en) Carburized steel, carburized steel parts, and manufacturing method of carburized steel
JP6354268B2 (en) High-strength hot-rolled steel sheet having a maximum tensile strength of 980 MPa or more excellent in punching hole expandability and low-temperature toughness, and a method for producing the same
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
KR101965521B1 (en) Rolled steel bar or rolled wire material for cold-forged component
KR20170118879A (en) A bolt wire rod excellent in pickling resistance and resistance to delamination after tempering tempering,
JP2007270331A (en) Steel sheet superior in fine blanking workability, and manufacturing method therefor
JP6461672B2 (en) Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering
JP2010163666A (en) Case hardening steel having excellent coarse grain preventing property on carburizing and fatigue property, and production method thereof
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP4992277B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
WO2020230880A1 (en) Steel wire and hot-rolled wire material
JP4905031B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5489497B2 (en) Method for producing boron steel sheet with excellent hardenability
JP5601861B2 (en) Manufacturing method of boron steel rolled annealed steel sheet
JP2018044223A (en) Abrasion resistant steel sheet and manufacturing method therefor
JP5020689B2 (en) Machine structure steel pipe with excellent machinability
JP7334868B2 (en) steel parts
JP5633426B2 (en) Steel for heat treatment
KR20240038998A (en) hot rolled steel plate
JP2007231374A (en) Steel tube having excellent cold forging property and machining property and further having excellent hardening, and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R151 Written notification of patent or utility model registration

Ref document number: 5655986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350