WO2017222122A1 - Reinforcing bar and manufacturing method therefor - Google Patents

Reinforcing bar and manufacturing method therefor Download PDF

Info

Publication number
WO2017222122A1
WO2017222122A1 PCT/KR2016/013590 KR2016013590W WO2017222122A1 WO 2017222122 A1 WO2017222122 A1 WO 2017222122A1 KR 2016013590 W KR2016013590 W KR 2016013590W WO 2017222122 A1 WO2017222122 A1 WO 2017222122A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
reinforcing bar
steel
rebar
mpa
Prior art date
Application number
PCT/KR2016/013590
Other languages
French (fr)
Korean (ko)
Inventor
정준호
김원회
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160149539A external-priority patent/KR101828713B1/en
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2017222122A1 publication Critical patent/WO2017222122A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to reinforcing bars and methods for manufacturing the same, and more particularly, to light steel bars having high strength and high ductility and methods for manufacturing the same.
  • carbon steel has advantages of low cost and easy control of materials by heat treatment.
  • carbon steel is applied throughout an industry such as automobiles and mechanical parts.
  • carbon steel is being applied to the structure for securing the space of human activities.
  • structural steel is widely applied to skyscrapers, long bridges, large marine structures, underground structures, and the like.
  • the carbon steel can be applied to various industries in the form of rebar.
  • rebars applied to a structure, as the structure becomes very high and large, it is required to maintain a relatively light weight while having high strength and high ductility.
  • the present invention provides a lightweight reinforcing bar having high strength and high ductility through alloying components and process control.
  • One embodiment of the present invention is 0.1% to 1.5% by weight of carbon (C), 0.05% to 1.0% by weight of silicon (Si), 0.5% to 16.0% by weight of manganese (Mn), phosphorus (P) greater than 0 0.03 Weight%, Sulfur (S) greater than 0 0.03 weight%, Aluminum (Al) greater than 0 9.0 weight%, Chromium (Cr) 0.2 to 4.0 weight%, Nickel (Ni) 0.1 to 0.5 weight%, Nitrogen (N ) 0.005% to 0.015% by weight, 0.03% to 0.5% by weight of at least one of titanium (Ti), niobium (Nb) and vanadium (V), and an alloy composition containing the remaining iron (Fe) and unavoidable impurities Reheating the billet having at 1100 ° C.
  • Another embodiment of the invention is 0.1% to 1.5% by weight of carbon (C), 0.05% to 1.0% by weight of silicon (Si), 0.5% to 16.0% by weight of manganese (Mn), greater than 0 0.03 Weight%, Sulfur (S) greater than 0 0.03 weight%, Aluminum (Al) greater than 0 9.0 weight%, Chromium (Cr) 0.2 to 4.0 weight%, Nickel (Ni) 0.1 to 0.5 weight%, Nitrogen (N ) 0.005% to 0.015% by weight, 0.03% to 0.5% by weight of at least one of titanium (Ti), niobium (Nb) and vanadium (V), and an alloy composition containing the remaining iron (Fe) and unavoidable impurities
  • the present invention relates to a reinforcing bar having a tensile strength (TS) of 1100 MPa or more and a tensile strength x elongation (TS x EL) of 20000 MPa ⁇ % or more.
  • the reinforcing bar may have a specific gravity of 6.5 gm ⁇ 3 to 7.0 gm ⁇ 3 .
  • the rebar may include a Fe 2 AlC fine grain particles having an average particle diameter of 10nm to 100nm in a dispersed state.
  • the reinforcing bar may have a complex structure of ferrite, austenite and kappa ( ⁇ ) -carbide.
  • the present invention through the dispersion strengthening, by uniformly forming the Fe 3 AlC fine grain particles in the base metal, it is possible to provide a lightweight reinforcing bar having high strength and high ductility.
  • FIG. 1 shows a method for manufacturing rebar of the present invention.
  • Figure 2 shows the microstructure of the reinforcing bar prepared in Example 1 of the present invention.
  • Figure 3 shows the microstructure of the reinforcing bar prepared in Example 3 of the present invention.
  • Figure 4 shows the microstructure of the rebar produced in Comparative Example 1 of the present invention.
  • One embodiment of the present invention is 0.1% to 1.5% by weight of carbon (C), 0.05% to 1.0% by weight of silicon (Si), 0.5% to 16.0% by weight of manganese (Mn), phosphorus (P) greater than 0 0.03 Weight%, Sulfur (S) greater than 0 0.03 weight%, Aluminum (Al) greater than 0 9.0 weight%, Chromium (Cr) 0.2 to 4.0 weight%, Nickel (Ni) 0.1 to 0.5 weight%, Nitrogen (N ) 0.005% to 0.015% by weight, 0.03% to 0.5% by weight of at least one of titanium (Ti), niobium (Nb) and vanadium (V), and an alloy composition containing the remaining iron (Fe) and unavoidable impurities Reheating the billet having at 1100 ° C.
  • Another embodiment of the invention is 0.1% to 1.5% by weight of carbon (C), 0.05% to 1.0% by weight of silicon (Si), 0.5% to 16.0% by weight of manganese (Mn), greater than 0 0.03 Weight%, Sulfur (S) greater than 0 0.03 weight%, Aluminum (Al) greater than 0 9.0 weight%, Chromium (Cr) 0.2 to 4.0 weight%, Nickel (Ni) 0.1 to 0.5 weight%, Nitrogen (N ) 0.005% to 0.015% by weight, 0.03% to 0.5% by weight of at least one of titanium (Ti), niobium (Nb) and vanadium (V), and an alloy composition containing the remaining iron (Fe) and unavoidable impurities
  • the present invention relates to a reinforcing bar having a tensile strength (TS) of 1100 MPa or more and a tensile strength x elongation (TS x EL) of 20000 MPa ⁇ % or more. This reinforcing
  • the rebar may include a Fe 3 AlC fine grain particles having an average particle diameter of 10nm to 100nm in a dispersed state.
  • the rebar may have a specific gravity of steel of 6.5gm ⁇ 3 to 7.0gm ⁇ 3 .
  • the reinforcing bar may have a complex structure of ferrite, austenite and kappa ( ⁇ ) -carbide.
  • carbon (C) is added to secure the strength and hardness of the steel.
  • Carbon (C) is dissolved in austenite to form martensite structure when quenched.
  • the hardening hardness may be improved, and the deformation potential may be increased during the hardening.
  • the carbon (C) is added in an amount of 0.1% by weight to 1.5% by weight of the total weight. If the carbon content is less than 0.1% by weight, it is difficult to secure sufficient strength. On the contrary, when the content of carbon (C) exceeds 1.5% by weight, the strength of the steel is increased, but the core hardness is reduced, it is difficult to secure sufficient elongation, and the fraction of the pearlite phase in the microstructure is difficult to secure the desired workability.
  • silicon (Si) is added as a deoxidizer for removing oxygen in the steel in the steelmaking process.
  • silicon (Si) is a ferrite stabilizing element having a solid solution strengthening effect, which is effective in inducing ferrite formation and improving toughness and ductility of steel.
  • silicon (Si) also has the effect of increasing the softening resistance phase during tempering.
  • the silicon (Si) is added in an amount of 0.05 wt% to 1.0 wt% of the total weight.
  • the silicon addition effect may not be properly exhibited.
  • the content of silicon (Si) exceeds 1.0% by weight, there is a problem in that oxides are formed on the surface of the steel, thereby reducing ductility, tube structure, and the like.
  • Manganese (Mn) is a substituted element having an atomic diameter similar to iron, which increases the strength and toughness of the steel and increases the hardenability of the steel, but decreases the ductility at the time of increasing the strength more than the addition of carbon (C).
  • manganese (Mn) is a very effective element for solid solution strengthening contributes to the hardenability of the steel, and serves to improve the hardenability of the steel.
  • the manganese (Mn) is added in an amount of 0.5 wt% to 16.0 wt% of the total weight. If the content of manganese (Mn) is less than 0.5% by weight it may not be sufficient to improve the yield strength by strengthening the ferrite solid solution. On the contrary, when the content of manganese (Mn) exceeds 16% by weight, the amount of MnS-based nonmetallic inclusions increases, which may cause defects such as cracking during piping, and may cause hardening cracks, deformation, or hardening ability. Over-improvement increases the likelihood of cold microstructure being expressed in the final tissue.
  • Phosphorus (P) is an element that partially contributes to the strength improvement, but when excessively included, deteriorates the ductility of the steel and causes the final material deviation due to the billet center segregation. P is not a problem if it is uniformly distributed in the steel, but usually forms a harmful compound of Fe 3 P.
  • the Fe 3 P is extremely fragile and segregated so that it does not become homogenized even after annealing, but increases in processing such as forging and rolling.
  • the phosphorus (P) is limited to a content of more than 0 and 0.03% by weight of the total weight. When the content of phosphorus (P) exceeds 0.03% by weight, as well as the center segregation, as well as micro segregation is formed to adversely affect the material, and also may worsen the ductility and tubulation.
  • S is an element that contributes in part to the improvement of workability, but when excessively contained, it inhibits the toughness and ductility of the steel and combines with manganese to form MnS non-metallic inclusions, thereby causing cracks during processing of the steel. Sulfur can combine with iron to form FeS if there is not enough manganese in the steel.
  • the sulfur (S) is limited to a content of more than 0 and 0.03% by weight of the total weight.
  • the content of sulfur (S) exceeds 0.03% by weight, there is a problem that greatly inhibits the ductility and excessively generates the MnS non-metallic inclusions.
  • Aluminum (Al) serves as a deoxidizer to remove oxygen in the steel.
  • Al is generally used as a deoxidizer, but this patent aims to increase the lattice constant and replace Fe atoms by adding up to 9% by weight in order to maximize the effect of reducing the specific gravity of the steel grade itself. Adding about 7.5% wt has a specific gravity reduction of 10%.
  • the aluminum (Al) is added in an amount of more than 0 9.0 wt% of the total weight. If the content of aluminum (Al) exceeds 9.0% by weight, there is a problem that to form the Al 2 O 3 decreases the toughness.
  • Chromium (Cr) is an effective element added to secure the strength, and can improve the hardenability of the steel and combine with carbon to form carbide to improve the strength. By forming a homogeneous oxide film on the surface of the plate, it is possible to reduce the decarburized portion of the surface layer portion of the plate.
  • Chromium (Cr) is added in an amount of 0.2% to 4.0% by weight of the total weight. If the content of chromium (Cr) is less than 0.2% by weight, it may be difficult to secure the strength even if the carbon (C) content is high. On the contrary, when the content of chromium (Cr) is more than 4.0% by weight, there is a problem of deteriorating ductility or heat affected zone (HAZ) toughness.
  • Nickel (Ni) refines grains and is dissolved in austenite and ferrite to strengthen the matrix and improve hardenability.
  • nickel (Ni) is an element effective in promoting the formation of low-temperature phase microstructure to improve low-temperature impact toughness.
  • chromium or molybdenum When coexisted with chromium or molybdenum, it exhibits excellent hardening ability and facilitates heat treatment of large steels.
  • austenite stabilizing element it is combined with chromium to form austenitic stainless steel and heat resistant steel. It strengthens low temperature toughness of steel and does not harm weldability and malleability. By slowing the diffusion of carbon or nitrogen, it prevents deterioration of heat-resistant steel and improves the expansion rate, stiffness rate, and ceramic rate.
  • the nickel (Ni) is added in an amount of 0.1 wt% to 0.5 wt% of the total weight of the steel sheet according to the present invention. If the content of nickel (Ni) is less than 0.1% by weight, it may be difficult to properly exhibit the effect of adding nickel (Ni). On the contrary, when a large amount of nickel (Ni) is added in excess of 0.5% by weight, red brittleness may be caused.
  • Nitrogen (N) is an unavoidable impurity, and there is a problem of lowering the internal quality of steel by forming inclusions such as AlN and TiN. Nitrogen is added in an amount of 0.005% to 0.015% by weight.
  • the alloy composition may further include one or more of titanium (Ti) niobium (Nb) and vanadium (V) in an amount of 0.03% by weight to 0.5% by weight.
  • titanium (Ti) forms a carbide upon reheating, thereby suppressing austenite grain growth, thereby miniaturizing the structure of the steel and increasing strength.
  • the carbide forming ability of Ti, V, and Nb is stronger than chromium, and is used for improving stainless steel or cutting tool steel because it refines crystal grains.
  • the compound is formed with other metal elements and the precipitation hardening effect is remarkable, it is used for precipitation hardening steel or permanent magnets.
  • the titanium (Ti) may be added in an amount of 0.03% to 0.5% by weight of the total weight. If the content of titanium (Ti) is less than 0.03% by weight, the titanium addition effect may not be properly exhibited. On the contrary, when the content of titanium (Ti) is more than 0.5% by weight, the carbonized precipitates are coarsened, so that the effect of suppressing grain growth is reduced, and it is difficult to secure ductility.
  • Niobium (Nb) combines with carbon (C) and nitrogen (N) at high temperatures to form carbides or nitrides.
  • Niobium-based carbides or nitrides suppress grain growth during rolling to refine grains, thereby improving strength and low temperature toughness of the steel.
  • the niobium (Nb) is added in an amount of 0.03% to 0.5% by weight of the total weight.
  • the content of niobium (Nb) is less than 0.03% by weight, the niobium addition effect cannot be properly exhibited.
  • the content of niobium (Nb) exceeds 0.5% by weight, the ductility of the steel is lowered, and the strength and low temperature toughness according to the increase in niobium content are not improved any more, and are present in solid solution in the ferrite. There is a risk of deterioration.
  • Vanadium (V) combines with carbon (C) and nitrogen (N) at high temperatures to form carbides or nitrides.
  • vanadium (V) serves to improve the strength of the steel through the precipitation strengthening effect by the formation of precipitates.
  • the vanadium is added in an amount of 0.03% to 0.5% by weight of the total weight. If the content of vanadium is less than 0.03% by weight, it may be difficult to properly exhibit the effect of adding vanadium. On the contrary, when the amount of vanadium is added in excess of 0.5% by weight, the low temperature impact toughness may be reduced.
  • the remainder is made of iron (Fe) and impurities that are inevitably included in the steelmaking process.
  • the method of manufacturing the rebar includes a reheating step S100, a hot rolling step S200, a cooling step S300, and a reheating step S400.
  • the reheating step (S100) is not necessarily to be performed, but is carried out in order to derive the effect, such as re-use of the precipitate.
  • the steel of the semi-finished state which is the target of the hot rolling process has the alloy composition described above.
  • the semi-finished steel may for example be a billet.
  • the billet of the alloy composition described above is reheated to 1100 ° C to 1200 ° C.
  • Steel having the alloy composition may be obtained through a continuous casting process after obtaining a molten steel of a desired composition through a steelmaking process. By reheating these steels, the segregated components can be reclaimed during casting.
  • the reheating step (S100) when the reheating temperature is less than 1100 ° C, the segregated components during casting may not be sufficiently reusable, and there is a problem that a rolling load is caused during hot rolling.
  • titanium is not sufficiently reusable in the alloy component, coarsening of precipitates occurs, and it is difficult to secure sufficient strength.
  • the reheating temperature when the reheating temperature is higher than 1200 ° C., the austenite grain size may be increased, thereby making it difficult to secure the strength. Due to the excessive heating process, only the steel manufacturing cost may increase.
  • the reheated steel is hot rolled to a finish rolling temperature of Ac1 to 1000 °C.
  • grains may be refined due to repetition of recovery and recrystallization during rolling.
  • finish rolling temperature (FRT) is less than Ac1
  • the mixed structure is generated by the abnormal region rolling, which makes it difficult to secure the workability of the steel sheet and may cause a load in the rolling process.
  • finish rolling temperature (FRT) is higher than 1000 ° C.
  • the quality of the steel sheet due to the generation of surface scale of the steel sheet is deteriorated, and the size of grains due to the high temperature rolling is increased, thereby making it impossible to secure the strength.
  • Finish rolling temperature (FRT) in the hot rolling step (S200), for example, may be 850 ⁇ 1000 °C.
  • the hot rolled steel is cooled to a temperature of Ms-100 (° C) to Ms (° C) via a temp core.
  • the effect of suppressing coarse grain growth to the maximum in the cooling temperature range is excellent.
  • the cooled rolled material is regenerated to 500 ° C to 600 ° C. It is possible to secure a microstructure having ferrite, austenite and kappa ( ⁇ ) -carbide in the recuperation temperature range. If the recuperation temperature is less than 550 ° C., it is difficult to secure workability due to an increase in strength and a decrease in ductility due to grain refinement. On the contrary, when the coiling temperature exceeds 600 °C ductility is secured but the strength is lowered.
  • the rebar according to an embodiment of the present invention may have a tensile strength (TS) of 1100 MPa or more, and a tensile strength x elongation (TS ⁇ EL) value of 20000 MPa ⁇ or more.
  • TS tensile strength
  • TS ⁇ EL tensile strength x elongation
  • the billets were hot-rolled under the conditions shown in Table 2 to prepare specimens of Examples 1 to 3 and Comparative Examples 1 and 2.
  • Table 3 shows the mechanical property evaluation results for the specimens prepared according to Examples 1 to 3 and Comparative Examples 1 and 2. The physical property evaluation was shown by measuring the tensile strength (TS), yield strength (YS) and elongation (EL).
  • Example 1 992 1,133 24.8 28098.4 ⁇ + ⁇ + ⁇
  • Example 2 1,185 1,285 29 37265 ⁇ + ⁇ + ⁇
  • Example 3 1,094 1,179 19.8 23344.2 ⁇ + ⁇ + ⁇
  • Comparative Example 1 651 832 14.3 11897.6 ⁇ + Fe 3 C Comparative Example 2 600 770 10.1 7,777 ⁇ + ⁇
  • the specimens of Comparative Examples 1 and 2 had a tensile strength (TS) of less than 1000 MPa and a tensile strength x elongation (TS ⁇ EL) of less than 20000 MPa ⁇ %.
  • TS tensile strength
  • TS ⁇ EL tensile strength x elongation
  • Example 2 to 4 show the microstructure cross sections of Example 2, Example 3 and Comparative Example 1 specimens, respectively.
  • Example 2 In the case of the specimens of Example 2 and Example 3, the composite structure of ferrite, austenite and kappa ( ⁇ ) -carbide was shown, and in the comparative example 1 specimen, the composite structure of ferrite and cementite was shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

According to an embodiment, a manufacturing method for a reinforcing bar comprises the steps of: reheating a billet having a predetermined alloy composition at a temperature of 1100°C to 1200°C; hot rolling the reheated billet at a finish rolling temperature of the Ac1 point to 1000°C; cooling the hot rolled steel to a surface temperature of Ms-100 (°C) to Ms (°C) through a Tempcore process; and subjecting the cooled steel to recuperative heating at a temperature of 500°C to 600°C.

Description

철근 및 이의 제조 방법Rebar and its manufacturing method
본 발명은 철근 및 이의 제조 방법에 관한 것으로서, 보다 구체적으로는 고강도 및 고연성을 가지는 경량의 철근 및 이의 제조 방법에 관한 것이다.The present invention relates to reinforcing bars and methods for manufacturing the same, and more particularly, to light steel bars having high strength and high ductility and methods for manufacturing the same.
일반적으로, 탄소강은 가격이 저렴하고 열처리에 의한 재질 제어가 용이하다는 장점을 가진다. 일 예로서, 탄소강은 자동차, 기계부품 등 산업 전반에 걸쳐서 적용되고 있다. 또한, 이러한 탄소 강재는 인간활동의 공간 확보를 위한 구조물에 적용되고 있다. 일 예로서, 구조물용 강재는 초고층 빌딩, 장대 교량, 거대 해양 구조물, 지하 구조물 등에 널리 적용되고 있다. In general, carbon steel has advantages of low cost and easy control of materials by heat treatment. As an example, carbon steel is applied throughout an industry such as automobiles and mechanical parts. In addition, such carbon steel is being applied to the structure for securing the space of human activities. For example, structural steel is widely applied to skyscrapers, long bridges, large marine structures, underground structures, and the like.
한편, 상기 탄소 강재는 철근의 형태로 각종 산업에 적용될 수 있다. 일 예로서, 구조물에 적용되는 철근의 경우, 구조물이 초고층화되고 거대화될수록, 고강도 및 고연성을 가지는 반면에 상대적으로 경량을 유지할 것이 요청되고 있다.On the other hand, the carbon steel can be applied to various industries in the form of rebar. As an example, in the case of rebars applied to a structure, as the structure becomes very high and large, it is required to maintain a relatively light weight while having high strength and high ductility.
본 발명과 관련된 배경기술로는 대한민국 특허공개공보 제10-2014-0041279호가 있다. Background art related to the present invention is Korean Patent Publication No. 10-2014-0041279.
본 발명은 합금 성분 및 공정 제어를 통해, 고강도 및 고연성을 가지는 경량의 철근을 제공한다.The present invention provides a lightweight reinforcing bar having high strength and high ductility through alloying components and process control.
본 발명의 일 구현예는 탄소(C) 0.1 중량% 내지 1.5 중량%, 실리콘(Si) 0.05 중량% 내지 1.0 중량%, 망간(Mn) 0.5 중량% 내지 16.0 중량%, 인(P) 0 초과 0.03 중량%, 황(S) 0 초과 0.03 중량%, 알루미늄(Al) 0 초과 9.0 중량%, 크롬(Cr) 0.2 중량% 내지 4.0 중량%, 니켈(Ni) 0.1 중량% 내지 0.5 중량%, 질소(N) 0.005 중량% 내지 0.015 중량%, 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 1종 이상의 합 0.03 중량% 내지 0.5 중량%, 및 나머지 철(Fe)과 불가피한 불순물을 포함하는 합금조성을 갖는 빌렛을 1100℃ 내지 1200℃에서 재가열하는 단계; 상기 재가열된 빌렛을 Ac1 ~ 1000 ℃ 마무리 압연 온도로 열간압연하는 단계; 상기 열간압연된 강을 템프코어를 거쳐 표면은 Ms-100 (℃) 내지 Ms (℃)온도로 냉각하는 단계; 및 상기 냉각된 강을 500℃ 내지 600℃에서 복열하는 단계; 를 포함하는 철근의 제조 방법에 관한 것이다.One embodiment of the present invention is 0.1% to 1.5% by weight of carbon (C), 0.05% to 1.0% by weight of silicon (Si), 0.5% to 16.0% by weight of manganese (Mn), phosphorus (P) greater than 0 0.03 Weight%, Sulfur (S) greater than 0 0.03 weight%, Aluminum (Al) greater than 0 9.0 weight%, Chromium (Cr) 0.2 to 4.0 weight%, Nickel (Ni) 0.1 to 0.5 weight%, Nitrogen (N ) 0.005% to 0.015% by weight, 0.03% to 0.5% by weight of at least one of titanium (Ti), niobium (Nb) and vanadium (V), and an alloy composition containing the remaining iron (Fe) and unavoidable impurities Reheating the billet having at 1100 ° C. to 1200 ° C .; Hot rolling the reheated billet to an Ac1˜1000 ° C. finish rolling temperature; Cooling the hot rolled steel to a temperature of Ms-100 (° C.) to Ms (° C.) via a temp core; And recuperating the cooled steel at 500 ° C. to 600 ° C .; It relates to a method for producing a reinforcing bar comprising a.
본 발명의 다른 구현예는 탄소(C) 0.1 중량% 내지 1.5 중량%, 실리콘(Si) 0.05 중량% 내지 1.0 중량%, 망간(Mn) 0.5 중량% 내지 16.0 중량%, 인(P) 0 초과 0.03 중량%, 황(S) 0 초과 0.03 중량%, 알루미늄(Al) 0 초과 9.0 중량%, 크롬(Cr) 0.2 중량% 내지 4.0 중량%, 니켈(Ni) 0.1 중량% 내지 0.5 중량%, 질소(N) 0.005 중량% 내지 0.015 중량%, 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 1종 이상의 합 0.03 중량% 내지 0.5 중량%, 및 나머지 철(Fe)과 불가피한 불순물을 포함하는 합금조성을 갖고, 인장강도(TS) 1100 MPa 이상, 및 인장강도×연신율(TS×EL) 20000 MPa·% 이상을 만족하는 철근에 관한 것이다.Another embodiment of the invention is 0.1% to 1.5% by weight of carbon (C), 0.05% to 1.0% by weight of silicon (Si), 0.5% to 16.0% by weight of manganese (Mn), greater than 0 0.03 Weight%, Sulfur (S) greater than 0 0.03 weight%, Aluminum (Al) greater than 0 9.0 weight%, Chromium (Cr) 0.2 to 4.0 weight%, Nickel (Ni) 0.1 to 0.5 weight%, Nitrogen (N ) 0.005% to 0.015% by weight, 0.03% to 0.5% by weight of at least one of titanium (Ti), niobium (Nb) and vanadium (V), and an alloy composition containing the remaining iron (Fe) and unavoidable impurities The present invention relates to a reinforcing bar having a tensile strength (TS) of 1100 MPa or more and a tensile strength x elongation (TS x EL) of 20000 MPa ·% or more.
상기 철근은 6.5gm-3 내지 7.0gm-3의 비중을 가질 수 있다.The reinforcing bar may have a specific gravity of 6.5 gm −3 to 7.0 gm −3 .
상기 철근은 평균입경이 10nm 내지 100nm인 Fe2AlC 미세립 입자를 분산된 상태로 포함할 수 있다. The rebar may include a Fe 2 AlC fine grain particles having an average particle diameter of 10nm to 100nm in a dispersed state.
상기 철근은 페라이트, 오스테나이트 및 카파(κ)-카바이드의 복합 조직을 가질 수 있다.The reinforcing bar may have a complex structure of ferrite, austenite and kappa (κ) -carbide.
본 발명에 따르면, 분산 강화를 통해, 기지 금속 내에 Fe3AlC 미세립 입자를 균일하게 형성시킴으로써, 고강도 및 고연성을 가지는 경량의 철근을 제공할 수 있다.According to the present invention, through the dispersion strengthening, by uniformly forming the Fe 3 AlC fine grain particles in the base metal, it is possible to provide a lightweight reinforcing bar having high strength and high ductility.
도 1은 본 발명의 철근 제조방법을 나타낸 것이다. 1 shows a method for manufacturing rebar of the present invention.
도 2는 본 발명 실시예 1에서 제조된 철근의 미세조직을 나타낸 것이다.Figure 2 shows the microstructure of the reinforcing bar prepared in Example 1 of the present invention.
도 3은 본 발명 실시예 3에서 제조된 철근의 미세조직을 나타낸 것이다.Figure 3 shows the microstructure of the reinforcing bar prepared in Example 3 of the present invention.
도 4는 본 발명 비교예 1에서 제조된 철근의 미세조직을 나타낸 것이다.Figure 4 shows the microstructure of the rebar produced in Comparative Example 1 of the present invention.
본 발명의 일 구현예는 탄소(C) 0.1 중량% 내지 1.5 중량%, 실리콘(Si) 0.05 중량% 내지 1.0 중량%, 망간(Mn) 0.5 중량% 내지 16.0 중량%, 인(P) 0 초과 0.03 중량%, 황(S) 0 초과 0.03 중량%, 알루미늄(Al) 0 초과 9.0 중량%, 크롬(Cr) 0.2 중량% 내지 4.0 중량%, 니켈(Ni) 0.1 중량% 내지 0.5 중량%, 질소(N) 0.005 중량% 내지 0.015 중량%, 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 1종 이상의 합 0.03 중량% 내지 0.5 중량%, 및 나머지 철(Fe)과 불가피한 불순물을 포함하는 합금조성을 갖는 빌렛을 1100 ℃ 내지 1200 ℃에서 재가열하는 단계; 상기 재가열된 빌렛을 Ac1 ~ 1000 ℃ 마무리 압연 온도로 열간압연하는 단계; 상기 열간압연된 강을 템프코어를 거쳐 표면은 Ms-100 내지 Ms (℃)온도로 냉각하는 단계; 및 상기 냉각된 강을 500 ℃ 내지 600 ℃에서 복열하는 단계; 를 포함하는 철근의 제조 방법에 관한 것이다. 이를 통해, 기지 금속 내에 Fe3AlC 미세립 입자를 균일하게 형성시키는 분산 강화의 방법으로, 고강도 및 고연성을 가지는 경량의 철근을 제공할 수 있다. One embodiment of the present invention is 0.1% to 1.5% by weight of carbon (C), 0.05% to 1.0% by weight of silicon (Si), 0.5% to 16.0% by weight of manganese (Mn), phosphorus (P) greater than 0 0.03 Weight%, Sulfur (S) greater than 0 0.03 weight%, Aluminum (Al) greater than 0 9.0 weight%, Chromium (Cr) 0.2 to 4.0 weight%, Nickel (Ni) 0.1 to 0.5 weight%, Nitrogen (N ) 0.005% to 0.015% by weight, 0.03% to 0.5% by weight of at least one of titanium (Ti), niobium (Nb) and vanadium (V), and an alloy composition containing the remaining iron (Fe) and unavoidable impurities Reheating the billet having at 1100 ° C. to 1200 ° C .; Hot rolling the reheated billet to an Ac1˜1000 ° C. finish rolling temperature; Cooling the hot rolled steel to a temperature of Ms-100 to Ms (° C.) through a temp core; And recuperating the cooled steel at 500 ° C. to 600 ° C .; It relates to a method for producing a reinforcing bar comprising a. Through this, it is possible to provide a lightweight reinforcing bar having high strength and high ductility by a method of dispersion strengthening to uniformly form Fe 3 AlC fine grain particles in a base metal.
본 발명의 다른 구현예는 탄소(C) 0.1 중량% 내지 1.5 중량%, 실리콘(Si) 0.05 중량% 내지 1.0 중량%, 망간(Mn) 0.5 중량% 내지 16.0 중량%, 인(P) 0 초과 0.03 중량%, 황(S) 0 초과 0.03 중량%, 알루미늄(Al) 0 초과 9.0 중량%, 크롬(Cr) 0.2 중량% 내지 4.0 중량%, 니켈(Ni) 0.1 중량% 내지 0.5 중량%, 질소(N) 0.005 중량% 내지 0.015 중량%, 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 1종 이상의 합 0.03 중량% 내지 0.5 중량%, 및 나머지 철(Fe)과 불가피한 불순물을 포함하는 합금조성을 갖고, 인장강도(TS) 1100 MPa 이상, 및 인장강도×연신율(TS×EL) 20000 MPa·% 이상을 만족하는 철근에 관한 것이다. 이러한 철근는 전술한 철근 제조방법에 의해 달성된다.Another embodiment of the invention is 0.1% to 1.5% by weight of carbon (C), 0.05% to 1.0% by weight of silicon (Si), 0.5% to 16.0% by weight of manganese (Mn), greater than 0 0.03 Weight%, Sulfur (S) greater than 0 0.03 weight%, Aluminum (Al) greater than 0 9.0 weight%, Chromium (Cr) 0.2 to 4.0 weight%, Nickel (Ni) 0.1 to 0.5 weight%, Nitrogen (N ) 0.005% to 0.015% by weight, 0.03% to 0.5% by weight of at least one of titanium (Ti), niobium (Nb) and vanadium (V), and an alloy composition containing the remaining iron (Fe) and unavoidable impurities The present invention relates to a reinforcing bar having a tensile strength (TS) of 1100 MPa or more and a tensile strength x elongation (TS x EL) of 20000 MPa ·% or more. This reinforcing bar is achieved by the above-described method for producing rebar.
상기 철근은 평균입경이 10nm 내지 100nm인 Fe3AlC 미세립 입자를 분산된 상태로 포함할 수 있다. The rebar may include a Fe 3 AlC fine grain particles having an average particle diameter of 10nm to 100nm in a dispersed state.
상기 철근은 강의 비중이 6.5gm-3 내지 7.0gm-3일 수 있다.The rebar may have a specific gravity of steel of 6.5gm −3 to 7.0gm −3 .
상기 철근은 페라이트, 오스테나이트 및 카파(κ)-카바이드의 복합 조직을 가질 수 있다.The reinforcing bar may have a complex structure of ferrite, austenite and kappa (κ) -carbide.
이하, 본 발명에 따른 철근에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다. Hereinafter, the role and content of each component included in the rebar according to the present invention will be described.
탄소(C)Carbon (C)
본 발명에서 탄소(C)는 강의 강도를 및 경도를 확보하기 위해 첨가된다. 탄소(C)는 오스테나이트에 고용되어 담금질시 마르텐사이트조직을 형성시킨다. 또한, 탄소량 증가에 따라 담금질 경도를 향상되고, 담금질시 변형 가능성이 커질 수 있다. In the present invention, carbon (C) is added to secure the strength and hardness of the steel. Carbon (C) is dissolved in austenite to form martensite structure when quenched. In addition, as the amount of carbon increases, the hardening hardness may be improved, and the deformation potential may be increased during the hardening.
상기 탄소(C)는 전체 중량의 0.1 중량% 내지 1.5 중량%의 함량으로 첨가된다. 탄소의 함량이 0.1 중량% 미만일 경우에는 충분한 강도 확보가 어렵다. 반대로, 탄소(C)의 함량이 1.5 중량%를 초과할 경우에는 강의 강도는 증가하나 심부경도가 저하되고, 충분한 연신율을 확보하기 어려우며, 미세조직 중 펄라이트 상의 분율이 높아져 원하는 가공성을 확보하기 어렵다.The carbon (C) is added in an amount of 0.1% by weight to 1.5% by weight of the total weight. If the carbon content is less than 0.1% by weight, it is difficult to secure sufficient strength. On the contrary, when the content of carbon (C) exceeds 1.5% by weight, the strength of the steel is increased, but the core hardness is reduced, it is difficult to secure sufficient elongation, and the fraction of the pearlite phase in the microstructure is difficult to secure the desired workability.
실리콘(silicon( SiSi ))
본 발명에서 실리콘(Si)은 제강공정에서 강 중의 산소를 제거하기 위한 탈산제로 첨가된다. 또한, 실리콘(Si)은 고용강화 효과를 갖는 페라이트 안정화 원소로서 페라이트 형성을 유도하여 강의 인성 및 연성을 개선하는데 효과적이다. 또한, 실리콘(Si)은 뜨임 시 연화 저항상을 증대시키는 효과도 있다.In the present invention, silicon (Si) is added as a deoxidizer for removing oxygen in the steel in the steelmaking process. In addition, silicon (Si) is a ferrite stabilizing element having a solid solution strengthening effect, which is effective in inducing ferrite formation and improving toughness and ductility of steel. In addition, silicon (Si) also has the effect of increasing the softening resistance phase during tempering.
상기 실리콘(Si)은 전체 중량의 0.05 중량% 내지 1.0 중량%의 함량으로 첨가된다. 실리콘(Si)의 함량이 0.05 중량% 미만일 경우에는 실리콘 첨가 효과를 제대로 발휘할 수 없다. 반대로, 실리콘(Si)의 함량이 1.0 중량%를 초과할 경우에는 강 표면에 산화물을 형성하여 강의 연성, 조관성 등을 저하시키는 문제점이 있다.The silicon (Si) is added in an amount of 0.05 wt% to 1.0 wt% of the total weight. When the content of silicon (Si) is less than 0.05% by weight, the silicon addition effect may not be properly exhibited. On the contrary, when the content of silicon (Si) exceeds 1.0% by weight, there is a problem in that oxides are formed on the surface of the steel, thereby reducing ductility, tube structure, and the like.
망간(Mn)Manganese (Mn)
망간(Mn)은 철과 유사한 원자 직경을 갖는 치환형 원소로서, 강의 강도 및 인성을 증가시키고 강의 소입성을 증가시키면서도, 탄소(C)의 첨가보다도 강도 상승시 연성의 저하가 적다. 또한, 망간(Mn)은 고용강화에 매우 효과적인 원소로 강의 담금질성 향상에 기여하고, 강의 경화능을 향상시키는 역할을 한다. Manganese (Mn) is a substituted element having an atomic diameter similar to iron, which increases the strength and toughness of the steel and increases the hardenability of the steel, but decreases the ductility at the time of increasing the strength more than the addition of carbon (C). In addition, manganese (Mn) is a very effective element for solid solution strengthening contributes to the hardenability of the steel, and serves to improve the hardenability of the steel.
상기 망간(Mn)은 전체 중량의 0.5 중량% 내지 16.0 중량%의 함량으로 첨가된다. 망간(Mn)의 함량이 0.5 중량% 미만일 경우에는 페라이트를 고용강화에 의한 항복강도 향상이 충분하지 못할 수 있다. 반대로, 망간(Mn)의 함량이 16 중량%를 초과할 경우에는 MnS계 비금속 개재물의 양이 증가하는 데 기인하여 조관 시 크랙 발생 등의 결함을 유발할 수 있고, 담금질균열이나 변형을 유발하거나 경화능이 과도하게 향상되어 최종 조직에 저온 미세조직이 발현될 가능성이 높아진다. The manganese (Mn) is added in an amount of 0.5 wt% to 16.0 wt% of the total weight. If the content of manganese (Mn) is less than 0.5% by weight it may not be sufficient to improve the yield strength by strengthening the ferrite solid solution. On the contrary, when the content of manganese (Mn) exceeds 16% by weight, the amount of MnS-based nonmetallic inclusions increases, which may cause defects such as cracking during piping, and may cause hardening cracks, deformation, or hardening ability. Over-improvement increases the likelihood of cold microstructure being expressed in the final tissue.
인(P)Phosphorus (P)
인(P)은 강도 향상에 일부 기여하는 원소이나, 과도하게 포함될 경우 강의 연성을 악화시키고, 빌렛 중심 편석에 의해 최종 재질 편차를 발생시키는 원인이 된다. P은 강중에 균일하게 분포되어 있으면 별 문제가 되지 않지만 보통 Fe3P의 해로운 화합물을 형성한다. 이 Fe3P는 극히 취약하고 편석되어 있어서 풀림처리를 해도 균질화되지 않고 단조, 압연 등 가공시 길게 늘어난다.Phosphorus (P) is an element that partially contributes to the strength improvement, but when excessively included, deteriorates the ductility of the steel and causes the final material deviation due to the billet center segregation. P is not a problem if it is uniformly distributed in the steel, but usually forms a harmful compound of Fe 3 P. The Fe 3 P is extremely fragile and segregated so that it does not become homogenized even after annealing, but increases in processing such as forging and rolling.
상기 인(P)은 전체 중량의 0 초과 0.03 중량%의 함량으로 제한된다. 인(P)의 함량이 0.03 중량%를 초과할 경우에는 중심 편석은 물론 미세 편석도 형성하여 재질에 좋지 않은 영향을 주며, 또한 연성 및 조관성을 악화시킬 수 있다.The phosphorus (P) is limited to a content of more than 0 and 0.03% by weight of the total weight. When the content of phosphorus (P) exceeds 0.03% by weight, as well as the center segregation, as well as micro segregation is formed to adversely affect the material, and also may worsen the ductility and tubulation.
황(S)Sulfur (S)
황(S)은 가공성 향상에 일부 기여하는 원소이나, 과도하게 포함될 경우 강의 인성 및 연성을 저해하고, 망간과 결합하여 MnS 비금속 개재물을 형성함으로써 강의 가공 중 크랙을 발생시킨다. 황은 강 중에 망간의 양이 충분하지 못할 경우 철과 결합하여 FeS를 형성할 수 있다. Sulfur (S) is an element that contributes in part to the improvement of workability, but when excessively contained, it inhibits the toughness and ductility of the steel and combines with manganese to form MnS non-metallic inclusions, thereby causing cracks during processing of the steel. Sulfur can combine with iron to form FeS if there is not enough manganese in the steel.
상기 황(S)은 전체 중량의 0 초과 0.03 중량%의 함량으로 제한된다. 황(S)의 함량이 0.03 중량%를 초과하는 경우에는 연성을 크게 저해하고 MnS 비금속 개재물을 과도하게 발생시키는 문제가 있다.The sulfur (S) is limited to a content of more than 0 and 0.03% by weight of the total weight. When the content of sulfur (S) exceeds 0.03% by weight, there is a problem that greatly inhibits the ductility and excessively generates the MnS non-metallic inclusions.
알루미늄(Al)Aluminum (Al)
알루미늄(Al)은 강 중의 산소를 제거하기 위한 탈산제 역할을 한다. Al은 일반적으로 탈산제로서 사용되나, 본 특허에서는 강종 자체의 비중을 감소시키는 효과를 최대화 하기위해 9 중량%까지 첨가하여 격자상수 증가 및 Fe 원자를 치환하고자 목적하였다. 약 7.5%wt 첨가시 10%의 비중 감소 효과가 있다. Aluminum (Al) serves as a deoxidizer to remove oxygen in the steel. Al is generally used as a deoxidizer, but this patent aims to increase the lattice constant and replace Fe atoms by adding up to 9% by weight in order to maximize the effect of reducing the specific gravity of the steel grade itself. Adding about 7.5% wt has a specific gravity reduction of 10%.
상기 알루미늄(Al)은 전체 중량의 0 초과 9.0 중량%의 함량으로 첨가된다. 알루미늄(Al)의 함량이 9.0 중량%를 초과할 경우에는 Al2O3를 형성하여 인성을 저하시키는 문제점이 있다.The aluminum (Al) is added in an amount of more than 0 9.0 wt% of the total weight. If the content of aluminum (Al) exceeds 9.0% by weight, there is a problem that to form the Al 2 O 3 decreases the toughness.
크롬(chrome( CrCr ))
크롬(Cr)은 강도를 확보하기 위해 첨가되는 유효한 원소로, 강의 경화능을 향상시키고 탄소와 결합하여 탄화물을 형성시켜 강도를 향상시킬 수 있다. 판재의 표면에 균질한 산화막을 형성시켜 판재의 표층부의 탈탄부를 저감시킬 수 있다.Chromium (Cr) is an effective element added to secure the strength, and can improve the hardenability of the steel and combine with carbon to form carbide to improve the strength. By forming a homogeneous oxide film on the surface of the plate, it is possible to reduce the decarburized portion of the surface layer portion of the plate.
크롬(Cr)은 전체 중량의 0.2 중량% 내지 4.0 중량%의 함량으로 첨가된다. 크롬(Cr)의 함량이 0.2 중량% 미만일 경우에는 탄소(C) 함량이 높아도 강도를 확보하는 데 어려움이 따를 수 있다. 반대로, 크롬(Cr)의 함량이 4.0 중량%를 초과할 경우에는 연성이나 열영향부(HAZ) 인성을 저하시키는 문제점이 있다.Chromium (Cr) is added in an amount of 0.2% to 4.0% by weight of the total weight. If the content of chromium (Cr) is less than 0.2% by weight, it may be difficult to secure the strength even if the carbon (C) content is high. On the contrary, when the content of chromium (Cr) is more than 4.0% by weight, there is a problem of deteriorating ductility or heat affected zone (HAZ) toughness.
니켈(nickel( NiNi ))
니켈(Ni)은 결정립을 미세화하고 오스테나이트 및 페라이트에 고용되어 기지를 강화시키고, 경화능을 향상시킨다. 특히, 니켈(Ni)은 저온상 미세조직의 형성을 촉진시켜 저온 충격인성을 향상시키는데 효과적인 원소이다. 크롬이나 몰리브데넘과 공존하면 우수한 경화능을 나타내며 대형 강재의 열처리를 용이하게 만들며 오스테나이트 안정화 원소이므로 크롬과 조합하여 오스테나이트계 스테인리스강, 내열강 등을 형성한다. 강의 저온인성을 강화시키며 용접성, 가단성을 해치지 않는다. 탄소나 질소의 확산을 느리게 만들기 때문에 내열강의 열화를 방지하고 팽창률, 강성률, 도자율 등이 향상된다.Nickel (Ni) refines grains and is dissolved in austenite and ferrite to strengthen the matrix and improve hardenability. In particular, nickel (Ni) is an element effective in promoting the formation of low-temperature phase microstructure to improve low-temperature impact toughness. When coexisted with chromium or molybdenum, it exhibits excellent hardening ability and facilitates heat treatment of large steels. Since it is an austenite stabilizing element, it is combined with chromium to form austenitic stainless steel and heat resistant steel. It strengthens low temperature toughness of steel and does not harm weldability and malleability. By slowing the diffusion of carbon or nitrogen, it prevents deterioration of heat-resistant steel and improves the expansion rate, stiffness rate, and ceramic rate.
상기 니켈(Ni)은 본 발명에 따른 강판 전체 중량의 0.1 중량% 내지 0.5 중량%의 함량으로 첨가된다. 니켈(Ni)의 함량이 0.1 중량% 미만인 경우 니켈(Ni) 첨가 효과를 제대로 발휘하는데 어려움이 따를 수 있다. 반대로, 니켈(Ni)의 함량이 0.5 중량%를 초과하여 다량 첨가될 경우에는 적열취성을 유발할 수 있다.The nickel (Ni) is added in an amount of 0.1 wt% to 0.5 wt% of the total weight of the steel sheet according to the present invention. If the content of nickel (Ni) is less than 0.1% by weight, it may be difficult to properly exhibit the effect of adding nickel (Ni). On the contrary, when a large amount of nickel (Ni) is added in excess of 0.5% by weight, red brittleness may be caused.
질소(N)Nitrogen (N)
질소(N)는 불가피한 불순물로, AlN, TiN 등의 개재물을 형성시켜 강 내부 품질을 저하시키는 문제가 있다. 질소는 0.005 중량% 내지 0.015 중량%의 함량으로 첨가된다.Nitrogen (N) is an unavoidable impurity, and there is a problem of lowering the internal quality of steel by forming inclusions such as AlN and TiN. Nitrogen is added in an amount of 0.005% to 0.015% by weight.
질소(N)의 함량이 0.005 중량% 미만일 경우에는 질소의 함량을 극소량으로 제어해야 하는 데 따른 제조 비용의 증가와 더불어, 관리의 어려움이 있다. 반대로, 질소(N)의 함량이 0.015 중량%를 초과할 경우 고용 질소가 증가하여 강의 충격특성 및 연신율을 떨어뜨리고 용접부의 인성을 크게 저하시키는 문제점이 있다.If the content of nitrogen (N) is less than 0.005% by weight, there is a difficulty in management, with an increase in manufacturing cost due to the very small amount of nitrogen to be controlled. On the contrary, when the content of nitrogen (N) exceeds 0.015% by weight, there is a problem in that solid solution nitrogen increases, which lowers the impact property and elongation of the steel and greatly reduces the toughness of the weld.
티타늄(titanium( TiTi ), ), 나오븀Naobium (( NbNb ), 및 바나듐(V)), And vanadium (V)
상기 합금조성은 티타늄(Ti) 니오븀(Nb) 및 바나듐(V) 중 1종 이상을 총합 0.03 중량% 내지 0.5 중량%의 함량으로 더 포함할 수 있다.The alloy composition may further include one or more of titanium (Ti) niobium (Nb) and vanadium (V) in an amount of 0.03% by weight to 0.5% by weight.
본 발명에서 티타늄(Ti)은 재가열시 탄화물을 형성하여 오스테나이트 결정립 성장을 억제하여, 강의 조직을 미세화하고 강도를 증가시키는 역할을 한다. Ti, V, Nb의 탄화물 형성능은 크롬보다 강하며 결정립을 미세화시키기 때문에 스테인리스강이나 절삭공구강의 개량에도 이용된다. 또한, 타 금속원소와도 화합물을 형성하여 석출경화 효과가 현저하기 때문에 석출경화형강이나 영구자석 등에 이용된다 점이다.In the present invention, titanium (Ti) forms a carbide upon reheating, thereby suppressing austenite grain growth, thereby miniaturizing the structure of the steel and increasing strength. The carbide forming ability of Ti, V, and Nb is stronger than chromium, and is used for improving stainless steel or cutting tool steel because it refines crystal grains. In addition, since the compound is formed with other metal elements and the precipitation hardening effect is remarkable, it is used for precipitation hardening steel or permanent magnets.
상기 티타늄(Ti)은 전체 중량의 0.03 중량% 내지 0.5 중량%의 함량으로 첨가될 수 있다. 티타늄(Ti)의 함량이 0.03 중량% 미만일 경우에는 티타늄 첨가 효과를 제대로 발휘할 수 없다. 반대로, 티타늄(Ti)의 함량이 0.5 중량%를 초과할 경우에는 탄화계 석출물이 조대해져 결정립 성장을 억제하는 효과가 저하되고, 연성 확보에 어려움이 있다. The titanium (Ti) may be added in an amount of 0.03% to 0.5% by weight of the total weight. If the content of titanium (Ti) is less than 0.03% by weight, the titanium addition effect may not be properly exhibited. On the contrary, when the content of titanium (Ti) is more than 0.5% by weight, the carbonized precipitates are coarsened, so that the effect of suppressing grain growth is reduced, and it is difficult to secure ductility.
니오븀(Nb)은 고온에서 탄소(C) 및 질소(N)와 결합하여 탄화물 또는 질화물을 형성한다. 니오븀계 탄화물 또는 질화물은 압연시 결정립 성장을 억제하여 결정립을 미세화시킴으로써 강의 강도와 저온인성을 향상시킨다.Niobium (Nb) combines with carbon (C) and nitrogen (N) at high temperatures to form carbides or nitrides. Niobium-based carbides or nitrides suppress grain growth during rolling to refine grains, thereby improving strength and low temperature toughness of the steel.
상기 니오븀(Nb)은 전체 중량의0.03 중량% 내지 0.5 중량%의 함량으로 첨가된다. 니오븀(Nb)의 함량이 0.03 중량% 미만일 경우에는 니오븀 첨가 효과를 제대로 발휘할 수 없다. 반대로, 니오븀(Nb)의 함량이 0.5 중량%를 초과할 경우에는 강의 연성을 저하시키며, 니오븀 함량 증가에 따른 강도와 저온인성은 더 이상 향상되지 않고 페라이트 내에 고용된 상태로 존재하여 오히려 충격인성을 저하시킬 위험이 있다. The niobium (Nb) is added in an amount of 0.03% to 0.5% by weight of the total weight. When the content of niobium (Nb) is less than 0.03% by weight, the niobium addition effect cannot be properly exhibited. On the contrary, when the content of niobium (Nb) exceeds 0.5% by weight, the ductility of the steel is lowered, and the strength and low temperature toughness according to the increase in niobium content are not improved any more, and are present in solid solution in the ferrite. There is a risk of deterioration.
바나듐(V)은 고온에서 탄소(C) 및 질소(N)와 결합하여 탄화물 또는 질화물을 형성한다. 또한, 바나듐(V)은 석출물 형성에 의한 석출강화 효과를 통하여 강의 강도를 향상시키는 역할을 한다. Vanadium (V) combines with carbon (C) and nitrogen (N) at high temperatures to form carbides or nitrides. In addition, vanadium (V) serves to improve the strength of the steel through the precipitation strengthening effect by the formation of precipitates.
상기 바나듐은 전체 중량의 0.03 중량% 내지 0.5 중량%의 함량으로 첨가된다. 바나듐의 함량이 0.03 중량% 미만일 경우에는 바나듐 첨가 효과를 제대로 발휘하는데 어려움이 따를 수 있다. 반대로, 바나듐의 첨가량이 0.5 중량%를 초과하여 과다 첨가될 경우에는 저온 충격인성을 저하시키는 요인이 될 수 있다.The vanadium is added in an amount of 0.03% to 0.5% by weight of the total weight. If the content of vanadium is less than 0.03% by weight, it may be difficult to properly exhibit the effect of adding vanadium. On the contrary, when the amount of vanadium is added in excess of 0.5% by weight, the low temperature impact toughness may be reduced.
전술한 합금조성의 성분들 외에 나머지는 철(Fe)과 제강 과정 등에서 불가피하게 포함되는 불순물로 이루어진다.In addition to the components of the alloy composition described above, the remainder is made of iron (Fe) and impurities that are inevitably included in the steelmaking process.
철근의 제조 방법Manufacturing method of rebar
도 1은 본 발명의 일 구현예 따른 철근의 제조 방법을 개략적으로 나타낸 순서도이다. 도 1을 참조하면, 상기 철근의 제조 방법은 재가열 단계(S100), 열간압연 단계(S200), 냉각 단계(S300) 및 복열단계(S400)를 포함한다. 이때, 재가열 단계(S100)는 반드시 수행되어야 하는 것은 아니나, 석출물의 재고용 등의 효과를 도출하기 위하여 실시된다. 1 is a flow chart schematically showing a method for manufacturing a rebar according to an embodiment of the present invention. Referring to FIG. 1, the method of manufacturing the rebar includes a reheating step S100, a hot rolling step S200, a cooling step S300, and a reheating step S400. At this time, the reheating step (S100) is not necessarily to be performed, but is carried out in order to derive the effect, such as re-use of the precipitate.
본 발명에 따른 철근 제조 방법에서 열연공정의 대상이 되는 반제품 상태의 강은 전술한 합금조성을 갖는다. 상기 반제품 상태의 강은 예를 들면 빌렛일 수 있다.In the rebar manufacturing method according to the invention the steel of the semi-finished state, which is the target of the hot rolling process has the alloy composition described above. The semi-finished steel may for example be a billet.
재가열Reheat
재가열 단계(S100)에서는 전술한 합금조성의 빌렛을 1100℃ 내지 1200℃로 재가열한다. 상기 합금조성을 갖는 강은 제강공정을 통해 원하는 조성의 용강을 얻은 다음에 연속주조공정을 통해 얻어질 수 있다. 이러한 강의 재가열을 통하여, 주조 시 편석된 성분을 재고용할 수 있다.In the reheating step (S100), the billet of the alloy composition described above is reheated to 1100 ° C to 1200 ° C. Steel having the alloy composition may be obtained through a continuous casting process after obtaining a molten steel of a desired composition through a steelmaking process. By reheating these steels, the segregated components can be reclaimed during casting.
재가열 단계(S100)에서, 재가열 온도가 1100℃ 미만일 경우에는 주조 시 편석된 성분이 충분히 재고용되지 못하며, 열간압연 시 압연 부하가 야기되는 문제점이 있다. 또한, 합금성분 중 티타늄이 충분히 재고용 되지 못하여, 석출물의 조대화가 발생하고, 충분한 강도 확보가 어렵다. 반대로, 재가열 온도가 1200℃를 초과할 경우에는 오스테나이트 결정입도가 증가하여 강도 확보가 어려울 수 있으며, 과도한 가열 공정으로 인하여 강의 제조 비용만 상승할 수 있다.In the reheating step (S100), when the reheating temperature is less than 1100 ° C, the segregated components during casting may not be sufficiently reusable, and there is a problem that a rolling load is caused during hot rolling. In addition, titanium is not sufficiently reusable in the alloy component, coarsening of precipitates occurs, and it is difficult to secure sufficient strength. On the contrary, when the reheating temperature is higher than 1200 ° C., the austenite grain size may be increased, thereby making it difficult to secure the strength. Due to the excessive heating process, only the steel manufacturing cost may increase.
열간압연Hot rolled
열간압연 단계(S200)에서는 재가열된 강을 Ac1 내지 1000 ℃의 마무리 압연온도로 열간압연한다. 이러한 경우, 압연 중 회복 및 재결정의 반복으로 인하여 결정립이 미세화될 수 있다.In the hot rolling step (S200), the reheated steel is hot rolled to a finish rolling temperature of Ac1 to 1000 ℃. In such a case, grains may be refined due to repetition of recovery and recrystallization during rolling.
마무리 압연온도(FRT)가 Ac1 미만일 경우에는 이상영역의 압연에 의해 혼립조직이 발생하여 강판의 가공성을 확보하기 어려우며, 압연 공정에 부하를 야기할 수 있다. 반대로, 마무리 압연온도(FRT)가 1000℃ 초과일 경우에는 강판의 표면 스케일 발생으로 인한 강판의 품질이 저하되고, 고온 압연으로 인한 결정립의 크기가 증가 되어 강도 확보가 불가능해 진다.If the finish rolling temperature (FRT) is less than Ac1, the mixed structure is generated by the abnormal region rolling, which makes it difficult to secure the workability of the steel sheet and may cause a load in the rolling process. On the contrary, when the finish rolling temperature (FRT) is higher than 1000 ° C., the quality of the steel sheet due to the generation of surface scale of the steel sheet is deteriorated, and the size of grains due to the high temperature rolling is increased, thereby making it impossible to secure the strength.
열간압연 단계(S200)에서 마무리 압연온도(FRT) 예를 들면, 850~1000℃일 수 있다.Finish rolling temperature (FRT) in the hot rolling step (S200), for example, may be 850 ~ 1000 ℃.
냉각Cooling
냉각 단계(S300)에서는 상기 열간압연된 강을 템프코어를 거쳐 표면은 Ms-100 (℃) 내지 Ms (℃)온도로 냉각한다. 상기 냉각 온도 범위에서 조대한 결정립 성장을 최대한 억제하는 효과가 우수하다.In the cooling step (S300), the hot rolled steel is cooled to a temperature of Ms-100 (° C) to Ms (° C) via a temp core. The effect of suppressing coarse grain growth to the maximum in the cooling temperature range is excellent.
복열Recurrent
복열하는 단계(S400)에서는 냉각된 압연재를 500℃ 내지 600℃로 복열시킨다. 상기 복열온도 범위에서 페라이트, 오스테나이트 및 카파(κ)-카바이드를 구비하는 미세조직을 확보할 수 있다. 복열온도가 550℃ 미만일 경우 결정립 미세화에 인해 강도 상승 및 연성 저하로 인한 가공성을 확보하기 어렵다. 반대로, 권취온도가 600℃를 초과하는 경우 연성은 확보 되나 강도가 저하되는 단점이 있다. In the recuperation step (S400), the cooled rolled material is regenerated to 500 ° C to 600 ° C. It is possible to secure a microstructure having ferrite, austenite and kappa (κ) -carbide in the recuperation temperature range. If the recuperation temperature is less than 550 ° C., it is difficult to secure workability due to an increase in strength and a decrease in ductility due to grain refinement. On the contrary, when the coiling temperature exceeds 600 ℃ ductility is secured but the strength is lowered.
상술한 S100 내지 S400 단계를 포함하는 공정을 진행하여, 본 발명의 실시 예에 따르는 철근을 제조할 수 있다. 본 발명의 실시예에 따르면, 기지 금속 내에 Fe3AlC 미세립 입자를 균일하게 형성시키는 분산 강화를 통해, 고강도 및 고연성을 가지는 경량의 철근을 제공할 수 있다. 일 예로서, 본 발명의 실시예에 따르는 철근은 1100 MPa 이상의 인장강도(TS), 및 20000 MPa·이상의 인장강도×연신율(TS×EL)값을 가질 수 있다.By proceeding the process including the steps S100 to S400 described above, it is possible to manufacture a rebar according to an embodiment of the present invention. According to an embodiment of the present invention, through the dispersion strengthening to uniformly form the Fe 3 AlC fine grain particles in the base metal, it is possible to provide a lightweight reinforcing bar having high strength and high ductility. As an example, the rebar according to the embodiment of the present invention may have a tensile strength (TS) of 1100 MPa or more, and a tensile strength x elongation (TS × EL) value of 20000 MPa · or more.
실시예Example
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
1. 시편의 제조1. Preparation of Specimen
하기 표 1에 표시된 합금조성 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 빌렛을 준비하였다.To prepare a billet consisting of the alloy composition shown in Table 1 and the remaining iron (Fe) and inevitable impurities.
상기 빌렛을 하기 표 2에 표시된 조건으로 열간하연하여 실시예 1 내지 3 및 비교예 1 및 2의 시편을 제조하였다.The billets were hot-rolled under the conditions shown in Table 2 to prepare specimens of Examples 1 to 3 and Comparative Examples 1 and 2.
구분division 화학성분(중량%)Chemical composition (% by weight) 비중importance
CC SiSi MnMn SS PP AlAl CrCr NiNi NbNb TiTi VV CuCu NN
실시예1Example 1 0.790.79 0.250.25 13.0613.06 0.0050.005 0.020.02 6.286.28 2.292.29 0.10.1 -- 0.020.02 0.030.03 -- 0.01200.0120 6.986.98
실시예2Example 2 1.181.18 0.240.24 13.2513.25 0.0040.004 0.020.02 7.977.97 2.242.24 0.110.11 0.020.02 -- 0.040.04 -- 0.01110.0111 6.936.93
실시예3Example 3 1.191.19 0.240.24 13.1913.19 0.0050.005 0.020.02 7.887.88 4.594.59 0.110.11 0.020.02 -- 0.040.04 -- 0.01300.0130 6.916.91
비교예1Comparative Example 1 0.350.35 0.250.25 1.41.4 0.0050.005 0.030.03 0.010.01 0.20.2 0.10.1 -- -- 0.050.05 0.20.2 0.00800.0080 7.897.89
비교예2Comparative Example 2 0.250.25 0.200.20 20.020.0 0.0050.005 0.020.02 10.010.0 -- 0.100.10 -- -- -- -- -- 6.946.94
구분division 압연조건(℃)Rolling Condition (℃)
재가열Reheat 최종final 복열Recurrent
실시예1Example 1 12001200 970970 520520
실시예2Example 2 12001200 973973 516516
실시예3Example 3 12001200 965965 526526
비교예1Comparative Example 1 10301030 930930 570570
비교예2Comparative Example 2 12001200 900900 570570
2. 물성평가2. Property evaluation
표 3은 실시예 1 내지 3 및 비교예 1 및 2에 따라 제조된 시편들에 대한 기계적 물성 평가 결과를 나타낸 것이다. 물성평가는 인장강도(TS), 항복강도(YS) 및 연신율(EL)을 측정하여 나타내었다.Table 3 shows the mechanical property evaluation results for the specimens prepared according to Examples 1 to 3 and Comparative Examples 1 and 2. The physical property evaluation was shown by measuring the tensile strength (TS), yield strength (YS) and elongation (EL).
구분division YS (MPa)YS (MPa) TS(MPa)TS (MPa) EL(%)EL (%) TS*EL(MPa·%)TS * EL (MPa%) 미세조직Microstructure
실시예 1Example 1 992992 1,1331,133 24.824.8 28098.428098.4 α+γ+κα + γ + κ
실시예 2Example 2 1,1851,185 1,2851,285 2929 3726537265 α+γ+κα + γ + κ
실시예 3Example 3 1,0941,094 1,1791,179 19.819.8 23344.223344.2 α+γ+κα + γ + κ
비교예 1Comparative Example 1 651651 832832 14.314.3 11897.611897.6 α+Fe3Cα + Fe 3 C
비교예 2Comparative Example 2 600600 770770 10.110.1 7,7777,777 γ+κγ + κ
표 3을 참조하면, 본 발명의 실시예에 따르는 시편인, 실시예 1 내지 3의 경우, 인장강도(TS) 1100 MPa 이상을 모두 만족하였다. 그리고, 실시예 1 내지 3의 경우, 인장강도×연신율(TS×EL) 20000 MPa·% 이상을 모두 만족하였다. 특히, 실시예 2의 시편의 경우, 인장강도(TS) 1200 MPa 이상을 나타내고 있으며, 인장강도×연신율(TS×EL) 35000 MPa·% 이상을 나타내고 있다.Referring to Table 3, in the case of Examples 1 to 3, which are specimens according to the embodiment of the present invention, all of the tensile strength (TS) 1100 MPa or more were satisfied. In addition, in Examples 1 to 3, all of tensile strength x elongation (TS x EL) of 20000 MPa ·% or more were satisfied. In particular, in the case of the specimen of Example 2, the tensile strength (TS) is 1200 MPa or more, and the tensile strength x elongation (TS x EL) is 35000 MPa ·% or more.
비교예 1 및 2의 시편은 인장강도(TS)가 1000 MPa에 못 미치고 있으며, 인장강도×연신율(TS×EL)도 20000 MPa·%에 미치지 못했다.The specimens of Comparative Examples 1 and 2 had a tensile strength (TS) of less than 1000 MPa and a tensile strength x elongation (TS × EL) of less than 20000 MPa ·%.
도 2 내지 4에 실시예 2, 실시예 3 및 비교예 1 시편의 미세조직 단면을 각각 촬영하여 나타내었다. 2 to 4 show the microstructure cross sections of Example 2, Example 3 and Comparative Example 1 specimens, respectively.
실시예 2 및 실시예 3의 시편의 경우, 페라이트, 오스테나이트 및 카파(κ)-카바이드의 복합조직을 나타내었으며, 비교예 1 시편의 경우, 페라이트 및 시멘타이트의 복합 조직을 나타내었다.In the case of the specimens of Example 2 and Example 3, the composite structure of ferrite, austenite and kappa (κ) -carbide was shown, and in the comparative example 1 specimen, the composite structure of ferrite and cementite was shown.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다. In the above description, the embodiment of the present invention has been described, but various changes and modifications can be made at the level of those skilled in the art. Such changes and modifications may belong to the present invention without departing from the scope of the present invention. Therefore, the scope of the present invention will be determined by the claims described below.

Claims (8)

  1. 탄소(C) 0.1 중량% 내지 1.5 중량%, 실리콘(Si) 0.05 중량% 내지 1.0 중량%, 망간(Mn) 0.5 중량% 내지 16.0 중량%, 인(P) 0 초과 0.03 중량%, 황(S) 0 초과 0.03 중량%, 알루미늄(Al) 0 초과 9.0 중량%, 크롬(Cr) 0.2 중량% 내지 4.0 중량%, 니켈(Ni) 0.1 중량% 내지 0.5 중량%, 질소(N) 0.005 중량% 내지 0.015 중량%, 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 1종 이상의 합 0.03 중량% 내지 0.5 중량%, 및 나머지 철(Fe)과 불가피한 불순물을 포함하는 합금조성을 갖는 빌렛을 1100 ℃ 내지 1200 ℃에서 재가열하는 단계;0.1 wt% to 1.5 wt% of carbon (C), 0.05 wt% to 1.0 wt% of silicon (Si), 0.5 wt% to 16.0 wt% of manganese (Mn), 0.03 wt% of phosphorus (P) above 0, sulfur (S) More than 0, 0.03% by weight, aluminum (Al), more than 0, 9.0% by weight, chromium (Cr) 0.2% to 4.0%, nickel (Ni) 0.1% to 0.5%, nitrogen (N) 0.005% to 0.015% A billet having an alloy composition containing 0.03% to 0.5% by weight of one or more of%, titanium (Ti), niobium (Nb) and vanadium (V), and the remaining iron (Fe) and unavoidable impurities; Reheating at ° C;
    상기 재가열된 빌렛을 Ac1 ~ 1000 ℃ 마무리 압연 온도로 열간압연하는 단계;Hot rolling the reheated billet to an Ac1˜1000 ° C. finish rolling temperature;
    상기 열간압연된 강을 템프코어를 거쳐 표면은 Ms-100 (℃) 내지 Ms (℃)온도로 냉각하는 단계; 및 Cooling the hot rolled steel to a temperature of Ms-100 (° C.) to Ms (° C.) via a temp core; And
    상기 냉각된 강을 500 ℃ 내지 600 ℃에서 복열하는 단계; 를 포함하는 철근 제조 방법.Reheating the cooled steel at 500 ° C. to 600 ° C .; Rebar manufacturing method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제조된 철근의 인장강도(TS) 1100 MPa 이상, 인장강도×연신율(TS×EL) 20000 MPa·% 이상을 만족하는 철근 제조방법.Reinforcing bar production method that satisfies the tensile strength (TS) of 1100 MPa or more, tensile strength x elongation (TS × EL) of 20000 MPa ·% or more of the manufactured rebar.
  3. 제1항에 있어서,The method of claim 1,
    상기 제조된 철근은The prepared rebar is
    평균입경이 10nm 내지 100nm인 Fe3AlC 미세립 입자를 분산된 상태로 포함하는 것인 철근 제조방법.Rebar manufacturing method comprising a Fe 3 AlC fine grain particles having an average particle diameter of 10nm to 100nm in a dispersed state.
  4. 제1항에 있어서,The method of claim 1,
    상기 제조된 철근은 페라이트, 오스테나이트 및 카파(κ)-카바이드의 복합 조직을 가지는 철근 제조 방법.The prepared reinforcing bar has a composite structure of ferrite, austenite and kappa (κ) -carbide.
  5. 탄소(C) 0.1 중량% 내지 1.5 중량%, 실리콘(Si) 0.05 중량% 내지 1.0 중량%, 망간(Mn) 0.5 중량% 내지 16.0 중량%, 인(P) 0 초과 0.03 중량%, 황(S) 0 초과 0.03 중량%, 알루미늄(Al) 0 초과 9.0 중량%, 크롬(Cr) 0.2 중량% 내지 4.0 중량%, 니켈(Ni) 0.1 중량% 내지 0.5 중량%, 질소(N) 0.005 중량% 내지 0.015 중량%, 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중 1종 이상의 합 0.03 중량% 내지 0.5 중량%, 및 나머지 철(Fe)과 불가피한 불순물을 포함하는 합금조성을 갖고, 인장강도(TS) 1100 MPa 이상, 및 인장강도×연신율(TS×EL) 20000 MPa·% 이상을 만족하는 철근.0.1 wt% to 1.5 wt% of carbon (C), 0.05 wt% to 1.0 wt% of silicon (Si), 0.5 wt% to 16.0 wt% of manganese (Mn), 0.03 wt% of phosphorus (P) above 0, sulfur (S) More than 0, 0.03% by weight, aluminum (Al), more than 0, 9.0% by weight, chromium (Cr) 0.2% to 4.0%, nickel (Ni) 0.1% to 0.5%, nitrogen (N) 0.005% to 0.015% Tensile strength (TS) having an alloy composition comprising%, 0.03% to 0.5% by weight of at least one of titanium (Ti), niobium (Nb) and vanadium (V), and the remaining iron (Fe) and unavoidable impurities Reinforcing bar satisfying 1100 MPa or more and tensile strength x elongation (TS x EL) 20000 MPa ·% or more.
  6. 제5항에 있어서,The method of claim 5,
    상기 철근은 평균입경이 10nm 내지 100nm인 Fe3AlC 미세립 입자를 분산된 상태로 포함하는 것인 철근.The reinforcing bar is to include the Fe 3 AlC fine grains having an average particle diameter of 10nm to 100nm in a dispersed state.
  7. 제5항에 있어서,The method of claim 5,
    상기 철근은 6.5gm-3 내지 7.0gm-3의 비중을 가지는The rebar has a specific gravity of 6.5gm -3 to 7.0gm -3
    철근.rebar.
  8. 제5항에 있어서,The method of claim 5,
    상기 철근은 페라이트, 오스테나이트 및 카파(κ)-카바이드의 복합 조직을 가지는 철근.The reinforcing bar has a complex structure of ferrite, austenite and kappa (κ) -carbide.
PCT/KR2016/013590 2016-06-21 2016-11-24 Reinforcing bar and manufacturing method therefor WO2017222122A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160077466 2016-06-21
KR10-2016-0077466 2016-06-21
KR10-2016-0149539 2016-11-10
KR1020160149539A KR101828713B1 (en) 2016-06-21 2016-11-10 Steel reinforcement and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017222122A1 true WO2017222122A1 (en) 2017-12-28

Family

ID=60784842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013590 WO2017222122A1 (en) 2016-06-21 2016-11-24 Reinforcing bar and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017222122A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111485174A (en) * 2020-04-13 2020-08-04 攀钢集团攀枝花钢铁研究院有限公司 Steel rail for subway and preparation method thereof
WO2021057218A1 (en) * 2019-09-27 2021-04-01 南京钢铁股份有限公司 Continuously cast gcr15 bearing steel wire rod carbide network control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130064760A (en) * 2013-04-30 2013-06-18 현대제철 주식회사 High strength steel plate and method of manufacturing the steel plate
WO2014034070A1 (en) * 2012-08-31 2014-03-06 Jfeスチール株式会社 Steel for reinforcing bars, and reinforcing bar
KR20150001535A (en) * 2013-06-27 2015-01-06 현대제철 주식회사 High strength cold-rolled steel sheet and method of manufacturing the same
KR20150013246A (en) * 2012-06-08 2015-02-04 신닛테츠스미킨 카부시키카이샤 Steel wire rod or bar steel
KR20160025183A (en) * 2014-08-27 2016-03-08 현대제철 주식회사 High strength steel sheet and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013246A (en) * 2012-06-08 2015-02-04 신닛테츠스미킨 카부시키카이샤 Steel wire rod or bar steel
WO2014034070A1 (en) * 2012-08-31 2014-03-06 Jfeスチール株式会社 Steel for reinforcing bars, and reinforcing bar
KR20130064760A (en) * 2013-04-30 2013-06-18 현대제철 주식회사 High strength steel plate and method of manufacturing the steel plate
KR20150001535A (en) * 2013-06-27 2015-01-06 현대제철 주식회사 High strength cold-rolled steel sheet and method of manufacturing the same
KR20160025183A (en) * 2014-08-27 2016-03-08 현대제철 주식회사 High strength steel sheet and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021057218A1 (en) * 2019-09-27 2021-04-01 南京钢铁股份有限公司 Continuously cast gcr15 bearing steel wire rod carbide network control method
CN111485174A (en) * 2020-04-13 2020-08-04 攀钢集团攀枝花钢铁研究院有限公司 Steel rail for subway and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2020130560A1 (en) Cold rolled steel sheet having excellent workability, hot-dip galvanized steel sheet, and manufacturing methods thereof
WO2020067685A1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
WO2014104706A1 (en) High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor
WO2021091138A1 (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
WO2017111290A1 (en) Steel sheet having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same
WO2017034216A1 (en) High-hardness steel sheet, and manufacturing method therefor
WO2015099222A1 (en) Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same
WO2017222159A1 (en) High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor
WO2018117477A1 (en) Duplex stainless steel having excellent corrosion resistance and moldability, and manufacturing method therefor
WO2017222122A1 (en) Reinforcing bar and manufacturing method therefor
WO2021172604A1 (en) Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor
WO2017104995A1 (en) High hardness abrasion resistant steel with excellent toughness and cutting crack resistance, and method for manufacturing same
WO2020111857A1 (en) Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same
WO2020040388A1 (en) Wire rod and steel wire for spring, having enhanced toughness and corrosion fatigue properties, and respective manufacturing methods therefor
WO2011081236A1 (en) Quenched steel sheet having excellent hot press formability, and method for manufacturing same
WO2020101096A1 (en) Rebar having yield strength of 700-mpa class and excellent tensile-to-yield strength and uniform elongation, and method for manufacturing same
WO2019125076A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2018110850A1 (en) High-strength wire rod having superior impact toughness and manufacturing method therefor
WO2021125793A1 (en) Wire rod for high strength cold head quality steel with excellent resistance to hydrogen embrittlement, and manufacturing method thereof
WO2021256590A1 (en) Rebar and manufacturing method therefor
WO2021125471A1 (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
WO2023214634A1 (en) Cold-rolled steel sheet and method for manufacturing same
WO2020130257A1 (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing same
WO2020111859A1 (en) Steel plate for high temperature applications having excellent strength at high temperature and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906397

Country of ref document: EP

Kind code of ref document: A1