WO2023214634A1 - Cold-rolled steel sheet and method for manufacturing same - Google Patents

Cold-rolled steel sheet and method for manufacturing same Download PDF

Info

Publication number
WO2023214634A1
WO2023214634A1 PCT/KR2022/019627 KR2022019627W WO2023214634A1 WO 2023214634 A1 WO2023214634 A1 WO 2023214634A1 KR 2022019627 W KR2022019627 W KR 2022019627W WO 2023214634 A1 WO2023214634 A1 WO 2023214634A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
temperature
martensite
annealing
ferrite
Prior art date
Application number
PCT/KR2022/019627
Other languages
French (fr)
Korean (ko)
Inventor
김경민
노현성
맹한솔
구남훈
한성경
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2023214634A1 publication Critical patent/WO2023214634A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a cold-rolled steel sheet and a manufacturing method thereof, and more specifically, to a cold-rolled ultra-high-strength low-carbon steel sheet with excellent formability and a manufacturing method thereof.
  • Ultra-high-strength steel for automobile steel plates is being developed to meet the two factors of reducing vehicle weight in response to environmental regulatory issues and strengthening crash safety standards due to strengthening safety regulations.
  • strength and elongation have a trade-off relationship, the problem of deterioration of formability as strength increases has emerged, and several studies have been conducted to ensure formability of high-strength steel.
  • TRIP-aided steel which utilizes the TRIP (TRansformation Induced Plasticity) phenomenon that transforms residual austenite into martensite during the transformation of retained austenite in the microstructure, is being developed as a 3rd generation steel sheet that can secure both high strength and high elongation.
  • the physical properties of these TRIP-aided steels are determined by the phase stability and fraction of retained austenite that causes the TRIP phenomenon, so securing stable retained austenite in the microstructure is important in manufacturing the steel.
  • the technical problem to be achieved by the present invention is to provide a cold rolled ultra-high strength low carbon steel sheet with excellent formability and a manufacturing method thereof.
  • the cold-rolled steel sheet according to an embodiment of the present invention for solving the above problems includes carbon (C): 0.15 to 0.20% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 1.5 to 3.0% by weight, Phosphorus (P): more than 0 and not more than 0.02% by weight, sulfur (S): more than 0 and not more than 0.003% by weight, aluminum (Al): 0.01 to 0.3% by weight, nitrogen (N): more than 0 and not more than 0.01% by weight, titanium (Ti ): 48/14 ⁇ [N] to 0.1% by weight ([N] is the weight percent value of nitrogen) and the remaining iron (Fe) and other inevitable impurities, and the final microstructure is ferrite and needle-like retained austenite.
  • the ferrite is composed of polygonal ferrite and acicular ferrite, and the area fraction of the acicular ferrite among the ferrite may be 40% or more.
  • the cold rolled steel sheet may have a tensile strength (TS) of 980 to 1180 MPa and an elongation (El) of 23 to 25%.
  • TS tensile strength
  • El elongation
  • the method of manufacturing a cold rolled steel sheet according to an embodiment of the present invention to solve the above problem is (a) carbon (C): 0.15 to 0.20% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 1.5 to 3.0% by weight, phosphorus (P): more than 0 and less than 0.02% by weight, sulfur (S): more than 0 and less than 0.003% by weight, aluminum (Al): 0.01 to 0.3% by weight, nitrogen (N): more than 0 and 0.01% by weight % or less, titanium (Ti): 48/14 ⁇ [N] to 0.1% by weight (the [N] is a weight percent value of nitrogen) and the remaining iron (Fe) and other inevitable impurities.
  • step (a) includes reheating the steel at 1180 to 1300°C, and step (b) includes a finish rolling temperature of 850 to 950°C and a coiling temperature of 450 to 650°C. It includes the step of hot rolling under conditions of °C, and step (c) may include cold rolling at a reduction ratio of 40 to 70%.
  • step (d) is performed by maintaining the cold rolled steel at the first annealing temperature for 30 to 120 seconds and then cooling the cold rolled steel at a cooling rate of 15°C/s or more to a cooling end point temperature of 340°C or less. It may include a cooling process.
  • the area fraction of ferrite in the microstructure of the steel may be 30 to 50%.
  • step (e) is performed by maintaining the steel material at the second annealing temperature for 30 to 120 seconds and then cooling the steel material at a cooling rate of 15°C/s or more to the martensite transformation onset temperature (Ms). It may include a process of over-aging for 30 to 300 seconds after cooling to a cooling end point temperature of (bainite transformation start temperature (Bs) - 15°C) or less.
  • the microstructure of the steel is composed of ferrite, acicular retained austenite, a composite structure of martensite/austenite, and bulky martensite, wherein the ferrite
  • the area fraction is 30 to 60%
  • the area fraction of the acicular retained austenite is 5 to 12%
  • the area fraction of the martensite/austenite composite structure is 25 to 50%
  • the area fraction of the bulky martensite may be 5 to 12%.
  • a cold rolled ultra-high strength low carbon steel sheet with excellent formability and a manufacturing method thereof can be implemented. Specifically, it can secure excellent weldability by designing it as a low-carbon steel containing less than 0.2% by weight of carbon. During the heat treatment process, sufficient amounts of carbon and manganese are concentrated into austenite through several stages of alloy element redistribution, resulting in excellent weldability. It is possible to achieve a balance between strength and elongation, and to create cold-rolled ultra-high strength steel with excellent processability that secures a tensile strength of more than 980 MPa and an elongation of more than 23%.
  • FIG. 1 is a flowchart schematically showing a method of manufacturing a cold rolled steel sheet according to an embodiment of the present invention.
  • Figure 2 is a diagram illustrating the outline of (a) a first annealing heat treatment process and (b) a second annealing heat treatment process in the method of manufacturing a cold rolled steel sheet according to an embodiment of the present invention.
  • Figure 3 is a photograph taken of the microstructure after the first annealing heat treatment in Example 1 of the experimental examples.
  • Figure 4 is a photograph taken of the microstructure after the second annealing heat treatment in Example 1 of the experimental examples.
  • Figure 5 is a photograph taken of the microstructure after the first annealing heat treatment in Comparative Example 6 among the experimental examples
  • Figure 6 is a photograph taken of the final microstructure in Comparative Example 7 among the experimental examples
  • Figure 7 is a photograph of the final microstructure in Comparative Example 7 among the experimental examples
  • Figure 8 is a picture taken of the final microstructure in Example 8
  • Figure 8 is a picture taken of the final microstructure in Comparative Example 9 among the experimental examples
  • Figure 9 shows (a) a needle-like shape and (a) after overaging after the second annealing heat treatment.
  • This is a photograph of a block-shaped tissue.
  • a cold rolled steel sheet and a manufacturing method thereof according to an embodiment of the present invention will be described in detail.
  • the terms described below are terms appropriately selected in consideration of their functions in the present invention, and definitions of these terms should be made based on the content throughout the present specification. Below, we will provide specific details of the cold-rolled ultra-high-strength low-carbon steel sheet with excellent formability and its manufacturing method.
  • Korean Patent Application No. 2018-0033119 proposes a method of manufacturing steel (Quenching and Partitioning, Q&P) containing tempered martensite and retained austenite through rapid cooling and partitioning heat treatment after annealing the steel.
  • Q&P steel has the advantage of being able to obtain physical properties of more than 980 MPa in tensile strength and more than 21% in elongation even with 0.2% by weight carbon steel, but the window for process temperature is narrow and the ductility variation is large, so the high elongation targeted by the present invention cannot be achieved stably. difficult to secure.
  • Korean Patent Publication No. 2017-0113858 proposes a two-time annealing heat treatment process as a method of securing the microstructure (pre-structure) before final annealing to increase the ductility of steel by securing lath-shaped ferrite and retained austenite.
  • pre-structure microstructure
  • single-phase annealing is performed to secure a low-temperature structure with a volume fraction of more than 90% after the first annealing
  • a tensile strength of more than 980MPa cannot be stably secured in steel with a low carbon content, and there are concerns that the lifespan of the furnace will be shortened because high-temperature annealing is involved. .
  • the present invention discloses a cold-rolled ultra-high-strength steel sheet with excellent elongation, having a tensile strength of 980 MPa or more and an elongation of 23% or more, applicable to automobile parts, and a method of manufacturing the same.
  • the microstructure of cold-rolled steel sheets is polygonal ferrite with an area fraction of 20% to 50%, acicular ferrite with an area fraction of 40% or more, acicular retained austenite with an area fraction of 5% or more and 12% or less, and martensite/austenite composite structure with an area fraction of 20% or more and 12% or less. and the remaining bainite, and the alloy amount and appropriate heat treatment conditions to secure the target yield strength, tensile strength, and elongation are disclosed.
  • the cold-rolled steel sheet according to an embodiment of the present invention contains carbon (C): 0.15 to 0.20% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 1.5 to 3.0% by weight, and phosphorus (P): 0. Exceeding 0.02% by weight or less, Sulfur (S): exceeding 0 and not exceeding 0.003% by weight, Aluminum (Al): 0.01 to 0.3% by weight, Nitrogen (N): exceeding 0 and not exceeding 0.01% by weight, Titanium (Ti): 48/14 It consists of [N] to 0.1% by weight (where [N] is the weight% value of nitrogen) and the remaining iron (Fe) and other inevitable impurities.
  • C carbon
  • Si silicon
  • Mn manganese
  • P phosphorus
  • Carbon (C) is added to secure the strength of steel, and strength increases as the carbon content increases in the martensite structure. Furthermore, it combines with elements such as iron to form carbides to improve strength and hardness. Carbon (C) may be added in a content ratio of 0.15 to 0.20% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention. If the carbon content is less than 0.15% by weight of the total weight, the above-mentioned effect cannot be realized and there is a problem of not securing sufficient strength. On the other hand, when the carbon content exceeds 0.20% by weight of the total weight, weldability and processability are deteriorated.
  • Silicon (Si) is an element added to increase strength and suppress carbide formation through the solid solution strengthening effect of ferrite. Additionally, silicon is well known as a ferrite stabilizing element, so ductility can be increased by increasing the ferrite fraction during cooling. In addition, it is known as an element that can secure strength by promoting martensite formation through austenite carbon enrichment. Meanwhile, silicon is added along with aluminum as a deoxidizer to remove oxygen in steel during the steelmaking process, and can also have a solid solution strengthening effect. The silicon may be added in an amount of 1.0 to 2.0% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention.
  • the silicon content is less than 1.0% by weight of the total weight, ductility cannot be secured and the above-mentioned silicon addition effect cannot be properly achieved.
  • oxides such as Mn 2 SiO 4 are formed during the manufacturing process, impairing plating properties, increasing the carbon equivalent, which may reduce weldability, and reheating and hot By generating red scale during rolling, surface quality may be affected, and toughness and plastic workability may be deteriorated.
  • Manganese (Mn) is an element that contributes to strength improvement by increasing hardenability, facilitates the formation of a low-temperature transformation phase, and provides the effect of increasing strength through solid solution strengthening.
  • Manganese may be added in a content ratio of 1.5 to 3.0% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention. If the manganese content is less than 1.5% by weight, the above-mentioned effect of securing strength cannot be sufficiently achieved. In addition, when the manganese content exceeds 3.0% by weight, processability and delayed fracture resistance are reduced due to the formation or segregation of inclusions such as MnS, and the carbon equivalent may be increased, thereby reducing weldability.
  • Phosphorus (P) increases strength through solid solution strengthening and can perform the function of suppressing the formation of carbides.
  • the phosphorus may be added in a content ratio of more than 0 and less than 0.02% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention. If the phosphorus content exceeds 0.02% by weight, the weld zone may become embrittled, low-temperature brittleness may occur, press formability may deteriorate, and impact resistance may decrease.
  • S Sulfur improves the machinability of steel by combining with manganese, titanium, etc., and can improve machinability by forming fine MnS precipitates, but is generally an element that inhibits ductility and weldability.
  • the sulfur may be added in a content ratio of more than 0 and less than 0.003% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention. If the sulfur content exceeds 0.003% by weight, the number of Fes inclusions or MnS inclusions increases, which reduces toughness and weldability and machinability, and may cause segregation during solidification during continuous casting, causing high-temperature cracks.
  • Aluminum (Al) is an element mainly used as a deoxidizer. It promotes the formation of ferrite, improves elongation, suppresses the formation of carbides, and stabilizes austenite by increasing carbon concentration in austenite.
  • the aluminum (Al) is preferably added in an amount of 0.01 to 0.3% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention. When the aluminum (Al) content is less than 0.01% by weight, the above-described effect of adding aluminum can be properly achieved.
  • Nitrogen (N) is a solid solution strengthening element that can increase the strength of steel sheets, and is generally an element mixed from the atmosphere. Its content must be controlled by the degassing process in the steelmaking process. If the nitrogen content exceeds 0.01% by weight, the weld zone may become embrittled, low-temperature brittleness may occur, press formability may deteriorate, and impact resistance may decrease.
  • Titanium (Ti) is a precipitate forming element and has the effect of precipitating TiN and refining grains.
  • the nitrogen content inside the steel can be lowered through precipitation of TiN.
  • Titanium is preferably added in an amount of 48/14 ⁇ [N] to 0.1% by weight. If it is less than 48/14 ⁇ [N], the effect of adding Ti is insufficient due to the small amount of TiC precipitated, and if added in excess of 0.1% by weight. If this happens, it is difficult to secure strength by reducing the carbon solubility in the base material.
  • the cold-rolled steel sheet according to an embodiment of the present invention having the alloy element composition may be a cold-rolled ultra-high strength steel sheet with excellent elongation, having a tensile strength of 980 MPa or more and an elongation of 23% or more.
  • the cold rolled steel sheet may have a tensile strength (TS) of 980 to 1180 MPa and an elongation (El) of 23 to 25%.
  • the final microstructure of the cold rolled steel sheet consists of ferrite, needle-shaped retained austenite, a composite structure of martensite/austenite, and bulky martensite, and the area fraction of the ferrite is 30 to 60%, and the needle-shaped residual austenite
  • the area fraction of the retained austenite is 5 to 12%
  • the area fraction of the martensite/austenite composite structure is 25 to 50%
  • the area fraction of the bulky martensite is 5 to 12%
  • the area fraction of the retained austenite is 5 to 12%.
  • the carbon enrichment amount is more than 1.1% by weight.
  • the ferrite is composed of polygonal ferrite and acicular ferrite, and the area fraction of the acicular ferrite among the ferrite may be 40% or more.
  • FIG. 1 is a flowchart schematically showing a method of manufacturing a cold rolled steel sheet according to an embodiment of the present invention.
  • the method of manufacturing a steel sheet according to an embodiment of the present invention is (a) carbon (C): 0.15 to 0.20% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 1.5 to 3.0% by weight, phosphorus (P): more than 0 and less than 0.02% by weight, sulfur (S): more than 0 and less than 0.003% by weight, aluminum (Al): 0.01 to 0.3% by weight, nitrogen (N): more than 0 and 0.01% by weight.
  • a second annealing heat treatment step (S500) including a process of over-aging after cooling to the cooling end point temperature is sequentially included.
  • the step (a) (S100) may include reheating the slab steel having the above composition at 1180 to 1300°C.
  • Slabs are manufactured in the form of semi-finished products by continuously casting molten steel obtained through the steelmaking process, and through a reheating process, component segregation occurring in the casting process is homogenized and made ready for hot rolling. If the Slab Reheating Temperature (SRT) is below 1180°C, there is a problem that the segregation of the slab cannot be sufficiently re-employed, and if it exceeds 1300°C, the size of austenite grains increases and process costs may increase. Reheating of the slab can take 1 to 4 hours. If the reheating time is less than 1 hour, the reduction in the segregation zone is not sufficient, and if it exceeds 4 hours, the grain size increases and process costs may increase.
  • SRT Slab Reheating Temperature
  • the step (b) (S200) is a step of hot rolling the reheated slab. Hot rolling is performed at a finish delivery temperature (FDT) of 850 to 950°C. If the finish rolling temperature is lower than 850°C, the rolling load increases rapidly, reducing productivity, and if it exceeds 950°C, the size of the grains may increase and strength may decrease. After hot rolling, it is cooled to a temperature of 450 to 650°C and then wound. If the coiling temperature is less than 450°C, the shape of the hot-rolled coil becomes uneven and its strength increases, which increases the rolling load during cold rolling.
  • FDT finish delivery temperature
  • Step (c) is a step of pickling the hot rolled coil to remove the surface scale layer and performing cold rolling.
  • the thickness reduction rate during cold rolling is approximately 40 to 70%. The higher the reduction rate, the higher the formability due to the tissue refinement effect. In cold rolling, if the reduction is less than 40%, it is difficult to obtain a uniform microstructure, and if the design is over 70%, the roll force increases and the process load increases.
  • the first annealing heat treatment process and the second annealing heat treatment process are sequentially performed. That is, the cold rolled steel sheet is annealed twice in total, including primary annealing and secondary annealing.
  • the temperature increase rate of heating from room temperature to the first or second annealing temperature range is not limited and can follow the temperature increase rate of normal heating furnace equipment.
  • the step (d) includes maintaining the cold rolled steel at a first annealing temperature of (Ac1 + 30°C) or more (Ac3 - 30°C) and then cooling to a cooling end point temperature of 340°C or less. This is the first annealing heat treatment step.
  • Step (d) is a biphasic annealing heat treatment for 30 to 120 seconds in the first annealing temperature range of (Ac1 + 30°C) or higher (Ac3 - 30°C) to secure a dual-phase structure of ferrite and low temperature phase. It's a step.
  • the first annealing heat treatment process is a process of forming a desirable overall structure to secure lath-shaped needle-shaped ferrite and austenite structures during the second annealing heat treatment process.
  • 'full structure' refers to the microstructure of steel manufactured through the first annealing heat treatment (S400).
  • the low-temperature phase structure reversely transforms into austenite, and lath-shaped ferrite and austenite microstructure are formed.
  • the low-temperature phase structure refers to the martensite or bainite phase.
  • This lath-type organization has the characteristic of securing both high strength and high ductility.
  • the first annealing is performed in the ideal temperature range. If the first annealing temperature exceeds Ac3, austenite crystals become coarse due to high-temperature annealing, and a large amount of austenite with low carbon and manganese content is generated, making it difficult to secure the tensile properties of the final steel.
  • the ferrite fraction in the microstructure exceeds 50% after the first annealing heat treatment process, resulting in an increase in soft and coarse polygonal ferrite in the final microstructure. There are difficulties in securing the tensile properties of steel.
  • the microstructure should exhibit a DP (dual phase) structure composed of ferrite and a low-temperature phase, and more preferably, for strength and ductility balance, the fraction of ferrite should be 30% or more by area fraction. It can be limited to % or less.
  • DP dual phase
  • the fraction of ferrite should be 30% or more by area fraction. It can be limited to % or less.
  • the microstructure after the first annealing heat treatment process is a DP (dual phase) structure composed of ferrite and a low-temperature phase
  • the fraction of ferrite is limited to 30% or more and 50% or less as an area fraction.
  • the heat treatment temperature for primary annealing may be limited to (Ac1 + 30°C) or more and (Ac3 - 30°C) or less.
  • step (e) the steel is maintained at a second annealing temperature of AAc1 or higher (Ac3 - 30°C) and then martensite transformation start temperature (Ms) or more (bainite transformation start temperature (Bs) - 15°C).
  • step (e) the martensite structure generated in the first annealing heat treatment process is reverse transformed to form lath-shaped ferrite and austenite.
  • annealing reverse transformation of the primary low-temperature phase and redistribution of carbon and manganese to austenite occur, so a longer annealing time is preferable for sufficient reverse transformation and redistribution of alloy elements.
  • the annealing time is too long, there is a risk of decreased productivity, so annealing is maintained. Time is limited to 30 to 120 seconds.
  • the secondary annealed heat-treated steel sheet is cooled to a temperature between the martensite transformation start temperature (Ms) and the bainite transformation start temperature (Bs) and held for 30 to 300 seconds to induce redistribution of carbon and manganese alloy elements to form retained austenite. This is the step to increase the stability of the costume.
  • Ms martensite transformation start temperature
  • Bs bainite transformation start temperature
  • the cooling rate is set to 15°C/s or more, preferably 25°C/s or more.
  • the cooling end point temperature is determined to be a temperature higher than the martensite transformation start temperature (Ms) (bainite transformation start temperature (Bs) - 15°C) or lower.
  • Ms martensite transformation start temperature
  • Bs bainite transformation start temperature
  • the cooling rate to room temperature is not specifically limited, but is preferably 10°C/s or more for productivity. do.
  • the second annealing temperature is lower than the first annealing temperature. If the second annealing temperature is higher than the first annealing temperature, the austenite fraction generated in the second annealing heat treatment (S500) becomes higher than the low-temperature phase fraction of the structure after the first annealing heat treatment (S400). Austenite reversely transformed at a low temperature appears as a lamellar structure of acicular ferrite and austenite, but the austenite produced in excess due to high annealing temperature develops into a blocky form, and as a result, the fraction of blocky martensite increases in the final microstructure. The tensile strength of the steel increases significantly, while the elongation decreases.
  • the microstructure of the steel material finally realized through the above-described heat treatment process is composed of ferrite, needle-like retained austenite, a composite structure of martensite/austenite, and bulky martensite, and the area fraction of the ferrite is 30 to 60%.
  • the area fraction of the acicular retained austenite may be 5 to 12%
  • the area fraction of the martensite/austenite composite structure may be 25 to 50%
  • the area fraction of the blocky martensite may be 5 to 12%.
  • the steel grade composed of the above-described heat treatment process within the composition range described in the present invention and the microstructure obtained therefrom is a low-carbon type with excellent formability with a tensile strength (TS): 980 to 1180 MPa and an elongation (El): 23 to 25%.
  • TS tensile strength
  • El elongation
  • Cold-rolled ultra-high-strength steel sheets can be realized.
  • Figure 2 is a diagram illustrating the outline of (a) a first annealing heat treatment process (S400) and (b) a second annealing heat treatment process (S500) in the method of manufacturing a cold rolled steel sheet according to an embodiment of the present invention.
  • the a-b section corresponds to the step of maintaining the first annealing temperature of (Ac1 + 30°C) or more and (Ac3 - 30°C) or less
  • the b-c section is the first half of the cooling section and is a slow cooling process
  • the c-d section is the latter half of the cooling section and corresponds to the quenching process
  • the d-e section corresponds to the over-aging process.
  • the slow cooling process in sections b-c and the over-aging process in sections d-e can be omitted.
  • the first annealing heat treatment process can be maintained for 30 to 120 seconds at a first annealing temperature of (Ac1 + 30°C) or more (Ac3 - 30°C) or less.
  • a first annealing temperature of (Ac1 + 30°C) or more (Ac3 - 30°C) or less.
  • the annealing temperature is too low, a large amount of polygonal ferrite is formed in the microstructure after the first annealing heat treatment process, making it difficult to secure sufficient tensile strength, and if it exceeds (Ac3 - 30°C), grain coarsening and alloying may occur due to high temperature annealing.
  • the austenite fraction with a low element content (lean) increases, making it difficult to achieve the target tensile properties. If the holding time exceeds 120 seconds, the size of the grains may become coarse and productivity may decrease.
  • the annealed cold-rolled steel is cooled to a temperature of 340°C or lower and a cooling rate of 15°C/s or higher.
  • the cooling end point temperature exceeds 340°C, it is difficult to obtain a lath-shaped structure in the second annealing heat treatment process due to carbide precipitation, and if the cooling rate is less than 15°C/s, a large amount of polygonal ferrite is generated during cooling. It is disadvantageous in securing tensile strength.
  • Section b-c is a step of slowly cooling the annealed heat-treated steel sheet.
  • a slow cooling section may be included depending on the heat treatment equipment.
  • the slow cooling end point temperature or cooling rate is not specifically limited, but to prevent a large amount of polygonal ferrite from being generated during cooling, the slow cooling end point temperature is preferably 740°C or higher and the cooling rate is -5°C/s. It could be more than that.
  • the c-d section is the latter part of the cooling section and corresponds to a rapid cooling process, and is a step in which the steel sheet cooled through the slow cooling process is cooled to a temperature of 340°C or lower.
  • the steel sheet is cooled to -15°C/s or higher to suppress the formation of polygonal ferrite, which adversely affects physical properties, and to form bainite or martensite, which are low-temperature phases. , preferably 25°C/s or higher.
  • the cooling rate is maintained up to a temperature below the martensite transformation start temperature (Ms) expressed in the following equation (1), and then cooled to room temperature through the overaging section of the equipment.
  • the over-aging section may be omitted and the product may be cooled directly to room temperature.
  • [C], [Si], [Mn], [Ni], [Cr], [Mo], [Cu], [Co], and [W] are carbon, silicon, manganese, nickel, This is the mass percent value of chromium, molybdenum, copper, cobalt, and tungsten.
  • the p-q section corresponds to the step of maintaining the second annealing temperature of Ac1 or higher (Ac3 - 30°C), and the q-r section is the first half of the cooling section and corresponds to the slow cooling section, r-s The section is the second half of the cooling section and corresponds to the rapid cooling section, and the s-t section corresponds to the overaging section.
  • the dotted line profile between the bainite transformation start temperature (Bs) and the martensite transformation start temperature (Ms) corresponds to the case where the plating process is performed in a plating bath. .
  • the second annealing heat treatment process can be maintained for 30 to 120 seconds at a second annealing temperature of Ac1 or higher (Ac3 - 30°C) or lower. Furthermore, the second annealing temperature is characterized in that it is lower than the first annealing temperature.
  • a biphasic annealing heat treatment step is performed for 30 to 120 seconds at a temperature of Ac1 or higher but lower than the primary annealing temperature. This is the stage in which the low-temperature phase structure created in the first annealing heat treatment (S400) undergoes reverse transformation to form lath-shaped ferrite and austenite.
  • annealing During annealing, reverse transformation of the primary low-temperature phase and redistribution of carbon (C) and manganese (Mn) to austenite occur. Therefore, a longer annealing time is preferable to ensure sufficient reverse transformation and redistribution of alloy elements. However, if the annealing time is too long, productivity is reduced. Because there is concern about deterioration, the annealing holding time is limited to 30 to 120 seconds. If the annealing temperature of the second annealing heat treatment (S500) is higher than the annealing temperature of the first annealing heat treatment (S400), the austenite fraction generated in the secondary annealing is larger than the low-temperature phase fraction in the entire structure.
  • This blocky austenite lowers the phase stability of austenite by reducing carbon (C) and manganese (Mn) that are redistributed into lath-shaped austenite.
  • C carbon
  • Mn manganese
  • the second annealing heat treatment (S500) is preferably performed at a lower temperature than the first annealing heat treatment (S400).
  • the bainite transformation initiation temperature (Bs) can be expressed by the following equation (2).
  • [C], [Si], [Mn], [Ni], [Cr], and [Mo] are the mass percent values of carbon, silicon, manganese, nickel, chromium, and molybdenum in the steel.
  • the cooling rate is 15°C/s or more, preferably 25°C/s or more.
  • the cooling end point temperature is below the bainite transformation start temperature (Bs) (bainite transformation start temperature (Bs) - 15°C), austenite is transformed into ferrite or pearlite during the holding step, causing a decrease in strength and elongation, If it is directly below the bainite transformation onset temperature (Bs), it is difficult to secure the phase stability of the retained austenite due to insufficient carbon redistribution. Conversely, if the cooling end point temperature is below the martensite transformation start temperature (Ms), fresh martensite is generated and the strength of the steel increases significantly, while the retained austenite decreases, making it possible to secure sufficient elongation of 23% or more, which is the target of the present invention. There will be no more. Additionally, if the holding time is less than 30 seconds, the redistribution effect may be reduced due to insufficient redistribution time, and if the holding time is longer than 300 seconds, productivity may decrease.
  • Bs bainite transformation start temperature
  • Ms martensite transformation start temperature
  • the cooling end point temperature After cooling to the cooling end point temperature, over-aging for 30 to 300 seconds to redistribute carbon (C) and manganese (Mn) and then cooling to room temperature.
  • the temperature during overaging does not need to be maintained isothermally at the cooling end point temperature, and may be cooled if necessary, but the temperature must be above Ms to prevent the formation of fresh martensite.
  • the cooling rate to room temperature is not specifically limited, but is preferably 10°C/s or more for productivity.
  • the redistribution effect of carbon (C) and manganese (Mn) during overaging varies depending on the austenite shape, and is greater in needle-shaped than in block-shaped.
  • the component system in Table 2 is the composition of the cold rolled steel sheet according to an embodiment of the present invention: carbon (C): 0.15 to 0.20% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 1.5 to 3.0% by weight. , Phosphorus (P): more than 0 and not more than 0.02% by weight, sulfur (S): more than 0 and not more than 0.003% by weight, aluminum (Al): 0.01 to 0.3% by weight, nitrogen (N): more than 0 and not more than 0.01% by weight, titanium ( Ti): 48/14 ⁇ [N] to 0.1% by weight ([N] is the weight% value of nitrogen) and the remaining iron (Fe) composition is satisfied.
  • the bainite transformation start temperature (Bs) is calculated to be 437.6°C
  • the martensite transformation start temperature (Ms) is calculated to be 341.6°C.
  • the temperature is calculated by the following relational equation.
  • the Ac1 temperature is 754°C and the Ac3 temperature is 900°C.
  • the steel having the above composition was reheated at 1250°C for 4 hours, hot rolled to a thickness of 3.5 mm at a finish rolling temperature (FDT) of 850°C, and then coiled at a coiling temperature of 600°C. Afterwards, the surface oxidized scale was removed through pickling and cold rolled to a thickness of 1.2 mm. Thereafter, the cold rolled steel sheet was heat treated twice in succession according to the configuration shown in FIG. 2.
  • Table 3 shows the process conditions of the primary annealing heat treatment and secondary annealing heat treatment applied in the experimental examples of the present invention.
  • item A is the annealing temperature of the first annealing heat treatment process (S400) and corresponds to the annealing temperature in the a-b section in (a) of Figure 2
  • item B is the annealing time of the first annealing heat treatment process (S400). It corresponds to the process time of the a-b section in (a) of Figure 2
  • item C is the slow cooling end temperature of the first annealing heat treatment process (S400), and point c is the end temperature of the slow cooling process in the b-c section in (a) of Figure 2.
  • item D is the rapid cooling end temperature of the first annealing heat treatment process (S400) and corresponds to the temperature at point d, which is the end temperature of the rapid cooling process in the section c-d in (a) of Figure 2
  • item E is The over-aging time of the first annealing heat treatment process (S400) corresponds to the process time of the over-aging process in the section d-e in (a) of Figure 2.
  • item F in Table 3 is the over-aging time of the second annealing heat treatment process (S500).
  • the annealing temperature corresponds to the annealing temperature of the p-q section in (b) of Figure 2
  • the G item is the annealing time of the secondary annealing heat treatment process (S500) and corresponds to the process time of the p-q section in (b) of Figure 2
  • the H item is the rapid cooling end temperature of the secondary annealing heat treatment process (S500) and corresponds to the temperature at point s, which is the end temperature of the rapid cooling process in the r-s section in Figure 2 (b)
  • the I item is the secondary annealing heat treatment process
  • the over-aging end temperature of S500 corresponds to the temperature at point t, which is the end temperature of the over-aging process in the s-t section in Figure 2 (b)
  • the J item is the over-aging time of the secondary annealing heat treatment process (S500). In (b) of 2, it corresponds to the process time of the over-aging process in the s-t section.
  • Table 4 shows the area fraction of microstructure (unit: %) and the amount of carbon enrichment (unit: weight %) in retained austenite in the experimental examples of the present invention.
  • the microstructure was analyzed using a scanning electron microscope (SEM), and XRD analysis was used to analyze the retained austenite fraction and carbon content in retained austenite.
  • item A is the area fraction of the ferrite phase realized after the first annealing heat treatment
  • item B is the area fraction of the low-temperature phase realized after the first annealing heat treatment
  • item C is the area fraction of the ferrite phase realized after the second annealing heat treatment.
  • D item is the area fraction of polygonal ferrite phase among ferrites realized after secondary annealing heat treatment
  • E item is the area fraction of acicular ferrite phase among ferrites realized after secondary annealing heat treatment
  • F item is materialized after secondary annealing heat treatment.
  • This is the area fraction of the acicular retained austenite phase
  • G is the area fraction of the martensite/austenite composite structure realized after the secondary annealing heat treatment
  • H is the area of the blocky martensite phase realized after the secondary annealing heat treatment. It is a fraction
  • item I is the amount of carbon enrichment in the retained austenite realized after the secondary annealing heat treatment.
  • Table 5 shows tensile properties in experimental examples of the present invention. Tensile properties were evaluated by performing a tensile test according to KS No. 5 standard using Zwick/Roell Corp Z100.
  • the TS item represents the tensile strength (unit: MPa)
  • the T.El item represents the elongation (unit: %)
  • the TS It is shown.
  • Examples 1, 2, 3, and 4 are obtained by appropriately performing the first annealing heat treatment (S400) and the second annealing heat treatment (S500) proposed in the present invention.
  • the present invention satisfies the tensile strength of 980 MPa or more (e.g., 980 to 1,180 MPa), elongation of 23% or more (e.g., 23 to 25%), and TS x El of 22,000 MPa or more.
  • the structure after the first annealing heat treatment (S400) of Example 1 that is, the entire structure, is composed of 43% ferrite and 57% low-temperature phase as an area fraction, and is satisfied under the conditions of the present invention (area fraction of ferrite : 30 to 50%) is satisfied.
  • the microstructure after the second annealing heat treatment (S500) of Example 1 is shown in Figure 4, and the target fraction of ferrite, needle-like retained austenite, martensite/austenite composite structure, and bulky martensite is the target fraction of the present invention. You can see that it is composed of .
  • Comparative Example 1 Comparative Example 2, Comparative Example 3, and Comparative Example 4 were subjected to the first annealing heat treatment (S400) at an ideal range temperature of 850°C to secure a sufficient amount of ferrite of 45% in the microstructure after the first annealing heat treatment.
  • S400 first annealing heat treatment
  • S500 second annealing heat treatment
  • the redistribution of alloy elements was not performed smoothly, and the retained austenite fraction and phase stability were not sufficiently secured, so the tensile strength was sufficiently high at 1000 MPa or more, but the elongation was 23%, which is the goal of the present invention. It did not fall far short of .
  • the cooling end point temperature was higher than the bainite transformation start temperature (Bs), and the redistribution of carbon (C) and manganese (Mn) occurred during the holding time after the cooling end point. Because it was not effective, the elongation rate was below the target value (more than 23%).
  • Comparative Example 3 like Examples 1, 2, and Examples, cooling was completed at an appropriate temperature above the martensite transformation start temperature (Ms) (bainite transformation start temperature (Bs) - 15°C) or below, but the holding time (shown) As the effective time was short (less than 30 seconds), a sufficient amount of redistribution was not achieved, and the elongation rate fell short of the target value (more than 23%).
  • the holding time was increased in the second annealing heat treatment (S500) compared to Comparative Example 3, and the redistribution of carbon (C) and manganese (Mn) was sufficiently achieved to greatly increase the elongation, so that sufficient retention was required to increase the elongation. You can see that it takes time.
  • the annealing temperature was high in the first annealing heat treatment (S400), so the ferrite fraction in the microstructure after the first annealing heat treatment was 6% and 0%, respectively, within the range proposed by the present invention (30%). to 50%).
  • the microstructure is generally composed of acicular ferrite, a composite structure of martensite/austenite, and retained austenite, and bulky martensite contributes to the increase in strength. It is very small, so the elongation in Comparative Examples 5 and 7 satisfies the target value of the present invention (23% or more), but the tensile strength does not satisfy.
  • the annealing temperature (second annealing temperature) of the second annealing heat treatment (S500) is higher than the annealing temperature (first annealing temperature) of the first annealing heat treatment (S400), which is against the heat treatment method proposed in the present invention. If the second annealing temperature is higher than the first annealing temperature, the austenite fraction generated in the second annealing heat treatment (S500) becomes higher than the low-temperature phase fraction of the structure after the first annealing heat treatment (S400).
  • Austenite reversely transformed at a low temperature appears as a lamellar structure of needle-shaped ferrite and austenite, but the austenite produced in excess due to high annealing temperature develops into a blocky form, and as a result, the fraction of blocky martensite increases in the final microstructure. While the tensile strength of the steel increases significantly, the elongation decreases (see Figure 7).
  • Comparative Example 9 only the conventional one-time annealing heat treatment was performed, and a microstructure consisting of blocky bainite, martensite, and ferrite appeared, as shown in FIG. 8. It exhibits high tensile strength and low elongation due to its high blocky martensite fraction, low martensite/austenite composite structure, and retained austenite fraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided in the present invention is a cold-rolled steel sheet comprising: carbon (C): 0.15-0.20% by weight, silicon (Si): 1.0-2.0% by weight, manganese (Mn): 1.5-3.0% by weight, phosphorus (P): greater than 0 and 0.02% by weight or less, sulfur (S): greater than 0 and 0.003% by weight or less, aluminum (Al): 0.01-0.3% by weight, nitrogen (N): greater than 0 and 0.01% by weight or less, titanium (Ti): 48/14·[N] to 0.1% by weight (where [N] is the weight % value of nitrogen), and the remaining being iron (Fe) and other unavoidable impurities, wherein a final microstructure consists of ferrite, acicular retained austenite, a martensite/austenite composite structure, and massive martensite, wherein the area fraction of the ferrite is 30-60%, the area fraction of the acicular retained austenite is 5-12%, the area fraction of the martensite/austenite composite structure is 25-50%, the area fraction of the massive martensite is 5-12%, and the carbon concentration in the retained austenite is 1.1% by weight or more.

Description

냉연 강판 및 그 제조방법Cold rolled steel sheet and manufacturing method thereof
본 발명은 냉연 강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 성형성이 우수한 냉연 초고강도 저탄소 강판 및 그 제조방법에 관한 것이다.The present invention relates to a cold-rolled steel sheet and a manufacturing method thereof, and more specifically, to a cold-rolled ultra-high-strength low-carbon steel sheet with excellent formability and a manufacturing method thereof.
환경 규제 이슈 대응에 따른 차량 경량화 및 안전 규제 강화에 따른 충돌 안정성 기준 강화의 두 요인을 충족시키기 위해 자동차 강판용 초고강도 강이 개발되고 있다. 하지만 강도와 연신율은 트레이드 오프(trade-off) 관계에 있어 강도 상승에 따른 성형성 저하 문제가 대두되었으며, 고강도강의 성형성 확보를 위한 여러 연구가 진행되어 왔다. Ultra-high-strength steel for automobile steel plates is being developed to meet the two factors of reducing vehicle weight in response to environmental regulatory issues and strengthening crash safety standards due to strengthening safety regulations. However, since strength and elongation have a trade-off relationship, the problem of deterioration of formability as strength increases has emerged, and several studies have been conducted to ensure formability of high-strength steel.
미세조직 내 잔류 오스테나이트의 변형 중 마르텐사이트로 변태하는 TRIP(TRansformation Induced Plasticity) 현상을 이용하는 TRIP-aided 강은 고강도와 고연신율과 모두 확보할 수 있는 3세대(3rd generation) 강판으로 개발되고 있다. 이러한 TRIP-aided 강은 TRIP 현상을 일으키는 잔류 오스테나이트의 상 안정도와 분율에 따라 강의 물성이 결정되므로 미세조직 내 안정한 잔류 오스테나이트를 확보하는 것이 그 강의 제조에 있어 중요하다.TRIP-aided steel, which utilizes the TRIP (TRansformation Induced Plasticity) phenomenon that transforms residual austenite into martensite during the transformation of retained austenite in the microstructure, is being developed as a 3rd generation steel sheet that can secure both high strength and high elongation. The physical properties of these TRIP-aided steels are determined by the phase stability and fraction of retained austenite that causes the TRIP phenomenon, so securing stable retained austenite in the microstructure is important in manufacturing the steel.
관련 선행 기술로는 한국특허출원 제2018-0033119호가 있다.Related prior art includes Korean Patent Application No. 2018-0033119.
본 발명이 이루고자 하는 기술적 과제는 성형성이 우수한 냉연 초고강도 저탄소 강판 및 그 제조방법을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide a cold rolled ultra-high strength low carbon steel sheet with excellent formability and a manufacturing method thereof.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 냉연 강판은 탄소(C): 0.15 내지 0.20중량%, 규소(Si): 1.0 내지 2.0중량%, 망간(Mn): 1.5 내지 3.0중량%, 인(P): 0 초과 0.02중량% 이하, 황(S): 0 초과 0.003중량% 이하, 알루미늄(Al): 0.01 내지 0.3중량%, 질소(N): 0 초과 0.01중량% 이하, 티타늄(Ti): 48/14·[N] 내지 0.1중량%(상기 [N]은 질소의 중량%값) 및 나머지 철(Fe)과 기타 불가피한 불순물로 이루어지며, 최종 미세조직은 페라이트, 침상형 잔류 오스테나이트, 마르텐사이트/오스테나이트의 복합 조직 및 괴상형 마르텐사이트로 이루어지되, 상기 페라이트의 면적분율은 30 내지 60%, 상기 침상형 잔류 오스테나이트의 면적분율은 5 내지 12%, 상기 마르텐사이트/오스테나이트의 복합 조직의 면적분율은 25 내지 50%, 상기 괴상형 마르텐사이트의 면적분율은 5 내지 12%이고, 잔류 오스테나이트 내 탄소 농화량 1.1중량% 이상이다. The cold-rolled steel sheet according to an embodiment of the present invention for solving the above problems includes carbon (C): 0.15 to 0.20% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 1.5 to 3.0% by weight, Phosphorus (P): more than 0 and not more than 0.02% by weight, sulfur (S): more than 0 and not more than 0.003% by weight, aluminum (Al): 0.01 to 0.3% by weight, nitrogen (N): more than 0 and not more than 0.01% by weight, titanium (Ti ): 48/14·[N] to 0.1% by weight ([N] is the weight percent value of nitrogen) and the remaining iron (Fe) and other inevitable impurities, and the final microstructure is ferrite and needle-like retained austenite. , composed of a composite structure of martensite/austenite and bulky martensite, wherein the area fraction of the ferrite is 30 to 60%, the area fraction of the acicular retained austenite is 5 to 12%, and the martensite/austenite The area fraction of the composite structure is 25 to 50%, the area fraction of the blocky martensite is 5 to 12%, and the carbon enrichment amount in the retained austenite is 1.1% by weight or more.
상기 냉연 강판에서, 상기 페라이트는 폴리고날 페라이트와 침상형 페라이트로 이루어지되, 상기 페라이트 중에서 상기 침상형 페라이트의 면적분율은 40% 이상일 수 있다.In the cold rolled steel sheet, the ferrite is composed of polygonal ferrite and acicular ferrite, and the area fraction of the acicular ferrite among the ferrite may be 40% or more.
상기 냉연 강판은 인장강도(TS): 980 내지 1180MPa이며, 연신율(El): 23 내지 25%일 수 있다. The cold rolled steel sheet may have a tensile strength (TS) of 980 to 1180 MPa and an elongation (El) of 23 to 25%.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 냉연 강판의 제조방법은 (a) 탄소(C): 0.15 내지 0.20중량%, 규소(Si): 1.0 내지 2.0중량%, 망간(Mn): 1.5 내지 3.0중량%, 인(P): 0 초과 0.02중량% 이하, 황(S): 0 초과 0.003중량% 이하, 알루미늄(Al): 0.01 내지 0.3중량%, 질소(N): 0 초과 0.01중량% 이하, 티타늄(Ti): 48/14·[N] 내지 0.1중량%(상기 [N]은 질소의 중량%값) 및 나머지 철(Fe)과 기타 불가피한 불순물로 이루어진 강재를 재가열하는 단계; (b) 상기 재가열된 강재를 열간 압연하는 단계; (c) 상기 열간 압연된 강재에 대하여 냉간 압연하는 단계; (d) 상기 냉간 압연된 강재에 대하여 (Ac1 + 30℃) 이상 (Ac3 - 30℃) 이하의 제 1 소둔온도에서 유지한 후 340℃ 이하의 냉각종점온도까지 냉각하는 공정을 포함하는 제 1 소둔 열처리 단계; 및 (e) 상기 강재에 대하여 Ac1 이상 (Ac3 - 30℃) 이하의 제 2 소둔온도에서 유지한 후 마르텐사이트 변태개시온도(Ms) 이상 (베이나이트 변태개시온도(Bs) - 15℃) 이하의 냉각종점온도까지 냉각한 후 과시효하는 공정을 포함하는 제 2 소둔 열처리 단계;를 순차적으로 포함하되, 상기 제 2 소둔온도는 상기 제 1 소둔온도보다 낮은 것을 특징으로 한다.The method of manufacturing a cold rolled steel sheet according to an embodiment of the present invention to solve the above problem is (a) carbon (C): 0.15 to 0.20% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 1.5 to 3.0% by weight, phosphorus (P): more than 0 and less than 0.02% by weight, sulfur (S): more than 0 and less than 0.003% by weight, aluminum (Al): 0.01 to 0.3% by weight, nitrogen (N): more than 0 and 0.01% by weight % or less, titanium (Ti): 48/14·[N] to 0.1% by weight (the [N] is a weight percent value of nitrogen) and the remaining iron (Fe) and other inevitable impurities. (b) hot rolling the reheated steel; (c) cold rolling the hot rolled steel; (d) First annealing including maintaining the cold rolled steel at a first annealing temperature of (Ac1 + 30°C) or more (Ac3 - 30°C) and then cooling to a cooling end point temperature of 340°C or less. heat treatment step; and (e) After maintaining the steel material at a second annealing temperature of Ac1 or higher (Ac3 - 30°C) or lower, the martensite transformation start temperature (Ms) or higher (bainite transformation start temperature (Bs) - 15°C) or lower. A second annealing heat treatment step including a process of over-aging after cooling to the cooling end point temperature, wherein the second annealing temperature is lower than the first annealing temperature.
상기 냉연 강판의 제조방법에서, 상기 (a) 단계는 상기 강재를 1180 내지 1300℃에서 재가열하는 단계를 포함하고, 상기 (b) 단계는 마무리 압연 온도가 850 내지 950℃, 권취온도가 450 내지 650℃인 조건으로 열간 압연하는 단계를 포함하고, 상기 (c) 단계는 40 내지 70%의 압하율로 냉간 압연하는 단계를 포함할 수 있다. In the method of manufacturing the cold rolled steel sheet, step (a) includes reheating the steel at 1180 to 1300°C, and step (b) includes a finish rolling temperature of 850 to 950°C and a coiling temperature of 450 to 650°C. It includes the step of hot rolling under conditions of ℃, and step (c) may include cold rolling at a reduction ratio of 40 to 70%.
상기 냉연 강판의 제조방법에서, 상기 (d) 단계는 상기 냉간 압연된 강재에 대하여 상기 제 1 소둔온도에서 30 내지 120초 동안 유지한 후 15℃/s 이상의 냉각속도로 340℃ 이하의 냉각종점온도까지 냉각하는 공정을 포함할 수 있다. In the method of manufacturing the cold rolled steel sheet, step (d) is performed by maintaining the cold rolled steel at the first annealing temperature for 30 to 120 seconds and then cooling the cold rolled steel at a cooling rate of 15°C/s or more to a cooling end point temperature of 340°C or less. It may include a cooling process.
상기 냉연 강판의 제조방법에서, 상기 (d) 단계를 수행한 후 상기 강재의 미세조직에서 페라이트의 면적분율은 30 내지 50%일 수 있다. In the method of manufacturing the cold rolled steel sheet, after performing step (d), the area fraction of ferrite in the microstructure of the steel may be 30 to 50%.
상기 냉연 강판의 제조방법에서, 상기 (e) 단계는 상기 강재에 대하여 상기 제 2 소둔온도에서에서 30 내지 120초 동안 유지한 후 15℃/s 이상의 냉각속도로 마르텐사이트 변태개시온도(Ms) 이상 (베이나이트 변태개시온도(Bs) - 15℃) 이하의 냉각종점온도까지 냉각한 후 30 ~ 300초동안 과시효하는 공정을 포함할 수 있다. In the method of manufacturing the cold rolled steel sheet, step (e) is performed by maintaining the steel material at the second annealing temperature for 30 to 120 seconds and then cooling the steel material at a cooling rate of 15°C/s or more to the martensite transformation onset temperature (Ms). It may include a process of over-aging for 30 to 300 seconds after cooling to a cooling end point temperature of (bainite transformation start temperature (Bs) - 15°C) or less.
상기 냉연 강판의 제조방법에서, 상기 (e) 단계를 수행한 후 상기 강재의 미세조직은 페라이트, 침상형 잔류 오스테나이트, 마르텐사이트/오스테나이트의 복합 조직 및 괴상형 마르텐사이트로 이루어지되, 상기 페라이트의 면적분율은 30 내지 60%, 상기 침상형 잔류 오스테나이트의 면적분율은 5 내지 12%, 상기 마르텐사이트/오스테나이트의 복합 조직의 면적분율은 25 내지 50%, 상기 괴상형 마르텐사이트의 면적분율은 5 내지 12%일 수 있다.In the method of manufacturing the cold rolled steel sheet, after performing step (e), the microstructure of the steel is composed of ferrite, acicular retained austenite, a composite structure of martensite/austenite, and bulky martensite, wherein the ferrite The area fraction is 30 to 60%, the area fraction of the acicular retained austenite is 5 to 12%, the area fraction of the martensite/austenite composite structure is 25 to 50%, and the area fraction of the bulky martensite may be 5 to 12%.
본 발명의 실시예에 따르면, 성형성이 우수한 냉연 초고강도 저탄소 강판 및 그 제조방법을 구현할 수 있다. 구체적으로, 0.2중량% 이하의 탄소를 함유한 저탄소 강종으로 설계하여 우수한 용접성을 확보할 수 있으며, 열처리 과정 중 여러 단계의 합금 원소 재분배 단계를 거쳐 충분한 양의 탄소와 망간을 오스테나이트에 농화시켜 우수한 강도와 연신율의 밸런스를 구현할 수 있으며, 980MPa 이상의 인장 강도, 23% 이상의 연신율을 확보하는 가공성이 우수한 냉연 초고강도 강을 구현할 수 있다. According to embodiments of the present invention, a cold rolled ultra-high strength low carbon steel sheet with excellent formability and a manufacturing method thereof can be implemented. Specifically, it can secure excellent weldability by designing it as a low-carbon steel containing less than 0.2% by weight of carbon. During the heat treatment process, sufficient amounts of carbon and manganese are concentrated into austenite through several stages of alloy element redistribution, resulting in excellent weldability. It is possible to achieve a balance between strength and elongation, and to create cold-rolled ultra-high strength steel with excellent processability that secures a tensile strength of more than 980 MPa and an elongation of more than 23%.
물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.Of course, the scope of the present invention is not limited by this effect.
도 1은 본 발명의 일 실시예에 따르는 냉연 강판의 제조방법을 개략적으로 나타내는 순서도이다. 1 is a flowchart schematically showing a method of manufacturing a cold rolled steel sheet according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 냉연 강판의 제조방법에서 (a) 제 1 소둔 열처리 공정 및 (b) 제 2 소둔 열처리 공정의 개요를 도해하는 도면이다. Figure 2 is a diagram illustrating the outline of (a) a first annealing heat treatment process and (b) a second annealing heat treatment process in the method of manufacturing a cold rolled steel sheet according to an embodiment of the present invention.
도 3은 실험예 중 실시예1에서 제 1 소둔 열처리 이후의 미세조직을 촬영한 사진이다.Figure 3 is a photograph taken of the microstructure after the first annealing heat treatment in Example 1 of the experimental examples.
도 4는 실험예 중 실시예1에서 제 2 소둔 열처리 이후의 미세조직을 촬영한 사진이다. Figure 4 is a photograph taken of the microstructure after the second annealing heat treatment in Example 1 of the experimental examples.
도 5는 실험예 중 비교예6에서 제 1 소둔 열처리 이후의 미세조직을 촬영한 사진이고, 도 6은 실험예 중 비교예7에서 최종 미세조직을 촬영한 사진이고, 도 7은 실험예 중 비교예8에서 최종 미세조직을 촬영한 사진이고, 도 8은 실험예 중 비교예9에서 최종 미세조직을 촬영한 사진이고, 도 9는 제 2 소둔 열처리 후 과시효 후 (a) 침상형 형상과 (b) 괴상형 형상 조직을 촬영한 사진이다.Figure 5 is a photograph taken of the microstructure after the first annealing heat treatment in Comparative Example 6 among the experimental examples, Figure 6 is a photograph taken of the final microstructure in Comparative Example 7 among the experimental examples, and Figure 7 is a photograph of the final microstructure in Comparative Example 7 among the experimental examples. Figure 8 is a picture taken of the final microstructure in Example 8, Figure 8 is a picture taken of the final microstructure in Comparative Example 9 among the experimental examples, and Figure 9 shows (a) a needle-like shape and (a) after overaging after the second annealing heat treatment. b) This is a photograph of a block-shaped tissue.
본 발명의 일 실시예에 따른 냉연 강판 및 그 제조방법을 상세하게 설명한다. 후술되는 용어들은 본 발명에서의 기능을 고려하여 적절하게 선택된 용어들로서, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하에서는 형성이 우수한 냉연 초고강도 저탄소 강판 및 그 제조방법의 구체적인 내용을 제공하고자 한다. A cold rolled steel sheet and a manufacturing method thereof according to an embodiment of the present invention will be described in detail. The terms described below are terms appropriately selected in consideration of their functions in the present invention, and definitions of these terms should be made based on the content throughout the present specification. Below, we will provide specific details of the cold-rolled ultra-high-strength low-carbon steel sheet with excellent formability and its manufacturing method.
한국특허출원번호 2018-0033119호는 강의 소둔 이후 급랭과 파티셔닝 열처리를 통해 템퍼드 마르텐사이트와 잔류 오스테나이트를 포함하는 강(Quenching and Partitioning, Q&P)의 제조방법을 제시하고 있다. Q&P 강은 0.2중량% 탄소강에서도 인장 강도 980MPa 이상, 연신율 21% 이상의 물성을 얻을 수 있다는 장점이 있으나 공정 온도에 대한 윈도우(window)가 좁아 연성 편차가 크므로 본 발명에서 목표로 하는 고연신율을 안정적으로 확보하기 어렵다.Korean Patent Application No. 2018-0033119 proposes a method of manufacturing steel (Quenching and Partitioning, Q&P) containing tempered martensite and retained austenite through rapid cooling and partitioning heat treatment after annealing the steel. Q&P steel has the advantage of being able to obtain physical properties of more than 980 MPa in tensile strength and more than 21% in elongation even with 0.2% by weight carbon steel, but the window for process temperature is narrow and the ductility variation is large, so the high elongation targeted by the present invention cannot be achieved stably. difficult to secure.
한국특허공개번호 2017-0113858호는 래쓰 형상의 페라이트와 잔류 오스테나이트를 확보하여 강의 연성을 증가시키기 위한 최종 소둔 전 미세조직(전 조직)을 확보하는 방법으로 2회 소둔 열처리를 공정을 제시하고 있다. 하지만 1차 소둔 이후 체적 분율 90% 이상의 저온 조직을 확보하기 위해 단상역 소둔을 실시해 탄소 함량이 낮은 강에서는 980MPa 이상의 인장 강도를 안정적으로 확보할 수 없고, 고온 소둔이 수반 되므로 로의 수명 단축이 우려된다.Korean Patent Publication No. 2017-0113858 proposes a two-time annealing heat treatment process as a method of securing the microstructure (pre-structure) before final annealing to increase the ductility of steel by securing lath-shaped ferrite and retained austenite. . However, since single-phase annealing is performed to secure a low-temperature structure with a volume fraction of more than 90% after the first annealing, a tensile strength of more than 980MPa cannot be stably secured in steel with a low carbon content, and there are concerns that the lifespan of the furnace will be shortened because high-temperature annealing is involved. .
본 발명에서는 자동차용 부품에 적용 가능한 인장강도 980MPa 이상, 연신율 23% 이상을 가지는 연신율이 우수한 냉연 초고강도 강판과 그 제조방법을 개시한다. 냉연 강판의 미세조직은 면적 분율 20% 이상 50% 이하의 폴리고날 페라이트, 40% 이상의 침상형 페라이트, 5%이상 및 12% 이하의 침상형 잔류 오스테나이트, 5% 이상의 마르텐사이트/오스테나이트 복합 조직 및 잔부 베이나이트로 구성되며, 목표한 항복강도와 인장강도, 연신율을 확보하기 위한 합금량 및 그에 적합한 열처리 조건을 개시한다. The present invention discloses a cold-rolled ultra-high-strength steel sheet with excellent elongation, having a tensile strength of 980 MPa or more and an elongation of 23% or more, applicable to automobile parts, and a method of manufacturing the same. The microstructure of cold-rolled steel sheets is polygonal ferrite with an area fraction of 20% to 50%, acicular ferrite with an area fraction of 40% or more, acicular retained austenite with an area fraction of 5% or more and 12% or less, and martensite/austenite composite structure with an area fraction of 20% or more and 12% or less. and the remaining bainite, and the alloy amount and appropriate heat treatment conditions to secure the target yield strength, tensile strength, and elongation are disclosed.
강판steel plate
본 발명의 일 실시예에 따르는 냉연 강판은 탄소(C): 0.15 내지 0.20중량%, 규소(Si): 1.0 내지 2.0중량%, 망간(Mn): 1.5 내지 3.0중량%, 인(P): 0 초과 0.02중량% 이하, 황(S): 0 초과 0.003중량% 이하, 알루미늄(Al): 0.01 내지 0.3중량%, 질소(N): 0 초과 0.01중량% 이하, 티타늄(Ti): 48/14·[N] 내지 0.1중량%(상기 [N]은 질소의 중량%값) 및 나머지 철(Fe)과 기타 불가피한 불순물로 이루어진다. The cold-rolled steel sheet according to an embodiment of the present invention contains carbon (C): 0.15 to 0.20% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 1.5 to 3.0% by weight, and phosphorus (P): 0. Exceeding 0.02% by weight or less, Sulfur (S): exceeding 0 and not exceeding 0.003% by weight, Aluminum (Al): 0.01 to 0.3% by weight, Nitrogen (N): exceeding 0 and not exceeding 0.01% by weight, Titanium (Ti): 48/14 It consists of [N] to 0.1% by weight (where [N] is the weight% value of nitrogen) and the remaining iron (Fe) and other inevitable impurities.
이하에서는, 상기 냉연 강판에 포함되는 각 성분의 역할 및 함량에 대하여 설명한다.Below, the role and content of each component included in the cold rolled steel sheet will be described.
탄소(C)Carbon (C)
탄소(C)는 강의 강도를 확보하기 위하여 첨가하며, 마르텐사이트 조직에서 탄소 함량이 증가할수록 강도가 증가한다. 나아가, 철 등의 원소와 화합하여 탄화물을 형성하여 강도와 경도를 향상시킨다. 탄소(C)는 본 발명의 일 실시예에 따른 냉연 강판에서 전체 중량의 0.15 내지 0.20중량%의 함량비로 첨가될 수 있다. 탄소의 함량이 전체 중량의 0.15중량% 미만일 경우에는 상술한 효과를 구현할 수 없으며 충분한 강도를 확보하지 못하는 문제점이 나타난다. 반대로, 탄소의 함량이 전체 중량의 0.20중량%를 초과할 경우에는 용접성 및 가공성이 저하되는 문제점이 나타난다. Carbon (C) is added to secure the strength of steel, and strength increases as the carbon content increases in the martensite structure. Furthermore, it combines with elements such as iron to form carbides to improve strength and hardness. Carbon (C) may be added in a content ratio of 0.15 to 0.20% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention. If the carbon content is less than 0.15% by weight of the total weight, the above-mentioned effect cannot be realized and there is a problem of not securing sufficient strength. On the other hand, when the carbon content exceeds 0.20% by weight of the total weight, weldability and processability are deteriorated.
규소(Si)Silicon (Si)
규소(Si)는 페라이트 고용강화 효과로 강도 상승 및 탄화물 형성 억제를 위하여 첨가되는 원소이다. 또한, 규소는 페라이트 안정화 원소로 잘 알려져 있어 냉각 중 페라이트 분율을 높여 연성을 증가시킬 수 있다. 또한, 오스테나이트 탄소 농화로 마르텐사이트 형성을 촉진하여 강도를 확보할 수 있는 원소로 알려져 있다. 한편, 규소는 알루미늄과 함께 제강 공정에서 강 중의 산소를 제거하기 위한 탈산제로 첨가되며, 고용강화 효과도 가질 수 있다. 상기 규소는 본 발명의 일 실시예에 따른 냉연 강판에서 전체 중량의 1.0 내지 2.0중량%의 함량비로 첨가될 수 있다. 규소의 함량이 전체 중량의 1.0중량% 미만일 경우에는 연성을 확보할 수 없으며 상술한 규소 첨가 효과를 제대로 발휘할 수 없다. 반대로, 규소의 함량이 전체 중량의 2.0중량%를 초과하여 다량 첨가 시 제조과정에서 Mn2SiO4등 산화물을 형성하여 도금성이 저해되고, 탄소당량을 높여 용접성을 저하시킬 수 있으며, 재가열 및 열간압연 시에 붉은 스케일(red scale)을 생성시킴으로써 표면품질에 문제를 줄 수 있으며, 인성 및 소성 가공성이 저하되는 문제가 있다. Silicon (Si) is an element added to increase strength and suppress carbide formation through the solid solution strengthening effect of ferrite. Additionally, silicon is well known as a ferrite stabilizing element, so ductility can be increased by increasing the ferrite fraction during cooling. In addition, it is known as an element that can secure strength by promoting martensite formation through austenite carbon enrichment. Meanwhile, silicon is added along with aluminum as a deoxidizer to remove oxygen in steel during the steelmaking process, and can also have a solid solution strengthening effect. The silicon may be added in an amount of 1.0 to 2.0% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention. If the silicon content is less than 1.0% by weight of the total weight, ductility cannot be secured and the above-mentioned silicon addition effect cannot be properly achieved. On the other hand, when the silicon content exceeds 2.0% by weight of the total weight and a large amount is added, oxides such as Mn 2 SiO 4 are formed during the manufacturing process, impairing plating properties, increasing the carbon equivalent, which may reduce weldability, and reheating and hot By generating red scale during rolling, surface quality may be affected, and toughness and plastic workability may be deteriorated.
망간(Mn)Manganese (Mn)
망간(Mn)은 소입성을 증대시켜 강도 향상에 기여하며, 저온 변태상의 형성을 용이하게 하며 고용강화로 강도를 상승시키는 효과를 제공하는 원소이다. 망간은 본 발명의 일 실시예에 따른 냉연 강판에서 전체 중량의 1.5 내지 3.0중량%의 함량비로 첨가될 수 있다. 망간의 함량이 1.5중량% 보다 작을 경우, 상술한 강도 확보의 효과를 충분히 발휘할 수 없다. 또한, 망간의 함량이 3.0중량%를 초과하는 경우, MnS등 개재물의 형성이나 편석으로 인한 가공성 저하와 지연파괴 저항성이 저하가 발생하고 탄소당량을 높여 용접성을 저하시킬 수 있다. Manganese (Mn) is an element that contributes to strength improvement by increasing hardenability, facilitates the formation of a low-temperature transformation phase, and provides the effect of increasing strength through solid solution strengthening. Manganese may be added in a content ratio of 1.5 to 3.0% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention. If the manganese content is less than 1.5% by weight, the above-mentioned effect of securing strength cannot be sufficiently achieved. In addition, when the manganese content exceeds 3.0% by weight, processability and delayed fracture resistance are reduced due to the formation or segregation of inclusions such as MnS, and the carbon equivalent may be increased, thereby reducing weldability.
인(P)Phosphorus (P)
인(P)은 고용강화에 의해 강도의 강도를 높이며, 탄화물의 형성을 억제하는 기능을 수행할 수 있다. 상기 인은 본 발명의 일 실시예에 따른 냉연 강판에서 전체 중량의 0 초과 0.02중량% 이하의 함량비로 첨가될 수 있다. 인의 함량이 0.02중량%를 초과하는 경우에는 용접부가 취화되며 저온취성이 유발되며 프레스 성형성이 저하되고 충격저항을 저하시키는 문제가 발생할 수 있다. Phosphorus (P) increases strength through solid solution strengthening and can perform the function of suppressing the formation of carbides. The phosphorus may be added in a content ratio of more than 0 and less than 0.02% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention. If the phosphorus content exceeds 0.02% by weight, the weld zone may become embrittled, low-temperature brittleness may occur, press formability may deteriorate, and impact resistance may decrease.
황(S)Hwang (S)
황(S)은 망간, 티타늄 등과 결합하여 강의 피삭성을 개선시키며 미세 MnS의 석출물을 형성하여 가공성을 향상시킬 수 있으나, 일반적으로 연성 및 용접성을 저해하는 원소이다. 상기 황은 본 발명의 일 실시예에 따른 냉연 강판에서 전체 중량의 0 초과 0.003중량% 이하의 함량비로 첨가될 수 있다. 황의 함량이 0.003중량%를 초과할 경우, Fes 개재물 또는 MnS 개재물 수가 증가하여 인성과 용접성이 저하되며 가공성이 열위되며, 연속주조 응고 중에 편석되어 고온 크랙이 발생하는 문제점이 발생할 수 있다. Sulfur (S) improves the machinability of steel by combining with manganese, titanium, etc., and can improve machinability by forming fine MnS precipitates, but is generally an element that inhibits ductility and weldability. The sulfur may be added in a content ratio of more than 0 and less than 0.003% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention. If the sulfur content exceeds 0.003% by weight, the number of Fes inclusions or MnS inclusions increases, which reduces toughness and weldability and machinability, and may cause segregation during solidification during continuous casting, causing high-temperature cracks.
알루미늄(Al)Aluminum (Al)
알루미늄(Al)은 탈산제로 주로 사용하는 원소로서, 페라이트 형성을 촉진하며 연신율을 향상시키며, 탄화물 형성을 억제하고, 오스테나이트 내 탄소 농화량을 증진하여 오스테나이트를 안정화시킨다. 상기 알루미늄(Al)은 본 발명의 일 실시예에 따른 냉연 강판에서 전체 중량의 0.01 내지 0.3중량%의 함량비로 첨가되는 것이 바람직하다. 알루미늄(Al)의 함량이 0.01중량% 미만일 경우에는 상술한 알루미늄 첨가 효과를 제대로 발휘할 수 있다. 반대로, 알루미늄(Al)의 함량이 0.3중량%를 초과하여 과다 첨가될 경우에는 알루미늄 개재물이 증가하여 연주성을 저하시키며 강판의 표면에 농화되어 도금성이 저하되고 슬라브내 AlN을 형성하여 열연 크랙을 유발하는 문제점이 있다.Aluminum (Al) is an element mainly used as a deoxidizer. It promotes the formation of ferrite, improves elongation, suppresses the formation of carbides, and stabilizes austenite by increasing carbon concentration in austenite. The aluminum (Al) is preferably added in an amount of 0.01 to 0.3% by weight of the total weight in the cold rolled steel sheet according to an embodiment of the present invention. When the aluminum (Al) content is less than 0.01% by weight, the above-described effect of adding aluminum can be properly achieved. On the other hand, if the aluminum (Al) content is added excessively, exceeding 0.3% by weight, aluminum inclusions increase, reducing playability, concentrating on the surface of the steel sheet, deteriorating plating ability, and forming AlN in the slab, causing hot rolling cracks. There is a problem that causes this.
질소(N)Nitrogen (N)
질소(N)는 강판의 강도를 상승시킬 수 있는 고용강화 원소이며, 일반적으로 대기로부터 혼입되는 원소이다. 그 함량은 제강 공정의 탈가스 공정으로 제어되어야 한다. 질소의 함량이 0.01중량%를 초과하는 경우에는 용접부가 취화되며 저온취성이 유발되며 프레스 성형성이 저하되고 충격저항을 저하시키는 문제가 발생할 수 있다. Nitrogen (N) is a solid solution strengthening element that can increase the strength of steel sheets, and is generally an element mixed from the atmosphere. Its content must be controlled by the degassing process in the steelmaking process. If the nitrogen content exceeds 0.01% by weight, the weld zone may become embrittled, low-temperature brittleness may occur, press formability may deteriorate, and impact resistance may decrease.
티타늄(Ti)Titanium (Ti)
티타늄(Ti)은 석출물 형성원소로, TiN의 석출과 결정립 미세화 효과가 있다. 특히 TiN의 석출을 통해 강 내부의 질소 함량을 낮출 수 있다. 티타늄은 48/14·[N] 내지 0.1중량%로 첨가되는 것이 바람직하며, 48/14·[N] 중량% 미만일 경우 TiC의 석출량이 적어서 Ti 첨가 효과가 불충분하고, 0.1 중량%를 초과하여 첨가될 경우 모재 내 탄소 고용도를 저감시켜 강도를 확보하기 어렵다.Titanium (Ti) is a precipitate forming element and has the effect of precipitating TiN and refining grains. In particular, the nitrogen content inside the steel can be lowered through precipitation of TiN. Titanium is preferably added in an amount of 48/14·[N] to 0.1% by weight. If it is less than 48/14·[N], the effect of adding Ti is insufficient due to the small amount of TiC precipitated, and if added in excess of 0.1% by weight. If this happens, it is difficult to secure strength by reducing the carbon solubility in the base material.
상술한 바와 같은, 합금 원소 조성을 가지는 본 발명의 일 실시예에 따른 냉연 강판은 인장강도 980MPa 이상, 연신율 23% 이상을 가지는 연신율이 우수한 냉연 초고강도 강판일 수 있다. 예를 들어, 상기 냉연 강판은 인장강도(TS): 980 내지 1180MPa이며, 연신율(El): 23 내지 25%일 수 있다. As described above, the cold-rolled steel sheet according to an embodiment of the present invention having the alloy element composition may be a cold-rolled ultra-high strength steel sheet with excellent elongation, having a tensile strength of 980 MPa or more and an elongation of 23% or more. For example, the cold rolled steel sheet may have a tensile strength (TS) of 980 to 1180 MPa and an elongation (El) of 23 to 25%.
상기 냉연 강판의 최종 미세조직은 최종 미세조직은 페라이트, 침상형 잔류 오스테나이트, 마르텐사이트/오스테나이트의 복합 조직 및 괴상형 마르텐사이트로 이루어지되, 상기 페라이트의 면적분율은 30 내지 60%, 상기 침상형 잔류 오스테나이트의 면적분율은 5 내지 12%, 상기 마르텐사이트/오스테나이트의 복합 조직의 면적분율은 25 내지 50%, 상기 괴상형 마르텐사이트의 면적분율은 5 내지 12%이고, 잔류 오스테나이트 내 탄소 농화량 1.1중량% 이상이다. 상기 페라이트는 폴리고날 페라이트와 침상형 페라이트로 이루어지되, 상기 페라이트 중에서 상기 침상형 페라이트의 면적분율은 40% 이상일 수 있다.The final microstructure of the cold rolled steel sheet consists of ferrite, needle-shaped retained austenite, a composite structure of martensite/austenite, and bulky martensite, and the area fraction of the ferrite is 30 to 60%, and the needle-shaped residual austenite The area fraction of the retained austenite is 5 to 12%, the area fraction of the martensite/austenite composite structure is 25 to 50%, the area fraction of the bulky martensite is 5 to 12%, and the area fraction of the retained austenite is 5 to 12%. The carbon enrichment amount is more than 1.1% by weight. The ferrite is composed of polygonal ferrite and acicular ferrite, and the area fraction of the acicular ferrite among the ferrite may be 40% or more.
이하에서는 상술한 조성과 미세조직을 가지는 본 발명의 일 실시예에 따른 냉연 강판의 제조방법을 설명한다. Hereinafter, a method for manufacturing a cold rolled steel sheet according to an embodiment of the present invention having the composition and microstructure described above will be described.
강판의 제조방법Manufacturing method of steel plate
도 1은 본 발명의 일 실시예에 따르는 냉연 강판의 제조방법을 개략적으로 나타내는 순서도이다. 1 is a flowchart schematically showing a method of manufacturing a cold rolled steel sheet according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따르는 강판의 제조방법은 (a) 탄소(C): 0.15 내지 0.20중량%, 규소(Si): 1.0 내지 2.0중량%, 망간(Mn): 1.5 내지 3.0중량%, 인(P): 0 초과 0.02중량% 이하, 황(S): 0 초과 0.003중량% 이하, 알루미늄(Al): 0.01 내지 0.3중량%, 질소(N): 0 초과 0.01중량% 이하, 티타늄(Ti): 48/14·[N] 내지 0.1중량%(상기 [N]은 질소의 중량%값) 및 나머지 철(Fe)과 기타 불가피한 불순물로 이루어진 강재를 재가열하는 단계(S100); (b) 상기 재가열된 강재를 열간 압연하는 단계(S200); (c) 상기 열간 압연된 강재에 대하여 냉간 압연하는 단계(S300); (d) 상기 냉간 압연된 강재에 대하여 (Ac1 + 30℃) 이상 (Ac3 - 30℃) 이하의 제 1 소둔온도에서 유지한 후 340℃ 이하의 냉각종점온도까지 냉각하는 공정을 포함하는 제 1 소둔 열처리 단계(S400); 및 (e) 상기 강재에 대하여 Ac1 이상 (Ac3 - 30℃) 이하의 제 2 소둔온도에서 유지한 후 마르텐사이트 변태개시온도(Ms) 이상 (베이나이트 변태개시온도(Bs) - 15℃) 이하의 냉각종점온도까지 냉각한 후 과시효하는 공정을 포함하는 제 2 소둔 열처리 단계(S500);를 순차적으로 포함한다. Referring to Figure 1, the method of manufacturing a steel sheet according to an embodiment of the present invention is (a) carbon (C): 0.15 to 0.20% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 1.5 to 3.0% by weight, phosphorus (P): more than 0 and less than 0.02% by weight, sulfur (S): more than 0 and less than 0.003% by weight, aluminum (Al): 0.01 to 0.3% by weight, nitrogen (N): more than 0 and 0.01% by weight. Hereinafter, titanium (Ti): 48/14·[N] to 0.1% by weight (where [N] is a weight percent value of nitrogen) and the remaining iron (Fe) and other inevitable impurities, a step of reheating (S100). ; (b) hot rolling the reheated steel (S200); (c) cold rolling the hot rolled steel (S300); (d) First annealing including maintaining the cold rolled steel at a first annealing temperature of (Ac1 + 30°C) or more (Ac3 - 30°C) and then cooling to a cooling end point temperature of 340°C or less. Heat treatment step (S400); and (e) After maintaining the steel material at a second annealing temperature of Ac1 or higher (Ac3 - 30°C) or lower, the martensite transformation start temperature (Ms) or higher (bainite transformation start temperature (Bs) - 15°C) or lower. A second annealing heat treatment step (S500) including a process of over-aging after cooling to the cooling end point temperature is sequentially included.
상기 (a) 단계(S100)는 상기 조성을 가지는 슬라브 강재를 1180 내지 1300℃에서 재가열하는 단계를 포함할 수 있다. 슬라브는 제강공정을 통해 얻은 용강을 연속주조하여 반제품 형태로 제조되고, 재가열 공정을 통하여 주조 공정에서 발생한 성분 편석을 균질화하고, 열간압연 할 수 있는 상태로 만든다. 슬라브 재가열 온도(Slab Reheating Temperature, SRT)가 1180℃ 이하이면, 슬라브의 편석이 충분히 재고용 되지 못하는 문제가 있고, 1300℃를 초과하면 오스테나이트 결정립의 크기가 증가하며, 공정비용이 상승할 수 있다. 슬라브의 재가열은 1 ~ 4시간 동안 진행 될 수 있다. 재가열 시간이 1시간 미만일 경우 편석대 감소가 충분하지 않으며, 4시간을 초과하는 경우 결정립 크기가 증가하며, 공정비용이 상승할 수 있다.The step (a) (S100) may include reheating the slab steel having the above composition at 1180 to 1300°C. Slabs are manufactured in the form of semi-finished products by continuously casting molten steel obtained through the steelmaking process, and through a reheating process, component segregation occurring in the casting process is homogenized and made ready for hot rolling. If the Slab Reheating Temperature (SRT) is below 1180℃, there is a problem that the segregation of the slab cannot be sufficiently re-employed, and if it exceeds 1300℃, the size of austenite grains increases and process costs may increase. Reheating of the slab can take 1 to 4 hours. If the reheating time is less than 1 hour, the reduction in the segregation zone is not sufficient, and if it exceeds 4 hours, the grain size increases and process costs may increase.
상기 (b) 단계(S200)는 상기 재가열된 슬라브를 열간 압연하는 단계이다. 열간 압연은 850 ~ 950℃의 마무리 압연온도(Finish Delivery Temperature, FDT)로 열간 압연한다. 마무리 압연온도가 850℃보다 낮아지면 압연 부하가 급격히 증가하여 생산성이 저하되고, 950℃를 초과하는 경우 결정립의 크기가 증가하여 강도가 감소할 수 있다. 열간 압연 후에 450 ~ 650℃의 온도로 냉각한 후 권취한다. 권취온도가 450℃ 미만이면 열연 코일의 형상을 불균일하게 하고 강도가 증가하여 냉간 압연시 압연부하가 증가하고, 650℃를 초과하는 경우 표면 산화 등으로 후 공정에서 불량을 일으킬 수 있으며, 강판의 중심부와 엣지부의 냉각속도 차이에 의한 불균일 미세조직을 야기하며, 입계 내부가 산화되는 문제점이 발생할 수 있다. The step (b) (S200) is a step of hot rolling the reheated slab. Hot rolling is performed at a finish delivery temperature (FDT) of 850 to 950°C. If the finish rolling temperature is lower than 850°C, the rolling load increases rapidly, reducing productivity, and if it exceeds 950°C, the size of the grains may increase and strength may decrease. After hot rolling, it is cooled to a temperature of 450 to 650°C and then wound. If the coiling temperature is less than 450℃, the shape of the hot-rolled coil becomes uneven and its strength increases, which increases the rolling load during cold rolling. If it exceeds 650℃, it may cause defects in the post-process due to surface oxidation, etc., and the center of the steel sheet It causes non-uniform microstructure due to the difference in cooling rate between the and edge portions, and problems such as oxidation inside the grain boundaries may occur.
상기 (c) 단계는 열연 코일을 산세하여 표면 스케일층을 제거하고 냉간 압연을 실시하는 단계이다. 냉간 압연 시 두께 압하율은 대략 40~70%이다. 압하율이 높을수록 조직 미세화 효과로 인한 성형성 상승 효과가 있다. 냉간 압연에서 40% 미만으로 압하할 경우 균일한 미세조직을 얻기 어려우며 70%를 초과하여 설계할 경우 롤포스가 높아져 공정 부하가 높아진다.Step (c) is a step of pickling the hot rolled coil to remove the surface scale layer and performing cold rolling. The thickness reduction rate during cold rolling is approximately 40 to 70%. The higher the reduction rate, the higher the formability due to the tissue refinement effect. In cold rolling, if the reduction is less than 40%, it is difficult to obtain a uniform microstructure, and if the design is over 70%, the roll force increases and the process load increases.
냉간 압연 후에 제 1 소둔 열처리 공정 및 제 2 소둔 열처리 공정을 순차적으로 수행한다. 즉, 냉간 압연된 냉연 강판을 1차 소둔 및 2차 소둔으로 총 2회 소둔을 실시한다. 상온에서 1차 또는 2차 소둔 온도 구간까지 가열하는 승온 속도는 제한하지 않고 통상의 가열로 설비의 승온 속도를 따를 수 있다.After cold rolling, the first annealing heat treatment process and the second annealing heat treatment process are sequentially performed. That is, the cold rolled steel sheet is annealed twice in total, including primary annealing and secondary annealing. The temperature increase rate of heating from room temperature to the first or second annealing temperature range is not limited and can follow the temperature increase rate of normal heating furnace equipment.
상기 (d) 단계는 상기 냉간 압연된 강재에 대하여 (Ac1 + 30℃) 이상 (Ac3 - 30℃) 이하의 제 1 소둔온도에서 유지한 후 340℃ 이하의 냉각종점온도까지 냉각하는 공정을 포함하는 제 1 소둔 열처리 단계이다. The step (d) includes maintaining the cold rolled steel at a first annealing temperature of (Ac1 + 30°C) or more (Ac3 - 30°C) and then cooling to a cooling end point temperature of 340°C or less. This is the first annealing heat treatment step.
상기 (d) 단계는 (Ac1 + 30℃) 이상 (Ac3 - 30℃) 이하의 제 1 소둔온도 구간에서 30 ~ 120초간 이상역 소둔 열처리하여 페라이트와 저온상의 이상(Dual-Phase) 조직을 확보하는 단계이다. 상기 제 1 소둔 열처리 공정은 제 2 소둔 열처리 공정 중 래쓰(lath) 형태의 침상형 페라이트와 오스테나이트 조직을 확보하기 위한 바람직한 전 조직을 형성시키는 공정이다. 본 명세서에서 '전 조직'이라 함은 제 1 소둔 열처리(S400)로 제조된 강재의 미세조직을 의미한다. 제 2 소둔 열처리 공정 중 저온상 조직이 오스테나이트로 역변태하며 래쓰 형태의 페라이트와 오스테나이트 미세조직이 형성되며, 여기서 저온상 조직은 마르텐사이트 혹은 베이나이트 상을 지칭한다. 이러한 래쓰 형태의 조직은 고강도와 고연성을 모두 확보할 수 있는 특징이 있다. 이상역 온도 구간에서 소둔하는 경우 탄소와 망간의 1차 재분배가 일어나 오스테나이트 영역으로 탄소와 망간이 농화되고, 오스테나이트의 상 안정도가 증가한다. Step (d) is a biphasic annealing heat treatment for 30 to 120 seconds in the first annealing temperature range of (Ac1 + 30℃) or higher (Ac3 - 30℃) to secure a dual-phase structure of ferrite and low temperature phase. It's a step. The first annealing heat treatment process is a process of forming a desirable overall structure to secure lath-shaped needle-shaped ferrite and austenite structures during the second annealing heat treatment process. In this specification, 'full structure' refers to the microstructure of steel manufactured through the first annealing heat treatment (S400). During the second annealing heat treatment process, the low-temperature phase structure reversely transforms into austenite, and lath-shaped ferrite and austenite microstructure are formed. Here, the low-temperature phase structure refers to the martensite or bainite phase. This lath-type organization has the characteristic of securing both high strength and high ductility. When annealing in an ideal temperature range, primary redistribution of carbon and manganese occurs, which enriches carbon and manganese in the austenite region and increases the phase stability of austenite.
본 발명에서 제안하는 0.2중량% 이하의 강종에서 인장강도 980MPa 이상과 연신율 23% 이상의 인장 물성을 모두 만족하기 위해서는 종래 열처리 이상으로 탄소와 망간을 오스테나이트로 재분배시켜 마르텐사이트의 강도를 증가시켜 충분한 인장 강도를 확보하고, 잔류 오스테나이트의 상 안정도를 증가시켜 충분한 연성을 확보할 필요가 있으므로, 제 1 소둔은 이상역 온도 구간에서 행함이 바람직하다. 제 1 소둔 온도가 Ac3을 초과하는 경우 고온 소둔으로 오스테나이트 결정이 조대해지고, 탄소와 망간 함량이 낮은 오스테나이트가 다량 생성되어 최종 강의 인장 물성 확보가 어렵다. 반면, 제 1 소둔 온도가 Ac1 이상이더라도 (Ac1 + 30℃) 미만인 경우 제 1 소둔 열처리 공정 이후 미세조직 내 페라이트 분율이 50%를 초과하게 되어 최종 미세조직 내에 연질의 조대한 폴리고날 페라이트가 많아져 강의 인장 물성 확보에 어려움이 있다. In order to satisfy both the tensile strength of 980 MPa or more and the elongation of 23% or more in the steel grade of 0.2% by weight or less proposed in the present invention, sufficient tensile strength is required by redistributing carbon and manganese to austenite beyond conventional heat treatment to increase the strength of martensite. Since it is necessary to secure strength and secure sufficient ductility by increasing the phase stability of retained austenite, it is preferable that the first annealing is performed in the ideal temperature range. If the first annealing temperature exceeds Ac3, austenite crystals become coarse due to high-temperature annealing, and a large amount of austenite with low carbon and manganese content is generated, making it difficult to secure the tensile properties of the final steel. On the other hand, if the first annealing temperature is above Ac1 but below (Ac1 + 30°C), the ferrite fraction in the microstructure exceeds 50% after the first annealing heat treatment process, resulting in an increase in soft and coarse polygonal ferrite in the final microstructure. There are difficulties in securing the tensile properties of steel.
따라서, 바람직하게 제 1 소둔 열처리 공정 이후 미세조직은 페라이트와 저온상으로 구성된 DP(dual phase) 조직이 나타나야 하며, 더욱 바람직하게는 강도와 연성 밸런스를 위해 페라이트의 분율은 면적 분율로 30% 이상 50% 이하로 제한할 수 있다. 상술한 1차 소둔 열처리된 강판을 상온까지 냉각함에 있어 냉각 중 물성에 악영향을 끼치는 폴리고날 페라이트의 생성을 억제하고 저온의 마르텐사이트 조직을 확보하기 위해 15℃/s 이상으로 냉각하며, 바람직하게는 25℃/s 이상으로 냉각할 수 있다. Therefore, preferably, after the first annealing heat treatment process, the microstructure should exhibit a DP (dual phase) structure composed of ferrite and a low-temperature phase, and more preferably, for strength and ductility balance, the fraction of ferrite should be 30% or more by area fraction. It can be limited to % or less. When cooling the above-described primary annealed heat-treated steel sheet to room temperature, it is preferably cooled at 15°C/s or more to suppress the formation of polygonal ferrite, which adversely affects physical properties during cooling, and to secure a low-temperature martensite structure. It can be cooled to over 25℃/s.
한편, 본 발명의 변형된 실시예에서는, 제 1 소둔 열처리 공정 이후 미세조직이 페라이트와 저온상으로 구성된 DP(dual phase) 조직이며, 페라이트의 분율은 면적 분율로 30% 이상 50% 이하로 제한된다면, 1차 소둔의 열처리 온도는 (Ac1 + 30℃) 이상 (Ac3 - 30℃) 이하로 한정될 수 있다. Meanwhile, in a modified embodiment of the present invention, if the microstructure after the first annealing heat treatment process is a DP (dual phase) structure composed of ferrite and a low-temperature phase, and the fraction of ferrite is limited to 30% or more and 50% or less as an area fraction. , the heat treatment temperature for primary annealing may be limited to (Ac1 + 30°C) or more and (Ac3 - 30°C) or less.
상기 (e) 단계는 상기 강재에 대하여 AAc1 이상 (Ac3 - 30℃) 이하의 제 2 소둔온도에서 유지한 후 마르텐사이트 변태개시온도(Ms) 이상 (베이나이트 변태개시온도(Bs) - 15℃) 이하의 냉각종점온도까지 냉각한 후 과시효하는 공정을 포함하는 제 2 소둔 열처리 단계이다. In step (e), the steel is maintained at a second annealing temperature of AAc1 or higher (Ac3 - 30°C) and then martensite transformation start temperature (Ms) or more (bainite transformation start temperature (Bs) - 15°C). This is the second annealing heat treatment step including the process of over-aging after cooling to the cooling end point temperature below.
상기 (e) 단계는 제 1 소둔 열처리 공정에서 생성된 마르텐사이트 조직이 역변태 되어 래쓰 형태의 페라이트와 오스테나이트가 형성되는 단계이다. 소둔 중에는 1차 저온상의 역변태와 더불어 오스테나이트로의 탄소와 망간의 재분배가 일어나므로 충분한 역변태와 합금 원소 재분배를 위해 소둔 시간은 길수록 바람직하나 소둔 시간이 지나치게 길어질 경우 생산성 저하가 우려되므로 소둔 유지 시간은 30초에서 120초 이내로 제한한다. In step (e), the martensite structure generated in the first annealing heat treatment process is reverse transformed to form lath-shaped ferrite and austenite. During annealing, reverse transformation of the primary low-temperature phase and redistribution of carbon and manganese to austenite occur, so a longer annealing time is preferable for sufficient reverse transformation and redistribution of alloy elements. However, if the annealing time is too long, there is a risk of decreased productivity, so annealing is maintained. Time is limited to 30 to 120 seconds.
상기 2차 소둔 열처리된 강판을 마르텐사이트 변태개시온도(Ms)와 베이나이트 변태개시온도(Bs) 사이의 온도까지 냉각하고 30 ~ 300초간 유지하여 탄소와 망간 합금 원소의 재분배를 유도해 잔류 오스테나이트의 상 안정도를 증가시키는 단계이다. 마르텐사이트 변태개시온도(Ms) 이상 (베이나이트 변태개시온도(Bs) - 15℃) 이하의 냉각종점온도까지 냉각함에 있어 그 냉각속도가 15℃/s 미만인 경우 냉각 중 폴리고날 페라이트가 생성되어 최종 강의 인장 물성 열위를 초래하므로 냉각속도는 15℃/s 이상으로 하며, 바람직하게는 25℃/s 이상이다. 냉각종점온도가 (베이나이트 변태개시온도(Bs) - 15℃) 보다 높으면 유지 단계 중 페라이트가 또는 펄라이트가 생성되어 강도와 연신율을 감소시키는 원인이 되고, 냉각종점온도가 베이나이트 변태개시온도(Bs) 직하의 온도에서는 고온 베이나이트 생성 구간으로 베이나이트 변태와 탄소 재분배가 균형적으로 일어나지 않는다. 반대로 냉각종점온도가 마르텐사이트 변태개시온도(Ms)보다 낮으면 냉각에 의한 프레쉬 마르텐사이트(fresh martensite)가 생성되어 강의 강도가 크게 증가하는 반면 잔류 오스테나이트가 감소해 본 발명에서 목표로 하는 23% 이상의 충분한 연신율을 확보할 수 없게 된다. 따라서, 냉각종점온도는 마르텐사이트 변태개시온도(Ms) 이상 (베이나이트 변태개시온도(Bs) - 15℃) 이하의 온도로 결정함이 바람직하다. 냉각종점온도까지 냉각한 이후 탄소와 망간의 추가적인 재분배를 위해 30 ~ 300초간 유지한 후 상온까지 냉각하며, 이때 상온까지의 냉각속도는 따로 한정하지 않으나 생산성을 위해 10℃/s 이상으로 함이 바람직하다. The secondary annealed heat-treated steel sheet is cooled to a temperature between the martensite transformation start temperature (Ms) and the bainite transformation start temperature (Bs) and held for 30 to 300 seconds to induce redistribution of carbon and manganese alloy elements to form retained austenite. This is the step to increase the stability of the costume. When cooling to the cooling end point temperature above the martensite transformation start temperature (Ms) (bainite transformation start temperature (Bs) - 15°C) or below, if the cooling rate is less than 15°C/s, polygonal ferrite is generated during cooling and the final Because it causes inferiority in the tensile properties of steel, the cooling rate is set to 15°C/s or more, preferably 25°C/s or more. If the cooling end point temperature is higher than (bainite transformation start temperature (Bs) - 15°C), ferrite or pearlite is generated during the holding stage, causing a decrease in strength and elongation, and the cooling end point temperature is higher than the bainite transformation start temperature (Bs). ) At temperatures just below this, bainite transformation and carbon redistribution do not occur in a balanced manner due to the high-temperature bainite formation section. Conversely, if the cooling end temperature is lower than the martensite transformation start temperature (Ms), fresh martensite is generated by cooling, greatly increasing the strength of the steel, while retained austenite is reduced to 23%, which is the target of the present invention. It becomes impossible to secure sufficient elongation. Therefore, it is preferable that the cooling end point temperature is determined to be a temperature higher than the martensite transformation start temperature (Ms) (bainite transformation start temperature (Bs) - 15°C) or lower. After cooling to the cooling end point temperature, it is maintained for 30 to 300 seconds for additional redistribution of carbon and manganese and then cooled to room temperature. At this time, the cooling rate to room temperature is not specifically limited, but is preferably 10℃/s or more for productivity. do.
나아가, 본 발명의 냉연 강판의 제조방법에서는 상기 제 2 소둔온도는 상기 제 1 소둔온도보다 낮은 것을 특징으로 한다. 제 2 소둔온도가 제 1 소둔온도 이상으로 높으면 제 1 소둔 열처리(S400) 후 조직의 저온상 분율보다 제 2 소둔 열처리(S500)에서 생성되는 오스테나이트 분율이 높아진다. 저온상에서 역변태한 오스테나이트는 침상형 페라이트와 오스테나이트의 라멜라 구조로 나타나나, 높은 소둔 온도로 인해 초과 생성되는 오스테나이트는 괴상형이 발달하고 그 결과 최종 미세조직에 괴상 마르텐사이트 분율이 증가해 강의 인장 강도가 크게 증가하는 반면 연신율은 감소한다. Furthermore, in the method of manufacturing a cold rolled steel sheet of the present invention, the second annealing temperature is lower than the first annealing temperature. If the second annealing temperature is higher than the first annealing temperature, the austenite fraction generated in the second annealing heat treatment (S500) becomes higher than the low-temperature phase fraction of the structure after the first annealing heat treatment (S400). Austenite reversely transformed at a low temperature appears as a lamellar structure of acicular ferrite and austenite, but the austenite produced in excess due to high annealing temperature develops into a blocky form, and as a result, the fraction of blocky martensite increases in the final microstructure. The tensile strength of the steel increases significantly, while the elongation decreases.
상술한 열처리 과정을 통해 최종적으로 구현된 강재의 미세조직은 페라이트, 침상형 잔류 오스테나이트, 마르텐사이트/오스테나이트의 복합 조직 및 괴상형 마르텐사이트로 이루어지되, 상기 페라이트의 면적분율은 30 내지 60%, 상기 침상형 잔류 오스테나이트의 면적분율은 5 내지 12%, 상기 마르텐사이트/오스테나이트의 복합 조직의 면적분율은 25 내지 50%, 상기 괴상형 마르텐사이트의 면적분율은 5 내지 12%일 수 있다.The microstructure of the steel material finally realized through the above-described heat treatment process is composed of ferrite, needle-like retained austenite, a composite structure of martensite/austenite, and bulky martensite, and the area fraction of the ferrite is 30 to 60%. , the area fraction of the acicular retained austenite may be 5 to 12%, the area fraction of the martensite/austenite composite structure may be 25 to 50%, and the area fraction of the blocky martensite may be 5 to 12%. .
본 발명에서 기재하는 성분계 범위 내에서 상술한 열처리 과정과 그로부터 얻어진 상기 미세조직으로 구성된 강종은 인장강도(TS): 980 내지 1180MPa이며, 연신율(El): 23 내지 25%의 성형성이 우수한 저탄소계 냉연 초고강도 강판을 구현할 수 있다. The steel grade composed of the above-described heat treatment process within the composition range described in the present invention and the microstructure obtained therefrom is a low-carbon type with excellent formability with a tensile strength (TS): 980 to 1180 MPa and an elongation (El): 23 to 25%. Cold-rolled ultra-high-strength steel sheets can be realized.
이하에서는 상술한 소둔 열처리 공정을 도면을 참조하여 설명하고자 한다.Hereinafter, the above-described annealing heat treatment process will be described with reference to the drawings.
도 2는 본 발명의 일 실시예에 따른 냉연 강판의 제조방법에서 (a) 제 1 소둔 열처리 공정(S400) 및 (b) 제 2 소둔 열처리 공정(S500)의 개요를 도해하는 도면이다. Figure 2 is a diagram illustrating the outline of (a) a first annealing heat treatment process (S400) and (b) a second annealing heat treatment process (S500) in the method of manufacturing a cold rolled steel sheet according to an embodiment of the present invention.
제 1 소둔 열처리(S400)First annealing heat treatment (S400)
도 2의 (a)를 참조하면, a-b 구간은 (Ac1 + 30℃) 이상 (Ac3 - 30℃) 이하의 제 1 소둔온도에서 유지하는 단계에 해당하며, b-c 구간은 냉각 구간 중 전반부로서 서냉 공정에 해당하며, c-d 구간은 냉각 구간 중 후반부로서 급냉 공정에 해당하며, d-e 구간은 과시효 공정에 해당한다. 본 발명의 변형된 실시예에서는, b-c 구간의 서냉 공정 및 d-e 구간은 과시효 공정을 생략할 수 있다. Referring to (a) of Figure 2, the a-b section corresponds to the step of maintaining the first annealing temperature of (Ac1 + 30°C) or more and (Ac3 - 30°C) or less, and the b-c section is the first half of the cooling section and is a slow cooling process. Corresponds to , the c-d section is the latter half of the cooling section and corresponds to the quenching process, and the d-e section corresponds to the over-aging process. In a modified embodiment of the present invention, the slow cooling process in sections b-c and the over-aging process in sections d-e can be omitted.
제 1 소둔 열처리 공정은 (Ac1 + 30℃) 이상 (Ac3 - 30℃) 이하의 제 1 소둔온도에서 30 ~ 120초간 유지할 수 있다. 본 실시예에서 제안하는 탄소 함량이 0.2중량% 이하인 경우 강의 인장 강도 확보를 위해서는 기존의 강종보다 합금 원소의 재분배를 증가시켜야 하므로 제 1 소둔 열처리 공정을 이상역 온도대에서 실시하여 합금 원소의 1차 재분배를 유도한다. 이때, 소둔 온도가 지나치게 낮을 경우 제 1 소둔 열처리 공정 이후 미세조직 내에 다량의 폴리고날 페라이트가 형성되어 충분한 인장 강도 확보가 어렵고, (Ac3 - 30℃)을 초과하는 경우 고온 소둔으로 결정립 조대화와 합금원소량이 낮은(lean) 오스테나이트 분율이 많아져 목표로 하는 인장 물성을 달성하기 어렵다. 유지시간이 120초를 초과하는 경우 결정립의 크기가 조대화하고 생산성이 떨어질 수 있다. 상기 소둔된 냉연 강을 340℃ 이하의 온도로 15℃/s 이상의 냉각속도로 냉각한다. 이 때, 냉각 종점 온도가 340℃를 초과하는 경우 탄화물 석출로 인해 제 2 소둔 열처리 공정에서 래쓰 형태의 조직을 얻기 어렵고, 냉각속도가 15℃/s 미만인 경우 냉각 중 다량의 폴리고날 페라이트가 생성되어 인장 강도 확보에 불리하다. The first annealing heat treatment process can be maintained for 30 to 120 seconds at a first annealing temperature of (Ac1 + 30°C) or more (Ac3 - 30°C) or less. When the carbon content proposed in this example is 0.2% by weight or less, the redistribution of alloy elements must be increased compared to existing steel types to secure the tensile strength of the steel, so the first annealing heat treatment process is performed in the ideal temperature range to remove the primary alloy elements. Induce redistribution. At this time, if the annealing temperature is too low, a large amount of polygonal ferrite is formed in the microstructure after the first annealing heat treatment process, making it difficult to secure sufficient tensile strength, and if it exceeds (Ac3 - 30℃), grain coarsening and alloying may occur due to high temperature annealing. The austenite fraction with a low element content (lean) increases, making it difficult to achieve the target tensile properties. If the holding time exceeds 120 seconds, the size of the grains may become coarse and productivity may decrease. The annealed cold-rolled steel is cooled to a temperature of 340°C or lower and a cooling rate of 15°C/s or higher. At this time, if the cooling end point temperature exceeds 340℃, it is difficult to obtain a lath-shaped structure in the second annealing heat treatment process due to carbide precipitation, and if the cooling rate is less than 15℃/s, a large amount of polygonal ferrite is generated during cooling. It is disadvantageous in securing tensile strength.
b-c 구간은 소둔 열처리된 강판을 서냉각하는 단계이다. 상기 소둔 열처리된 강판을 냉각함에 있어 열처리 설비에 따라 서냉각 구간을 포함할 수 있다. 서냉 구간을 포함할 경우, 서냉각 종점 온도나 냉각 속도는 따로 제한하지 않으나 냉각 중 폴리고날 페라이트가 다량 생성되지 않도록, 바람직하게는 서냉각 종점 온도는 740℃ 이상, 냉각 속도는 -5℃/s 이상일 수 있다.Section b-c is a step of slowly cooling the annealed heat-treated steel sheet. When cooling the annealed heat-treated steel sheet, a slow cooling section may be included depending on the heat treatment equipment. When a slow cooling section is included, the slow cooling end point temperature or cooling rate is not specifically limited, but to prevent a large amount of polygonal ferrite from being generated during cooling, the slow cooling end point temperature is preferably 740°C or higher and the cooling rate is -5°C/s. It could be more than that.
c-d 구간은 냉각 구간 중 후반부로서 급냉 공정에 해당하며, 상기 서냉 공정으로 냉각된 강판을 340℃ 이하의 온도까지 냉각하는 단계이다. 상기 1차 소둔 열처리된 강판 혹은 1차 냉각된 강판을 냉각함에 있어 물성에 악영향을 끼치는 폴리고날 페라이트의 생성을 억제하고 저온상인 베이나이트 혹은 마르텐사이트를 형성시키기 위해 -15℃/s 이상으로 냉각하며, 바람직하게는 25℃/s 이상으로 한다. 상기 냉각 속도는 하기 수학식 (1)로 표현되는 마르텐사이트 변태개시온도(Ms) 이하의 온도까지 유지하며, 그 이후 설비의 과시효 구간을 거쳐 상온까지 냉각한다. 혹은 과시효 구간을 생략하여 상온까지 바로 냉각하여도 무방하다.The c-d section is the latter part of the cooling section and corresponds to a rapid cooling process, and is a step in which the steel sheet cooled through the slow cooling process is cooled to a temperature of 340°C or lower. When cooling the primary annealed heat-treated steel sheet or the primary cooled steel sheet, the steel sheet is cooled to -15°C/s or higher to suppress the formation of polygonal ferrite, which adversely affects physical properties, and to form bainite or martensite, which are low-temperature phases. , preferably 25°C/s or higher. The cooling rate is maintained up to a temperature below the martensite transformation start temperature (Ms) expressed in the following equation (1), and then cooled to room temperature through the overaging section of the equipment. Alternatively, the over-aging section may be omitted and the product may be cooled directly to room temperature.
수학식 (1)Equation (1)
Ms (℃) = 491.1 - 302.6[C] - 14.5[Si] -30.6[Mn] - 16.6[Ni] - 8.9[Cr] + 2.4[Mo] - 11.3[Cu] + 8.58[Co] + 7.4[W]Ms (℃) = 491.1 - 302.6[C] - 14.5[Si] -30.6[Mn] - 16.6[Ni] - 8.9[Cr] + 2.4[Mo] - 11.3[Cu] + 8.58[Co] + 7.4[W ]
여기에서, 상기 [C], [Si], [Mn], [Ni], [Cr], [Mo], [Cu], [Co], [W]는 강재 내 탄소, 실리콘, 망간, 니켈, 크롬, 몰리브덴, 구리, 코발트, 텅스텐의 질량%의 값이다.Here, [C], [Si], [Mn], [Ni], [Cr], [Mo], [Cu], [Co], and [W] are carbon, silicon, manganese, nickel, This is the mass percent value of chromium, molybdenum, copper, cobalt, and tungsten.
제 2 소둔 열처리(S500)Second annealing heat treatment (S500)
도 2의 (b)를 참조하면, p-q 구간은 Ac1 이상 (Ac3 - 30℃) 이하의 제 2 소둔온도에서 유지하는 단계에 해당하며, q-r 구간은 냉각 구간 중 전반부로서 서냉 구간에 해당하며, r-s 구간은 냉각 구간 중 후반부로서 급냉 구간에 해당하며, s-t 구간은 과시효 구간에 해당한다. 한편, 도 2의 (b)에 개시된 제 2 소둔 열처리 공정에서 베이나이트 변태개시온도(Bs)와 마르텐사이트 변태개시온도(Ms) 사이의 점선 프로파일은 도금욕에서 도금 공정을 수행하는 경우에 해당한다. Referring to (b) of Figure 2, the p-q section corresponds to the step of maintaining the second annealing temperature of Ac1 or higher (Ac3 - 30°C), and the q-r section is the first half of the cooling section and corresponds to the slow cooling section, r-s The section is the second half of the cooling section and corresponds to the rapid cooling section, and the s-t section corresponds to the overaging section. Meanwhile, in the second annealing heat treatment process disclosed in (b) of Figure 2, the dotted line profile between the bainite transformation start temperature (Bs) and the martensite transformation start temperature (Ms) corresponds to the case where the plating process is performed in a plating bath. .
제 2 소둔 열처리 공정은 Ac1 이상 (Ac3 - 30℃) 이하의 제 2 소둔온도에서 30 ~ 120초간 유지할 수 있다. 나아가, 상기 제 2 소둔온도는 상기 제 1 소둔온도보다 낮은 것을 특징으로 한다. Ac1 이상 1차 소둔 온도 미만의 온도에서 30 ~ 120초간 이상역 소둔 열처리하는 단계를 수행한다. 제 1 소둔 열처리(S400)에서 생성된 저온상 조직이 역변태 되어 래쓰 형태의 페라이트와 오스테나이트가 형성되는 단계이다. 소둔 중에는 1차 저온상의 역변태와 더불어 오스테나이트로의 탄소(C), 망간(Mn)의 재분배가 일어나므로 충분한 역변태와 합금 원소 재분배를 위해 소둔 시간은 길수록 바람직하나 소둔 시간이 지나치게 길어질 경우 생산성 저하가 우려되므로 소둔 유지 시간은 30초에서 120초 이내로 제한한다. 제 2 소둔 열처리(S500)의 소둔 온도가 제 1 소둔 열처리(S400)의 소둔 온도 이상이면, 전 조직 내 저온상 분율보다 2차 소둔에서 생성되는 오스테나이트 분율이 더 크다. 그 결과, 저온상에서 역변태 되는 래쓰 형태의 오스테나이트 발달이 저해되고 초과한 분율만큼 괴상형 오스테나이트가 생성된다. 이러한 괴상형 오스테나이트는 래쓰 형태의 오스테나이트로 재분배 되는 탄소(C), 망간(Mn)을 줄여 오스테나이트의 상 안정도를 낮춘다. 이는 본 발명에서 달성코자 하는 연신율 확보를 위해 요구되는 래쓰 형태의 조직을 생성하는 제 1 소둔 열처리(S400)의 효과를 저해시킨다. 따라서, 제 2 소둔 열처리(S500)는 제 1 소둔 열처리(S400)보다 낮은 온도에서 시행함이 바람직하다. The second annealing heat treatment process can be maintained for 30 to 120 seconds at a second annealing temperature of Ac1 or higher (Ac3 - 30°C) or lower. Furthermore, the second annealing temperature is characterized in that it is lower than the first annealing temperature. A biphasic annealing heat treatment step is performed for 30 to 120 seconds at a temperature of Ac1 or higher but lower than the primary annealing temperature. This is the stage in which the low-temperature phase structure created in the first annealing heat treatment (S400) undergoes reverse transformation to form lath-shaped ferrite and austenite. During annealing, reverse transformation of the primary low-temperature phase and redistribution of carbon (C) and manganese (Mn) to austenite occur. Therefore, a longer annealing time is preferable to ensure sufficient reverse transformation and redistribution of alloy elements. However, if the annealing time is too long, productivity is reduced. Because there is concern about deterioration, the annealing holding time is limited to 30 to 120 seconds. If the annealing temperature of the second annealing heat treatment (S500) is higher than the annealing temperature of the first annealing heat treatment (S400), the austenite fraction generated in the secondary annealing is larger than the low-temperature phase fraction in the entire structure. As a result, the development of lath-shaped austenite, which undergoes reverse transformation at low temperatures, is inhibited, and bulky austenite is generated in proportion to the excess fraction. This blocky austenite lowers the phase stability of austenite by reducing carbon (C) and manganese (Mn) that are redistributed into lath-shaped austenite. This impedes the effect of the first annealing heat treatment (S400), which creates a lath-shaped structure required to secure the elongation desired in the present invention. Therefore, the second annealing heat treatment (S500) is preferably performed at a lower temperature than the first annealing heat treatment (S400).
이후 15℃/s 이상의 냉각속도로 마르텐사이트 변태개시온도(Ms) 이상 (베이나이트 변태개시온도(Bs) - 15℃) 이하의 냉각종점온도까지 냉각한 후 30 ~ 300초간 유지(과시효)함으로써 탄소(C), 망간(Mn) 합금 원소의 재분배를 유도해 잔류 오스테나이트의 상 안정도를 증가시키는 단계이다. Afterwards, it is cooled to a cooling end temperature below the martensite transformation start temperature (Ms) (bainite transformation start temperature (Bs) - 15°C) at a cooling rate of 15°C/s or above and maintained for 30 to 300 seconds (overaging). This is a step to increase the phase stability of retained austenite by inducing redistribution of carbon (C) and manganese (Mn) alloy elements.
베이나이트 변태개시온도(Bs)는 하기 수학식 (2)로 표현될 수 있다.The bainite transformation initiation temperature (Bs) can be expressed by the following equation (2).
수학식 (2)Equation (2)
Bs (℃) = 656 - 57.7[C] - 75[Si] - 35[Mn] - 15.3[Ni] - 34[Cr] - 41.2[Mo]Bs (℃) = 656 - 57.7[C] - 75[Si] - 35[Mn] - 15.3[Ni] - 34[Cr] - 41.2[Mo]
여기에서, 상기 [C], [Si], [Mn], [Ni], [Cr], [Mo]는 강재 내 탄소, 실리콘, 망간, 니켈, 크롬, 몰리브덴의 질량%의 값이다.Here, [C], [Si], [Mn], [Ni], [Cr], and [Mo] are the mass percent values of carbon, silicon, manganese, nickel, chromium, and molybdenum in the steel.
마르텐사이트 변태개시온도(Ms) 이상 (베이나이트 변태개시온도(Bs) - 15℃) 이하로 냉각함에 있어서, 냉각 속도가 15℃/s 미만인 경우 냉각 중 폴리고날 페라이트가 생성되어 최종 강의 인장 물성 열위를 초래하므로 냉각 속도는 15℃/s 이상으로 하며, 바람직하게는 25℃/s 이상이다. When cooling below the martensite transformation start temperature (Ms) or below (bainite transformation start temperature (Bs) - 15°C), if the cooling rate is less than 15°C/s, polygonal ferrite is generated during cooling, resulting in inferior tensile properties of the final steel. Therefore, the cooling rate is 15°C/s or more, preferably 25°C/s or more.
냉각 종점 온도가 베이나이트 변태개시온도(Bs) 이하 (베이나이트 변태개시온도(Bs) - 15℃) 초과이면 유지 단계 중 오스테나이트가 페라이트 또는 펄라이트로 변태하여 강도와 연신율을 감소 시키는 원인이 되고, 베이나이트 변태개시온도(Bs) 직하이면 탄소 재분배가 부족해 잔류 오스테나이트의 상 안정도를 확보하기 어렵다. 반대로 냉각 종점 온도가 마르텐사이트 변태개시온도(Ms) 미만이면, 프레시 마르텐사이트가 생성되어 강의 강도가 크게 증가하는 반면 잔류 오스테나이트가 감소해 본 발명에서 목표로 하는 23%이상의 충분한 연신율을 확보할 수 없게 된다. 또한, 유지 시간이 30초 미만인 경우 재분배 시간이 부족하여 재분배 효과가 떨어지고, 300초 초과 시 생산성이 떨어질 수 있다. If the cooling end point temperature is below the bainite transformation start temperature (Bs) (bainite transformation start temperature (Bs) - 15°C), austenite is transformed into ferrite or pearlite during the holding step, causing a decrease in strength and elongation, If it is directly below the bainite transformation onset temperature (Bs), it is difficult to secure the phase stability of the retained austenite due to insufficient carbon redistribution. Conversely, if the cooling end point temperature is below the martensite transformation start temperature (Ms), fresh martensite is generated and the strength of the steel increases significantly, while the retained austenite decreases, making it possible to secure sufficient elongation of 23% or more, which is the target of the present invention. There will be no more. Additionally, if the holding time is less than 30 seconds, the redistribution effect may be reduced due to insufficient redistribution time, and if the holding time is longer than 300 seconds, productivity may decrease.
냉각 종점 온도까지 냉각한 이후 탄소(C), 망간(Mn)의 재분배를 위해 30 ~ 300초간 과시효 후 상온까지 냉각한다. 과시효 중 온도는 냉각 종점 온도로 등온 유지할 필요는 없으며, 필요에 따라 냉각할 수 있으나 프레시 마르텐사이트 생성을 방지하기 위해 그 온도는 Ms 이상이어야 한다. 또한, 상온까지의 냉각 속도는 따로 한정하지 않으나 생산성을 위해 10℃/s 이상으로 함이 바람직하다. 과시효 중 탄소(C), 망간(Mn)의 재분배 효과는 오스테나이트 형상에 따라 다르며, 괴상형 보다 침상형 형상에서 더 크다. 침상형 형상에서 탄소(C), 망간(Mn)의 확산 거리가 더 짧아 동일한 시간 동안 확산이 더 수월하게 일어나기 때문이며, 도 9 및 표 1와 같이 과시효 후 침상형 형상과 괴상형 상 조직에 탄소(C), 망간(Mn)의 함량을 분석한 결과 침상형 형상에서 더 많은 탄소(C), 망간(Mn) 농화가 일어남을 확인할 수 있다. 그 결과 최종 냉각 이후 미세조직에서 침상형 형태의 오스테나이트는 마르텐사이트/오스테나이트의 복합 조직, 괴상형 오스테나이트는 괴상형 마르텐사이트로 남게 된다.After cooling to the cooling end point temperature, over-aging for 30 to 300 seconds to redistribute carbon (C) and manganese (Mn) and then cooling to room temperature. The temperature during overaging does not need to be maintained isothermally at the cooling end point temperature, and may be cooled if necessary, but the temperature must be above Ms to prevent the formation of fresh martensite. In addition, the cooling rate to room temperature is not specifically limited, but is preferably 10°C/s or more for productivity. The redistribution effect of carbon (C) and manganese (Mn) during overaging varies depending on the austenite shape, and is greater in needle-shaped than in block-shaped. This is because the diffusion distance of carbon (C) and manganese (Mn) is shorter in the needle-shaped shape, so diffusion occurs more easily during the same time, and as shown in Figure 9 and Table 1, carbon is present in the needle-shaped and block-shaped structures after overaging. (C), As a result of analyzing the manganese (Mn) content, it can be seen that more carbon (C) and manganese (Mn) enrichment occurs in the needle-shaped shape. As a result, in the microstructure after final cooling, acicular austenite remains as a composite structure of martensite/austenite, and blocky austenite remains as a blocky martensite.
중량%weight% 침상형 bed type 괴상형weird type
탄소(C)Carbon (C) 0.6±0.050.6±0.05 0.3±0.050.3±0.05
망간(Mn)Manganese (Mn) 3.5±0.53.5±0.5 2.25±0.252.25±0.25
상술한 본 발명의 기술적 사상에 따른 냉연 강판 및 그 제조방법에 의하면, 0.2중량% 이하의 탄소를 함유한 저탄소 강종으로 설계하여 우수한 용접성을 확보할 수 있으며, 열처리 과정 중 여러 단계의 합금 원소 재분배 단계를 거쳐 충분한 양의 탄소(C), 망간(Mn)을 오스테나이트에 농화시켜 우수한 강도와 연신율의 밸런스를 구현할 수 있으며, 980MPa 이상의 인장 강도, 23% 이상의 연신율을 확보하는 가공성이 우수한 냉연 초고강도 강재를 제공할 수 있다.According to the cold-rolled steel sheet and its manufacturing method according to the technical idea of the present invention described above, excellent weldability can be secured by designing it as a low-carbon steel containing less than 0.2% by weight of carbon, and various stages of alloy element redistribution during the heat treatment process. By concentrating a sufficient amount of carbon (C) and manganese (Mn) into austenite, an excellent balance of strength and elongation can be realized, and it is a cold-rolled ultra-high strength steel with excellent workability that secures a tensile strength of over 980 MPa and an elongation of over 23%. can be provided.
실험예Experiment example
이하 본 발명의 이해를 돕기 위해 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다. Below, preferred experimental examples are presented to aid understanding of the present invention. However, the following experimental examples are only intended to aid understanding of the present invention, and the present invention is not limited by the following experimental examples.
1. 시편 제작1. Specimen production
본 실험예에서는 표 2의 합금 원소 조성(단위: 중량%)을 가지는 시편들을 제공한다. In this experimental example, specimens having the alloy element composition (unit: weight %) shown in Table 2 are provided.
CC SiSi MnMn PP SS AlAl TiTi NN FeFe
0.180.18 1.701.70 2.302.30 0.010.01 0.0010.001 0.030.03 0.0150.015 0.0030.003 Bal.Bal.
표 2의 성분계는 본 발명의 일 실시예에 따른 냉연 강판의 조성인 탄소(C): 0.15 내지 0.20중량%, 규소(Si): 1.0 내지 2.0중량%, 망간(Mn): 1.5 내지 3.0중량%, 인(P): 0 초과 0.02중량% 이하, 황(S): 0 초과 0.003중량% 이하, 알루미늄(Al): 0.01 내지 0.3중량%, 질소(N): 0 초과 0.01중량% 이하, 티타늄(Ti): 48/14·[N] 내지 0.1중량%(상기 [N]은 질소의 중량%값) 및 나머지 철(Fe)의 조성을 만족한다. 표 2의 성분에 의하면, 베이나이트 변태개시온도(Bs)는 437.6℃이며, 마르텐사이트 변태개시온도(Ms)는 341.6℃로 산출된다. 상기 온도는 하기의 관계식에 의하여 산출된다. The component system in Table 2 is the composition of the cold rolled steel sheet according to an embodiment of the present invention: carbon (C): 0.15 to 0.20% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 1.5 to 3.0% by weight. , Phosphorus (P): more than 0 and not more than 0.02% by weight, sulfur (S): more than 0 and not more than 0.003% by weight, aluminum (Al): 0.01 to 0.3% by weight, nitrogen (N): more than 0 and not more than 0.01% by weight, titanium ( Ti): 48/14·[N] to 0.1% by weight ([N] is the weight% value of nitrogen) and the remaining iron (Fe) composition is satisfied. According to the components in Table 2, the bainite transformation start temperature (Bs) is calculated to be 437.6°C, and the martensite transformation start temperature (Ms) is calculated to be 341.6°C. The temperature is calculated by the following relational equation.
Bs(℃) = 656 - 57.7[C] - 75[Si] - 35[Mn] - 15.3[Ni] - 34[Cr] - 41.2[Mo]Bs(℃) = 656 - 57.7[C] - 75[Si] - 35[Mn] - 15.3[Ni] - 34[Cr] - 41.2[Mo]
Ms (℃) = 491.1 - 302.6[C] - 14.5[Si] - 30.6[Mn] - 16.6[Ni] - 8.9[Cr] + 2.4[Mo] - 11.3[Cu] + 8.58[Co] + 7.4[W]Ms (℃) = 491.1 - 302.6[C] - 14.5[Si] - 30.6[Mn] - 16.6[Ni] - 8.9[Cr] + 2.4[Mo] - 11.3[Cu] + 8.58[Co] + 7.4[W ]
한편, 표 2의 성분에 의하면, Ac1 온도는 754℃이며, Ac3 온도는 900℃이다.Meanwhile, according to the components in Table 2, the Ac1 temperature is 754°C and the Ac3 temperature is 900°C.
본 발명의 실험예에서, 상기 조성을 가지는 강재는 1250℃에서 4시간 동안 재가열한 뒤 마무리압연온도(FDT)가 850℃인 조건에서 3.5mm 두께로 열간압연한 후 권취온도 600℃에서 권취하였다. 이후 산세를 통하여 표층 산화 스케일을 제거하고 1.2mm 두께로 냉간압연하였다. 이후 냉간 압연된 강판을 도 2에 개시된 구성에 따라 2회 연속 열처리를 실시하였다. In an experimental example of the present invention, the steel having the above composition was reheated at 1250°C for 4 hours, hot rolled to a thickness of 3.5 mm at a finish rolling temperature (FDT) of 850°C, and then coiled at a coiling temperature of 600°C. Afterwards, the surface oxidized scale was removed through pickling and cold rolled to a thickness of 1.2 mm. Thereafter, the cold rolled steel sheet was heat treated twice in succession according to the configuration shown in FIG. 2.
2. 공정조건 및 물성평가2. Process conditions and physical property evaluation
표 3은 본 발명의 실험예에서 적용한 1차 소둔 열처리 및 2차 소둔 열처리의 공정 조건을 나타낸 것이다. Table 3 shows the process conditions of the primary annealing heat treatment and secondary annealing heat treatment applied in the experimental examples of the present invention.
A.
1차 소둔 온도
A.
Primary annealing temperature
B. 1차 소둔 시간B. First annealing time C.
서냉각 종료 온도
C.
Slow cooling end temperature
D.
급냉각 종료 온도
D.
Rapid cooling end temperature
E.
과시효 시간
E.
Overexposure time
F.
2차소둔 온도
F.
Secondary annealing temperature
G.
2차소둔 시간
G.
Secondary annealing time
H.
급냉각종료 온도
H.
Rapid cooling end temperature
I.
과시효 종료 온도
I.
Over-aging end temperature
J.
과시효 시간
J.
Overexposure time
실시예1Example 1 850850 6060 800800 340340 180180 830830 6060 400400 360360 180180
실시예2Example 2 850850 6060 800800 340340 180180 840840 120120 400400 360360 300300
실시예3Example 3 860860 6060 800800 340340 180180 830830 6060 400400 360360 180180
실시예4Example 4 850850 6060 -- 2525 -- 830830 6060 400400 360360 180180
비교예1Comparative Example 1 850850 6060 800800 340340 180180 830830 6060 440440 400400 180180
비교예2Comparative example 2 850850 6060 800800 340340 180180 850850 6060 440440 400400 180180
비교예3Comparative Example 3 850850 6060 800800 340340 180180 850850 6060 400400 360360 2525
비교예4Comparative example 4 850850 6060 800800 340340 180180 850850 6060 320320 280280 180180
비교예5Comparative Example 5 890890 6060 800800 340340 180180 830830 6060 400400 360360 180180
비교예6Comparative Example 6 910910 6060 800800 340340 180180 830830 6060 440440 400400 180180
비교예7Comparative example 7 910910 6060 800800 340340 180180 830830 6060 400400 360360 180180
비교예8Comparative example 8 850850 6060 800800 340340 180180 870870 6060 400400 360360 180180
비교예9Comparative Example 9 -- -- -- -- -- 850850 6060 400400 360360 180180
표 3에서 A 항목은 1차 소둔 열처리 공정(S400)의 소둔 온도로서 도 2의 (a)에서 a-b 구간의 소둔 온도에 해당하며, B 항목은 1차 소둔 열처리 공정(S400)의 소둔 시간으로서 도 2의 (a)에서 a-b 구간의 공정 시간에 해당하며, C 항목은 1차 소둔 열처리 공정(S400)의 서냉각 종료 온도로서 도 2의 (a)에서 b-c 구간의 서냉 공정의 종료 온도인 c 지점의 온도에 해당하며, D 항목은 1차 소둔 열처리 공정(S400)의 급냉각 종료 온도로서 도 2의 (a)에서 c-d 구간의 급냉 공정의 종료 온도인 d 지점의 온도에 해당하며, E 항목은 1차 소둔 열처리 공정(S400)의 과시효 시간으로서 도 2의 (a)에서 d-e 구간의 과시효 공정의 공정 시간에 해당한다.또한, 표 3에서 F 항목은 2차 소둔 열처리 공정(S500)의 소둔 온도로서 도 2의 (b)에서 p-q 구간의 소둔 온도에 해당하며, G 항목은 2차 소둔 열처리 공정(S500)의 소둔 시간으로서 도 2의 (b)에서 p-q 구간의 공정 시간에 해당하며, H 항목은 2차 소둔 열처리 공정(S500)의 급냉각 종료 온도로서 도 2의 (b)에서 r-s 구간의 급냉 공정의 종료 온도인 s 지점의 온도에 해당하며, I 항목은 2차 소둔 열처리 공정(S500)의 과시효 종료 온도로서 도 2의 (b)에서 s-t 구간의 과시효 공정의 종료 온도인 t 지점의 온도에 해당하여, J 항목은 2차 소둔 열처리 공정(S500)의 과시효 시간으로서 도 2의 (b)에서 s-t 구간의 과시효 공정의 공정 시간에 해당한다.In Table 3, item A is the annealing temperature of the first annealing heat treatment process (S400) and corresponds to the annealing temperature in the a-b section in (a) of Figure 2, and item B is the annealing time of the first annealing heat treatment process (S400). It corresponds to the process time of the a-b section in (a) of Figure 2, and item C is the slow cooling end temperature of the first annealing heat treatment process (S400), and point c is the end temperature of the slow cooling process in the b-c section in (a) of Figure 2. Corresponds to the temperature of, item D is the rapid cooling end temperature of the first annealing heat treatment process (S400) and corresponds to the temperature at point d, which is the end temperature of the rapid cooling process in the section c-d in (a) of Figure 2, and item E is The over-aging time of the first annealing heat treatment process (S400) corresponds to the process time of the over-aging process in the section d-e in (a) of Figure 2. In addition, item F in Table 3 is the over-aging time of the second annealing heat treatment process (S500). The annealing temperature corresponds to the annealing temperature of the p-q section in (b) of Figure 2, and the G item is the annealing time of the secondary annealing heat treatment process (S500) and corresponds to the process time of the p-q section in (b) of Figure 2, The H item is the rapid cooling end temperature of the secondary annealing heat treatment process (S500) and corresponds to the temperature at point s, which is the end temperature of the rapid cooling process in the r-s section in Figure 2 (b), and the I item is the secondary annealing heat treatment process ( The over-aging end temperature of S500) corresponds to the temperature at point t, which is the end temperature of the over-aging process in the s-t section in Figure 2 (b), and the J item is the over-aging time of the secondary annealing heat treatment process (S500). In (b) of 2, it corresponds to the process time of the over-aging process in the s-t section.
A.
페라이트
A.
ferrite
B.
저온상
B.
low temperature
C.
페라이트
C.
ferrite
D.
PF
D.
PF
E.
Lath F
E.
Lath F
F.
RA
F.
R.A.
G.
M/A
G.
M/A
H.
괴상M
H.
Weird M
I.
C in RA
I.
C in RA
실시예1Example 1 4343 5757 5353 1818 3535 8.98.9 3333 5.1 5.1 1.121.12
실시예2Example 2 4545 5555 4343 1313 3030 9.09.0 3838 10.0 10.0 1.151.15
실시예3Example 3 3030 7070 5555 1717 3838 9.49.4 3030 5.6 5.6 1.211.21
실시예4Example 4 3737 6363 5656 1919 3737 8.38.3 2626 9.7 9.7 1.181.18
비교예1Comparative Example 1 4545 5555 5555 1818 3737 4.04.0 2929 12.0 12.0 1.031.03
비교예2Comparative example 2 4545 5555 4141 1010 3131 4.34.3 4141 13.7 13.7 1.071.07
비교예3Comparative example 3 4545 5555 4444 1111 3333 4.04.0 3939 13.0 13.0 0.940.94
비교예4Comparative Example 4 4545 5555 4545 1111 3434 3.13.1 3535 16.9 16.9 1.151.15
비교예5Comparative Example 5 66 9494 4444 77 3737 12.512.5 4242 1.5 1.5 1.001.00
비교예6Comparative Example 6 00 100100 4242 44 3838 13.713.7 3535 9.3 9.3 1.001.00
비교예7Comparative Example 7 00 100100 4242 44 3838 15.615.6 4040 2.4 2.4 1.071.07
비교예8Comparative example 8 4545 5555 4040 55 3535 4.04.0 3636 20.020.0 1.021.02
비교예9Comparative Example 9 -- -- 5555 3939 1616 3.03.0 2424 18.018.0 1.171.17
표 4는 본 발명의 실험예에서 미세조직의 면적분율(단위: %) 및 잔류 오스테나이트 내 탄소 농화량(단위: 중량%)을 나타낸 것이다. 미세조직은 주사전자현미경(Scanning Electron Microscope, SEM)을 이용해 분석하였고, 잔류 오스테나이트 분율 및 잔류 오스테나이트 내 탄소 함량을 분석하기 위해 XRD 분석법을 이용하였다. 표 4에서 A 항목은 1차 소둔 열처리 후 구현된 페라이트 상의 면적분율이며, B 항목은 1차 소둔 열처리 후 구현된 저온상의 면적분율이며, C 항목은 2차 소둔 열처리 후 구현된 페라이트 상의 면적분율이며, D 항목은 2차 소둔 열처리 후 구현된 페라이트 중 폴리고날 페라이트 상의 면적분율이며, E 항목은 2차 소둔 열처리 후 구현된 페라이트 중 침상형 페라이트 상의 면적분율이며, F 항목은 2차 소둔 열처리 후 구현된 침상형 잔류 오스테나이트 상의 면적분율이며, G 항목은 2차 소둔 열처리 후 구현된 마르텐사이트/오스테나이트의 복합 조직 상의 면적분율이며, H 항목은 2차 소둔 열처리 후 구현된 괴상형 마르텐사이트 상의 면적분율이며, I 항목은 2차 소둔 열처리 후 구현된 잔류 오스테나이트 내 탄소 농화량이다.Table 4 shows the area fraction of microstructure (unit: %) and the amount of carbon enrichment (unit: weight %) in retained austenite in the experimental examples of the present invention. The microstructure was analyzed using a scanning electron microscope (SEM), and XRD analysis was used to analyze the retained austenite fraction and carbon content in retained austenite. In Table 4, item A is the area fraction of the ferrite phase realized after the first annealing heat treatment, item B is the area fraction of the low-temperature phase realized after the first annealing heat treatment, and item C is the area fraction of the ferrite phase realized after the second annealing heat treatment. , D item is the area fraction of polygonal ferrite phase among ferrites realized after secondary annealing heat treatment, E item is the area fraction of acicular ferrite phase among ferrites realized after secondary annealing heat treatment, and F item is materialized after secondary annealing heat treatment. This is the area fraction of the acicular retained austenite phase, G is the area fraction of the martensite/austenite composite structure realized after the secondary annealing heat treatment, and H is the area of the blocky martensite phase realized after the secondary annealing heat treatment. It is a fraction, and item I is the amount of carbon enrichment in the retained austenite realized after the secondary annealing heat treatment.
표 5는 본 발명의 실험예에서 인장 물성을 나타낸 것이다. 인장 물성은 Zwick/Roell Corp Z100을 이용해 KS 5호 규격에 따라 인장 시험을 진행하여 평가하였다. Table 5 shows tensile properties in experimental examples of the present invention. Tensile properties were evaluated by performing a tensile test according to KS No. 5 standard using Zwick/Roell Corp Z100.
표 5에서 TS 항목은 인장강도(단위: MPa)를 나타내고, T.El 항목은 연신율(단위: %)을 나타내고, TS X T.El 항목은 인장강도와 연신율의 곱(단위: MPa %)을 나타낸 것이다. In Table 5, the TS item represents the tensile strength (unit: MPa), the T.El item represents the elongation (unit: %), and the TS It is shown.
TSTS T.ElT.El TS X T.ElTS
실시예1Example 1 985985 24.3 24.3 23,936 23,936
실시예2Example 2 10111011 23.4 23.4 23,657 23,657
실시예3Example 3 990990 23.7 23.7 23,463 23,463
실시예4Example 4 10291029 23.8 23.8 24,490 24,490
비교예1Comparative Example 1 10531053 18.6 18.6 19,586 19,586
비교예2Comparative example 2 10901090 18.1 18.1 19,729 19,729
비교예3Comparative example 3 11061106 17.7 17.7 19,576 19,576
비교예4Comparative example 4 1158 1158 14.6 14.6 16,907 16,907
비교예5Comparative Example 5 968968 23.8 23.8 23,038 23,038
비교예6Comparative Example 6 10221022 20.8 20.8 21,258 21,258
비교예7Comparative example 7 946946 25.1 25.1 23,745 23,745
비교예8Comparative example 8 11421142 16.7 16.7 19,071 19,071
비교예9Comparative Example 9 11641164 15.815.8 18,39118,391
표 2 내지 표 5를 함께 참조하면, 실시예1, 실시예2, 실시예3, 실시예4는 본 발명에서 제안하는 제 1 소둔 열처리(S400)와 제 2 소둔 열처리(S500)를 적절히 실시함으로써 본 발명에서 달성코자 하는 인장 강도 980MPa 이상(예를 들어, 980 내지 1180MPa), 연신율 23% 이상(예를 들어, 23 내지 25%), TS x El 22,000MPa% 이상의 인장 물성을 만족하고 있다. 도 3을 참조하면, 실시예1의 제 1 소둔 열처리(S400) 이후의 조직, 즉 전 조직으로 면적분율로써 43%의 페라이트와 57%의 저온상으로 구성되어 본 발명의 조건(페라이트의 면적분율: 30 내지 50%)을 만족하고 있다. 실시예1의 제 2 소둔 열처리(S500) 이후의 미세조직은 도 4와 같으며, 페라이트, 침상형 잔류 오스테나이트, 마르텐사이트/오스테나이트의 복합 조직 및 괴상형 마르텐사이트가 본 발명의 목표하는 분율로 구성되어 있음을 확인할 수 있다. Referring to Tables 2 to 5, Examples 1, 2, 3, and 4 are obtained by appropriately performing the first annealing heat treatment (S400) and the second annealing heat treatment (S500) proposed in the present invention. The present invention satisfies the tensile strength of 980 MPa or more (e.g., 980 to 1,180 MPa), elongation of 23% or more (e.g., 23 to 25%), and TS x El of 22,000 MPa or more. Referring to Figure 3, the structure after the first annealing heat treatment (S400) of Example 1, that is, the entire structure, is composed of 43% ferrite and 57% low-temperature phase as an area fraction, and is satisfied under the conditions of the present invention (area fraction of ferrite : 30 to 50%) is satisfied. The microstructure after the second annealing heat treatment (S500) of Example 1 is shown in Figure 4, and the target fraction of ferrite, needle-like retained austenite, martensite/austenite composite structure, and bulky martensite is the target fraction of the present invention. You can see that it is composed of .
비교예1, 비교예2, 비교예3, 비교예4는 850℃의 이상역 온도에서 제 1 소둔 열처리(S400)를 실시하여 제 1 소둔 열처리 이후 미세조직 내에 45%의 충분한 양의 페라이트를 확보하였으나, 제 2 소둔 열처리(S500)에서 합금 원소의 재분배가 원활히 이루어지지 않아 잔류 오스테나이트 분율과 상 안정도를 충분히 확보하지 못했기 때문에 인장 강도는 1000MPa 이상으로 충분히 높으나 연신율이 본 발명에서 달성코자 하는 23%에 크게 미치지 못하였다. Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 4 were subjected to the first annealing heat treatment (S400) at an ideal range temperature of 850°C to secure a sufficient amount of ferrite of 45% in the microstructure after the first annealing heat treatment. However, in the second annealing heat treatment (S500), the redistribution of alloy elements was not performed smoothly, and the retained austenite fraction and phase stability were not sufficiently secured, so the tensile strength was sufficiently high at 1000 MPa or more, but the elongation was 23%, which is the goal of the present invention. It did not fall far short of .
구체적으로 비교예1, 비교예2는 제 2 소둔 열처리(S500)에서 냉각 종점 온도가 베이나이트 변태개시온도(Bs) 이상으로 냉각 종점 이후 유지 시간 동안 탄소(C), 망간(Mn)의 재분배가 효과적이지 않으므로 연신율이 목표치(23% 이상)에 미달하였다. Specifically, in Comparative Examples 1 and 2, in the second annealing heat treatment (S500), the cooling end point temperature was higher than the bainite transformation start temperature (Bs), and the redistribution of carbon (C) and manganese (Mn) occurred during the holding time after the cooling end point. Because it was not effective, the elongation rate was below the target value (more than 23%).
비교예3은 실시예1, 실시예2, 실시예과 마찬가지로 마르텐사이트 변태개시온도(Ms) 이상 (베이나이트 변태개시온도(Bs) - 15℃) 이하의 적절한 온도로 냉각이 종료되었으나 유지 시간(과시효 시간)이 30초 미만으로 짧아 충분한 양의 재분배가 이루어지지 않아 연신율이 목표치(23% 이상)에 미달하였다. 실시예2는 비교예3보다 제 2 소둔 열처리(S500)에서 유지 시간을 증가시킨 것으로, 탄소(C), 망간(Mn)의 재분배가 충분히 이루어져 연신율이 크게 증가하여, 연신율을 증가시키기 위해서는 충분한 유지 시간이 필요함을 알 수 있다. In Comparative Example 3, like Examples 1, 2, and Examples, cooling was completed at an appropriate temperature above the martensite transformation start temperature (Ms) (bainite transformation start temperature (Bs) - 15°C) or below, but the holding time (shown) As the effective time was short (less than 30 seconds), a sufficient amount of redistribution was not achieved, and the elongation rate fell short of the target value (more than 23%). In Example 2, the holding time was increased in the second annealing heat treatment (S500) compared to Comparative Example 3, and the redistribution of carbon (C) and manganese (Mn) was sufficiently achieved to greatly increase the elongation, so that sufficient retention was required to increase the elongation. You can see that it takes time.
비교예4는 제 2 소둔 열처리(S500)에서 냉각 종료 온도가 마르텐사이트 변태개시온도(Ms) 미만으로 냉각 종료 시점에서 마르텐사이트가 형성되어 오스테나이트 분율이 줄어들고, 낮은 온도로 인해 탄소(C), 망간(Mn)의 재분배가 효과적이지 않아 연신율이 목표치(23% 이상)에 미달하였다.In Comparative Example 4, in the second annealing heat treatment (S500), the cooling end temperature was less than the martensite transformation start temperature (Ms), martensite was formed at the end of cooling, the austenite fraction was reduced, and due to the low temperature, carbon (C), The redistribution of manganese (Mn) was not effective, so the elongation was below the target value (more than 23%).
비교예5, 비교예6, 비교예7은 제 1 소둔 열처리(S400)에서 소둔 온도가 높아 제 1 소둔 열처리 이후 미세조직 내에 페라이트 분율이 각각 6%와 0%으로 본 발명에서 제안하는 범위(30 내지 50%)에 미치지 못한다. In Comparative Examples 5, 6, and 7, the annealing temperature was high in the first annealing heat treatment (S400), so the ferrite fraction in the microstructure after the first annealing heat treatment was 6% and 0%, respectively, within the range proposed by the present invention (30%). to 50%).
비교예6의 제 1 소둔 열처리(S400) 이후 전 조직을 나타낸 도 5를 참조하면, 단상역 소둔을 하여 제 1 소둔 열처리(S400) 후 전 조직이 모두 저온상으로 구성되어 있음을 확인할 수 있다. 이처럼 제 1 소둔 열처리(S400)의 소둔 온도가 증가할수록 전 조직 내 페라이트 분율이 감소하고 저온상 분율이 증가하면서 제 2 소둔 열처리(S500) 이후 최종 미세조직에서 폴리고날 페라이트가 줄어들고 침상 페라이트와 잔류 오스테나이트 분율은 증가하고, 괴상형 마르텐사이트의 분율은 감소한다. Referring to Figure 5, which shows the entire structure after the first annealing heat treatment (S400) of Comparative Example 6, it can be confirmed that the entire structure after the first annealing heat treatment (S400) by single-phase annealing is composed of a low temperature phase. In this way, as the annealing temperature of the first annealing heat treatment (S400) increases, the ferrite fraction in the entire structure decreases and the low-temperature phase fraction increases, and the polygonal ferrite decreases in the final microstructure after the second annealing heat treatment (S500), and acicular ferrite and residual auste The fraction of nite increases, and the fraction of blocky martensite decreases.
비교예7의 최종 미세조직을 나타낸 도 6을 참조하면, 미세조직이 전반적으로 침상형 페라이트, 마르텐사이트/오스테나이트의 복합 조직, 잔류 오스테나이트로 구성되며, 강도 증가에 기여하는 괴상형 마르텐사이트가 매우 적어 비교예5와 비교예7에서 연신율은 본 발명의 목표치(23% 이상)를 만족하나 인장 강도는 만족하지 못하고 있다. Referring to FIG. 6 showing the final microstructure of Comparative Example 7, the microstructure is generally composed of acicular ferrite, a composite structure of martensite/austenite, and retained austenite, and bulky martensite contributes to the increase in strength. It is very small, so the elongation in Comparative Examples 5 and 7 satisfies the target value of the present invention (23% or more), but the tensile strength does not satisfy.
비교예6은 제 2 소둔 열처리(S500)에서 냉각 종료 온도를 베이나이트 변태개시온도(Bs)를 초과하는 440℃으로 하여 냉각 종료 이후 탄소(C), 망간(Mn)의 재분배를 줄여 인장 강도를 1022MPa 이상으로 충분히 확보하였으나 재분배가 부족하여 연신율이 목표치(23% 이상)에 미달하였다. In Comparative Example 6, in the second annealing heat treatment (S500), the cooling end temperature was set to 440°C, which exceeds the bainite transformation start temperature (Bs), and the redistribution of carbon (C) and manganese (Mn) was reduced after the end of cooling to increase the tensile strength. Although it was sufficiently secured above 1022MPa, the elongation rate fell short of the target value (more than 23%) due to insufficient redistribution.
비교예8은 제 2 소둔 열처리(S500)의 소둔 온도(제 2 소둔 온도)가 제 1 소둔 열처리(S400)의 소둔 온도(제 1 소둔 온도)보다 높아 본 발명에서 제안하는 열처리 방법에 어긋난다. 제 2 소둔 온도가 제 1 소둔 온도 이상이면 제 1 소둔 열처리(S400) 후 조직의 저온상 분율보다 제 2 소둔 열처리(S500)에서 생성되는 오스테나이트 분율이 높아진다. 저온상에서 역변태한 오스테나이트는 침상형의 페라이트와 오스테나이트의 라멜라 구조로 나타나나, 높은 소둔 온도로 인해 초과 생성되는 오스테나이트는 괴상형이 발달하고 그 결과 최종 미세조직에 괴상 마르텐사이트 분율이 증가해 강의 인장 강도가 크게 증가하는 반면 연신율은 감소한다(도 7 참조).In Comparative Example 8, the annealing temperature (second annealing temperature) of the second annealing heat treatment (S500) is higher than the annealing temperature (first annealing temperature) of the first annealing heat treatment (S400), which is against the heat treatment method proposed in the present invention. If the second annealing temperature is higher than the first annealing temperature, the austenite fraction generated in the second annealing heat treatment (S500) becomes higher than the low-temperature phase fraction of the structure after the first annealing heat treatment (S400). Austenite reversely transformed at a low temperature appears as a lamellar structure of needle-shaped ferrite and austenite, but the austenite produced in excess due to high annealing temperature develops into a blocky form, and as a result, the fraction of blocky martensite increases in the final microstructure. While the tensile strength of the steel increases significantly, the elongation decreases (see Figure 7).
비교예9는 종래의 1회 소둔 열처리만을 시행한 것으로 도 8과 같이 괴상형 베이나이트와 마르텐사이트, 페라이트로 구성된 미세조직이 나타난다. 높은 괴상형 마르텐사이트 분율과 낮은 마르텐사이트/오스테나이트의 복합 조직 및 잔류 오스테나이트 분율로 인해 높은 인장 강도와 낮은 연신율을 보인다. In Comparative Example 9, only the conventional one-time annealing heat treatment was performed, and a microstructure consisting of blocky bainite, martensite, and ferrite appeared, as shown in FIG. 8. It exhibits high tensile strength and low elongation due to its high blocky martensite fraction, low martensite/austenite composite structure, and retained austenite fraction.
지금까지 설명한 실험예에 의하면, 제 1 소둔 열처리(S400)에서 페라이트와 저온상으로 구성된 이상 조직을 확보하지 않거나 제 2 소둔 열처리(S500)에서 침상형 페라이트와 오스테나이트를 적절히 확보하지 않으면 본 발명에서 목표로 하는 인장 강도와 연신율이 균형을 이룬 물성을 확보하기 어려운 것으로 확인되었다.According to the experimental example described so far, if an abnormal structure consisting of ferrite and low-temperature phase is not secured in the first annealing heat treatment (S400) or if acicular ferrite and austenite are not properly secured in the second annealing heat treatment (S500), in the present invention It was confirmed that it was difficult to secure physical properties that balanced the target tensile strength and elongation.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the above description focuses on the embodiments of the present invention, various changes and modifications can be made at the level of those skilled in the art. These changes and modifications can be said to belong to the present invention as long as they do not depart from the scope of the present invention. Therefore, the scope of rights of the present invention should be determined by the claims described below.

Claims (9)

  1. 탄소(C): 0.15 내지 0.20중량%, 규소(Si): 1.0 내지 2.0중량%, 망간(Mn): 1.5 내지 3.0중량%, 인(P): 0 초과 0.02중량% 이하, 황(S): 0 초과 0.003중량% 이하, 알루미늄(Al): 0.01 내지 0.3중량%, 질소(N): 0 초과 0.01중량% 이하, 티타늄(Ti): 48/14·[N] 내지 0.1중량%(상기 [N]은 질소의 중량%값) 및 나머지 철(Fe)과 기타 불가피한 불순물로 이루어지며,Carbon (C): 0.15 to 0.20% by weight, Silicon (Si): 1.0 to 2.0% by weight, Manganese (Mn): 1.5 to 3.0% by weight, Phosphorus (P): greater than 0 and less than or equal to 0.02% by weight, Sulfur (S): 0.003% by weight or less, aluminum (Al): 0.01 to 0.3% by weight, nitrogen (N): 0.01% by weight or less, titanium (Ti): 48/14·[N] to 0.1% by weight (the [N) ] is the weight percent value of nitrogen) and the remainder consists of iron (Fe) and other inevitable impurities,
    최종 미세조직은 페라이트, 침상형 잔류 오스테나이트, 마르텐사이트/오스테나이트의 복합 조직 및 괴상형 마르텐사이트로 이루어지되, The final microstructure consists of ferrite, acicular retained austenite, martensite/austenite composite structure, and blocky martensite.
    상기 페라이트의 면적분율은 30 내지 60%, 상기 침상형 잔류 오스테나이트의 면적분율은 5 내지 12%, 상기 마르텐사이트/오스테나이트의 복합 조직의 면적분율은 25 내지 50%, 상기 괴상형 마르텐사이트의 면적분율은 5 내지 12%이고, The area fraction of the ferrite is 30 to 60%, the area fraction of the acicular retained austenite is 5 to 12%, the area fraction of the martensite/austenite composite structure is 25 to 50%, and the bulky martensite The area fraction is 5 to 12%,
    잔류 오스테나이트 내 탄소 농화량 1.1중량% 이상인 것을 특징으로 하는,Characterized in that the carbon enrichment amount in the retained austenite is 1.1% by weight or more,
    냉연 강판.Cold rolled steel plate.
  2. 제 1 항에 있어서,According to claim 1,
    상기 페라이트는 폴리고날 페라이트와 침상형 페라이트로 이루어지되,The ferrite is composed of polygonal ferrite and acicular ferrite,
    상기 페라이트 중에서 상기 침상형 페라이트의 면적분율은 40% 이상인,Among the ferrites, the area fraction of the needle-shaped ferrite is 40% or more,
    냉연 강판.Cold rolled steel plate.
  3. 제 1 항에 있어서,According to claim 1,
    인장강도(TS): 980 내지 1180MPa이며, 연신율(El): 23 내지 25%인 것을 특징으로 하는,Tensile strength (TS): 980 to 1180 MPa, and elongation (El): 23 to 25%.
    냉연 강판.Cold rolled steel plate.
  4. (a) 탄소(C): 0.15 내지 0.20중량%, 규소(Si): 1.0 내지 2.0중량%, 망간(Mn): 1.5 내지 3.0중량%, 인(P): 0 초과 0.02중량% 이하, 황(S): 0 초과 0.003중량% 이하, 알루미늄(Al): 0.01 내지 0.3중량%, 질소(N): 0 초과 0.01중량% 이하, 티타늄(Ti): 48/14·[N] 내지 0.1중량%(상기 [N]은 질소의 중량%값) 및 나머지 철(Fe)과 기타 불가피한 불순물로 이루어진 강재를 재가열하는 단계;(a) Carbon (C): 0.15 to 0.20% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 1.5 to 3.0% by weight, phosphorus (P): greater than 0 and less than 0.02% by weight, sulfur ( S): more than 0 and 0.003% by weight or less, aluminum (Al): 0.01 to 0.3% by weight, nitrogen (N): more than 0 and 0.01% by weight or less, titanium (Ti): 48/14·[N] to 0.1% by weight ( [N] is a weight percent value of nitrogen) and reheating the steel consisting of the remaining iron (Fe) and other inevitable impurities;
    (b) 상기 재가열된 강재를 열간 압연하는 단계; (b) hot rolling the reheated steel;
    (c) 상기 열간 압연된 강재에 대하여 냉간 압연하는 단계; (c) cold rolling the hot rolled steel;
    (d) 상기 냉간 압연된 강재에 대하여 (Ac1 + 30℃) 이상 (Ac3 - 30℃) 이하의 제 1 소둔온도에서 유지한 후 340℃ 이하의 냉각종점온도까지 냉각하는 공정을 포함하는 제 1 소둔 열처리 단계; 및(d) First annealing including maintaining the cold rolled steel at a first annealing temperature of (Ac1 + 30°C) or more (Ac3 - 30°C) and then cooling to a cooling end point temperature of 340°C or less. heat treatment step; and
    (e) 상기 강재에 대하여 Ac1 이상 (Ac3 - 30℃) 이하의 제 2 소둔온도에서 유지한 후 마르텐사이트 변태개시온도(Ms) 이상 (베이나이트 변태개시온도(Bs) - 15℃) 이하의 냉각종점온도까지 냉각한 후 과시효하는 공정을 포함하는 제 2 소둔 열처리 단계;를 순차적으로 포함하되,(e) The steel material is maintained at a second annealing temperature of not less than Ac1 (Ac3 - 30°C) and then cooled to not less than the martensite transformation start temperature (Ms) (bainite transformation start temperature (Bs) - 15°C). A second annealing heat treatment step including a process of over-aging after cooling to the end point temperature; sequentially including,
    상기 제 2 소둔온도는 상기 제 1 소둔온도보다 낮은 것을 특징으로 하는,Characterized in that the second annealing temperature is lower than the first annealing temperature,
    냉연 강판의 제조방법.Manufacturing method of cold rolled steel sheet.
  5. 제 4 항에 있어서,According to claim 4,
    상기 (a) 단계는 상기 강재를 1180 내지 1300℃에서 재가열하는 단계를 포함하고,Step (a) includes reheating the steel at 1180 to 1300°C,
    상기 (b) 단계는 마무리 압연 온도가 850 내지 950℃, 권취온도가 450 내지 650℃인 조건으로 열간 압연하는 단계를 포함하고,Step (b) includes hot rolling under conditions where the finish rolling temperature is 850 to 950°C and the coiling temperature is 450 to 650°C,
    상기 (c) 단계는 40 내지 70%의 압하율로 냉간 압연하는 단계를 포함하는,Step (c) includes cold rolling at a reduction ratio of 40 to 70%,
    냉연 강판의 제조방법.Manufacturing method of cold rolled steel sheet.
  6. 제 4 항에 있어서,According to claim 4,
    상기 (d) 단계는 상기 냉간 압연된 강재에 대하여 상기 제 1 소둔온도에서 30 내지 120초 동안 유지한 후 15℃/s 이상의 냉각속도로 340℃ 이하의 냉각종점온도까지 냉각하는 공정을 포함하는, The step (d) includes maintaining the cold rolled steel at the first annealing temperature for 30 to 120 seconds and then cooling it to a cooling end point temperature of 340°C or less at a cooling rate of 15°C/s or more.
    냉연 강판의 제조방법.Manufacturing method of cold rolled steel sheet.
  7. 제 6 항에 있어서,According to claim 6,
    상기 (d) 단계를 수행한 후 상기 강재의 미세조직에서 페라이트의 면적분율은 30 내지 50%인 것을 특징으로 하는,After performing step (d), the area fraction of ferrite in the microstructure of the steel is 30 to 50%,
    냉연 강판의 제조방법.Manufacturing method of cold rolled steel sheet.
  8. 제 4 항에 있어서,According to claim 4,
    상기 (e) 단계는 상기 강재에 대하여 상기 제 2 소둔온도에서에서 30 내지 120초 동안 유지한 후 15℃/s 이상의 냉각속도로 마르텐사이트 변태개시온도(Ms) 이상 (베이나이트 변태개시온도(Bs) - 15℃) 이하의 냉각종점온도까지 냉각한 후 30 ~ 300초동안 과시효하는 공정을 포함하는, In step (e), the steel is maintained at the second annealing temperature for 30 to 120 seconds, and then cooled at a cooling rate of 15°C/s or more to the martensite transformation start temperature (Ms) or more (bainite transformation start temperature (Bs). ) - Including the process of cooling to a cooling end point temperature of 15℃ or lower and then over-aging for 30 to 300 seconds,
    냉연 강판의 제조방법.Manufacturing method of cold rolled steel sheet.
  9. 제 8 항에 있어서,According to claim 8,
    상기 (e) 단계를 수행한 후 상기 강재의 미세조직은 페라이트, 침상형 잔류 오스테나이트, 마르텐사이트/오스테나이트의 복합 조직 및 괴상형 마르텐사이트로 이루어지되, After performing step (e), the microstructure of the steel is composed of ferrite, acicular retained austenite, martensite/austenite composite structure, and bulky martensite,
    상기 페라이트의 면적분율은 30 내지 60%, 상기 침상형 잔류 오스테나이트의 면적분율은 5 내지 12%, 상기 마르텐사이트/오스테나이트의 복합 조직의 면적분율은 25 내지 50%, 상기 괴상형 마르텐사이트의 면적분율은 5 내지 12%인 것을 특징으로 하는, The area fraction of the ferrite is 30 to 60%, the area fraction of the acicular retained austenite is 5 to 12%, the area fraction of the martensite/austenite composite structure is 25 to 50%, and the bulky martensite Characterized in that the area fraction is 5 to 12%,
    냉연 강판의 제조방법.Manufacturing method of cold rolled steel sheet.
PCT/KR2022/019627 2021-06-29 2022-12-05 Cold-rolled steel sheet and method for manufacturing same WO2023214634A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20210085014 2021-06-29
KR1020220054587A KR20230004237A (en) 2021-06-29 2022-05-03 Cold-rolled steel sheet and method of manufacturing the same
KR10-2022-0054587 2022-05-03

Publications (1)

Publication Number Publication Date
WO2023214634A1 true WO2023214634A1 (en) 2023-11-09

Family

ID=84924071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019627 WO2023214634A1 (en) 2021-06-29 2022-12-05 Cold-rolled steel sheet and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20230004237A (en)
WO (1) WO2023214634A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540901A (en) * 2010-10-05 2013-11-07 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Cold rolled flat steel product made from multiphase steel and its manufacturing method
KR20150130612A (en) * 2014-05-13 2015-11-24 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof
KR20210032499A (en) * 2018-08-22 2021-03-24 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
KR102372546B1 (en) * 2021-07-27 2022-03-10 현대제철 주식회사 Ultra high-strength steel sheet having excellent elongation and method of manufacturing the same
WO2022086050A1 (en) * 2020-10-23 2022-04-28 주식회사 포스코 Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540901A (en) * 2010-10-05 2013-11-07 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Cold rolled flat steel product made from multiphase steel and its manufacturing method
KR20150130612A (en) * 2014-05-13 2015-11-24 주식회사 포스코 Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof
KR20210032499A (en) * 2018-08-22 2021-03-24 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
WO2022086050A1 (en) * 2020-10-23 2022-04-28 주식회사 포스코 Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof
KR102372546B1 (en) * 2021-07-27 2022-03-10 현대제철 주식회사 Ultra high-strength steel sheet having excellent elongation and method of manufacturing the same

Also Published As

Publication number Publication date
KR20230004237A (en) 2023-01-06

Similar Documents

Publication Publication Date Title
WO2020130560A1 (en) Cold rolled steel sheet having excellent workability, hot-dip galvanized steel sheet, and manufacturing methods thereof
WO2009145563A2 (en) Ultra high strength steel sheet with an excellent heat treatment property for hot press forming, quenched member, and manufacturing method for same
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2019125083A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2010074370A1 (en) High-strength elongation steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, zinc-coated steel sheet, and method for manufacturing alloyed zinc-coated steel sheet
WO2017222159A1 (en) High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor
WO2015099222A1 (en) Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same
WO2020060051A1 (en) Hot rolled and unannealed ferritic stainless steel sheet having excellent impact toughness, and manufacturing method therefor
WO2020111863A1 (en) Ultrahigh-strength steel having excellent cold workability and ssc resistance, and manufacturing method therefor
WO2022124609A1 (en) High-strength hot-dip galvanized steel sheet with high ductility and excellent formability, and manufacturing method for same
WO2022119253A1 (en) Ultra-high strength cold rolled steel sheet having excellent bendability, and method of manufacturing same
WO2021172604A1 (en) Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor
WO2021117989A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
WO2018117650A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
WO2019004540A1 (en) Hot-stamped part and method for manufacturing same
WO2021010599A2 (en) Austenitic stainless steel having improved strength, and method for manufacturing same
WO2011081236A1 (en) Quenched steel sheet having excellent hot press formability, and method for manufacturing same
WO2010074458A2 (en) High-strength cold rolled steel sheet having superior deep drawability and a high yield ratio, galvanized steel sheet using same, alloyed galvanized steel sheet, and method for manufacturing same
WO2017222122A1 (en) Reinforcing bar and manufacturing method therefor
WO2023214634A1 (en) Cold-rolled steel sheet and method for manufacturing same
WO2019125076A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2021125471A1 (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
WO2024058312A1 (en) Ultra-high strength cold-rolled steel sheet and method for manufacturing same
WO2020130614A2 (en) High strength hot-rolled steel sheet having excellent hole expansion ratio and manufacturing method for same
WO2020130257A1 (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940873

Country of ref document: EP

Kind code of ref document: A1