JP4432905B2 - High-strength steel and offshore structures with excellent weld toughness - Google Patents

High-strength steel and offshore structures with excellent weld toughness Download PDF

Info

Publication number
JP4432905B2
JP4432905B2 JP2005515812A JP2005515812A JP4432905B2 JP 4432905 B2 JP4432905 B2 JP 4432905B2 JP 2005515812 A JP2005515812 A JP 2005515812A JP 2005515812 A JP2005515812 A JP 2005515812A JP 4432905 B2 JP4432905 B2 JP 4432905B2
Authority
JP
Japan
Prior art keywords
steel
toughness
strength
temperature
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005515812A
Other languages
Japanese (ja)
Other versions
JPWO2005052205A1 (en
Inventor
孝浩 加茂
健 占部
浩史 中村
一志 大西
昌彦 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of JPWO2005052205A1 publication Critical patent/JPWO2005052205A1/en
Application granted granted Critical
Publication of JP4432905B2 publication Critical patent/JP4432905B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、高張力鋼および海洋構造物、特に溶接部靱性に優れた溶接用高張力鋼および海洋構造物に関する。
より具体的には、本発明は、建築物、土木構造物、建設機械、船舶、パイプ、タンク、海洋構造物等において溶接構造物として使用される溶接用高張力鋼、特に海洋構造物に用いられる溶接用高張力鋼および海洋構造物に関するものであり、例えば、降伏強度420N/mm2以上、板厚50mm以上の厚肉高強度鋼板およびそれを用いた海洋構造物に関するものである。
The present invention relates to high-strength steel and offshore structures, and particularly to high-strength steel for welding and offshore structures having excellent weld toughness.
More specifically, the present invention is used for welding high-tensile steel used as a welded structure in buildings, civil engineering structures, construction machinery, ships, pipes, tanks, offshore structures, etc., particularly offshore structures. The present invention relates to a high-strength steel for welding and an offshore structure, for example, a thick high-strength steel plate having a yield strength of 420 N / mm 2 or more and a plate thickness of 50 mm or more, and an offshore structure using the same.

近年、エネルギー需要が益々増加の傾向にあり、海底石油資源の探索が活発化している。これらに使用される海洋構造物は、例えば、プラットフォーム、ジャッキアップリグは大型化しており、これに伴い鋼板などの使用鋼材が厚肉化し、より安全性の確保が重要な課題となっている。   In recent years, energy demand has been increasing more and more, and search for offshore oil resources has been activated. As for the offshore structures used for these, for example, platforms and jack-up rigs have become larger, and accordingly, steel materials such as steel plates have become thicker, and ensuring safety is an important issue.

通常の海洋構造物には、降伏応力が 300〜360MPa級の中強度鋼材が用いられるが、前記のような大型構造物では 460〜70OMPa級の高強度で、板厚も100mmを超える極厚高張力鋼材が用いられることがある。   For ordinary marine structures, medium strength steel with a yield stress of 300 to 360 MPa is used, but for large structures such as those mentioned above, the strength is 460 to 70 OMPa and the plate thickness is more than 100 mm. Tensile steel may be used.

また、海底石油資源の探索地域が近年寒冷地や大水深域へと移っており、それらの地域あるいは海域で稼動する海洋構造物は極めて厳しい気象・海洋条件に晒される。
このため、これらの海洋構造物に用いられる鋼材には、例えば−40℃以下という非常に厳しい低温域での靱性が要求されると共に、溶接性も当然要求される。
In addition, search areas for submarine oil resources have recently moved to cold regions and deep water areas, and offshore structures operating in those regions or sea areas are exposed to extremely severe weather and ocean conditions.
For this reason, steel materials used for these offshore structures are required to have toughness in a very severe low temperature range of, for example, −40 ° C. or lower, and of course weldability.

さらに、安全性の面からもユーザの検査基準は厳しく、母材、溶接部ともに従来のシャルピー衝撃値の規定に加え、最低使用温度でのCTOD値も規定して靭性を評価するようになってきている。すなわち、10mm×10mmの大きさに切断採取する微小試験片についての評価試験であるシャルピー試験で安定した特性を得た場合にも、構造物の実厚の試験片にて評価するCTOD特性では所要特性を満足できない場合が多く発生しており、また今日ではさらに厳しいCTOD特性が求められるようになっている。   In addition, from the standpoint of safety, user inspection standards are strict, and in addition to the conventional Charpy impact values for both the base metal and welded parts, the CTOD value at the minimum operating temperature is also defined to evaluate toughness. ing. In other words, even when stable characteristics are obtained in the Charpy test, which is an evaluation test for a small test piece cut and sampled to a size of 10 mm x 10 mm, the CTOD characteristics evaluated with the actual thickness test piece are required. There are many cases where the characteristics cannot be satisfied, and more severe CTOD characteristics are now required.

このように、氷海域に設置される海洋構造物に使用される鋼材に限らず、これよりもマイルドな環境下で使用される寒冷地向けのラインパイプ、または船舶やLNGタンク等の大型溶接構造物に使用される鋼材に対しても、溶接熱影響部(以下、HAZという)の低温靱性を向上させる要望が強い。   In this way, not only steel materials used in offshore structures installed in ice seas, but also line pipes for cold regions used in milder environments than these, or large welded structures such as ships and LNG tanks There is a strong demand for improving the low-temperature toughness of the weld heat-affected zone (hereinafter referred to as HAZ) also for steel materials used in products.

一方で、-40℃以下という低温域で高い靭性を得るためには、溶接効率の悪い低入熱量の溶接条件で溶接をせざるを得ない。海洋構造物の建造コストに占める溶接施工コストは大きい。溶接施工コストを低下させる最も直接的な方法は、大入熱溶接が可能な高能率溶接法を採用して、溶接層数を減らすことである。   On the other hand, in order to obtain high toughness in a low temperature range of −40 ° C. or lower, welding must be performed under welding conditions of low heat input with poor welding efficiency. The welding construction cost accounts for the construction cost of offshore structures. The most direct method for reducing the welding construction cost is to reduce the number of weld layers by adopting a high efficiency welding method capable of high heat input welding.

したがって、今日では、低温靱性の要求が厳しい寒冷地向けの構造物は、HAZの靭性を考慮して溶接施工コストの可及的に低い溶接を行うことが重要である。   Therefore, today, it is important that a structure for a cold district, where the requirement for low-temperature toughness is severe, be welded with a welding construction cost as low as possible considering the toughness of the HAZ.

従来から鋼材のHAZの靱性を劇的に向上させるには低C化が有効であることが知られており、低C化による強度低下を補うため、種々の合金添加による高強度化や、時効析出硬化作用を利用した高強度化が図られている。例えば、ASTM A710では、Cuの時効析出硬化作用を利用した鋼が開示されており、このような考え方に基づいた報告がいくつかなされている。   Conventionally, it has been known that low C is effective in dramatically improving the HAZ toughness of steel materials. To compensate for the decrease in strength caused by low C, high strength and aging by adding various alloys are known. Strengthening using the precipitation hardening action is achieved. For example, ASTM A710 discloses a steel that uses the aging precipitation hardening action of Cu, and some reports based on this concept have been made.

例えば、特公平7−81164号公報、特開平5−186820号公報、特開平5−179344号公報では、溶接部の靱性に優れたCu析出型鋼が提案されている。
しかしながら、特公平7−81164号公報では、板厚30mm、溶接入熱量40kJ/cmで得た溶接継手のシャルピー特性を評価したに過ぎず、大入熱溶接に対応した材料とは考え難い。
For example, Japanese Patent Publication No. 7-81164, Japanese Patent Application Laid-Open No. 5-186820, and Japanese Patent Application Laid-Open No. 5-179344 propose Cu-precipitation steel having excellent weld toughness.
However, in Japanese Patent Publication No. 7-81164, the Charpy characteristics of a welded joint obtained with a plate thickness of 30 mm and a welding heat input of 40 kJ / cm are merely evaluated, and it is difficult to think of a material that supports high heat input welding.

特開平5−186820号公報では、Cuを0.5〜4.0%添加した引張り強さ686MPa以上の高張力鋼が提案されているが、低温靱性についてはシャルピー試験の遷移温度でさえ−30℃であることから、極厚鋼板での低温CTOD特性が確保できるとは考え難い。   JP-A-5-186820 proposes a high-tensile steel with a tensile strength of 686 MPa or more to which Cu is added in an amount of 0.5 to 4.0%, but the low-temperature toughness is -30 even at the transition temperature of the Charpy test. Since it is at ℃, it is difficult to think that low-temperature CTOD characteristics can be secured with extra-thick steel plates.

特開平5−179344号公報では、溶接部のシャルピー靱性に優れたCu析出型鋼が提案されているものの、溶接入熱量5kJ/mmで得た溶接継手のシャルピー特性を評価したに過ぎず、大入熱溶接時の構造物の安全性を充分満足できる技術とは考え難い。   In Japanese Patent Laid-Open No. 5-179344, although a Cu precipitation type steel having excellent Charpy toughness of a welded portion is proposed, only Charpy characteristics of a welded joint obtained with a welding heat input of 5 kJ / mm were evaluated. It is unlikely that the technology can sufficiently satisfy the safety of the structure during heat welding.

ここに、本発明の課題は、一般的には溶接部低温靱性、特にHAZ低温靱性を改善した溶接用高張力鋼を提供することである。   Here, the subject of this invention is providing the high tensile steel for welding which improved the weld part low temperature toughness generally, especially HAZ low temperature toughness.

本発明者らは、溶接部靱性に優れた厚肉高強度鋼板を開発することを目的に、鋼成分およびその製造方法について種々の実験を行った結果、以下の知見を得た。
(i)Cu添加鋼をベースとして、N、Al含有量の調整に加え、N/Al比をコントロールすること。
As a result of conducting various experiments on steel components and manufacturing methods for the purpose of developing a thick high-strength steel sheet having excellent weld toughness, the present inventors have obtained the following knowledge.
(i) Based on Cu-added steel, in addition to adjusting the N and Al contents, the N / Al ratio should be controlled.

高Cu成分材において、大入熱HAZ靱性を改善するには、TiN、Ti(C,N)、AlNなどの炭窒化物の微細分散が有効である。そこで、高Cu−Ti添加材を用いて検討したところ、N、Al含有量の調整に加え、N/Al比をコントロールすることの有効性を見出した。これは、N/Al比が過小な場合は、粗大AlNが析出し、これ自体が靱性に悪影響を及ぼすのに加え、TiNの微細/多量な分散が阻害されるためと考えられる。一方、N/Al比が過大な場合は、固溶Nが増加するのに加え、AlN、TiNの分散密度が疎になるためと考えられる。   In high Cu component materials, fine dispersion of carbonitrides such as TiN, Ti (C, N), and AlN is effective for improving high heat input HAZ toughness. Then, when it examined using the high Cu-Ti additive material, in addition to adjustment of N and Al content, the effectiveness of controlling N / Al ratio was discovered. This is presumably because when the N / Al ratio is too small, coarse AlN precipitates, which adversely affects the toughness, and that fine / large amount dispersion of TiN is inhibited. On the other hand, it is considered that when the N / Al ratio is excessive, the solute N increases and the dispersion density of AlN and TiN becomes sparse.

(ii)降伏強度の上昇のためには、微細Cu粒子をできるだけ多く分散させる必要があること。
(iii)靱性、特に低温CTOD特性を確保するためには、Cu粒子をある程度粗大化させ、かつ分散量を抑制する必要があること。
(ii) In order to increase the yield strength, it is necessary to disperse as many fine Cu particles as possible.
(iii) To ensure toughness, particularly low temperature CTOD characteristics, it is necessary to coarsen the Cu particles to some extent and suppress the amount of dispersion.

(iv)Cu粒子の分散状態を均一化するために、時効処理前段階でのCu粒子の生成をできるだけ抑制し、かつ時効処理の条件制御によりCu粒子の分散状態を制御すること。
(v)Cu粒子の分布状態について、TEM写真より求まる円相当径の平均値および平面換算面積率で整理することにより、強度靱性バランスが制御可能であること。
(iv) In order to make the dispersed state of Cu particles uniform, the formation of Cu particles in the pre-aging process is suppressed as much as possible, and the dispersed state of Cu particles is controlled by controlling the conditions of the aging process.
(v) The strength and toughness balance can be controlled by organizing the distribution state of Cu particles by the average value of equivalent circle diameters obtained from TEM photographs and the plane conversion area ratio.

(vi)Cu粒子は、鋼中の結晶欠陥(主に転位)上に生成し易く、転位密度が高いとCu粒子の析出が促進されること。また、転位上のCu粒子は転位の移動を阻害し、降伏強度を上昇させること。   (vi) Cu particles are likely to form on crystal defects (mainly dislocations) in steel, and precipitation of Cu particles is promoted when the dislocation density is high. Also, Cu particles on dislocations inhibit dislocation movement and increase yield strength.

(vii)鋼中の転位密度は、圧延、および水冷条件で制御可能なこと。また、圧延温度の低下、総圧下量の増加、水冷開始温度の上昇、冷却速度の増加、水冷停止温度の低下、これらはいずれも転位密度を増加させること。   (vii) The dislocation density in the steel should be controllable under rolling and water cooling conditions. Also, decrease in rolling temperature, increase in total rolling reduction, increase in water cooling start temperature, increase in cooling rate, decrease in water cooling stop temperature, all of which increase dislocation density.

(viii)高Cu成分をベースとして、C、Mn、Mo量の調整による焼入れ性制御により大入熱溶接HAZ靱性の安定化が可能である。
つまり、高Cu成分材では、溶接割れ感受性指数Pcm値を低減するほどHAZ靱性改善が可能であり、そのためには低C、低Mn化が有効であることが分かった。ただし、高強度を確保するためには、他元素による補填が必要であり、Moの添加量をコントロールすることで、強度/靱性の安定化が可能であることも分かった。
(viii) Based on the high Cu component, it is possible to stabilize the high heat input HAZ toughness by controlling the hardenability by adjusting the amounts of C, Mn, and Mo.
In other words, it was found that HAZ toughness can be improved with a high Cu component material as the weld cracking susceptibility index Pcm value is reduced, and for that purpose, low C and low Mn are effective. However, in order to ensure high strength, it was necessary to supplement with other elements, and it was also found that the strength / toughness can be stabilized by controlling the amount of Mo added.

本発明は、このような知見に基づいて構成したもので、その趣旨は、次の通りである。
(1)質量%で、C:0.01〜0.10%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.020%以下、S:0.01%以下、Cu:0.8〜1.5%、Ni:0.2〜1.5%、Al:0.001〜0.05%、N:0.003〜0.008%、O:0.0005〜0.0035%を含有し、残部がFeおよび不純物であって、かつN/Alが0.3〜3.0であり、下記(I) 式で示すPcmが0.25以下であり、鋼中に分散した長径が1nm以上のCu粒子について、円相当径の平均値が4〜25nmであり、かつ平面率換算分布量が3〜20%であることを特徴とする板厚50mm以上の高張力鋼
Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B・・・(I)
(2)質量%で、Ti:0.005〜0.03%を含有することを特徴とする上記(1)記載の高張力鋼材。
(3)質量%で、Nb:0.003〜0.03%を含有することを特徴とする上記(1)または(2)記載の高張力鋼材。
(4)質量%で、Mo:0.1〜0.8%を含有することを特徴とする上記(1)ないし(3)のいずれかに記載の高張力鋼材。
(5)質量%で、Cr:0.03〜0.80%、B:0.0002〜0.002の1種以上を含有することを特徴とする上記(1)ないし(4)のいずれかに記載の高張力鋼材。
(6)質量%で、V:0.001〜0.05%を含有することを特徴とする上記(1)ないし(5)のいずれかに記載の高張力鋼材。
(7)質量%で、Ca:0.0005〜0.005%、Mg:0.0001〜0.005%、REM:0.0001〜0.01%の1種以上を含有することを特徴とする上記(1)ないし(6)のいずれかに記載の高張力鋼材。
(8)上記(1)〜(7)のいずれかに記載の高張力鋼材を用いた海洋構造物。
The present invention is configured based on such knowledge, and the gist thereof is as follows.
(1) By mass%, C: 0.01 to 0.10%, Si: 0.5% or less, Mn: 0.8 to 1.8%, P: 0.020% or less, S: 0.01 %: Cu: 0.8-1.5%, Ni: 0.2-1.5%, Al: 0.001-0.05%, N: 0.003-0.008%, O: 0 .0005 to 0.0035%, the balance being Fe and impurities, N / Al being 0.3 to 3.0, and Pcm represented by the following formula (I) being 0.25 or less for dispersed diameter is 1nm or more Cu particles in the steel, an average value of equivalent circle diameter of 4~25Nm, and thickness 50mm or more, wherein the flat rate conversion distribution amount is 3-20% high-tensile steel material.
Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B (I )
(2) The high-tensile steel material according to (1) above, which contains Ti: 0.005 to 0.03% by mass.
(3) The high-tensile steel material according to (1) or (2) above, which contains Nb: 0.003 to 0.03% by mass%.
(4) The high-tensile steel material as described in any one of (1) to (3) above, which contains Mo: 0.1 to 0.8% by mass.
(5) Any one of (1) to (4) above, characterized by containing at least one of Cr: 0.03 to 0.80% and B: 0.0002 to 0.002 by mass% The high-strength steel materials described in 1.
(6) The high-tensile steel material as described in any one of (1) to (5) above, which is contained by mass and contains V: 0.001 to 0.05%.
(7) It is characterized by containing at least one of Ca: 0.0005 to 0.005%, Mg: 0.0001 to 0.005%, REM: 0.0001 to 0.01% by mass%. The high-tensile steel material according to any one of (1) to (6) above.
(8) An offshore structure using the high-tensile steel material according to any one of (1) to (7).

本発明により、特にそれだけに制限されるのではないが、エレクトロガスアーク溶接などの溶接方法により、溶接入熱量300KJ/cm以上での溶接が可能な、溶接性に優れた降伏応力420N/mm以上の高張力鋼の製造が可能となった。その結果、現場溶接施工能率や安全性が著しく向上した。また、海洋構造物のような極めて厳しい環境下でも使用できる高張力鋼の提供が可能となった。According to the present invention, the yield stress is 420 N / mm 2 or more, which is excellent in weldability, and can be welded at a welding heat input of 300 KJ / cm or more by a welding method such as electrogas arc welding. High-strength steel can be manufactured. As a result, on-site welding work efficiency and safety were significantly improved. In addition, it has become possible to provide high-tensile steel that can be used in extremely severe environments such as offshore structures.

本発明について詳細に説明する。まず、本発明を上記のような鋼組成に限定した理由を述べる。なお、本明細書において鋼組成を示す「%」はいずれも「質量%」で示す。
Cは、鋼の強度確保のため、およびNb、V等の添加時に組織微細化の効果を生じさせるために添加される。0.01%未満ではこれらの効果が十分でない。しかし、Cが多過ぎると溶接部に島状マルテンサイト(M−A:martensite-austenite constituent)と呼ばれる硬化組織を生成してHAZ靱性を悪化させるとともに母材の靱性および溶接性にも悪影響を及ぼす。従って、Cは0.10%以下とする。好ましくは0.02〜0.08%、更に好ましくは0.02〜0.05%である。
The present invention will be described in detail. First, the reason why the present invention is limited to the steel composition as described above will be described. In this specification, “%” indicating the steel composition is indicated by “mass%”.
C is added to secure the strength of the steel and to produce an effect of refining the structure when adding Nb, V or the like. If it is less than 0.01%, these effects are not sufficient. However, if there is too much C, a hardened structure called island martensite (MA) is formed in the welded portion to deteriorate the HAZ toughness and adversely affect the toughness and weldability of the base metal. . Therefore, C is 0.10% or less. Preferably it is 0.02-0.08%, More preferably, it is 0.02-0.05%.

Siは溶鋼の予備脱酸に有効な元素であるが、セメンタイト中に固溶しないため、多量に添加されると未変態オーステナイト粒がフェライト粒とセメンタイトに分解するのを阻害し、島状マルテンサイトの生成を助長する。これらの理由から、Siの添加は、鋼中含有量が 0.5%以下とする。好ましくは0.2%以下、更に好ましくは0.15%以下である。   Si is an effective element for preliminary deoxidation of molten steel, but since it does not dissolve in cementite, when added in a large amount, it inhibits the decomposition of untransformed austenite grains into ferrite grains and cementite, resulting in island martensite. Contributes to the generation of For these reasons, the Si content should be 0.5% or less. Preferably it is 0.2% or less, More preferably, it is 0.15% or less.

Mnは強度確保に必要な元素であるとともに、脱酸剤としても有効な元素である。このため、Mnの含有量は0.8%以上とする必要がある。しかし、Mnの過剰な添加は、焼入れ性を過剰に増加させ溶接性およびHAZ靱性を劣化させる。さらに、Mnは中心偏析を助長する元素としてしられているので、中心偏析抑制の観点からは、その含有量は 1.8%を超えるべきではない。したがって、Mnの含有量は0.8〜1.8%以下とする。好ましくは0.9〜1.5%である。   Mn is an element necessary for ensuring strength and is also an effective element as a deoxidizer. For this reason, the content of Mn needs to be 0.8% or more. However, excessive addition of Mn excessively increases hardenability and degrades weldability and HAZ toughness. Further, since Mn is an element that promotes center segregation, its content should not exceed 1.8% from the viewpoint of suppressing center segregation. Therefore, the Mn content is set to 0.8 to 1.8% or less. Preferably it is 0.9 to 1.5%.

Pは鋼に不可避的に含有される不純物元素であり、粒界偏析元素であるためにHAZにおける粒界割れの原因となる。さらに母材靱性、溶接金属部とHAZの靱性を向上させ、スラブ中心偏析も低減させるためには、Pの含有量は0.020%以下とする。好ましくは0.015%以下、更に好ましくは0.01%以下である。   P is an impurity element inevitably contained in the steel, and is a grain boundary segregation element, which causes grain boundary cracking in the HAZ. Furthermore, in order to improve the toughness of the base metal, the weld metal part and the HAZ, and to reduce the slab center segregation, the P content is set to 0.020% or less. Preferably it is 0.015% or less, More preferably, it is 0.01% or less.

Sは多量に存在する場合、溶接割れ起点となるMnS単体の析出物を生成する。そのため、Sの含有量は0.01%以下とする。好ましくは0.008%以下、更に好ましくは0.005%以下である。 When a large amount of S is present, a precipitate of MnS simple substance that becomes a weld crack starting point is generated. Therefore, the S content is 0.01% or less. Preferably it is 0.008% or less, More preferably, it is 0.005% or less .

Cuは鋼材の強度および靱性を高める効果があるが、HAZ靱性に対する悪影響も少ない。特に、時効処理時のε−Cu析出による強度上昇効果を期待する上で0.8%以上必要である。しかし、Cu含有量が高くなると溶接高温割れ感受性が高くなり、予熱などの溶接施工が複雑になるため、Cuの含有量は1.5%以下とした。好ましくは0.9〜1.1%である。   Cu has an effect of increasing the strength and toughness of the steel material, but has little adverse effect on the HAZ toughness. In particular, 0.8% or more is necessary in order to expect the effect of increasing the strength due to ε-Cu precipitation during the aging treatment. However, when the Cu content increases, the sensitivity to hot cracking of the weld increases and the welding work such as preheating becomes complicated, so the Cu content is set to 1.5% or less. Preferably it is 0.9 to 1.1%.

Niは鋼材の強度および靱性を高め、さらにHAZ靱性を高めるための有効な元素である。しかし、0.2%以下ではそれらの効果がなく、また、1.5%を超えるとコストアップに見合うだけの効果を得ることができないため、Niの含有量を 0.2〜1.5%とした。好ましくは0.4〜1.2%である。   Ni is an effective element for increasing the strength and toughness of the steel material and further increasing the HAZ toughness. However, if it is 0.2% or less, those effects are not obtained, and if it exceeds 1.5%, it is not possible to obtain an effect sufficient for cost increase. It was. Preferably it is 0.4 to 1.2%.

Alは脱酸のために必須の元素である。しかし含有量が多くなると、特にHAZにおいて靱性が劣化しやすくなる。これは、粗大なクラスター状のアルミナ系介在物粒子が形成されやすくなるためと考えられる。このためAlの含有量を0.001〜0.05%とする。好ましくは0.001〜0.03%である。更に好ましくは0.001〜0.015%である。   Al is an essential element for deoxidation. However, when the content increases, the toughness tends to deteriorate particularly in HAZ. This is presumably because coarse cluster-like alumina inclusion particles are easily formed. For this reason, the content of Al is set to 0.001 to 0.05%. Preferably it is 0.001 to 0.03%. More preferably, it is 0.001 to 0.015%.

Nは、窒化物を形成することで組織の細粒化に寄与するが、過剰に添加した場合には窒化物の凝集を通じて靱性を劣化させる。したがって、Nの含有量を0.003〜0.008%とする。好ましくは0.0035〜0.0065%である。   N contributes to the refinement of the structure by forming nitrides, but when added excessively, the toughness deteriorates through the aggregation of nitrides. Therefore, the N content is set to 0.003 to 0.008%. Preferably it is 0.0035 to 0.0065%.

N/Al比を0.3〜3.0にコントロールすることで、大入熱HAZ靱性、特に継手CTOD特性の改善が可能である。
これは、N/Al比が0.3より小さい場合は、粗大AlNが析出し、これ自体が靱性に悪影響を及ぼすのに加え、TiNの微細/多量な分散が阻害されるためと考えられる。一方N/Al比が3.0を超える場合は、固溶Nが増大し、HAZ靱性が劣化するのに加え、AlN、TiNの分散密度が疎疎になるためと考えられる。効果をより発揮させるための、好ましい範囲は0.4〜2.5である。
By controlling the N / Al ratio to 0.3 to 3.0, it is possible to improve large heat input HAZ toughness, particularly joint CTOD characteristics.
This is presumably because when the N / Al ratio is less than 0.3, coarse AlN precipitates, which adversely affects the toughness and inhibits the fine / large amount of dispersion of TiN. On the other hand, when the N / Al ratio exceeds 3.0, it is considered that the solid solution N increases and the HAZ toughness deteriorates, and the dispersion density of AlN and TiN becomes sparse. A preferable range for further exhibiting the effect is 0.4 to 2.5.

O (酸素)はフェライト生成核となる酸化物生成に有効である。一方、多量に存在すると清浄度の劣化が著しくなるため、母材、溶接金属部およびHAZともに実用的な靱性確保が困難となる。したがって、Oの含有量を0.0005〜0.0035%とする。好ましくは0.0008〜0.0018%である。   O.sub.2 (oxygen) is effective in generating an oxide serving as a ferrite forming nucleus. On the other hand, when it is present in a large amount, the cleanliness deteriorates remarkably, and it becomes difficult to ensure practical toughness for both the base metal, the weld metal part and the HAZ. Therefore, the content of O is set to 0.0005 to 0.0035%. Preferably it is 0.0008 to 0.0018%.

Tiは、窒化物を生成して結晶粒の粗大化を抑制するとともに、変態組織を微細化する作用を有する。しかし、特定量未満の添加では前記作用を発揮せず、また多量に添加した場合には母材靱性および溶接部靱性に悪影響を及ぼす。したがって、Tiの含有量を0.005〜0.03%とする。好ましくは0.007〜0.015%である。   Ti has the effect | action which refines | miniaturizes a transformation structure | tissue while producing | generating a nitride and suppressing the coarsening of a crystal grain. However, if the addition is less than a specific amount, the above-mentioned effect is not exhibited, and if it is added in a large amount, the base material toughness and weld zone toughness are adversely affected. Therefore, the Ti content is 0.005 to 0.03%. Preferably it is 0.007 to 0.015%.

Nbは細粒化と炭化物析出により母材の強度および靱性を向上させる。一方で過剰に添加すると母材の性能向上効果が飽和するとともにHAZの靱性を著しく損なう。したがって、Nbの含有量0.003〜0.03%とする。好ましくは0.003〜0.015%である。   Nb improves the strength and toughness of the base material by refining and carbide precipitation. On the other hand, if added excessively, the performance improvement effect of the base material is saturated and the toughness of the HAZ is significantly impaired. Therefore, the Nb content is set to 0.003 to 0.03%. Preferably it is 0.003 to 0.015%.

Moは焼入れ性を確保し、HAZ靱性を向上させる効果があるが、過剰に添加するとHAZでの著しい硬化を招き靱性を劣化させる。したがって、Moの含有量は0.1〜0.8%とする。好ましくは0.1〜0.5%である。   Mo has the effect of ensuring hardenability and improving the HAZ toughness, but if added excessively, it causes significant hardening in the HAZ and degrades the toughness. Therefore, the Mo content is set to 0.1 to 0.8%. Preferably it is 0.1 to 0.5%.

Crは、鋼材の焼入れ性を増し、強度確保に有効であるが、微量添加では向上効果が発揮できず、過剰に添加した場合には溶接金属部およびHAZの硬化防止および溶接低温割れ感受性を増大させる傾向にある。したがって、Crを添加する場合は、Crの含有量を0.03〜0.80%とする。好ましくは0.05〜0.60%である。   Cr increases the hardenability of steel and is effective in securing strength. However, when added in a small amount, Cr cannot be effective, and when added in excess, it prevents hardening of the weld metal and HAZ and increases the sensitivity to cold cracking in welding. It tends to make it. Therefore, when adding Cr, the content of Cr is set to 0.03 to 0.80%. Preferably it is 0.05 to 0.60%.

Bは、焼入れ性を向上させて強度を高める作用がある。一方で過剰に添加すると、強度を高める効果が飽和するし、母材、HAZともに靱性劣化の傾向が著しくなる。したがって、Bを添加する場合は、Bの含有量を0.0002〜0.002%とする。好ましくは0.003〜0.0015%である。   B has the effect of improving the hardenability and increasing the strength. On the other hand, if added excessively, the effect of increasing the strength is saturated, and the tendency of deterioration of toughness becomes remarkable in both the base material and HAZ. Therefore, when adding B, content of B shall be 0.0002 to 0.002%. Preferably it is 0.003 to 0.0015%.

Vは、炭窒化物を生成して結晶粒の粗大化を抑制するとともに、変態組織を微細化する作用を有する。しかし、特定量未満の添加では前記作用を発揮せず、また多量に添加した場合には母材靱性および溶接部靱性に悪影響を及ぼす。したがって、Vを添加する場合は Vの含有量を0.001〜0.05%の含有量とする。好ましくは0.005〜0.04%である。   V has the effect | action which refine | miniaturizes a transformation structure | tissue while producing | generating carbonitride and suppressing the coarsening of a crystal grain. However, if the addition is less than a specific amount, the above-mentioned effect is not exhibited, and if it is added in a large amount, the base material toughness and weld zone toughness are adversely affected. Therefore, when adding V, the content of V is set to 0.001 to 0.05%. Preferably it is 0.005 to 0.04%.

Ca、Mg、REMは粒内フェライトの析出核となる酸化物、硫化物を生成する元素である。また、硫化物の形態を制御し、低温靱性を向上させる。このようなCa、Mg、REMの効果を得るためには、Caの場合、0.0005%以上、Mg、REMの場合、0.0001%以上の含有が必要となる。一方、Caの場合、0.005%を超えると、Mg、REMの場合、0.01%を超えると、Ca、Mg系の大型介在物やクラスターを生成して鋼の清浄度を劣化させる。したがって、Caを添加する場合は、Caの含有量を0.0005〜0.005%、Mg、REMを添加する場合は、Mg、REMの含有量を0.0001〜0.01%とする。   Ca, Mg, and REM are elements that generate oxides and sulfides that serve as precipitation nuclei for intragranular ferrite. It also controls sulfide morphology and improves low temperature toughness. In order to obtain such effects of Ca, Mg, and REM, it is necessary to contain 0.0005% or more in the case of Ca and 0.0001% or more in the case of Mg and REM. On the other hand, in the case of Ca, if it exceeds 0.005%, in the case of Mg and REM, if it exceeds 0.01%, Ca and Mg-based large inclusions and clusters are generated to deteriorate the cleanliness of the steel. Therefore, when adding Ca, the content of Ca is 0.0005 to 0.005%, and when adding Mg and REM, the contents of Mg and REM are 0.0001 to 0.01%.

また、本発明の鋼は、下記(I) 式で示すPcmが0.25以下であり、鋼中に分散した長径が1nm以上のCu粒子について、円相当径の平均値が4〜25nmであり、かつ平面率換算分布量が3〜20%であることが好ましい。   The steel according to the present invention has a Pcm represented by the following formula (I) of 0.25 or less, and an average equivalent circle diameter of 4 to 25 nm for Cu particles having a major axis of 1 nm or more dispersed in the steel. And, it is preferable that the plane rate conversion distribution amount is 3 to 20%.

Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B・・・(I)
Pcmは溶接割れ感受性を表す指数であり、その値が0.25以下であれば、通常の溶接施工条件で溶接割れが生じない。したがってPcmは0.25以下とする。Pcmを低くすると溶接時の予熱を省略することができる。好ましくは0.22以下、さらに好ましくは0.20以下である。
Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B (I )
Pcm is an index representing the susceptibility to weld cracks. If the value is 0.25 or less, no weld cracks occur under normal welding conditions. Therefore, Pcm is set to 0.25 or less. If Pcm is lowered, preheating during welding can be omitted. Preferably it is 0.22 or less, More preferably, it is 0.20 or less.

次に、Cu析出物の円相当径平均値および平面率換算分布量について述べる。長径1nm 以上のCu粒子を対象とする理由は、1nmより小さい粒子は強度を高める寄与が小さいためである。Cu粒子の長径の上限については、特に定めないが平均値が4〜25nmの範囲では100nm を超える粒子は出現しない。なお、Cu粒子の析出形態はおよそ球状であるが、立体形状を計測するのは容易ではないので、投影された形状を計測する。   Next, the circle equivalent diameter average value of the Cu precipitate and the flatness equivalent distribution amount will be described. The reason for targeting Cu particles having a major axis of 1 nm or more is that particles smaller than 1 nm have a small contribution to increasing the strength. The upper limit of the major axis of the Cu particles is not particularly defined, but particles exceeding 100 nm do not appear when the average value is in the range of 4 to 25 nm. In addition, although the precipitation form of Cu particle | grains is about spherical shape, since it is not easy to measure a solid | 3D shape, the projected shape is measured.

ここで、円相当径とは、粒子の投影面積と同じ面積を持つ円の直径であり、具体的には
d=√(4a/pai) a:投影面積(nm2) 、d:円相当径(nm)、pai:3.14
によって求める。
Here, the equivalent circle diameter is a diameter of a circle having the same area as the projected area of the particle. Specifically, d = √ (4a / pai) a: projected area (nm 2 ), d: equivalent circle diameter. (nm), pai: 3.14
Ask for.

平面率換算分布量については、鋼材を薄膜状に加工し、約0.2 マイクロメートルの厚みを有する部分についてTEM 観察を実施し、薄膜状試験片中に立体的に分布したCu粒子を平面投影した場合の面積率を倍率100000倍のTEM 写真について測定することで算出する。   For flatness conversion distribution, the steel material is processed into a thin film, and TEM observation is performed on a portion with a thickness of approximately 0.2 micrometers, and Cu particles distributed three-dimensionally in the thin film specimen are projected on a plane. Is calculated by measuring a TEM photograph with a magnification of 100,000 times.

ここに、円相当径、平面率換算分布量を上記のように規定した理由につき、さらに詳しく述べる。
海洋構造物に用いられる鋼の特徴としては、嵐の波浪による外力に耐えるため、最大板厚100mm 近くの極厚高張力鋼になる場合が多く、また今後、厳しい状況で使用されることから、さらに厳しいCTOD値を満たすことが要求される。
Here, the reason why the equivalent circle diameter and the flatness conversion distribution amount are defined as described above will be described in more detail.
As a feature of steel used in offshore structures, in order to withstand external forces due to storm waves, it is often very heavy steel with a maximum thickness of 100mm, and it will be used in severe conditions in the future. It is required to meet even more stringent CTOD values.

Cu析出で強度が高くなりすぎると、CTOD値が低くなり、Cu析出が不足するとCTOD値は高くても強度が不足することになる。
従来のCu添加鋼においては、海洋構造物用への適用例がほとんどなく、厳しいCTOD値要求がなかったので、このようなCu析出粒子の平均径や分布量を厳密に制御する必要がなかった。
If the strength becomes too high due to Cu precipitation, the CTOD value decreases, and if Cu precipitation is insufficient, the strength is insufficient even if the CTOD value is high.
In conventional Cu-added steels, there are almost no applications for offshore structures, and there was no strict CTOD value requirement, so it was not necessary to strictly control the average diameter and distribution of such Cu precipitate particles. .

そこで、本発明の好適態様にあっては、Cu析出による強度アップとCTOD値の低下とのバランスをとるためにCu析出粒子の平均径や分布量を以上のように規定した。
円相当径を4〜25nmにするのは強度と靱性のバランスのためであり、平面率換算分布量を3〜20%とするのも強度と靱性のバランスのためである。
Therefore, in the preferred embodiment of the present invention, the average diameter and the distribution amount of the Cu precipitation particles are defined as described above in order to balance the strength increase due to Cu precipitation and the decrease in CTOD value.
The reason why the equivalent circle diameter is 4 to 25 nm is for the balance between strength and toughness, and the reason why the plane rate conversion distribution amount is 3 to 20% is for the balance between strength and toughness.

Cu粒子径、分布量を制御する因子としては次のものが考えられる。
(1) Cu添加量は多いほど分布量は多くなる。粒子径に与える影響については適正添加範囲であれば主に時効処理前の組織、時効処理の温度および時間で平均粒径が決まる。適正添加量より少なければCu粒子の析出が不十分で粒子径は小さく、多ければ粒子径は大きくなる傾向にある。
The following factors can be considered as factors controlling the Cu particle size and distribution.
(1) The greater the amount of Cu added, the greater the distribution amount. Regarding the influence on the particle size, the average particle size is determined mainly by the structure before the aging treatment, the temperature and time of the aging treatment in the appropriate addition range. If the amount is less than the appropriate addition amount, Cu particles are not sufficiently precipitated and the particle size is small, and if it is large, the particle size tends to be large.

(2) 時効前組織の影響は大きく、時効前組織としてはフェライトおよびベイナイト主体の微細な組織とするのが好ましい。
転位あるいは結晶粒界などがCu粒子の析出サイトになるので、このような析出サイトを多く含む組織とすることが、Cu粒子径を細かくし分布量を多くする。このためには鋼の成分を適切に制御するとともに圧延条件を適切にし、その後の水冷条件もフェライト・ベイナイト主体の微細組織となるように選ぶ必要がある。
(2) The influence of the pre-aging structure is large, and it is preferable that the pre-aging structure is a fine structure mainly composed of ferrite and bainite.
Since dislocations or crystal grain boundaries serve as Cu particle precipitation sites, a structure containing many such precipitation sites reduces the Cu particle diameter and increases the amount of distribution. For this purpose, it is necessary to appropriately control the steel components, to make the rolling conditions appropriate, and to select the subsequent water cooling conditions so as to have a fine structure mainly composed of ferrite and bainite.

(3) 時効処理温度、時間は重要な因子である。Cuの拡散速度、粒子の成長速度を時効処理条件により厳密に調整することで目的の粒子分散状態に制御する。
上述の3つの因子を適宜調整して、本発明鋼を製造すればよく、以上の開示からすれば当業者には本発明の実施は困難ではない。
(3) Aging temperature and time are important factors. The target particle dispersion state is controlled by precisely adjusting the Cu diffusion rate and particle growth rate according to the aging conditions.
The steel of the present invention may be manufactured by appropriately adjusting the above three factors, and according to the above disclosure, it is not difficult for those skilled in the art to implement the present invention.

次に、本発明にかかる高張力鋼の製造方法について説明する。
上記のような鋼成分組成であってもCuの析出硬化を十分に発揮させ、更に厚さ50mm以上の厚肉材の板厚方向各位置の強度および靱性を均一に高靱化させ、且つ降伏強度を向上させるためには、製造方法が適切でなければならない。
Next, the manufacturing method of the high strength steel concerning this invention is demonstrated.
Even with the steel composition as described above, Cu precipitation hardening can be fully exerted, and the strength and toughness at each position in the thickness direction of a thick material having a thickness of 50 mm or more can be uniformly and toughened. In order to improve strength, the manufacturing method must be appropriate.

製鋼工程までは慣用の方法で行えばよく、本発明において特に制限ない。製鋼工程に続いて鋼片を得るが、コスト低減の観点より、連続鋳造法にてスラブ(鋼片)を作製するのが好ましい。   The steelmaking process may be performed by a conventional method and is not particularly limited in the present invention. Although a steel slab is obtained following the steelmaking process, it is preferable to produce a slab (steel slab) by a continuous casting method from the viewpoint of cost reduction.

ここで、鋼片の加熱、熱間圧延、冷却および焼戻し条件について説明する。まず上記成分組成の鋼片を、900〜1120℃に加熱し熱間圧延を行う。本発明においては、高靱性を得るためには、厚肉材の板厚中心部において、上部ベイナイト組織が生成しても十分なほどオーステナイト粒を細粒化する必要があり、加熱段階で鋼片厚肉内のオーステナイト粒の細粒化が重要である。900℃未満の低い温度ではこの固溶化作用が十分でなく、焼戻し処理において十分な析出硬化が期待できない。しかし、1120℃を超える加熱温度では、圧延前のオーステナイト粒を細粒かつ整粒に保つことができなくなり、その後の圧延においてもオーステナイト粒が均一細粒化されない。従って、鋼片の加熱温度を900〜1120℃とした。好ましくは900〜1050℃、更に好ましくは900〜1000℃である。   Here, the heating, hot rolling, cooling and tempering conditions of the steel slab will be described. First, a steel slab having the above component composition is heated to 900 to 1120 ° C. and hot-rolled. In the present invention, in order to obtain high toughness, it is necessary to make the austenite grains fine enough even if the upper bainite structure is generated at the center of the plate thickness of the thick-walled material. It is important to refine the austenite grains in the thick wall. If the temperature is lower than 900 ° C., this solid solution action is not sufficient, and sufficient precipitation hardening cannot be expected in the tempering treatment. However, when the heating temperature exceeds 1120 ° C., the austenite grains before rolling cannot be kept fine and sized, and the austenite grains are not uniformly refined even in subsequent rolling. Therefore, the heating temperature of the steel slab was set to 900 to 1120 ° C. Preferably it is 900-1050 degreeC, More preferably, it is 900-1000 degreeC.

圧延においては、900 ℃以下における総圧下量を50%以上とすることが望ましい。熱間圧延後、Ar1 点以上の温度から水冷を開始し、600 ℃以下の温度で停止する焼入れ処理を行なう。これは、組織微細化を図り、および時効処理前段階におけるCu粒子析出をできる限り抑制するためである。Ar1 点未満の温度からの水冷では、あるいは冷却が空冷では加工歪みの消失が起こり、強度・靱性低下の原因となる。In rolling, the total reduction amount at 900 ° C. or lower is desirably 50% or more. After hot rolling, water cooling is started from a temperature of 1 Ar or higher, and quenching is performed at a temperature of 600 ° C or lower. This is for the purpose of refining the structure and suppressing Cu particle precipitation in the pre-aging treatment stage as much as possible. When water cooling is performed at a temperature lower than 1 Ar or when cooling is performed by air cooling, the work strain is lost, which causes a decrease in strength and toughness.

圧延仕上げ温度は700 ℃以上、冷却開始温度は680 ℃〜750 ℃、冷却停止温度までの冷却速度は1〜50℃/sとするのが好ましい。水冷停止温度が600 ℃を超えると焼戻し処理における析出強化作用が不十分となる。   The rolling finish temperature is preferably 700 ° C. or higher, the cooling start temperature is 680 ° C. to 750 ° C., and the cooling rate to the cooling stop temperature is preferably 1 to 50 ° C./s. When the water cooling stop temperature exceeds 600 ° C., the precipitation strengthening effect in the tempering process becomes insufficient.

なお、Ar1 点は微小試験片の体積変化を測定する方法で求められる。
次に、熱間圧延後、水冷された鋼は、その後、必要により加熱を行って、540 ℃以上Ac1 点以下の温度で時効処理を行い、次いで冷却する。
The Ar 1 point is obtained by a method of measuring the volume change of the micro test piece.
Next, after hot rolling, the water-cooled steel is then heated as necessary, subjected to an aging treatment at a temperature of 540 ° C. or higher and Ac 1 point or lower, and then cooled.

ここで、時効温度にまで加熱を行う場合、時効温度−100 ℃までの平均加熱速度、および500 ℃までの平均冷却速度については制御を行う。この時効処理はCuの析出物を十分に析出硬化させるためであり、加熱/冷却速度の制御は、Cu粒子の分散を均一化させるために実施するからである。したがって、加熱速度は目標温度−100 ℃までの平均加熱速度が5〜50℃/分、保持時間は1時間以上、冷却速度は500 ℃までの平均冷却速度が5〜60℃/分以上としたほうが好ましい。   Here, when heating to the aging temperature, the average heating rate up to the aging temperature −100 ° C. and the average cooling rate up to 500 ° C. are controlled. This is because the aging treatment sufficiently precipitates and hardens the Cu precipitate, and the heating / cooling rate is controlled in order to make the dispersion of Cu particles uniform. Therefore, the average heating rate up to the target temperature of −100 ° C. is 5 to 50 ° C./min, the holding time is 1 hour or more, and the cooling rate is 5 to 60 ° C./min or more up to 500 ° C. Is preferred.

ここで、本明細書における加熱温度は炉内雰囲気温度とし、加熱後保持時間は炉内雰囲気温度での保持温度とし、圧延終了温度および水冷開始/停止温度は鋼材の表層温度とし、再加熱時の加熱/冷却平均速度については鋼材の厚さ1/2t位置での温度計算より算出するものとする。   Here, the heating temperature in the present specification is the furnace atmosphere temperature, the holding time after heating is the holding temperature at the furnace atmosphere temperature, the rolling end temperature and the water cooling start / stop temperature are the surface temperature of the steel material, and during reheating The heating / cooling average speed is calculated from the temperature calculation at the 1 / 2t thickness position of the steel material.

本発明にかかる高張力鋼から大型海洋構造物を構成するには、板材、管材、さらには形材などの鋼材を溶接により組み立てるが、一般には鋼板として使用される。
本明細書で「溶接性」に優れたと言った場合、通常は、溶接入熱量300 kJ/cm以上のアーク溶接が可能であることを意味するが、溶接法としてはその他、サブマージアーク溶接、被覆アーク溶接などであってもよい。
In order to construct a large marine structure from the high-strength steel according to the present invention, steel materials such as plates, pipes, and shapes are assembled by welding, but they are generally used as steel plates.
In this specification, when it is said that “weldability” is excellent, it usually means that arc welding with a welding heat input of 300 kJ / cm or more is possible, but other welding methods include submerged arc welding and coating. Arc welding or the like may be used.

ここに、海洋構造物としては、海底に敷設されるプラットフォームや、ジャッキアップリグばかりでなく、セミサブリグ(半潜水式石油掘削リグ)なども包含され、溶接性と低温靱性とが要求される海洋構造物であれば、とくに制限はない。なお、「大型」という場合、それに使用される鋼材の厚さが50mm以上のそれを意味する。   Here, offshore structures include not only platforms laid on the seabed and jack-up rigs, but also semi-sub rigs (semi-submersible oil drilling rigs), and offshore structures that require weldability and low-temperature toughness. If it is a thing, there is no restriction in particular. In addition, the term “large” means that the thickness of the steel used for it is 50 mm or more.

本例では、表1および表2の化学成分を有する300mm厚の鋼片を連続鋳造法にて作製した。ここで板厚中心位置の介在物制御の観点より、連続鋳造過程においては、溶鋼の温度を過度に高くせず、溶鋼組成から決まる凝固温度に対し、その差が50℃以内になるように管理し、さらに凝固直前の電磁攪拌、凝固時の圧下を行った。   In this example, a 300 mm-thick steel slab having the chemical components shown in Tables 1 and 2 was produced by a continuous casting method. Here, from the viewpoint of inclusion inclusion control at the center of the plate thickness, in the continuous casting process, the temperature of the molten steel is not excessively increased, and the difference is controlled within 50 ° C with respect to the solidification temperature determined from the molten steel composition. Further, electromagnetic stirring immediately before solidification and reduction during solidification were performed.

表3および表4に表1および表2に示した化学成分を有する鋼片の加工条件を示す。ここで、表3、表4に示した加工条件は、それぞれ表1、表2に示した化学成分を有する鋼片の加工条件である。   Tables 3 and 4 show the processing conditions of steel slabs having the chemical components shown in Tables 1 and 2. Here, the processing conditions shown in Tables 3 and 4 are the processing conditions of the steel pieces having the chemical components shown in Tables 1 and 2, respectively.

300mm厚のスラブは各加熱温度、各加熱時間で加熱後、熱間圧延を行ったのち、水冷開始温度から水冷停止温度まで平均の冷却速度を5℃/sで冷却し、板厚77mmの鋼板とした。(これらの条件については、表3および表4に初期加熱・圧延条件と表記)
その後、各時効温度まで再加熱し、各保持時間保持した。ここで加熱速度は、時効温度−100℃までの平均加熱速度を10℃/分となるように制御し、冷却速度は、500℃までの平均冷却速度が10℃/分となるよう制御した。(これらの条件については、表3および表4に時効処理条件と表記)
このようにして得られた鋼の引張試験は、ASTM規格に準拠し、平行部12.5mm直径の引張試験片を圧延方向に対し直角方向の板厚中央より採取し、実施した。
300mm thick slab is heated at each heating temperature and each heating time, then hot rolled, then cooled at an average cooling rate of 5 ° C / s from the water cooling start temperature to the water cooling stop temperature. It was. (These conditions are described as initial heating / rolling conditions in Tables 3 and 4)
Then, it reheated to each aging temperature and hold | maintained for each holding time. Here, the heating rate was controlled so that the average heating rate up to an aging temperature of −100 ° C. was 10 ° C./min, and the cooling rate was controlled so that the average cooling rate up to 500 ° C. was 10 ° C./min. (These conditions are indicated as aging treatment conditions in Tables 3 and 4)
The tensile test of the steel thus obtained was carried out in accordance with ASTM standards by taking a tensile test piece having a parallel part diameter of 12.5 mm from the center of the plate thickness in the direction perpendicular to the rolling direction.

同じく、得られた鋼のCTOD試験は、BS7448規格に準拠し、全厚の3点曲げ試験片を圧延方向に直角の方向から採取し、−40℃で実施した。
溶接継手部は、BS7448規格に準拠し、K開先加工した鋼板突き合わせ部に10.0kJ/cmのFCAW溶接(Flux Cored Arc Welding)を実施して得た。このようにして得られた継手について、CTOD試験片の疲労ノッチがV型開先のストレート部側の溶接線となるように加工を行って得た試験片に、−40℃にてCTOD試験を実施した。
Similarly, the CTOD test of the obtained steel was performed at −40 ° C. in accordance with the BS7448 standard, and a three-point bending test piece having a full thickness was taken from a direction perpendicular to the rolling direction.
The welded joint portion was obtained by performing 10.0 kJ / cm FCAW welding (Flux Cored Arc Welding) on a steel plate butted portion subjected to K groove processing in accordance with BS7448 standard. For the joint thus obtained, the CTOD test piece was subjected to a CTOD test at −40 ° C. on the test piece obtained by processing so that the fatigue notch of the CTOD test piece was a weld line on the straight part side of the V-shaped groove. Carried out.

また、大入熱溶接に対する対応性を確認するために、同じ鋼について、20°V開先加工した後に、つき合わせ、入熱量350kJ/cmのエレクトロガスアーク溶接(EGW)により溶接継手を作製した。このとき作製した溶接継手については、ASTM E1290に準じたCTOD試験を実施した。CTOD試験片は疲労ノッチが溶接線となるよう加工し、試験温度−10℃で限界CTOD値を測定した。   In addition, in order to confirm the compatibility with high heat input welding, the same steel was subjected to groove processing at 20 ° V, and then joined together to produce a welded joint by electrogas arc welding (EGW) with a heat input of 350 kJ / cm. A CTOD test according to ASTM E1290 was performed on the welded joint produced at this time. The CTOD specimen was processed so that the fatigue notch became a weld line, and the critical CTOD value was measured at a test temperature of −10 ° C.

さらに、Cu粒子の円相当径の平均値は、倍率100000倍の透過型電子顕微鏡(TEM)写真において観察される、長径が1nm以上の各析出物について円相当径を測定し、その直径について写真1視野毎の平均値を求めることで算出した。なお、測定のばらつきを少なくするため、測定は鋼材元厚の1/4 の位置について、TEM 写真の10視野 (1視野は 900×700nm の長方形) を観察し、その平均値を用いた。   Furthermore, the average value of the equivalent circle diameter of the Cu particles is observed in a transmission electron microscope (TEM) photograph with a magnification of 100000 times. The equivalent circle diameter is measured for each precipitate having a major axis of 1 nm or more, and the diameter is photographed. It calculated by calculating | requiring the average value for every visual field. In order to reduce the variation in measurement, 10 fields of TEM photographs (one field is a rectangle of 900 x 700 nm) were observed at the position of 1/4 of the original steel thickness, and the average value was used.

表1は、本発明で規定する化学成分を満足する供試材を示したものである。これらの供試鋼を表3に示す加工条件で製造処理したものは、表5に示すようにいずれもCu粒子の分散状態が規定範囲を満足するものとなった。そのため、いずれの供試鋼も母材強度、母材CTOD特性、継手CTOD特性(-40℃および-10℃)が高い値となった。   Table 1 shows test materials that satisfy the chemical components defined in the present invention. As shown in Table 5, all of these test steels manufactured and processed under the processing conditions shown in Table 3 satisfied the specified range of the dispersed state of Cu particles. For this reason, all of the test steels had high base material strength, base material CTOD characteristics, and joint CTOD characteristics (−40 ° C. and −10 ° C.).

表2のうち、No.40は、本発明で規定する化学成分を満足する供試材を示したものであり、No.41〜No.60は、化学成分範囲のいずれかが本発明で規定する範囲外である供試材を示したものである。これらの供試鋼を表4に示す加工条件で製造処理したものは、表6に示すようなCu粒子の分散状態となった。   In Table 2, No. 40 indicates a test material that satisfies the chemical components specified in the present invention, and No. 41 to No. 60 indicate that any of the chemical component ranges are specified in the present invention. This shows the specimens that are outside the range. When these test steels were manufactured under the processing conditions shown in Table 4, Cu particles were dispersed as shown in Table 6.

No.40については、本発明で規定する化学組成は満足するが、Cu粒子の分散状態が規定範囲を満足するものとはならなかったため、母材強度が低い値となった。したがって、大入熱溶接特性と母材強度を両立させるためには、本発明で規定するCu粒子の分散状態を満足することが望ましい。   For No. 40, the chemical composition defined in the present invention was satisfied, but the dispersion state of the Cu particles did not satisfy the specified range, so the base material strength was low. Therefore, in order to achieve both high heat input welding characteristics and base metal strength, it is desirable to satisfy the dispersed state of Cu particles defined in the present invention.

また、No.41〜No.60については、本発明で規定する化学組成を満足しないため、母材強度、母材CTOD特性、継手CTOD特性(-40℃および-10℃)を同時に満足することができなかった。   No. 41 to No. 60 do not satisfy the chemical composition specified in the present invention, and therefore satisfy the base material strength, the base material CTOD characteristic, and the joint CTOD characteristic (−40 ° C. and −10 ° C.) at the same time. I could not.

Figure 0004432905
Figure 0004432905

Figure 0004432905
Figure 0004432905

Figure 0004432905
Figure 0004432905

Figure 0004432905
Figure 0004432905

Figure 0004432905
Figure 0004432905

Figure 0004432905
Figure 0004432905

Claims (8)

質量%で、C:0.01〜0.10%、Si:0.5%以下、Mn:0.8〜1.8%、P:0.020%以下、S:0.01%以下、Cu:0.8〜1.5%、Ni:0.2〜1.5%、Al:0.001〜0.05%、N:0.003〜0.008%、O:0.0005〜0.0035%を含有し、残部がFeおよび不純物であって、かつN/Alが0.3〜3.0であり、下記(I) 式で示すPcmが0.25以下であり、鋼中に分散した長径が1nm以上のCu粒子について、円相当径の平均値が4〜25nmであり、かつ平面率換算分布量が3〜20%であることを特徴とする板厚50mm以上の高張力鋼
Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B・・・(I)
In mass%, C: 0.01 to 0.10%, Si: 0.5% or less, Mn: 0.8 to 1.8%, P: 0.020% or less, S: 0.01% or less, Cu: 0.8-1.5%, Ni: 0.2-1.5%, Al: 0.001-0.05%, N: 0.003-0.008%, O: 0.0005 0.0035% is contained, the balance is Fe and impurities, N / Al is 0.3 to 3.0, Pcm represented by the following formula (I) is 0.25 or less, Cu particles having a major axis of 1 nm or more dispersed in the plate are characterized by an average equivalent circle diameter of 4 to 25 nm and a plane rate conversion distribution of 3 to 20%. steel material.
Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B (I )
質量%で、Ti:0.005〜0.03%を含有することを特徴とする請求項1記載の高張力鋼材。  2. The high-tensile steel material according to claim 1, which contains Ti: 0.005 to 0.03% by mass. 質量%で、Nb:0.003〜0.03%を含有することを特徴とする請求項1または2記載の高張力鋼材。  The high-tensile steel material according to claim 1 or 2, characterized by containing Nb: 0.003 to 0.03% by mass%. 質量%で、Mo:0.1〜0.8%を含有することを特徴とする請求項1ないし3のいずれかに記載の高張力鋼材。  The high-tensile steel material according to any one of claims 1 to 3, characterized by containing Mo: 0.1 to 0.8% in mass%. 質量%で、Cr:0.03〜0.80%、B:0.0002〜0.002の1種以上を含有することを特徴とする請求項1ないし4のいずれかに記載の高張力鋼材。  The high-tensile steel material according to any one of claims 1 to 4, characterized by containing at least one of Cr: 0.03-0.80% and B: 0.0002-0.002 in mass%. . 質量%で、V:0.001〜0.05%を含有することを特徴とする請求項1ないし5のいずれかに記載の高張力鋼材。  The high-tensile steel material according to any one of claims 1 to 5, characterized by containing, in mass%, V: 0.001 to 0.05%. 質量%で、Ca:0.0005〜0.005%、Mg:0.0001〜0.005%、REM:0.0001〜0.01%の1種以上を含有することを特徴とする請求項1ないし6のいずれかに記載の高張力鋼材。  It contains at least one of Ca: 0.0005-0.005%, Mg: 0.0001-0.005%, REM: 0.0001-0.01% by mass%. The high-tensile steel material according to any one of 1 to 6. 請求項1〜7のいずれかに記載の高張力鋼材を用いた海洋構造物。  An offshore structure using the high-tensile steel material according to claim 1.
JP2005515812A 2003-11-27 2004-11-26 High-strength steel and offshore structures with excellent weld toughness Expired - Fee Related JP4432905B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003397531 2003-11-27
JP2003397531 2003-11-27
PCT/JP2004/017575 WO2005052205A1 (en) 2003-11-27 2004-11-26 High tensile steel excellent in toughness of welded zone and offshore structure

Publications (2)

Publication Number Publication Date
JPWO2005052205A1 JPWO2005052205A1 (en) 2007-06-21
JP4432905B2 true JP4432905B2 (en) 2010-03-17

Family

ID=34631540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005515812A Expired - Fee Related JP4432905B2 (en) 2003-11-27 2004-11-26 High-strength steel and offshore structures with excellent weld toughness

Country Status (5)

Country Link
US (2) US20070051433A1 (en)
JP (1) JP4432905B2 (en)
KR (1) KR100776470B1 (en)
CN (1) CN100422370C (en)
WO (1) WO2005052205A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014498A (en) * 2012-12-21 2013-04-03 首钢总公司 355MPa low-welding-crack-sensitivity steel plate and producing method
WO2014038200A1 (en) 2012-09-06 2014-03-13 Jfeスチール株式会社 Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
WO2015022729A1 (en) 2013-08-13 2015-02-19 新日鐵住金株式会社 Steel plate
WO2015088040A1 (en) 2013-12-12 2015-06-18 Jfeスチール株式会社 Steel sheet and method for manufacturing same
US10316385B2 (en) 2014-03-31 2019-06-11 Jfe Steel Corporation High-tensile-strength steel plate and process for producing same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200932B2 (en) * 2006-07-13 2013-06-05 新日鐵住金株式会社 Bend pipe and manufacturing method thereof
JP5076658B2 (en) * 2006-12-06 2012-11-21 Jfeスチール株式会社 Steel material for large heat input welding
KR20110125277A (en) * 2007-12-07 2011-11-18 신닛뽄세이테쯔 카부시키카이샤 Steel being excellent in ctod characteristic in welding heat affected zone and a method of producing the same
JP5172391B2 (en) * 2008-03-03 2013-03-27 株式会社神戸製鋼所 Steel sheet with excellent toughness and uniform elongation of weld heat affected zone
KR101318227B1 (en) 2008-05-23 2013-10-15 한국기계연구원 Cu-added complex bainitic steel and manufacturing method thereof
WO2010134323A1 (en) 2009-05-19 2010-11-25 新日本製鐵株式会社 Steel material for welding and method for producing same
KR101360737B1 (en) * 2009-12-28 2014-02-07 주식회사 포스코 High strength steel plate having excellent resistance to brittle crack initiation and method for manufacturing the same
DE102010019563A1 (en) * 2010-05-05 2011-11-10 Kme Germany Ag & Co. Kg Corrosion protection arrangement for offshore steel structures and a method for its application
CN103225044B (en) * 2013-04-24 2015-06-17 马钢(集团)控股有限公司 Steel for vanadium micro alloying low temperature steel bar and process for rolling steel
CN103451536B (en) * 2013-09-30 2015-06-24 济钢集团有限公司 Low-cost thick subsea pipeline steel plate and manufacturing method of low-cost thick subsea pipeline steel plate
CN103741079A (en) * 2014-01-09 2014-04-23 鞍钢股份有限公司 Ultrahigh-strength steel plate for ocean engineering and production method thereof
CN103882312B (en) * 2014-03-04 2016-04-27 南京钢铁股份有限公司 The manufacture method of low-cost high-toughness-140 DEG C of Steel Plates For Low Temperature Service
DE102014205392A1 (en) * 2014-03-24 2015-09-24 Comtes Fht A. S. Components made of a steel alloy and method for producing high-strength components
CN105296845B (en) * 2015-10-21 2017-04-26 苏州雷格姆海洋石油设备科技有限公司 Manufacturing method for ultra-low-temperature corrosion-resistant high-strength forge piece blank
JP6766425B2 (en) * 2016-04-21 2020-10-14 日本製鉄株式会社 High-strength steel and marine structures
BR112020011210B1 (en) * 2017-12-07 2023-04-25 Jfe Steel Corporation STEEL WITH HIGH MANGANESE CONTENT (MN) AND METHOD FOR MANUFACTURING THE SAME

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220577A (en) * 1993-01-26 1994-08-09 Kawasaki Steel Corp High tensile strength steel excellent in hic resistance and its production
JPH08144008A (en) * 1994-11-28 1996-06-04 Sumitomo Metal Ind Ltd High tensile strength steel and its production
JP3399125B2 (en) * 1994-12-19 2003-04-21 住友金属工業株式会社 Steel material with excellent toughness of weld heat affected zone
JPH108132A (en) * 1996-06-14 1998-01-13 Sumitomo Metal Ind Ltd Production of thick steel plate excellent in toughness
JP3267170B2 (en) * 1996-09-25 2002-03-18 日本鋼管株式会社 780MPa class high tensile steel with excellent hot-dip galvanizing crack resistance
JP3699639B2 (en) * 1999-07-22 2005-09-28 新日本製鐵株式会社 Steel material excellent in toughness of heat affected zone and its manufacturing method
JP3852295B2 (en) * 2001-03-23 2006-11-29 住友金属工業株式会社 Steel with excellent super heat input welding characteristics
WO2005103317A2 (en) * 2003-11-12 2005-11-03 Northwestern University Ultratough high-strength weldable plate steel
US8118949B2 (en) * 2006-02-24 2012-02-21 GM Global Technology Operations LLC Copper precipitate carburized steels and related method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038200A1 (en) 2012-09-06 2014-03-13 Jfeスチール株式会社 Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
KR20150029758A (en) 2012-09-06 2015-03-18 제이에프이 스틸 가부시키가이샤 Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
US9777358B2 (en) 2012-09-06 2017-10-03 Jfe Steel Corporation Thick-walled, high tensile strength steel with excellent CTOD characteristics of the weld heat-affected zone, and manufacturing method thereof
CN103014498A (en) * 2012-12-21 2013-04-03 首钢总公司 355MPa low-welding-crack-sensitivity steel plate and producing method
WO2015022729A1 (en) 2013-08-13 2015-02-19 新日鐵住金株式会社 Steel plate
WO2015088040A1 (en) 2013-12-12 2015-06-18 Jfeスチール株式会社 Steel sheet and method for manufacturing same
KR20160088375A (en) 2013-12-12 2016-07-25 제이에프이 스틸 가부시키가이샤 Steel plate and method for manufacturing same
US10316385B2 (en) 2014-03-31 2019-06-11 Jfe Steel Corporation High-tensile-strength steel plate and process for producing same

Also Published As

Publication number Publication date
US20070051433A1 (en) 2007-03-08
WO2005052205A1 (en) 2005-06-09
JPWO2005052205A1 (en) 2007-06-21
US20100226813A1 (en) 2010-09-09
CN100422370C (en) 2008-10-01
CN1886530A (en) 2006-12-27
KR20060090287A (en) 2006-08-10
KR100776470B1 (en) 2007-11-16

Similar Documents

Publication Publication Date Title
JP4432905B2 (en) High-strength steel and offshore structures with excellent weld toughness
JP5773098B1 (en) Ferritic-martensitic duplex stainless steel and method for producing the same
KR101608719B1 (en) High-tensile steel plate giving welding heat-affected zone with excellent low-temperature toughness, and process for producing same
CN109072382B (en) High-tension steel and marine structure
KR101009056B1 (en) High-strength steel sheet of 450 ? or higher yield stress and 570 ? or higher tensile strength having low acoustic anisotropy and high weldability and process for producing the same
JP7155702B2 (en) Thick steel plate for sour linepipe and its manufacturing method
JP2009133005A (en) Steel plate for line pipe and steel pipe
JP6108116B2 (en) Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
JP5233867B2 (en) High strength steel and offshore structures with excellent corrosion resistance and weld toughness
WO2020153085A1 (en) Thick steel sheet and production method therefor
WO2015064077A1 (en) Ferrite-martensite two-phase stainless steel, and method for producing same
JP2008169429A (en) Steel having excellent ctod in weld heat-affected zone and method for producing the same
JP2019127620A (en) High-strength seamless steel pipe and bracing pipe of jack up rig
JP2004156095A (en) Steel sheet excellent in toughness of parent metal and weld-heat affected zone and its manufacturing method
JP2005126819A (en) HIGH TENSILE STRENGTH STEEL SHEET HAVING REDUCED ACOUSTIC ANISOTROPY, EXCELLENT WELDABILITY AND TENSILE STRENGTH IN >=570 MPa CLASS, AND ITS PRODUCTION METHOD
JP7119888B2 (en) Steel plate for UOE steel pipe and manufacturing method thereof
JP2002180181A (en) Method for producing extra-low carbon based high tensile steel welded joint and welded steel structure
JP3244987B2 (en) High strength linepipe steel with low yield ratio
JP7323090B1 (en) Steel plate and steel plate manufacturing method
JP2004162076A (en) Steel plate excellent in weldability and earthquake resistance, and its production method
JP7396322B2 (en) steel plate
WO2024190921A1 (en) Steel material
WO2023149157A1 (en) Steel sheet and method for manufacturing same
JP2023148714A (en) High strength thick steel plate and manufacturing method thereof
WO2024105967A1 (en) High-strength extremely thick steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4432905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees