WO2023149157A1 - Steel sheet and method for manufacturing same - Google Patents

Steel sheet and method for manufacturing same Download PDF

Info

Publication number
WO2023149157A1
WO2023149157A1 PCT/JP2023/000227 JP2023000227W WO2023149157A1 WO 2023149157 A1 WO2023149157 A1 WO 2023149157A1 JP 2023000227 W JP2023000227 W JP 2023000227W WO 2023149157 A1 WO2023149157 A1 WO 2023149157A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
center
thickness
steel
Prior art date
Application number
PCT/JP2023/000227
Other languages
French (fr)
Japanese (ja)
Inventor
将臣 奥谷
祐介 寺澤
浩文 大坪
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023524825A priority Critical patent/JP7493140B2/en
Publication of WO2023149157A1 publication Critical patent/WO2023149157A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to steel materials suitably used for steel structures such as ships, offshore structures, pressure vessels, line pipes, and offshore wind power generators.
  • the present invention relates to a thick high-strength steel plate that not only has excellent base material strength and toughness, but also excellent joint CTOD characteristics in multi-layer welds, and a method for producing the same, with respect to steel plates having a thickness of more than 100 mm.
  • the Charpy test has been mainly used to evaluate the toughness of steel.
  • a crack opening displacement test (hereinafter referred to as "CTOD test”) has been applied to steel plates used in steel structures. It is being applied more and more.
  • COD test a crack opening displacement test
  • a test piece in which a fatigue pre-crack is introduced in the toughness evaluation part is bent at three points at a low temperature, and the crack opening amount (plastic deformation amount) immediately before fracture is measured to evaluate the brittle fracture generation resistance. It is.
  • Multi-layer welding is used when thick steel plates are applied to steel structures such as ships, offshore structures, pressure vessels, line pipes, and wind power generators as described above.
  • weld heat affected zone Heat Affected Zone: hereinafter also referred to as "multilayer welding HAZ"
  • Coarse Grain Heat Affected there is a region near the weld line that has become a coarse structure due to the previous welding pass.
  • CGHAZ Coarse Grain Heat Affected Zone
  • the CTOD test of the welded joint is basically performed on the full plate thickness
  • the ICCGHAZ structure is included in the region where the fatigue pre-crack is introduced.
  • the joint CTOD characteristics obtained by the joint CTOD test are governed by the toughness of the most embrittled structure in the evaluation region
  • the joint CTOD characteristics of the multi-layer welded HAZ reflect not only the CGHAZ structure but also the ICCGHAZ structure toughness. be done. Therefore, in order to improve the joint CTOD characteristics of the multi-layer welded HAZ, it is necessary to improve not only the toughness of the CGHAZ structure but also the toughness of the ICCGHAZ structure.
  • Patent Literature 1 and Patent Literature 2 disclose techniques for suppressing austenite grain growth and improving the toughness of weld zones by adding REM together with Ti to disperse fine particles in the steel. ing. Further, Patent Document 3 proposes a technology for improving HAZ toughness using CaS and a technology for improving base material toughness by hot rolling.
  • Patent Document 4 proposes a technique of increasing the base material strength by adding Cu after suppressing the formation of MA by reducing C and Si.
  • Patent Document 5 proposes a technique of using BN as ferrite transformation nuclei in the heat affected zone of high heat input welding to refine the HAZ structure and improve the HAZ toughness.
  • Patent Document 6 discloses a technique for improving low-temperature toughness by controlling the hardness of the central segregation portion.
  • CTOD specification temperature in the standard for example, API (American Petroleum Institute) standard RP (Recommended Practice)-2Z
  • API American Petroleum Institute
  • RP Recommended Practice
  • Patent Documents 1 to 6 are high-strength and thick-walled steel plates with a thickness of more than 100 mm, which are required in recent years. It was not possible to sufficiently satisfy the joint CTOD characteristics required for welded joints.
  • Patent Documents 1 and 2 propose a technology for suppressing coarsening of the austenitic structure of the HAZ by adding REM together with Ti to disperse fine particles in the steel. Since this technique is intended for steel materials with relatively low strength and a small amount of alloying elements, it cannot be applied to steel materials with a high strength and a large amount of alloying elements because the HAZ structure does not contain ferrite.
  • Patent Documents 1 and 2 are effective in suppressing austenite grain growth.
  • the effect of improving toughness by suppressing coarsening of austenite grains in the HAZ alone cannot satisfy the joint CTOD characteristics at the low temperature specified above.
  • Patent Document 4 the joint CTOD characteristics at the above low temperature specification temperature are not studied, and it is considered that the low temperature CTOD specification cannot be satisfied only by improving the ICCGHAZ toughness by reducing the base material composition. be done.
  • reducing the content of alloying elements in the base metal in order to improve the toughness of ICCGHAZ is a technical idea that conflicts with securing strength for thickening. difficult to apply to
  • Patent Document 5 The technology proposed in Patent Document 5 is effective when the cooling rate in the weld heat affected zone is slow and the HAZ has a ferrite-based structure, as in the case of high heat input welding.
  • the HAZ structure is mainly composed of bainite, and the effect of improving the joint CTOD characteristics cannot be obtained.
  • Patent Document 6 proposes a technique for satisfying the joint CTOD characteristics in a low temperature range in a thick steel plate with a thickness of 100 mm or less. Mechanical properties equivalent to those of thick steel plates having a thickness of 100 mm or less have not yet been obtained.
  • the present invention has been made in view of the above problems of the prior art, and its object is to provide excellent CTOD characteristics of joints subjected to multi-layer welding (hereinafter referred to as multi-layer welding joint CTOD characteristics). is more than 100 mm and has high strength, and to provide a method for producing the same.
  • high strength in the present invention means that the yield strength at the plate thickness center position in a tensile test is 320 MPa or more, and excellent multi-layer welded joint CTOD characteristics in the present invention means notch position CGHAZ and SC/ It means that the crack opening displacement amount is 0.30 mm or more at the test temperature of ⁇ 40° C. at each ICHAZ boundary.
  • the plate thickness center portion is a region having a thickness of 10% of the plate thickness in both surface directions of the steel plate from the plate thickness center.
  • the inventors have found that the base material transformation region / The joint CTOD characteristics at the SC/ICHAZ (Sub-Critically reheated HAZ/Inter-Critically reheated HAZ) boundary, which is the boundary of the untransformed region, were also studied. As a result, the following findings were obtained. (4) In order to satisfy the joint CTOD characteristics at the test temperature of -40°C at the SC/ICHAZ boundary, the base material toughness is dominant over the joint CTOD characteristics at the SC/ICHAZ boundary. It was found that it is necessary to improve the toughness of the base material by making the crystal grain size 20 ⁇ m or less and refining the crystal grains.
  • the cooling rate at the central portion of the plate thickness is low, so the crystal grains at this portion become coarse.
  • the average value of the deformation resistance ratio between the plate thickness center and the surface of the steel plate is 0.70 or less. It has been found that it is possible to introduce sufficient strain to the portion, and that the crystal grain refinement can be achieved to the above crystal grain size.
  • the present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows. 1. % by mass, C: 0.02 to 0.12%, Si: 0.70% or less, Mn: 0.3 to 3.0%, P: 0.050% or less, S: 0.0050% or less, Al: 0.002 to 0.100%, Ti: 0.002 to 0.060%, N: 0.0130% or less, and O: 0.0100% or less, the balance being Fe and inevitable impurities has a component composition that satisfies the following formulas (1) to (3), A steel sheet having an average effective crystal grain size of 20 ⁇ m or less at the center of the sheet thickness, and having 0.10 or less porosities per 1 mm 2 having an equivalent circle diameter of 180 ⁇ m or more in the steel sheet.
  • the component composition is further, in mass%, Ni: 2.0% or less, Ca: 0.0180% or less, Cu: 2.00% or less, Cr: 2.00% or less, Mo: 2.00% or less. , Nb: 0.070% or less, V: 0.20% or less, W: 0.50% or less, B: 0.0050% or less, REM: 0.030% or less, and Mg: 0.0150% or less 2.
  • the steel sheet according to 1 above including one or more selected from the group consisting of:
  • a method for manufacturing the steel sheet according to 1 or 2 above A steel slab having the chemical composition described in 1 or 2 above is heated to a temperature in the range of 990° C. or higher and 1200° C. or lower, and the condition of the following formula (4) is satisfied, and the temperature at the thickness center is 950° C. or higher.
  • hot rolling is performed with a cumulative reduction ratio of 30% or more when the reduction ratio/pass is 3% or more, and a cumulative reduction ratio of 40% or more in rolling at a temperature at the center of the thickness of less than 950 ° C. Then, when cooling to a cooling stop temperature of 600 ° C.
  • [C] in formulas (5) to (7) is the mass % of C
  • Tk is the absolute temperature (K) at the center of the plate thickness or the surface of the steel plate
  • h0 is the plate thickness at the entry side of rolling
  • h1 is Plate thickness on the rolling exit side
  • n is the roll rotation speed (rpm)
  • r is the rolling reduction
  • R is the roll radius (mm)
  • the present invention it is possible to provide a thick steel plate that has high strength even if it has a thickness of more than 100 mm and that is excellent in multi-layer welded joint CTOD characteristics.
  • C 0.02-0.12% C is an element that enhances hardenability and strength of steel, and should be contained in an amount of 0.02% or more. However, if the C content exceeds 0.12%, the hardness of the C-enriched portion increases and the joint CTOD characteristics deteriorate. Therefore, the C content should be in the range of 0.02 to 0.12%. Preferably, the lower limit is 0.04% and the upper limit is 0.09%.
  • Si 0.70% or less
  • Si is an element that is inevitably contained as an impurity, and has the effect of improving the strength.
  • the Si content exceeds 0.70%, the joint CTOD characteristics are degraded. Therefore, the upper limit of the Si content is limited to 0.70%. Preferably, it is 0.50% or less.
  • the lower limit is not particularly limited, but about 0.04% is preferable.
  • Mn 0.3-3.0%
  • Mn is an element that has the effect of improving the strength of the base metal and the weld zone through the improvement of the hardenability of steel. In order to obtain such effects, addition of 0.3% or more is necessary. Preferably, it is 0.5% or more. On the other hand, adding more than 3.0% not only lowers weldability, but also causes excessive hardenability and lowers the toughness of the base metal and the weld zone, thereby deteriorating the joint CTOD characteristics. Therefore, the Mn content should be in the range of 0.3 to 3.0%. Preferably, it is 2.8% or less.
  • P 0.050% or less
  • P is an element that has a large effect of embrittlement of grain boundaries, and if added in a large amount, reduces HAZ toughness and joint CTOD characteristics. Therefore, the P content is limited to 0.050% or less. Preferably, it is 0.030% or less. On the other hand, since it is desirable to reduce the P content as much as possible, the lower limit of the P content is not particularly limited. Therefore, the P content is preferably 0.001% or more.
  • S 0.0050% or less
  • S is an element that degrades joint CTOD characteristics, so the upper limit of the S content is limited to 0.0050%. Preferably, it is 0.0030% or less. On the other hand, since it is desirable to reduce the S content as much as possible, the lower limit of the S content is not limited. Therefore, the S content is preferably 0.0001% or more.
  • Al 0.002-0.100%
  • Al is an element necessary for forming inclusions for improving the toughness of the multi-layer welded HAZ and improving the joint CTOD characteristics, and must be added in an amount of 0.002% or more. Preferably, it is 0.005% or more. On the other hand, if it is added in excess of 0.100%, the joint CTOD characteristics in the low temperature range will deteriorate. Therefore, the Al content should be in the range of 0.002 to 0.100%. Preferably, it is 0.075% or less.
  • Ti 0.002-0.060% Ti precipitates in steel as TiN.
  • the precipitated TiN has the effect of suppressing coarsening of austenite grains in the base metal and HAZ, refines the HAZ structure, and improves joint CTOD characteristics. In order to obtain such effects, addition of 0.002% or more is necessary. Preferably, it is 0.005% or more.
  • the Ti content should be in the range of 0.002 to 0.060%. Preferably, it is 0.050% or less.
  • N 0.0130% or less N is an element that lowers the HAZ toughness and deteriorates the joint CTOD characteristics, so the upper limit of the N content is limited to 0.0130%. On the other hand, since it is desirable to reduce the N content as much as possible, the lower limit of the N content is not limited. Therefore, the N content is preferably 0.0005% or more.
  • O 0.0100% or less
  • O is an element that lowers the HAZ toughness and deteriorates the joint CTOD characteristics, so the upper limit of the O content is limited to 0.0100%.
  • the lower limit of the O content is not limited. Therefore, the O content is preferably 0.0005% or more.
  • the chemical composition of the steel plate in one embodiment of the present invention shall consist of the above elements and the balance of Fe and unavoidable impurities.
  • Ni, Ca, Cu, Cr, Mo, Nb, V, W, One or more selected from the group consisting of B, REM, and Mg can be further arbitrarily contained in the content shown below.
  • Ni 2.0% or less
  • Ni is an element that can increase the strength of a steel plate without significantly deteriorating the toughness of both the base metal and the joint, but the addition of Ni increases the manufacturing cost and environmental load. .
  • inclusion of Ni was essential in order to secure base material toughness and joint toughness.
  • Ni may be contained in order to further improve toughness.
  • the Ni content of 2.0% or more poses problems of an excessive increase in manufacturing cost and an increase in environmental load. Therefore, the Ni content is limited to 2.0% or less. More preferably, it is 1.8% or less.
  • when Ni is added 0.1% or more is desirable.
  • Ca 0.0180% or less Ca is an element that improves the toughness of the multi-layer welding HAZ by forming an oxysulfide that is highly stable at high temperatures. Decrease CTOD characteristics. Therefore, the upper limit of Ca content is limited to 0.0180%. More preferably, it is 0.0160% or less. On the other hand, when adding Ca, 0.0002% or more is desirable.
  • Cu 2.00% or less
  • Cu is an element that can increase the strength of steel plates without greatly deteriorating the base metal and joint toughness. Surface cracks due to the Cu-enriched layer formed directly under the tile become a problem. Therefore, the Cu content is limited to 2.00% or less. More preferably, it is 1.50% or less. On the other hand, when adding Cu, 0.05% or more is desirable.
  • Cr 2.00% or less Cr is an element that has the effect of improving the strength of steel by improving the hardenability of steel. Limit the Cr content to 2.00% or less. More preferably, it is 1.50% or less. On the other hand, when Cr is added, 0.05% or more is desirable.
  • Mo 2.00% or less Mo is an element that has the effect of improving strength by improving the hardenability of steel. Limit the Mo content to 2.00% or less. More preferably, it is 1.50% or less. On the other hand, when adding Mo, 0.05% or more is desirable.
  • Nb 0.070% or less
  • Nb is an element that widens the non-recrystallization temperature range of the austenite phase. Therefore, the addition of Nb is effective for efficiently rolling in the non-recrystallized region and obtaining a fine structure.
  • Nb is added, it is preferably 0.005% or more.
  • the Nb addition amount exceeds 0.070%, the joint CTOD characteristics deteriorate, so the Nb content is limited to 0.070% or less. More preferably, it is 0.050% or less.
  • V 0.20% or less
  • V is an element that improves the strength of the base metal, and when V is added, it is preferably 0.01% or more.
  • the V content exceeds 0.20%, the HAZ toughness deteriorates and the joint CTOD characteristics deteriorate, so the V content is limited to 0.20% or less. More preferably, it is 0.15% or less.
  • W 0.50% or less W is an element that improves the strength of the base metal, and when W is added, it is preferably 0.05% or more. On the other hand, if the W content exceeds 0.50%, the HAZ toughness deteriorates and the joint CTOD characteristics deteriorate, so the W content is limited to 0.50% or less. More preferably, it is 0.40% or less.
  • B 0.0050% or less B is an element that can improve the hardenability and thereby improve the strength of the steel sheet when contained in a very small amount.
  • the B content exceeds 0.0050%, the HAZ toughness decreases and the joint CTOD characteristics deteriorate, so the B content is limited to 0.0050% or less. More preferably, it is 0.0040% or less.
  • REM 0.030% or less REM (rare earth metal) is an element that suppresses the growth of austenite grains in the HAZ by forming oxysulfide inclusions and improves the toughness of the HAZ. is preferably 0.001% or more.
  • the REM content exceeds 0.030%, the base material toughness and HAZ toughness are rather lowered, and joint CTOD characteristics are deteriorated. Therefore, the REM content is limited to 0.030% or less. More preferably, it is 0.025% or less.
  • Mg 0.0150% or less Mg is an element that suppresses the growth of austenite grains in the weld heat affected zone by forming oxide inclusions and improves the toughness of the weld heat affected zone. If so, 0.0002% or more is desirable. However, if the Mg content exceeds 0.0150%, the effect of addition is saturated, and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, the Mg content is limited to 0.0150% or less. More preferably, it is 0.0100% or less.
  • the chemical composition of the steel plate and the steel billet must satisfy the following conditions of Ti/N, Ceq and Pcm, respectively.
  • 1.50 ⁇ Ti/N ⁇ 5.00 Ti/N controls the amount of dissolved N in the HAZ and the precipitation state of TiN.
  • Ti/N is less than 1.50, HAZ toughness deteriorates due to the presence of solid solution N which is not fixed as TiN, and joint CTOD characteristics deteriorate.
  • Ti/N is greater than 5.00, the HAZ toughness deteriorates due to the precipitation of coarse TiN, and the joint CTOD characteristics deteriorate. Therefore, the range of Ti/N is set to 1.50 to 5.00.
  • the lower limit is 1.80 and the upper limit is 4.50.
  • Ceq 0.280% or more and 0.540% or less
  • the carbon equivalent Ceq defined by the following formula (2) increases, the amount of structures with poor toughness such as island martensite and bainite in the HAZ structure increases. Toughness deteriorates. That is, if the Ceq is greater than 0.540%, the required joint CTOD characteristics cannot be satisfied even if the HAZ toughness improvement technique using inclusions is used due to the deterioration of the toughness of the HAZ base structure itself.
  • the Ceq is less than 0.280%, the target strength cannot be secured. Therefore, the range of Ceq is set to 0.280 to 0.540%.
  • the lower limit is preferably 0.300% and the upper limit is 0.500%.
  • Ceq(%) [C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 (2)
  • Pcm 0.250% or less As the weld crack susceptibility index Pcm defined by the following formula (3) increases, structures with poor toughness such as island martensite and bainite in the HAZ structure increase, and as a result, the HAZ toughness deteriorates. do. If Pcm exceeds 0.250%, the necessary joint CTOD characteristics cannot be obtained due to deterioration in the toughness of the HAZ base structure itself. Therefore, Pcm is made 0.250% or less. Preferably, it is 0.240% or less. On the other hand, the lower limit is not particularly limited, but if Pcm is excessively reduced, the value of Ceq becomes too low, so about 0.140% is preferable.
  • Pcm (%) [C] + [Si] / 30 + ([Mn] + [Cu] + [Cr]) / 20 + [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B] (3 )
  • the parentheses in the above formulas (1) to (3) all represent the content (% by mass) of the element shown in the parentheses, and are zero when the element is not contained.
  • Average effective grain size at the center of plate thickness 20 ⁇ m or less
  • the average effective grain size of the microstructure at the plate thickness center of a steel plate having a thickness of more than 100 mm is set to 20 ⁇ m or less.
  • the "effective crystal grain size" in the present invention is defined as the circle-equivalent diameter of a crystal grain surrounded by grain boundaries with an orientation difference of 15° or more from adjacent crystal grains, that is, large-angle grain boundaries. Also, the average effective crystal grain size at the central portion of the plate thickness can be measured by the method described in the examples below.
  • Porosity number density 0.10/mm 2 or less
  • the porosity remaining in the steel sheet serves as a starting point for fracture, and deteriorates the joint CTOD characteristics.
  • the number of porosities with an equivalent circle diameter of 180 ⁇ m or more in the steel sheet per 1 mm 2 exceeds 0.10, the cracks in the joint CTOD test It is extremely likely that the cleft displacement ( ⁇ ) will be an insufficient value.
  • the higher the number density of porosities the lower the yield strength at the plate thickness center position of the base material. Therefore, it is important to set the number density of the porosities to 0.10/mm 2 or less.
  • the porosity number density in the present invention refers to the average number density of the total thickness x the total width in a thickness direction cross section (a cross section perpendicular to the rolling direction) parallel to the plate width direction of a thick steel plate.
  • the number density of the porosity can be measured by the method described in the examples below, but the measurement method is not limited to the method described in the examples, and can be measured using a known measurement method. can.
  • the measurement frequency of such porosity number density may be determined by measuring 1 to 2 cross sections of any one steel sheet among steel sheets having the same smelting conditions and the same rolling conditions. As long as the smelting method and rolling conditions of the steel slab are not changed, the porosity number density can be produced with good reproducibility, so it can be said that the measurement results at the above measurement frequency represent the whole.
  • the temperature in the following description is the temperature at the center of the sheet thickness unless otherwise specified.
  • the plate thickness center temperature can be actually measured as in the examples described later, but in an actual production line or the like, it may be obtained by heat transfer calculation from the steel plate surface temperature measured with a radiation thermometer.
  • the method for melting the steel slab is not particularly limited, and any known melting method such as a converter, an electric furnace, or a vacuum melting furnace is suitable. Such billets are produced, for example, by continuous casting. Further, the molten steel obtained by melting such steel slabs may be further subjected to secondary refining such as ladle refining.
  • the steel slab manufactured as described above is heated to 990° C. or higher and 1200° C. or lower. If the heating temperature is lower than 990° C., the conditions for hot rolling described below cannot be satisfied, and sufficient effects cannot be obtained. On the other hand, if the heating temperature is higher than 1200° C., the austenite grains become coarse and the desired fine grain structure cannot be obtained after controlled rolling. Therefore, the heating temperature range is set to 990° C. or higher and 1200° C. or lower. Preferably, the lower limit temperature is 990°C and the upper limit temperature is 1180°C.
  • the rolling reduction / pass is 3% or more. is 30% or more.
  • the average value of the ratio of the deformation resistance k fm (plate thickness center) at the center of the thickness of the steel plate and the surface deformation resistance k fm (surface) defined by the following equations (5) to (7) is 0.70 or less (equation (4)).
  • rolling is performed at the timing when the temperature difference between the thickness center and the surface becomes an appropriate value according to the mass% of C.
  • the average value of the deformation resistance ratio between the plate thickness central portion and the surface is set to 0.70 or less.
  • [C] in formulas (5) to (7) is the mass% of C
  • T k is the location where k fm is obtained, that is, the absolute temperature (K) at the center of the thickness or the surface of the steel plate
  • h 0 is the entry side of the rolling
  • h1 is the plate thickness on the delivery side
  • n is the roll rotation speed (rpm)
  • r is the rolling reduction
  • R is the roll radius (mm).
  • the surface temperature of the steel sheet can be measured with a radiation thermometer, and the temperature at the center of the thickness of the steel sheet can be measured as in the examples described later. It may be obtained by heat transfer calculation from the steel plate surface temperature.
  • the average value of the deformation resistance ratio between the thickness center and the surface of the steel plate according to the above formula (4) exceeds 0.70, for a thick steel plate with a thickness of more than 100 mm, sufficient strain at the thickness center cannot be introduced, and porosity remains. As a result, the porosity number density cannot be reduced to 0.10/mm 2 or less. For this reason, the ratio of deformation resistance between the central part of the plate thickness and the surface of the steel plate is set to 0.70 or less, and the cumulative reduction ratio of the reduction when the reduction ratio/pass is 3% or more is set to 30% or more.
  • the rolling in the non-recrystallization temperature range should be such that the cumulative rolling reduction is 40% or more, and the average value of the deformation resistance ratio between the thickness center and the surface of the steel sheet is 0.70 or less.
  • the obtained hot-rolled steel sheet is cooled.
  • Such cooling can be performed by any method, for example, water cooling, as long as the conditions described below are satisfied.
  • Average cooling rate 1.0°C/s or more If the average cooling rate at the thickness center temperature is less than 1.0°C/s, a coarse ferrite phase occurs in the base metal structure, resulting in deterioration of SC/ICHAZ joint CTOD characteristics. do. Therefore, the average cooling rate at the plate thickness center position is set to 1.0° C./s or more. On the other hand, if the average cooling rate is higher than 50.0° C./s, the hard bainite phase increases to increase the strength of the base material and deteriorate the SC/ICHAZ joint CTOD characteristics. It is preferable to set it to 0° C./s or less.
  • the average cooling rate from 700 ° C. to 500 ° C. is the average cooling rate, and this cooling stop temperature is higher than 500 ° C.
  • the average cooling rate from 700° C. to the cooling stop temperature higher than 500° C. is taken as the average cooling rate.
  • Cooling stop temperature 600°C or less
  • the hot-rolled steel sheet is cooled to a cooling stop temperature of 600°C or less at the thickness center temperature. If the cooling stop temperature is higher than 600° C., the structure after transformation becomes coarse, the strength of the base material becomes insufficient, and the SC/ICHAZ joint CTOD characteristics deteriorate. Therefore, the cooling stop temperature is set to 600° C. or lower.
  • tempering treatment Tempering temperature: 700° C. or less After stopping the cooling, further tempering treatment can be optionally performed. The tempering treatment can further improve the toughness of the base material. At that time, if the tempering temperature is higher than 700° C., a coarse ferrite phase is generated and the toughness of SCHAZ is deteriorated. Therefore, the tempering temperature is preferably 700° C. or lower. More preferably, it is 650° C. or less. Although the lower limit of the tempering temperature is not particularly limited, it can be about 300°C.
  • any item not described in this specification can be used by a conventional method.
  • thermocouples were attached to the center positions in the longitudinal direction, the width direction, and the plate thickness direction of the steel material to be rolled, and the temperature at the plate thickness center was actually measured. In addition, the surface temperature of the steel material was measured with a radiation thermometer.
  • the average effective grain size, porosity number density, and yield strength were measured by the following methods.
  • yield strength A tensile test was performed according to EN10002-1 to determine the yield strength (YS) at 1/4 and 1/2 positions of the plate thickness (t) of the steel plate.
  • YS yield strength
  • the upper yield point appeared in the tensile test, the upper yield stress was defined as the yield strength.
  • 0.2% yield strength was taken as the yield strength.
  • the steel plate satisfying the conditions of the present invention (Invention Example) satisfies the range of the invention in all of the manufacturing conditions, the effective crystal grain size of the base material, and the number density of porosity, and is 1/thickness.
  • the yield strength at the 4th position and the plate thickness center position is 320 MPa or more, and both the CGHAZ CTOD value and the SC/ICHAZ boundary CTOD value are 0.30 mm or more at -40°C, indicating high strength and excellent joint CTOD characteristics. I had it.
  • No. 42, 43 and 47 have a yield strength of less than 320 MPa at the 1/4 plate thickness position and the plate thickness center position.
  • No. No. 20 has a yield strength of less than 320 MPa at the quarter thickness position and the thickness center position and a CTOD value of less than 0.30 mm at the SC/ICHAZ boundary.
  • No. 52 has a yield strength of 320 MPa or more at the position of 1/4 of the plate thickness, but less than 320 MPa at the position of the center of the plate thickness.
  • Other comparative examples have one or both of the CGHAZ CTOD value and the SC/ICHAZ boundary CTOD value of less than 0.30 mm. All comparative examples were inferior to the invention examples in base material strength and joint CTOD characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is a thick steel sheet of high strength and excellent multi-pass welded joint CTOD characteristics, even having a thickness exceeding100 mm. A steel sheet with a prescribed component composition and Ti/N, Ceq, and Pcm values in specified ranges, wherein the average effective crystal grain size in the center of the sheet thickness is 20 μm or less, and the number of pores in the steel sheet with an equivalent circle diameter of at least 180 μm per 1 mm2 is 0.10 or less.

Description

鋼板およびその製造方法Steel plate and its manufacturing method
 本発明は、船舶や海洋構造物、圧力容器、ラインパイプ、洋上風力発電機などの鋼構造物に好適に用いられる鋼材に関する。特に、板厚が100mm超の鋼板に対し、母材の強度靭性に優れるだけでなく、多層盛溶接部における継手CTOD特性にも優れる厚肉の高張力鋼板およびその製造方法に関するものである。 The present invention relates to steel materials suitably used for steel structures such as ships, offshore structures, pressure vessels, line pipes, and offshore wind power generators. In particular, the present invention relates to a thick high-strength steel plate that not only has excellent base material strength and toughness, but also excellent joint CTOD characteristics in multi-layer welds, and a method for producing the same, with respect to steel plates having a thickness of more than 100 mm.
 従来、鋼の靭性評価には主にシャルピ-試験が行われてきた。近年では、破壊抵抗をより高精度に評価する手法として、き裂開口変位試験(Crack Tip Opening Displacement Test、以下、「CTOD試験」と称する。)が鋼構造物に使用される厚鋼板を対象に適用されることが多くなってきている。
 この試験は、靭性評価部に疲労予き裂を導入した試験片を低温で3点曲げし、破壊直前のき裂の開口量(塑性変形量)を測定して脆性破壊の発生抵抗を評価するものである。
Conventionally, the Charpy test has been mainly used to evaluate the toughness of steel. In recent years, as a method for evaluating fracture resistance with higher accuracy, a crack opening displacement test (hereinafter referred to as "CTOD test") has been applied to steel plates used in steel structures. It is being applied more and more.
In this test, a test piece in which a fatigue pre-crack is introduced in the toughness evaluation part is bent at three points at a low temperature, and the crack opening amount (plastic deformation amount) immediately before fracture is measured to evaluate the brittle fracture generation resistance. It is.
 厚鋼板を、前述したような船舶や海洋構造物、圧力容器、ラインパイプ、風力発電機などの鋼構造物に適用する場合、多層盛溶接が用いられる。この多層盛溶接の溶接熱影響部(Heat Affected Zone:以下、「多層盛溶接HAZ」ともいう。)には、先行の溶接パスにより粗大な組織となった溶接線近傍の領域(Coarse Grain Heat Affected Zone:以下、「CGHAZ」ともいう。)が、後続の溶接パスによりフェライト+オ-ステナイトの2相域に再加熱され、粗大な基地組織中に島状マルテンサイト(Martensite-Austenite Constituent:以下、「MA」ともいう。)組織が混在して著しく靭性が低くなった領域(Inter-Critically reheated Coarse Grain Heat Affected Zone:以下、「ICCGHAZ」ともいう。)が含まれることが知られている。 Multi-layer welding is used when thick steel plates are applied to steel structures such as ships, offshore structures, pressure vessels, line pipes, and wind power generators as described above. In the weld heat affected zone (Heat Affected Zone: hereinafter also referred to as "multilayer welding HAZ") of this multi-layer welding, there is a region near the weld line (Coarse Grain Heat Affected) that has become a coarse structure due to the previous welding pass. Zone: hereinafter also referred to as "CGHAZ") is reheated to a two-phase region of ferrite + austenite by a subsequent welding pass, and island-like martensite (Martensite-Austenite Constituent: hereinafter, (Also referred to as "MA".) It is known that a region (Inter-Critically Reheated Coarse Grain Heat Affected Zone: hereinafter also referred to as "ICCG HAZ") is included in which the structure is mixed and the toughness is remarkably low.
 ここで、溶接継手部のCTOD試験は、基本的に板全厚で行うため、多層盛溶接HAZを評価対象とする場合、疲労予き裂を導入する領域にはICCGHAZ組織が含まれる。また、継手CTOD試験により得られる継手CTOD特性は、評価領域内における最脆化組織の靭性に支配されるため、多層盛溶接HAZの継手CTOD特性は、CGHAZ組織だけでなくICCGHAZ組織の靭性も反映される。
 このため、多層盛溶接HAZの継手CTOD特性を向上させるためには、CGHAZ組織の靭性向上だけでなくICCGHAZ組織の靭性向上も必要である。
Here, since the CTOD test of the welded joint is basically performed on the full plate thickness, when the multi-layer welded HAZ is to be evaluated, the ICCGHAZ structure is included in the region where the fatigue pre-crack is introduced. In addition, since the joint CTOD characteristics obtained by the joint CTOD test are governed by the toughness of the most embrittled structure in the evaluation region, the joint CTOD characteristics of the multi-layer welded HAZ reflect not only the CGHAZ structure but also the ICCGHAZ structure toughness. be done.
Therefore, in order to improve the joint CTOD characteristics of the multi-layer welded HAZ, it is necessary to improve not only the toughness of the CGHAZ structure but also the toughness of the ICCGHAZ structure.
 従来、溶接熱影響部(HAZ)の靭性向上技術として、TiNの微細分散によるCGHAZのオ-ステナイト粒粗大化の抑制や、TiNのフェライト変態核としての利用が行われてきた。ここで、ボンド部においては、TiNが溶解する温度域まで加熱されることがあるため、溶接部の低温靭性要求が厳しい場合、かかるTiNを用いた効果だけでは要求を満足することが困難となってきている。 Conventionally, as a technique for improving the toughness of the heat affected zone (HAZ) of a weld, the use of TiN as ferrite transformation nuclei and the suppression of austenite grain coarsening in the CGHAZ by finely dispersing TiN have been performed. Here, since the bond part may be heated to a temperature range in which TiN melts, when the low-temperature toughness requirement of the weld part is severe, it is difficult to satisfy the requirement only with the effect of using such TiN. is coming.
 また、REM(希土類金属)を添加して生成したREM系酸硫化物の分散によるオ-ステナイト粒の粒成長抑制や、Ca添加により生成したCa系酸硫化物の分散によるオ-ステナイト粒の粒成長抑制、BNのフェライト核生成能と酸化物分散とを組み合わせる技術が用いられてきた。 In addition, grain growth suppression of austenite grains by dispersing REM-based oxysulfides generated by adding REM (rare earth metal), and grain growth of austenite grains by dispersing Ca-based oxysulfides generated by adding Ca. Techniques have been used that combine the growth inhibition, ferrite nucleation ability of BN, and oxide dispersion.
 例えば、特許文献1や特許文献2には、REMをTiと共に複合添加して鋼中に微細粒子を分散させることによって、オーステナイトの粒成長を抑制し、溶接部の靭性を向上させる技術が開示されている。
 また、特許文献3では、CaS利用によるHAZ靭性向上技術と熱間圧延による母材靭性向上技術が提案されている。
For example, Patent Literature 1 and Patent Literature 2 disclose techniques for suppressing austenite grain growth and improving the toughness of weld zones by adding REM together with Ti to disperse fine particles in the steel. ing.
Further, Patent Document 3 proposes a technology for improving HAZ toughness using CaS and a technology for improving base material toughness by hot rolling.
 さらに、ICCGHAZの靭性低下対策として、低C、低Si化することによりMAの生成を抑制した上でCuを添加することによって母材強度を高める技術が、特許文献4に提案されている。
 加えて、特許文献5には、大入熱溶接熱影響部においてBNをフェライト変態核として利用し、HAZ組織を微細化し、HAZ靭性を向上させる技術が提案されている。
Furthermore, as a countermeasure against the deterioration of the toughness of ICCGHAZ, Patent Document 4 proposes a technique of increasing the base material strength by adding Cu after suppressing the formation of MA by reducing C and Si.
In addition, Patent Document 5 proposes a technique of using BN as ferrite transformation nuclei in the heat affected zone of high heat input welding to refine the HAZ structure and improve the HAZ toughness.
 ところで、近年、船舶や海洋構造物、圧力容器、ラインパイプ、洋上風力発電機などの鋼構造物は大型化する傾向にあり、それに伴って鋼構造物に使用される鋼板の厚肉化と高強度化が進められている。鋼板の厚肉化と高強度化を両立するためには合金元素の添加量の増加が必要であるが、合金元素の多量添加は多層盛溶接HAZの靭性確保を困難にする。この問題に対しては特許文献6に、中心偏析部の硬度を制御することで低温靭性を向上させる技術が開示されている。 By the way, in recent years, steel structures such as ships, offshore structures, pressure vessels, line pipes, and offshore wind power generators have tended to grow in size. Strengthening is underway. Although it is necessary to increase the amount of alloying elements added in order to achieve both thickening and high strength of the steel sheet, the addition of a large amount of alloying elements makes it difficult to ensure the toughness of the multi-layer welded HAZ. To address this problem, Patent Document 6 discloses a technique for improving low-temperature toughness by controlling the hardness of the central segregation portion.
特開昭60-152626号公報JP-A-60-152626 特開昭60-184663号公報JP-A-60-184663 特開2012-184500号公報Japanese Unexamined Patent Application Publication No. 2012-184500 特開平05-186823号公報JP-A-05-186823 特開昭61-253344号公報JP-A-61-253344 国際公開第2014/038200号WO2014/038200
 ここで、継手CTOD特性を規定している規格(例えば、API(American Petroleum Institute)規格 RP(Recommended Practice)-2Z)におけるCTOD仕様温度は、通常、-10℃である。
 ところが、近年のエネルギ-需要の増加に対応して新たな資源を確保するために、海洋構造物等の建造地域が、これまで資源採掘を行えていなかった寒冷域および深海域にシフトしている。このため、高強度かつ厚肉で、API規格が定めるCTOD仕様温度よりもさらに低温のCTOD仕様温度(例えば-40℃程度)に対応できる鋼板に対する要求が増加している。
Here, the CTOD specification temperature in the standard (for example, API (American Petroleum Institute) standard RP (Recommended Practice)-2Z) that defines joint CTOD characteristics is usually -10°C.
However, in order to secure new resources in response to the recent increase in energy demand, construction areas for offshore structures, etc. are shifting to cold regions and deep sea regions where resource mining has not been possible so far. . For this reason, there is an increasing demand for steel sheets that are high in strength and thick in wall thickness and that can withstand a lower CTOD specification temperature (for example, about -40°C) than the CTOD specification temperature defined by API standards.
 発明者らの検討によれば、特許文献1~6に記載されている従来の技術は、近年求められている高強度かつ板厚:100mm超の厚肉の鋼板において、低温仕様向けの多層盛溶接継手に要求される継手CTOD特性を十分満足させることができないものであった。 According to the studies of the inventors, the conventional techniques described in Patent Documents 1 to 6 are high-strength and thick-walled steel plates with a thickness of more than 100 mm, which are required in recent years. It was not possible to sufficiently satisfy the joint CTOD characteristics required for welded joints.
 例えば、特許文献1、2には、REMをTiと共に複合添加して鋼中に微細粒子を分散させることによるHAZのオ-ステナイト組織の粗大化抑制技術が提案されている。この技術は、比較的低強度で合金元素量の少ない鋼材が対象であるため、より高強度で合金元素量の多い鋼材ではHAZ組織がフェライトを含まない組織となるために適用できない。 For example, Patent Documents 1 and 2 propose a technology for suppressing coarsening of the austenitic structure of the HAZ by adding REM together with Ti to disperse fine particles in the steel. Since this technique is intended for steel materials with relatively low strength and a small amount of alloying elements, it cannot be applied to steel materials with a high strength and a large amount of alloying elements because the HAZ structure does not contain ferrite.
 なお、特許文献1、2における、REM系酸硫化物やCa系酸硫化物は、オ-ステナイト粒成長抑制に対しては有効である。しかし、HAZのオ-ステナイト粒粗大化抑制による靭性向上の効果のみでは上記の低温仕様温度での継手CTOD特性を満足することはできない。 It should be noted that REM-based oxysulfides and Ca-based oxysulfides in Patent Documents 1 and 2 are effective in suppressing austenite grain growth. However, the effect of improving toughness by suppressing coarsening of austenite grains in the HAZ alone cannot satisfy the joint CTOD characteristics at the low temperature specified above.
 また、特許文献3で提案されている技術によれば、通常使用温度(-10℃)での継手CTOD特性を満足することができる。しかし、上記の低温仕様温度での継手CTOD特性については検討されていない。 Also, according to the technology proposed in Patent Document 3, it is possible to satisfy the joint CTOD characteristics at the normal operating temperature (-10°C). However, the joint CTOD characteristics at the above low temperature specification temperature have not been studied.
 特許文献4においても同様に、上記の低温仕様温度での継手CTOD特性については検討されておらず、母材成分組成の低減によるICCGHAZ靭性の向上のみでは低温CTOD仕様を満足することはできないと考えられる。また、ICCGHAZの靭性を向上させるために母材の合金元素含有量を低減することは、厚肉化のための強度確保と相反する技術的思想であり、海洋構造物などに使用される厚鋼板に適用することは難しい。 Similarly, in Patent Document 4, the joint CTOD characteristics at the above low temperature specification temperature are not studied, and it is considered that the low temperature CTOD specification cannot be satisfied only by improving the ICCGHAZ toughness by reducing the base material composition. be done. In addition, reducing the content of alloying elements in the base metal in order to improve the toughness of ICCGHAZ is a technical idea that conflicts with securing strength for thickening. difficult to apply to
 特許文献5で提案されている技術は、大入熱溶接の場合のように、溶接熱影響部における冷却速度が遅く、HAZがフェライト主体の組織となる場合には効果を発揮する。しかし、板厚が100mmを超えた厚鋼板の場合、母材に含有される合金成分の量が比較的多い一方で、多層盛溶接では入熱量が比較的小さい。そのため、厚鋼板の多層盛溶接においては、HAZ組織がベイナイト主体となるため、前記継手CTOD特性向上にかかる効果が得られない。 The technology proposed in Patent Document 5 is effective when the cooling rate in the weld heat affected zone is slow and the HAZ has a ferrite-based structure, as in the case of high heat input welding. However, in the case of a thick steel plate having a thickness of more than 100 mm, the amount of alloy components contained in the base metal is relatively large, while the amount of heat input is relatively small in multi-layer welding. Therefore, in multi-layer welding of thick steel plates, the HAZ structure is mainly composed of bainite, and the effect of improving the joint CTOD characteristics cannot be obtained.
 特許文献6に記載された技術では、板厚100mm以下の厚鋼板において、低温域での継手CTOD特性を満足するための技術が提案されているものの、板厚100mm超の極厚鋼板に対し、上記板厚100mm以下の厚鋼板と同等の力学特性を得るまでには至っていない。 The technique described in Patent Document 6 proposes a technique for satisfying the joint CTOD characteristics in a low temperature range in a thick steel plate with a thickness of 100 mm or less. Mechanical properties equivalent to those of thick steel plates having a thickness of 100 mm or less have not yet been obtained.
 このように、従来、板厚100mm超の高強度厚鋼板の多層盛溶接熱影響部でCGHAZとICCGHAZの靭性を向上させる技術が確立されているとは言いがたい。すなわち、CGHAZとICCGHAZが混在するボンド部を切欠位置とする継手CTOD特性を向上させることには、解決すべき問題があった。 In this way, it is difficult to say that conventionally, the technology for improving the toughness of CGHAZ and ICCGHAZ in the heat-affected zone of multi-layer welding of high-strength steel plates with a thickness of over 100 mm has been established. That is, there is a problem to be solved in order to improve the joint CTOD characteristics in which the notch position is the bond portion where CGHAZ and ICCGHAZ coexist.
 本発明は、従来技術が抱える上記問題を鑑みてなされたものであり、その目的は、多層盛溶接が施された継手のCTOD特性(以下、多層盛溶接継手CTOD特性という)に優れる、板厚が100mm超で高強度の厚鋼板および、その製造方法を提供することである。 The present invention has been made in view of the above problems of the prior art, and its object is to provide excellent CTOD characteristics of joints subjected to multi-layer welding (hereinafter referred to as multi-layer welding joint CTOD characteristics). is more than 100 mm and has high strength, and to provide a method for producing the same.
 なお、本発明における高強度とは、引張試験における板厚中心位置における降伏強度が320MPa以上であることを指し、本発明における多層盛溶接継手CTOD特性に優れるとは、切欠位置CGHAZおよび、SC/ICHAZ境界のそれぞれにおいて試験温度-40℃で、き裂開口変位量が0.30mm以上であることを指す。 In addition, high strength in the present invention means that the yield strength at the plate thickness center position in a tensile test is 320 MPa or more, and excellent multi-layer welded joint CTOD characteristics in the present invention means notch position CGHAZ and SC/ It means that the crack opening displacement amount is 0.30 mm or more at the test temperature of −40° C. at each ICHAZ boundary.
 発明者等は、かかる課題を解決するため、継手CTOD特性を向上させる手法について鋭意検討を行った。その結果、以下の知見を得た。
(1)スラブ製造過程で発生したポロシティは、圧延時に圧着されずに残存してしまうと、そこが鋼板内の欠陥となり破壊起点となることがある。特に、板厚中心部のポロシティを圧着するためには、圧延の際に板厚中心部に適切に歪みを導入することが必要であるが、板厚:100mm超の厚鋼板ではそれが困難になるため、未圧着の残存ポロシティが問題となる。しかし、発明者等の検討の結果、板厚中心温度が950℃以上の高温で、鋼板の板厚中心部と表面との変形抵抗比の平均値を0.70以下にしつつ、圧下率/パスが3%以上の圧下の累積圧下率を30%以上とする圧延を行うと、板厚中心部に十分な歪みを導入することができ、ポロシティを十分に圧着できることを見出した。
 なお、本発明において、板厚中心部とは、板厚の中心から鋼板の両表面方向にそれぞれ板厚の10%の厚みを持った領域である。
In order to solve this problem, the inventors have earnestly studied a technique for improving the joint CTOD characteristics. As a result, the following findings were obtained.
(1) If porosity generated in the slab manufacturing process remains without pressure bonding during rolling, it may become a defect in the steel sheet and become a starting point of fracture. In particular, in order to crimp the porosity at the center of the plate thickness, it is necessary to appropriately introduce strain in the center of the plate thickness during rolling, but it is difficult to do so with thick steel plates with a thickness of over 100 mm. Therefore, the residual porosity of uncrimped parts becomes a problem. However, as a result of examination by the inventors, it was found that at a high temperature of 950 ° C. or higher at the center of thickness of the steel sheet, the average value of the deformation resistance ratio between the center of thickness and the surface of the steel sheet is 0.70 or less, and the reduction ratio / pass It has been found that sufficient strain can be introduced at the center of the plate thickness and sufficient porosity can be crimped by rolling at a cumulative rolling reduction of 30% or more when the rolling is 3% or more.
In addition, in the present invention, the plate thickness center portion is a region having a thickness of 10% of the plate thickness in both surface directions of the steel plate from the plate thickness center.
(2)また、スラブの板厚中心部は元素偏析領域が存在し、かかる領域に合金元素が濃化することで粗大な介在物が低密度で分散してしまうという問題点がある。しかし、前記した、板厚中心温度を950℃以上の高温でかつ、鋼板の板厚中心部と鋼板の表面との変形抵抗比の平均値を0.70以下にしつつ、圧下率/パスが3%以上の圧延を、累積圧下率30%以上行うことにより、板厚中心に加わる歪みを増加させることができる。その結果、粗大介在物が伸長、分断し、微細な介在物を高密度に分散させ得ることを見出した。併せて、かかる分散の結果、介在物によるHAZ靭性向上効果を確保し得ることを見出した。 (2) In addition, there is a problem that an element segregation region exists in the thickness central portion of the slab, and coarse inclusions are dispersed at a low density due to the concentration of the alloying elements in this region. However, as described above, the temperature at the center of the thickness of the steel sheet is at a high temperature of 950 ° C. or higher, and the average value of the deformation resistance ratio between the center of the thickness of the steel sheet and the surface of the steel sheet is 0.70 or less, and the rolling reduction / pass is 3. % or more with a cumulative rolling reduction of 30% or more, the strain applied to the thickness center can be increased. As a result, it was found that coarse inclusions can be elongated and split, and fine inclusions can be dispersed at high density. In addition, the inventors have found that as a result of such dispersion, the HAZ toughness improvement effect of the inclusions can be ensured.
(3)さらに、オ-ステナイト粒成長抑制に有効なTiNを鋼中に微細分散析出させるために、鋼板の成分について、TiおよびNを、1.50≦Ti/N≦5.00の関係を満足して含有することに加え、炭素当量Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.540%、溶接割れ感受性指数Pcm=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B])≦0.250%の範囲にそれぞれ制御することによって、多層盛溶接が施されたHAZ(以下、多層盛溶接継手HAZという)の基地組織の靭性向上が可能であり、低温CTOD仕様に対応可能な良好な継手CTOD特性が得られることを見出した。 (3) Furthermore, in order to finely disperse and precipitate TiN in the steel, which is effective for suppressing the growth of austenite grains, Ti and N have a relationship of 1.50 ≤ Ti/N ≤ 5.00 with respect to the components of the steel sheet. In addition to containing satisfactorily, carbon equivalent Ceq = [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 5) ≤ 0.540%, weld crack susceptibility index Pcm = [C] + [Si] / 30 + ([Mn] + [Cu] + [Cr]) / 20 + [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B]) By controlling each in the range of ≤ 0.250%, it is possible to improve the toughness of the base structure of the HAZ subjected to multi-layer welding (hereinafter referred to as multi-layer welding joint HAZ), and the low temperature CTOD specification It was found that good joint CTOD characteristics compatible with
 加えて、発明者等は、継手CTOD試験方法が規定されているBS規格(British Standards)EN10225(2019)やAPI規格RP-2Z(2005)で要求される、溶接時の母材の変態領域/未変態領域の境界であるSC/ICHAZ(Sub-Critically reheated HAZ/Inter-Critically reheated HAZ)境界の継手CTOD特性についても検討を行った。その結果、以下の知見を得た。
(4)SC/ICHAZ境界で試験温度-40℃における継手CTOD特性を満足させるためには、SC/ICHAZ境界の継手CTOD特性に対し母材靭性が支配的となるため、母材ミクロ組織の有効結晶粒径を20μm以下として、結晶粒微細化により母材靭性を向上させる必要があることを見出した。
In addition, the inventors have found that the base material transformation region / The joint CTOD characteristics at the SC/ICHAZ (Sub-Critically reheated HAZ/Inter-Critically reheated HAZ) boundary, which is the boundary of the untransformed region, were also studied. As a result, the following findings were obtained.
(4) In order to satisfy the joint CTOD characteristics at the test temperature of -40°C at the SC/ICHAZ boundary, the base material toughness is dominant over the joint CTOD characteristics at the SC/ICHAZ boundary. It was found that it is necessary to improve the toughness of the base material by making the crystal grain size 20 μm or less and refining the crystal grains.
(5)板厚100mm超の厚鋼板では板厚中心部の冷却速度が小さくなるため、かかる箇所の結晶粒が粗大化してしまう。しかしながら、板厚中心温度950℃未満において鋼板の板厚中心部と表面との変形抵抗比の平均値が0.70以下の条件で累積圧下率40%以上の圧延を行うことで、板厚中心部に十分な歪みを導入することが可能となり、上記結晶粒径まで結晶粒微細化を達成できることを見出した。 (5) In a thick steel plate having a thickness of more than 100 mm, the cooling rate at the central portion of the plate thickness is low, so the crystal grains at this portion become coarse. However, at a plate thickness center temperature of less than 950 ° C., the average value of the deformation resistance ratio between the plate thickness center and the surface of the steel plate is 0.70 or less. It has been found that it is possible to introduce sufficient strain to the portion, and that the crystal grain refinement can be achieved to the above crystal grain size.
 本発明は、以上の知見を踏まえ、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
 1.質量%で、C:0.02~0.12%、Si:0.70%以下、Mn:0.3~3.0%、P:0.050%以下、S:0.0050%以下、Al:0.002~0.100%、Ti:0.002~0.060%、N:0.0130%以下および、O:0.0100%以下を含み、残部がFeおよび不可避的不純物であって、以下の(1)~(3)式を満たす成分組成を有し、
 板厚中心部における平均有効結晶粒径が20μm以下であって、かつ鋼板における円相当径:180μm以上のポロシティが1mm当たりの個数で0.10個以下である鋼板。
1.50≦Ti/N≦5.00 …(1)
0.280%≦Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.540% …(2)
Pcm(=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B])≦0.250% …(3)
(ただし、(1)~(3)式における括弧は、括弧内の元素の含有量(質量%)を表し、当該元素が含有されない場合にはゼロとする)
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
1. % by mass, C: 0.02 to 0.12%, Si: 0.70% or less, Mn: 0.3 to 3.0%, P: 0.050% or less, S: 0.0050% or less, Al: 0.002 to 0.100%, Ti: 0.002 to 0.060%, N: 0.0130% or less, and O: 0.0100% or less, the balance being Fe and inevitable impurities has a component composition that satisfies the following formulas (1) to (3),
A steel sheet having an average effective crystal grain size of 20 μm or less at the center of the sheet thickness, and having 0.10 or less porosities per 1 mm 2 having an equivalent circle diameter of 180 μm or more in the steel sheet.
1.50≤Ti/N≤5.00 (1)
0.280% ≤ Ceq (= [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 5) ≤ 0.540% ... (2)
P cm (= [C] + [Si] / 30 + ([Mn] + [Cu] + [Cr]) / 20 + [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B]) ≤ 0.250 % ... (3)
(However, the parentheses in the formulas (1) to (3) represent the content (% by mass) of the elements in the parentheses, and are zero when the elements are not contained.)
 2.前記成分組成が、さらに、質量%で、Ni:2.0%以下、Ca:0.0180%以下、Cu:2.00%以下、Cr:2.00%以下、Mo:2.00%以下、Nb:0.070%以下、V:0.20%以下、W:0.50%以下、B:0.0050%以下、REM:0.030%以下および、Mg:0.0150%以下からなる群より選択される1種以上を含む、前記1に記載の鋼板。 2. The component composition is further, in mass%, Ni: 2.0% or less, Ca: 0.0180% or less, Cu: 2.00% or less, Cr: 2.00% or less, Mo: 2.00% or less. , Nb: 0.070% or less, V: 0.20% or less, W: 0.50% or less, B: 0.0050% or less, REM: 0.030% or less, and Mg: 0.0150% or less 2. The steel sheet according to 1 above, including one or more selected from the group consisting of:
 3.前記1または2に記載の鋼板を製造する方法であって、
 前記1または2に記載の成分組成を有する鋼片を、990℃以上1200℃以下の範囲に加熱し、以下の(4)式の条件を満足し、かつ板厚中心の温度が950℃以上の圧延においては圧下率/パスが3%以上の圧下を累積圧下率で30%以上とし、板厚中心の温度が950℃未満の圧延においては累積圧下率を40%以上とする熱間圧延を行い、次いで、板厚中心の平均冷却速度を1.0℃/s以上で600℃以下の冷却停止温度まで冷却するに際し、上記冷却停止温度が500℃以下の場合は、700℃から500℃までの冷却速度の平均値を上記平均冷却速度とし、上記冷却停止温度が500℃よりも高い場合は、700℃から上記500℃よりも高い冷却停止温度までの冷却速度の平均値を上記平均冷却速度とする、鋼板の製造方法。
fm(板厚中心)/kfm(表面)≦0.70 …(4)
(ここで、kfmは(5)式による)
3. 3. A method for manufacturing the steel sheet according to 1 or 2 above,
A steel slab having the chemical composition described in 1 or 2 above is heated to a temperature in the range of 990° C. or higher and 1200° C. or lower, and the condition of the following formula (4) is satisfied, and the temperature at the thickness center is 950° C. or higher. In rolling, hot rolling is performed with a cumulative reduction ratio of 30% or more when the reduction ratio/pass is 3% or more, and a cumulative reduction ratio of 40% or more in rolling at a temperature at the center of the thickness of less than 950 ° C. Then, when cooling to a cooling stop temperature of 600 ° C. or less at an average cooling rate of 1.0 ° C./s or more at the center of the plate thickness, when the cooling stop temperature is 500 ° C. or less, from 700 ° C. to 500 ° C. The average value of the cooling rate is the average cooling rate, and when the cooling stop temperature is higher than 500 ° C., the average value of the cooling rate from 700 ° C. to the cooling stop temperature higher than 500 ° C. is the average cooling rate. A method for manufacturing a steel plate.
k fm (plate thickness center)/k fm (surface) ≤ 0.70 (4)
(Here, k fm is according to formula (5))
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
(ただし、式(5)~(7)における[C]はCの質量%、Tは板厚中心または鋼板表面の絶対温度(K)、hは圧延入側の板厚、hは圧延出側の板厚、nはロール回転速度(rpm)、rは圧下率、Rはロール半径(mm)を表す)
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
(However, [C] in formulas (5) to (7) is the mass % of C, Tk is the absolute temperature (K) at the center of the plate thickness or the surface of the steel plate, h0 is the plate thickness at the entry side of rolling, and h1 is Plate thickness on the rolling exit side, n is the roll rotation speed (rpm), r is the rolling reduction, and R is the roll radius (mm))
 4.前記冷却停止温度まで冷却した後、700℃以下の温度で焼戻し処理を行う、前記3に記載の鋼板の製造方法。 4. 3. The method for producing a steel sheet according to 3 above, wherein after cooling to the cooling stop temperature, tempering is performed at a temperature of 700° C. or less.
 本発明によれば、板厚が100mm超の厚鋼板であっても高強度であり、しかも多層盛溶接継手CTOD特性に優れる厚鋼板を提供することができる。 According to the present invention, it is possible to provide a thick steel plate that has high strength even if it has a thickness of more than 100 mm and that is excellent in multi-layer welded joint CTOD characteristics.
 以下、本発明の各構成要件の限定理由について説明する。
[成分組成]
 はじめに、本発明において厚鋼板および鋼片の成分組成を上記範囲に限定する理由を説明する。なお、成分組成に関する「%」は、特に断らない限り「質量%」を意味する。
C:0.02~0.12%
 Cは、焼入れ性を高め、鋼の強度を向上させる元素であり、0.02%以上の含有を必要とする。しかし、0.12%を超えてCを過剰に含有すると、Cが濃化した部分の硬度が高くなり、継手CTOD特性が低下する。そのため、C含有量は0.02~0.12%の範囲とする。好ましくは下限が0.04%であって、上限が0.09%である。
Hereinafter, reasons for limiting each constituent element of the present invention will be described.
[Component composition]
First, the reasons for limiting the chemical composition of the steel plate and the steel billet in the present invention to the above range will be explained. In addition, "%" regarding a component composition means "mass %" unless otherwise indicated.
C: 0.02-0.12%
C is an element that enhances hardenability and strength of steel, and should be contained in an amount of 0.02% or more. However, if the C content exceeds 0.12%, the hardness of the C-enriched portion increases and the joint CTOD characteristics deteriorate. Therefore, the C content should be in the range of 0.02 to 0.12%. Preferably, the lower limit is 0.04% and the upper limit is 0.09%.
Si:0.70%以下
 Siは、不純物として不可避的に含まれる元素であり、また、強度を向上させる作用を有している。しかし、0.70%を超えてSiを過剰に含有すると、継手CTOD特性が低下する。そのため、Si含有量は上限を0.70%に制限する。好ましくは0.50%以下である。一方、下限は特に限定されないが0.04%程度が好ましい。
Si: 0.70% or less Si is an element that is inevitably contained as an impurity, and has the effect of improving the strength. However, if the Si content exceeds 0.70%, the joint CTOD characteristics are degraded. Therefore, the upper limit of the Si content is limited to 0.70%. Preferably, it is 0.50% or less. On the other hand, the lower limit is not particularly limited, but about 0.04% is preferable.
Mn:0.3~3.0%
 Mnは、鋼の焼入れ性の向上を介して母材および溶接部の強度を向上させる効果を有する元素である。かかる効果を得るためには0.3%以上の添加が必要である。好ましくは、0.5%以上である。一方、3.0%を超える添加は溶接性を低下させるだけでなく、焼入れ性が過剰となり、母材および溶接部の靭性を低下させるので、継手CTOD特性が劣化する。このためMn含有量は0.3~3.0%の範囲とする。好ましくは、2.8%以下である。
Mn: 0.3-3.0%
Mn is an element that has the effect of improving the strength of the base metal and the weld zone through the improvement of the hardenability of steel. In order to obtain such effects, addition of 0.3% or more is necessary. Preferably, it is 0.5% or more. On the other hand, adding more than 3.0% not only lowers weldability, but also causes excessive hardenability and lowers the toughness of the base metal and the weld zone, thereby deteriorating the joint CTOD characteristics. Therefore, the Mn content should be in the range of 0.3 to 3.0%. Preferably, it is 2.8% or less.
P:0.050%以下
 Pは、粒界を脆化させる効果が大きい元素であり、多量に添加するとHAZ靭性を低下させ、継手CTOD特性を低下させる。そのため、P含有量を0.050%以下に制限する。好ましくは0.030%以下である。一方、P含有量はできる限り低減することが望ましいので、P含有量の下限は特に限定されないが、過度の低P化は精錬時間の増加やコスト上昇を招く。そのため、P含有量は0.001%以上とすることが好ましい。
P: 0.050% or less P is an element that has a large effect of embrittlement of grain boundaries, and if added in a large amount, reduces HAZ toughness and joint CTOD characteristics. Therefore, the P content is limited to 0.050% or less. Preferably, it is 0.030% or less. On the other hand, since it is desirable to reduce the P content as much as possible, the lower limit of the P content is not particularly limited. Therefore, the P content is preferably 0.001% or more.
S:0.0050%以下
 Sは、継手CTOD特性を低下させる元素であるため、S含有量の上限を0.0050%に制限する。好ましくは0.0030%以下である。一方、S含有量はできる限り低減することが望ましいので、S含有量の下限は限定されないが、過度の低S化は精錬時間の増加やコスト上昇を招く。そのため、S含有量は0.0001%以上とすることが好ましい。
S: 0.0050% or less S is an element that degrades joint CTOD characteristics, so the upper limit of the S content is limited to 0.0050%. Preferably, it is 0.0030% or less. On the other hand, since it is desirable to reduce the S content as much as possible, the lower limit of the S content is not limited. Therefore, the S content is preferably 0.0001% or more.
Al:0.002~0.100%
 Alは、多層盛溶接HAZの靭性を改善し、継手CTOD特性を向上するための介在物形成に必要な元素であり、0.002%以上の添加が必要である。好ましくは、0.005%以上である。一方、0.100%を超えて過剰に添加すると低温域での継手CTOD特性が低下する。そのため、Al含有量は0.002~0.100%の範囲とする。好ましくは、0.075%以下である。
Al: 0.002-0.100%
Al is an element necessary for forming inclusions for improving the toughness of the multi-layer welded HAZ and improving the joint CTOD characteristics, and must be added in an amount of 0.002% or more. Preferably, it is 0.005% or more. On the other hand, if it is added in excess of 0.100%, the joint CTOD characteristics in the low temperature range will deteriorate. Therefore, the Al content should be in the range of 0.002 to 0.100%. Preferably, it is 0.075% or less.
Ti:0.002~0.060%
 Tiは、TiNとして鋼中に析出する。析出したTiNは、母材およびHAZにおけるオ-ステナイト粒の粗大化を抑制する作用を有しており、HAZ組織が微細化し、継手CTOD特性が向上する。かかる効果を得るためには0.002%以上の添加が必要である。好ましくは、0.005%以上である。一方、Ti含有量が0.060%を超えると、固溶Tiや粗大TiCの析出により、かえって溶接熱影響部靭性が低下し、継手CTOD特性が劣化する。そのため、Ti含有量は0.002~0.060%の範囲とする。好ましくは、0.050%以下である。
Ti: 0.002-0.060%
Ti precipitates in steel as TiN. The precipitated TiN has the effect of suppressing coarsening of austenite grains in the base metal and HAZ, refines the HAZ structure, and improves joint CTOD characteristics. In order to obtain such effects, addition of 0.002% or more is necessary. Preferably, it is 0.005% or more. On the other hand, when the Ti content exceeds 0.060%, solid solution Ti and coarse TiC are precipitated, which rather decreases the weld heat affected zone toughness and deteriorates the joint CTOD characteristics. Therefore, the Ti content should be in the range of 0.002 to 0.060%. Preferably, it is 0.050% or less.
N:0.0130%以下
 Nは、HAZ靭性を低下させ、継手CTOD特性を劣化させる元素であるため、N含有量の上限を0.0130%に制限する。一方、N含有量はできる限り低減することが望ましいので、N含有量の下限は限定されないが、過度の低N化は精錬時間の増加やコスト上昇を招く。そのため、N含有量は0.0005%以上とすることが好ましい。
N: 0.0130% or less N is an element that lowers the HAZ toughness and deteriorates the joint CTOD characteristics, so the upper limit of the N content is limited to 0.0130%. On the other hand, since it is desirable to reduce the N content as much as possible, the lower limit of the N content is not limited. Therefore, the N content is preferably 0.0005% or more.
O:0.0100%以下
 Oは、HAZ靭性を低下させ、継手CTOD特性を劣化させる元素であるため、O含有量の上限を0.0100%に制限する。一方、O含有量はできる限り低減することが望ましいので、O含有量の下限は限定されないが、過度の低O化は精錬時間の増加やコスト上昇を招く。そのため、O含有量は0.0005%以上とすることが好ましい。
O: 0.0100% or less O is an element that lowers the HAZ toughness and deteriorates the joint CTOD characteristics, so the upper limit of the O content is limited to 0.0100%. On the other hand, since it is desirable to reduce the O content as much as possible, the lower limit of the O content is not limited. Therefore, the O content is preferably 0.0005% or more.
 本発明の一実施形態における厚鋼板の成分組成は、上記元素と残部のFeおよび不可避不純物からなるものとする。
 また、本発明の他の実施形態においては、強度、母材靭性、継手靭性などのさらなる向上を目的として、上記成分組成に加え、Ni、Ca、Cu、Cr、Mo、Nb、V、W、B、REM、およびMgからなる群より選択される1種以上を、以下に示す含有量でさらに任意に含有することができる。
The chemical composition of the steel plate in one embodiment of the present invention shall consist of the above elements and the balance of Fe and unavoidable impurities.
In another embodiment of the present invention, Ni, Ca, Cu, Cr, Mo, Nb, V, W, One or more selected from the group consisting of B, REM, and Mg can be further arbitrarily contained in the content shown below.
Ni:2.0%以下
 Niは、母材と継手の両方の靭性を大きく劣化させることなく厚鋼板を高強度化することができる元素であるが、Ni添加によって製造コストおよび環境負荷は増加する。従来は母材靭性と継手靭性を確保するためにNi含有が必須であった。しかしながら、本発明では変形抵抗比を制御した圧延を行うことにより、Niの含有なしで多層盛溶接継手CTOD特性に優れる、板厚が100mm超の高強度厚鋼板を製造可能になる。一方で、更なる靭性向上のためにNiを含有してもよい。その場合、2.0%以上のNi含有は過度な製造コストの増加および、環境負荷増加が問題となる。そのため、Ni含有量を2.0%以下に制限する。より好ましくは、1.8%以下である。一方、Niを添加する場合は0.1%以上が望ましい。
Ni: 2.0% or less Ni is an element that can increase the strength of a steel plate without significantly deteriorating the toughness of both the base metal and the joint, but the addition of Ni increases the manufacturing cost and environmental load. . Conventionally, inclusion of Ni was essential in order to secure base material toughness and joint toughness. However, in the present invention, by performing rolling with a controlled deformation resistance ratio, it is possible to manufacture a high-strength steel plate having a thickness of more than 100 mm and excellent CTOD characteristics of multi-layer welded joints without containing Ni. On the other hand, Ni may be contained in order to further improve toughness. In that case, the Ni content of 2.0% or more poses problems of an excessive increase in manufacturing cost and an increase in environmental load. Therefore, the Ni content is limited to 2.0% or less. More preferably, it is 1.8% or less. On the other hand, when Ni is added, 0.1% or more is desirable.
Ca:0.0180%以下
 Caは、高温での安定性が高い酸硫化物を形成することで多層盛溶接HAZの靭性を向上させる元素であるが、0.0180%を超える含有は、かえって継手CTOD特性を低下させる。そのため、Ca含有量の上限を0.0180%に制限する。より好ましくは、0.0160%以下である。一方、Caを添加する場合は0.0002%以上が望ましい。
Ca: 0.0180% or less Ca is an element that improves the toughness of the multi-layer welding HAZ by forming an oxysulfide that is highly stable at high temperatures. Decrease CTOD characteristics. Therefore, the upper limit of Ca content is limited to 0.0180%. More preferably, it is 0.0160% or less. On the other hand, when adding Ca, 0.0002% or more is desirable.
Cu:2.00%以下
 Cuは、母材、継手靭性を大きく劣化させることなく厚鋼板を高強度化することができる元素であるが、Cu含有量が2.00%を超えると、スケ-ル直下に生成するCu濃化層に起因する表面割れが問題となる。そのため、Cu含有量を2.00%以下に制限する。より好ましくは、1.50%以下である。一方、Cuを添加する場合は0.05%以上が望ましい。
Cu: 2.00% or less Cu is an element that can increase the strength of steel plates without greatly deteriorating the base metal and joint toughness. Surface cracks due to the Cu-enriched layer formed directly under the tile become a problem. Therefore, the Cu content is limited to 2.00% or less. More preferably, it is 1.50% or less. On the other hand, when adding Cu, 0.05% or more is desirable.
Cr:2.00%以下
 Crは、鋼の焼入れ性の向上を介して強度を向上させる効果を有する元素であるが、Cr含有量が2.00%を超えると継手CTOD特性が低下するため、Cr含有量を2.00%以下に制限する。より好ましくは、1.50%以下である。一方、Crを添加する場合は0.05%以上が望ましい。
Cr: 2.00% or less Cr is an element that has the effect of improving the strength of steel by improving the hardenability of steel. Limit the Cr content to 2.00% or less. More preferably, it is 1.50% or less. On the other hand, when Cr is added, 0.05% or more is desirable.
Mo:2.00%以下
 Moは、鋼の焼入れ性の向上を介して強度を向上させる効果を有する元素であるが、Mo含有量が2.00%を超えると継手CTOD特性が低下するため、Mo含有量を2.00%以下に制限する。より好ましくは、1.50%以下である。一方、Moを添加する場合は0.05%以上が望ましい。
Mo: 2.00% or less Mo is an element that has the effect of improving strength by improving the hardenability of steel. Limit the Mo content to 2.00% or less. More preferably, it is 1.50% or less. On the other hand, when adding Mo, 0.05% or more is desirable.
Nb:0.070%以下
 Nbは、オ-ステナイト相の未再結晶温度域を広げる元素である。そのため、未再結晶域圧延を効率的に行い、微細組織を得るために、Nbの添加は有効である。Nbを添加する場合は0.005%以上が望ましい。一方、Nb添加量が0.070%を超えると継手CTOD特性が低下するため、Nb含有量を0.070%以下に制限する。より好ましくは、0.050%以下である。
Nb: 0.070% or less Nb is an element that widens the non-recrystallization temperature range of the austenite phase. Therefore, the addition of Nb is effective for efficiently rolling in the non-recrystallized region and obtaining a fine structure. When Nb is added, it is preferably 0.005% or more. On the other hand, if the Nb addition amount exceeds 0.070%, the joint CTOD characteristics deteriorate, so the Nb content is limited to 0.070% or less. More preferably, it is 0.050% or less.
V:0.20%以下
 Vは、母材の強度を向上させる元素であり、Vを添加する場合は0.01%以上が望ましい。一方、V含有量が0.20%を超えるとHAZ靭性が低下し、継手CTOD特性が劣化するため、V含有量を0.20%以下に制限する。より好ましくは、0.15%以下である。
V: 0.20% or less V is an element that improves the strength of the base metal, and when V is added, it is preferably 0.01% or more. On the other hand, if the V content exceeds 0.20%, the HAZ toughness deteriorates and the joint CTOD characteristics deteriorate, so the V content is limited to 0.20% or less. More preferably, it is 0.15% or less.
W:0.50%以下
 Wは、母材の強度を向上させる元素であり、Wを添加する場合は0.05%以上が望ましい。一方、W含有量が0.50%を超えるとHAZ靭性が低下し、継手CTOD特性が劣化するため、W含有量を0.50%以下に制限する。より好ましくは、0.40%以下である。
W: 0.50% or less W is an element that improves the strength of the base metal, and when W is added, it is preferably 0.05% or more. On the other hand, if the W content exceeds 0.50%, the HAZ toughness deteriorates and the joint CTOD characteristics deteriorate, so the W content is limited to 0.50% or less. More preferably, it is 0.40% or less.
B:0.0050%以下
 Bは、極微量の含有で焼入れ性を向上させ、それにより鋼板の強度を向上させることができる元素であり、Bを添加する場合は0.0005%以上が望ましい。一方、B含有量が0.0050%を超えるとHAZ靭性が低下し、継手CTOD特性が劣化するため、B含有量を0.0050%以下に制限する。より好ましくは、0.0040%以下である。
B: 0.0050% or less B is an element that can improve the hardenability and thereby improve the strength of the steel sheet when contained in a very small amount. On the other hand, if the B content exceeds 0.0050%, the HAZ toughness decreases and the joint CTOD characteristics deteriorate, so the B content is limited to 0.0050% or less. More preferably, it is 0.0040% or less.
REM:0.030%以下
 REM(希土類金属)は、酸硫化物系介在物を形成することでHAZのオ-ステナイト粒成長を抑制し、HAZ靭性を向上させる元素であり、REMを添加する場合は0.001%以上が望ましい。一方、REM含有量が0.030%を超えると、母材靭性およびHAZ靭性がかえって低下し、継手CTOD特性が劣化する。そのため、REM含有量は0.030%以下に制限する。より好ましくは、0.025%以下である。
REM: 0.030% or less REM (rare earth metal) is an element that suppresses the growth of austenite grains in the HAZ by forming oxysulfide inclusions and improves the toughness of the HAZ. is preferably 0.001% or more. On the other hand, when the REM content exceeds 0.030%, the base material toughness and HAZ toughness are rather lowered, and joint CTOD characteristics are deteriorated. Therefore, the REM content is limited to 0.030% or less. More preferably, it is 0.025% or less.
Mg:0.0150%以下
 Mgは、酸化物系介在物を形成することで溶接熱影響部においてオ-ステナイト粒の成長を抑制し、溶接熱影響部靭性を改善する元素であり、Mgを添加する場合は0.0002%以上が望ましい。しかし、Mg含有量が0.0150%を超えると添加効果が飽和し、含有量に見合う効果が期待できずに経済的に不利となる。そのため、Mg含有量を0.0150%以下に制限する。より好ましくは、0.0100%以下である。
Mg: 0.0150% or less Mg is an element that suppresses the growth of austenite grains in the weld heat affected zone by forming oxide inclusions and improves the toughness of the weld heat affected zone. If so, 0.0002% or more is desirable. However, if the Mg content exceeds 0.0150%, the effect of addition is saturated, and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, the Mg content is limited to 0.0150% or less. More preferably, it is 0.0100% or less.
 なお、本発明において、上記厚鋼板および鋼片の成分組成は、さらに以下に述べる、Ti/N、CeqおよびPcmの条件をそれぞれ満足する必要がある。
1.50≦Ti/N≦5.00 …(1)
 Ti/Nは、HAZにおける固溶N量とTiNの析出状態を制御する。Ti/Nが1.50未満では、TiNとして固定されていない固溶Nの存在によりHAZ靭性が劣化し、継手CTOD特性が劣化する。一方、Ti/Nが5.00より大きいと粗大TiNの析出によりHAZ靭性が劣化し、継手CTOD特性が劣化する。よって、Ti/Nの範囲は1.50~5.00の範囲とする。なお、好ましくは下限が1.80であって、上限が4.50である。
In the present invention, the chemical composition of the steel plate and the steel billet must satisfy the following conditions of Ti/N, Ceq and Pcm, respectively.
1.50≤Ti/N≤5.00 (1)
Ti/N controls the amount of dissolved N in the HAZ and the precipitation state of TiN. When Ti/N is less than 1.50, HAZ toughness deteriorates due to the presence of solid solution N which is not fixed as TiN, and joint CTOD characteristics deteriorate. On the other hand, if Ti/N is greater than 5.00, the HAZ toughness deteriorates due to the precipitation of coarse TiN, and the joint CTOD characteristics deteriorate. Therefore, the range of Ti/N is set to 1.50 to 5.00. Preferably, the lower limit is 1.80 and the upper limit is 4.50.
Ceq:0.280%以上、0.540%以下
 以下の(2)式で定義される炭素当量Ceqが増加すると、HAZ組織中の島状マルテンサイトやベイナイトといった靭性の劣る組織量が増加する結果、HAZ靭性が劣化する。すなわち、Ceqが0.540%より大きいと、HAZの基地組織自体の靭性劣化のため、介在物によるHAZ靭性向上技術を用いても必要な継手CTOD特性を満足できない。一方、Ceqが0.280%より小さいと、目標の強度を確保できなくなる。よって、Ceqの範囲は0.280~0.540%とする。なお、好ましくは下限が0.300%であって、上限が0.500%である。
Ceq(%)=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 …(2)
Ceq: 0.280% or more and 0.540% or less When the carbon equivalent Ceq defined by the following formula (2) increases, the amount of structures with poor toughness such as island martensite and bainite in the HAZ structure increases. Toughness deteriorates. That is, if the Ceq is greater than 0.540%, the required joint CTOD characteristics cannot be satisfied even if the HAZ toughness improvement technique using inclusions is used due to the deterioration of the toughness of the HAZ base structure itself. On the other hand, if the Ceq is less than 0.280%, the target strength cannot be secured. Therefore, the range of Ceq is set to 0.280 to 0.540%. The lower limit is preferably 0.300% and the upper limit is 0.500%.
Ceq(%)=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 (2)
Pcm:0.250%以下
 以下の(3)式で定義される溶接割れ感受性指数Pcmが増加すると、HAZ組織中の島状マルテンサイトやベイナイトなど靭性の劣る組織が増加し、その結果、HAZ靭性が劣化する。Pcmが0.250%を超えると、HAZの基地組織自体の靭性劣化のため、必要な継手CTOD特性を得ることができない。そのため、Pcmを0.250%以下とする。好ましくは0.240%以下である。一方、下限は特に限定されないが、過度にPcmを減少しようとすると、Ceqの値が低くなりすぎてしまうため、0.140%程度が好ましい。
Pcm(%)=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B]…(3)
Pcm: 0.250% or less As the weld crack susceptibility index Pcm defined by the following formula (3) increases, structures with poor toughness such as island martensite and bainite in the HAZ structure increase, and as a result, the HAZ toughness deteriorates. do. If Pcm exceeds 0.250%, the necessary joint CTOD characteristics cannot be obtained due to deterioration in the toughness of the HAZ base structure itself. Therefore, Pcm is made 0.250% or less. Preferably, it is 0.240% or less. On the other hand, the lower limit is not particularly limited, but if Pcm is excessively reduced, the value of Ceq becomes too low, so about 0.140% is preferable.
Pcm (%) = [C] + [Si] / 30 + ([Mn] + [Cu] + [Cr]) / 20 + [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B] (3 )
 なお、上記(1)~(3)式における括弧は、いずれも括弧内に示された元素の含有量(質量%)を表し、当該元素が含有されない場合にはゼロとする。 The parentheses in the above formulas (1) to (3) all represent the content (% by mass) of the element shown in the parentheses, and are zero when the element is not contained.
[平均有効結晶粒径]
板厚中心部での平均有効結晶粒径:20μm以下
 本発明では、板厚100mm超の厚鋼板の板厚中心部におけるミクロ組織の平均有効結晶粒径を20μm以下とする。偏析が存在しやすい板厚中心の結晶粒を上記のように微細化して母材靭性を向上させることにより、SC/ICHAZ境界の継手CTOD特性を向上させることができる。一方、平均有効結晶粒径は小さいほど有利となるため、その下限は特に限定されないが、通常は、1μm程度である。
[Average effective grain size]
Average effective grain size at the center of plate thickness: 20 µm or less In the present invention, the average effective grain size of the microstructure at the plate thickness center of a steel plate having a thickness of more than 100 mm is set to 20 µm or less. By improving the toughness of the base material by refining the crystal grains at the thickness center where segregation tends to occur as described above, the joint CTOD characteristics at the SC/ICHAZ boundary can be improved. On the other hand, the smaller the average effective crystal grain size, the more advantageous it is, so the lower limit is not particularly limited, but it is usually about 1 μm.
 ここで、本発明における「有効結晶粒径」は、隣接する結晶粒との方位差が15°以上の粒界すなわち大角粒界によって囲まれた結晶粒の円相当直径として定義される。また、前記板厚中心部における平均有効結晶粒径は、後述する実施例に記載した方法で測定することができる。 Here, the "effective crystal grain size" in the present invention is defined as the circle-equivalent diameter of a crystal grain surrounded by grain boundaries with an orientation difference of 15° or more from adjacent crystal grains, that is, large-angle grain boundaries. Also, the average effective crystal grain size at the central portion of the plate thickness can be measured by the method described in the examples below.
[ポロシティの個数密度]
ポロシティの個数密度:0.10個/mm以下
 前述したように、鋼板内に残存するポロシティは破壊起点となるため、継手CTOD特性を悪化させる。特に、鋼板における円相当径が180μm以上であるポロシティの、1mm当たりの個数(本発明において、単に「ポロシティの個数密度」ともいう)が0.10個を超えると、継手CTOD試験における、き裂開口変位量(δ)が不十分な値となる可能性が極端に高くなる。また、ポロシティの個数密度が大きくなるほど、母材の板厚中心位置における降伏強度は低下する。そのため、前記ポロシティの個数密度を0.10個/mm以下とすることが重要である。
[Porosity number density]
Porosity number density: 0.10/mm 2 or less As described above, the porosity remaining in the steel sheet serves as a starting point for fracture, and deteriorates the joint CTOD characteristics. In particular, if the number of porosities with an equivalent circle diameter of 180 μm or more in the steel sheet per 1 mm 2 (also simply referred to as “the number density of porosities” in the present invention) exceeds 0.10, the cracks in the joint CTOD test It is extremely likely that the cleft displacement (δ) will be an insufficient value. In addition, the higher the number density of porosities, the lower the yield strength at the plate thickness center position of the base material. Therefore, it is important to set the number density of the porosities to 0.10/mm 2 or less.
 本発明におけるポロシティの個数密度とは、厚鋼板の板幅方向に平行な厚み方向断面(圧延方向に垂直な断面)における、全厚×全幅での平均個数密度を指すものとする。なお、前記ポロシティの個数密度は、後述する実施例に記載した方法で測定することができるが、測定方法は実施例に記載した方法に限定されず、公知の測定方法を用いて測定することができる。 The porosity number density in the present invention refers to the average number density of the total thickness x the total width in a thickness direction cross section (a cross section perpendicular to the rolling direction) parallel to the plate width direction of a thick steel plate. The number density of the porosity can be measured by the method described in the examples below, but the measurement method is not limited to the method described in the examples, and can be measured using a known measurement method. can.
 また、かかるポロシティの個数密度の測定頻度は、鋼片の溶製条件が同一かつ圧延条件が同一の鋼板のうち、任意の1枚の鋼板の1~2断面を測定すればよい。鋼片の溶製方法や圧延条件を変更しない限り、ポロシティ個数密度を再現良く製造できるため、前記測定頻度での測定結果が全体を代表しているといえる。 In addition, the measurement frequency of such porosity number density may be determined by measuring 1 to 2 cross sections of any one steel sheet among steel sheets having the same smelting conditions and the same rolling conditions. As long as the smelting method and rolling conditions of the steel slab are not changed, the porosity number density can be produced with good reproducibility, so it can be said that the measurement results at the above measurement frequency represent the whole.
[製造方法]
 次に、本発明における厚鋼板の製造方法について各条件の限定理由を以下に説明する。なお、以下の説明における温度は特に断らない限り、板厚中心の温度とする。なお、板厚中心温度は、後述する実施例のように実測することもできるが、実際の製造ラインなどにおいては、放射温度計で測定した鋼板表面温度から伝熱計算によって求めてもよい。
[Production method]
Next, the reasons for limiting each condition in the method for manufacturing a thick steel plate in the present invention will be explained below. Note that the temperature in the following description is the temperature at the center of the sheet thickness unless otherwise specified. The plate thickness center temperature can be actually measured as in the examples described later, but in an actual production line or the like, it may be obtained by heat transfer calculation from the steel plate surface temperature measured with a radiation thermometer.
・鋼片の加熱条件
 本発明において、鋼片の溶製方法は特に限定されず、転炉、電気炉、真空溶解炉などの公知の溶製方法のいずれもが適合する。かかる鋼片は、例えば連続鋳造法によって製造される。また、かかる鋼片を溶製した溶鋼にはさらに、取鍋精錬などの二次精錬を施してもよい。
 上記の通り製造された鋼片を990℃以上、1200℃以下に加熱する。加熱温度が990℃よりも低いと、後述する熱間圧延の条件を満足することができず、十分な効果が得られない。一方、加熱温度が1200℃よりも高くなると、オ-ステナイト粒が粗大化し、制御圧延後に所望の細粒組織が得られなくなる。このため、加熱温度の範囲は990℃以上1200℃以下とする。好ましくは下限の温度が990℃であって、上限の温度が1180℃である。
Heating conditions for steel slab In the present invention, the method for melting the steel slab is not particularly limited, and any known melting method such as a converter, an electric furnace, or a vacuum melting furnace is suitable. Such billets are produced, for example, by continuous casting. Further, the molten steel obtained by melting such steel slabs may be further subjected to secondary refining such as ladle refining.
The steel slab manufactured as described above is heated to 990° C. or higher and 1200° C. or lower. If the heating temperature is lower than 990° C., the conditions for hot rolling described below cannot be satisfied, and sufficient effects cannot be obtained. On the other hand, if the heating temperature is higher than 1200° C., the austenite grains become coarse and the desired fine grain structure cannot be obtained after controlled rolling. Therefore, the heating temperature range is set to 990° C. or higher and 1200° C. or lower. Preferably, the lower limit temperature is 990°C and the upper limit temperature is 1180°C.
・熱間圧延条件
 熱間圧延は再結晶温度域と未再結晶温度域の両方における圧延条件を制御することが重要である。
 再結晶温度域では950℃以上の圧延において、圧下率/パスが3%以上の圧下を鋼板の板厚中心部と表面との変形抵抗比の平均値が0.70以下の条件で累積圧下率が30%以上となるように行う。
- Hot rolling conditions In hot rolling, it is important to control the rolling conditions in both the recrystallization temperature range and the non-recrystallization temperature range.
In the recrystallization temperature range, in the rolling at 950 ° C. or higher, the rolling reduction / pass is 3% or more. is 30% or more.
[鋼板の板厚中心部と表面との変形抵抗比:0.70以下]
 本発明では、以下の(5)~(7)式で定義される鋼板の板厚中心部の変形抵抗kfm(板厚中心)と表面の変形抵抗kfm(表面)との比の平均値が0.70以下((4)式)とする。具体的には、ロール回転速度、ロール半径、ロールギャップを適切な値に調整しつつ、Cの質量%に応じて、板厚中心と表面の温度差が適切な値になるタイミングで圧延を行うことで、板厚中心部と表面との変形抵抗比の平均値を0.70以下にする。
fm(板厚中心)/kfm(表面)≦0.70 …(4)
(ここで、kfmは(5)式による)
[Deformation resistance ratio between the thickness center of the steel plate and the surface: 0.70 or less]
In the present invention, the average value of the ratio of the deformation resistance k fm (plate thickness center) at the center of the thickness of the steel plate and the surface deformation resistance k fm (surface) defined by the following equations (5) to (7) is 0.70 or less (equation (4)). Specifically, while adjusting the roll rotation speed, roll radius, and roll gap to appropriate values, rolling is performed at the timing when the temperature difference between the thickness center and the surface becomes an appropriate value according to the mass% of C. By doing so, the average value of the deformation resistance ratio between the plate thickness central portion and the surface is set to 0.70 or less.
k fm (plate thickness center)/k fm (surface) ≤ 0.70 (4)
(Here, k fm is according to formula (5))
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ただし、式(5)~(7)における[C]はCの質量%を、Tはkfmを求める箇所、すなわち板厚中心または鋼板表面の絶対温度(K)、hは圧延入側の板厚、hは圧延出側の板厚、nはロール回転速度(rpm)、rは圧下率、Rはロール半径(mm)をそれぞれ表す。
 なお、鋼板の表面の温度は放射温度計によって測定でき、板厚中心の温度は、後述する実施例のように実測することもできるが、実際の製造ラインなどにおいては、放射温度計で測定した鋼板表面温度から伝熱計算によって求めてもよい。
However, [C] in formulas (5) to (7) is the mass% of C, T k is the location where k fm is obtained, that is, the absolute temperature (K) at the center of the thickness or the surface of the steel plate, h 0 is the entry side of the rolling h1 is the plate thickness on the delivery side, n is the roll rotation speed (rpm), r is the rolling reduction, and R is the roll radius (mm).
The surface temperature of the steel sheet can be measured with a radiation thermometer, and the temperature at the center of the thickness of the steel sheet can be measured as in the examples described later. It may be obtained by heat transfer calculation from the steel plate surface temperature.
 上記(4)式に従う鋼板の板厚中心部と表面との変形抵抗比の平均値が0.70を超える条件では、板厚100mm超の厚鋼板に対し、その板厚中心部に十分な歪みを導入することができず、ポロシティが残存してしまう。その結果、ポロシティ個数密度を0.10個/mm以下にできない。このため、鋼板の板厚中心部と表面との変形抵抗比:0.70以下、圧下率/パスが3%以上の圧下の累積圧下率:30%以上とする。 Under the condition that the average value of the deformation resistance ratio between the thickness center and the surface of the steel plate according to the above formula (4) exceeds 0.70, for a thick steel plate with a thickness of more than 100 mm, sufficient strain at the thickness center cannot be introduced, and porosity remains. As a result, the porosity number density cannot be reduced to 0.10/mm 2 or less. For this reason, the ratio of deformation resistance between the central part of the plate thickness and the surface of the steel plate is set to 0.70 or less, and the cumulative reduction ratio of the reduction when the reduction ratio/pass is 3% or more is set to 30% or more.
[950℃以上の圧延]
 ここで、950℃以上で行う圧延の目的は、再結晶によって組織を微細化するとともに、粗大な介在物を微細化、分散化させることに加え、ポロシティを圧着することである。すなわち、950℃未満の圧延では、再結晶が起こり難く、オ-ステナイト粒の微細化が不十分となる。
[950°C or higher rolling]
Here, the purpose of rolling performed at 950° C. or higher is to refine the structure by recrystallization, to refine and disperse coarse inclusions, and to compress porosity. That is, rolling at a temperature of less than 950° C. makes it difficult for recrystallization to occur, resulting in insufficient refining of austenite grains.
[圧下率/パスが3%以上]
 圧下率/パスが3%未満の圧延では、板厚中心部に十分な歪みを導入することができず、圧下率/パスが3%以上であっても圧下の累積圧下率が30%未満ではポロシティを十分に圧着できない。
[Reduction ratio/pass is 3% or more]
In rolling with a reduction ratio/pass of less than 3%, sufficient strain cannot be introduced at the center of the plate thickness, and even if the reduction ratio/pass is 3% or more, if the cumulative reduction ratio of the reduction is less than 30% Porosity cannot be sufficiently crimped.
[950℃未満の圧延]
 未再結晶温度域、すなわち950℃未満の圧延では、鋼板の板厚中心部と表面との変形抵抗比の平均値は再結晶温度域と同じく0.70以下の条件とし、累積圧下率が40%以上となるように圧延を行う。
[Rolling below 950°C]
In the non-recrystallization temperature range, that is, rolling at less than 950 ° C., the average value of the deformation resistance ratio between the thickness center and the surface of the steel sheet is 0.70 or less as in the recrystallization temperature range, and the cumulative rolling reduction is 40. % or more.
 本発明における鋼は、950℃未満での圧延では再結晶が起こり難いため、圧延によって導入された歪みは再結晶に消費されずに蓄積され、後の冷却工程における変態核として機能する。その結果、最終的に得られる厚鋼板の組織を微細化することができる。しかし、この温度域における累積圧下率が40%未満の条件では、結晶粒微細化効果が不十分となる。また、板厚100mm超の厚鋼板において、鋼板の板厚中心部と表面との変形抵抗比の平均値が0.70を超えた条件では、板厚中心部に十分な歪みを導入することができず、板厚中心部の最終組織の微細化が不十分となり、板厚中心部の平均有効結晶粒径を20μm以下にできない。
 このため、未再結晶温度域での圧延は累積圧下率:40%以上、鋼板の板厚中心部と表面との変形抵抗比の平均値:0.70以下とする。
In the steel of the present invention, recrystallization is unlikely to occur when rolled at a temperature of less than 950°C, so the strain introduced by rolling is accumulated without being consumed by recrystallization, and functions as transformation nuclei in the subsequent cooling step. As a result, the structure of the finally obtained thick steel plate can be refined. However, under the condition that the cumulative rolling reduction in this temperature range is less than 40%, the crystal grain refining effect becomes insufficient. In addition, in a thick steel plate with a thickness of more than 100 mm, under the condition that the average value of the deformation resistance ratio between the center of the thickness and the surface of the steel plate exceeds 0.70, it is possible to introduce sufficient strain at the center of the thickness. As a result, the refinement of the final structure at the central portion of the plate thickness becomes insufficient, and the average effective grain size at the central portion of the plate thickness cannot be reduced to 20 μm or less.
For this reason, the rolling in the non-recrystallization temperature range should be such that the cumulative rolling reduction is 40% or more, and the average value of the deformation resistance ratio between the thickness center and the surface of the steel sheet is 0.70 or less.
[冷却]
 上記熱間圧延終了後、得られた熱延鋼板を冷却する。かかる冷却は、以下に述べる条件を満たす限り、任意の方法で行うことができ、例えば、水冷によって行うことができる。
[cooling]
After completion of the hot rolling, the obtained hot-rolled steel sheet is cooled. Such cooling can be performed by any method, for example, water cooling, as long as the conditions described below are satisfied.
平均冷却速度:1.0℃/s以上
 板厚中心温度の平均冷却速度が1.0℃/s未満になると、母材組織に粗大なフェライト相が生じるためSC/ICHAZの継手CTOD特性が劣化する。このため、板厚中心位置での平均冷却速度を1.0℃/s以上とする。一方、前記平均冷却速度が50.0℃/sよりも大きいと、硬質なベイナイト相が増加することで母材強度が高くなりSC/ICHAZの継手CTOD特性が劣化するため、冷却速度は50.0℃/s以下とすることが好ましい。
Average cooling rate: 1.0°C/s or more If the average cooling rate at the thickness center temperature is less than 1.0°C/s, a coarse ferrite phase occurs in the base metal structure, resulting in deterioration of SC/ICHAZ joint CTOD characteristics. do. Therefore, the average cooling rate at the plate thickness center position is set to 1.0° C./s or more. On the other hand, if the average cooling rate is higher than 50.0° C./s, the hard bainite phase increases to increase the strength of the base material and deteriorate the SC/ICHAZ joint CTOD characteristics. It is preferable to set it to 0° C./s or less.
 なお、本発明において、次段落に示す冷却停止温度が500℃以下の場合は、700℃から500℃までの冷却速度の平均値を上記平均冷却速度とし、この冷却停止温度が500℃よりも高い場合は、700℃から上記500℃よりも高い冷却停止温度までの冷却速度の平均値を上記平均冷却速度とする。 In the present invention, when the cooling stop temperature shown in the next paragraph is 500 ° C. or less, the average cooling rate from 700 ° C. to 500 ° C. is the average cooling rate, and this cooling stop temperature is higher than 500 ° C. In this case, the average cooling rate from 700° C. to the cooling stop temperature higher than 500° C. is taken as the average cooling rate.
冷却停止温度:600℃以下
 前記冷却では、前記熱延鋼板を、板厚中心温度で600℃以下の冷却停止温度となるまで冷却する。前記冷却停止温度が600℃より高いと、変態後の組織が粗大になり、母材強度が不足するとともに、SC/ICHAZの継手CTOD特性が劣化する。このため、冷却停止温度は600℃以下とする。
Cooling stop temperature: 600°C or less In the cooling, the hot-rolled steel sheet is cooled to a cooling stop temperature of 600°C or less at the thickness center temperature. If the cooling stop temperature is higher than 600° C., the structure after transformation becomes coarse, the strength of the base material becomes insufficient, and the SC/ICHAZ joint CTOD characteristics deteriorate. Therefore, the cooling stop temperature is set to 600° C. or lower.
[焼戻し処理]
焼戻し温度:700℃以下
 前記冷却の停止後、さらに任意に焼戻し処理を行うことができる。焼戻し処理により、母材靭性をさらに向上させることができる。その際、焼戻し温度が700℃よりも高いと、粗大フェライト相が生成して、SCHAZの靭性が劣化する。そのため、焼戻し温度は700℃以下とすることが好ましい。より好ましくは650℃以下である。なお、焼戻し温度の下限は特に限定されないが、300℃程度とすることができる。
[Tempering treatment]
Tempering temperature: 700° C. or less After stopping the cooling, further tempering treatment can be optionally performed. The tempering treatment can further improve the toughness of the base material. At that time, if the tempering temperature is higher than 700° C., a coarse ferrite phase is generated and the toughness of SCHAZ is deteriorated. Therefore, the tempering temperature is preferably 700° C. or lower. More preferably, it is 650° C. or less. Although the lower limit of the tempering temperature is not particularly limited, it can be about 300°C.
 なお、本発明に従う製造方法において、本明細書に記載のない項目は、いずれも常法を用いることができる。 In addition, in the manufacturing method according to the present invention, any item not described in this specification can be used by a conventional method.
 次に、実施例に基づいて本発明をさらに具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。 Next, the present invention will be described more specifically based on examples. The following examples show preferred examples of the present invention, and the present invention is not limited by the examples.
 表1に示す成分組成の鋼片を用いて、表2に示す製造条件で厚鋼板を製造した。なお、熱間圧延時には、圧延される鋼材の長手方向、幅方向、および板厚方向の中心位置に熱電対を取り付け、板厚中心の温度を実測した。併せて、鋼材の表面温度を放射温度計で測定した。 Using steel slabs with chemical compositions shown in Table 1, thick steel plates were manufactured under the manufacturing conditions shown in Table 2. During hot rolling, thermocouples were attached to the center positions in the longitudinal direction, the width direction, and the plate thickness direction of the steel material to be rolled, and the temperature at the plate thickness center was actually measured. In addition, the surface temperature of the steel material was measured with a radiation thermometer.
 得られた厚鋼板のそれぞれについて、平均有効結晶粒径、ポロシティの個数密度、および降伏強度を以下の方法で測定した。 For each of the obtained thick steel plates, the average effective grain size, porosity number density, and yield strength were measured by the following methods.
[平均有効結晶粒径]
 得られた鋼板から、該鋼板の長手方向、幅方向、および板厚方向における中心が測定位置となるようにサンプルを採取した。次いで、前記サンプルの表面を鏡面研磨した後、以下の条件でEBSP解析を行った。得られた結晶方位マップより、隣接する結晶粒との方位差が15°以上の大角粒界で囲まれた組織の円相当直径を求め、以下の解析領域における円相当直径の平均値を平均有効結晶粒径とした。
EBSP条件
・解析領域:板厚中心の1mm×1mm領域
・ステップサイズ:0.4μm
[Average effective grain size]
A sample was taken from the obtained steel sheet so that the center in the longitudinal direction, width direction, and thickness direction of the steel sheet was the measurement position. Then, after the surface of the sample was mirror-polished, EBSP analysis was performed under the following conditions. From the obtained crystal orientation map, the equivalent circle diameter of the structure surrounded by large-angle grain boundaries with an orientation difference of 15° or more from the adjacent crystal grains is obtained. grain size.
EBSP conditions/analysis area: 1 mm x 1 mm area at the center of plate thickness/step size: 0.4 μm
[ポロシティの個数密度]
 鋼板内部の欠陥の検出には、非破壊で検査できるため超音波探傷が用いられることが多いが、正確に欠陥部の状態を確認するため直接観察を行い、ポロシティの個数密度を測定した。まず、圧延材の板幅方向に平行な厚み方向断面(圧延方向に垂直な断面)における、観察面が全厚×全幅サイズとなる観察用のサンプルを板長の中心位置から採取し、鏡面研磨仕上げした。かかる鏡面研磨仕上げしたサンプルを光学顕微鏡にて観察して写真を撮影し、得られた写真を画像解析して、存在するポロシティ個々の円相当径を求めた。粒径が180μm以上のポロシティの数を測定面積(板厚×板幅)で割ることで、円相当径が180μm以上であるポロシティの、1mm当たりの個数を求めた。
[Porosity number density]
Ultrasonic flaw detection is often used to detect defects inside steel sheets because it can be inspected non-destructively, but in order to accurately confirm the state of defects, direct observation was performed and the porosity number density was measured. First, in the thickness direction cross section parallel to the strip width direction (cross section perpendicular to the rolling direction) of the rolled material, a sample for observation whose observation surface is full thickness x full width size is taken from the center position of the strip length and mirror polished. Finished. The mirror-polished sample was observed with an optical microscope and photographed, and the obtained photograph was image-analyzed to determine the equivalent circle diameter of each existing porosity. The number of porosities with an equivalent circle diameter of 180 μm or more per 1 mm 2 was obtained by dividing the number of porosities with a diameter of 180 μm or more by the measurement area (plate thickness×plate width).
[降伏強度]
 EN10002-1に従って引張試験を行い、厚鋼板の板厚(t)の1/4および1/2位置における降伏強度(YS)を求めた。前記引張試験には、板厚の1/4および1/2位置から板幅方向に平行となるよう採取した、平行部直径14mm、平行部長さ70mmの丸棒引張試験片を使用した。前記引張試験において上降伏点が現れた場合は上降伏応力を降伏強度とした。また、上降伏点が現れなかった場合には0.2%耐力を降伏強度とした。
[Yield strength]
A tensile test was performed according to EN10002-1 to determine the yield strength (YS) at 1/4 and 1/2 positions of the plate thickness (t) of the steel plate. For the tensile test, round bar tensile test specimens with a parallel portion diameter of 14 mm and a parallel portion length of 70 mm, which were taken parallel to the plate width direction from 1/4 and 1/2 positions of the plate thickness, were used. When the upper yield point appeared in the tensile test, the upper yield stress was defined as the yield strength. Moreover, when the upper yield point did not appear, 0.2% yield strength was taken as the yield strength.
 次に、上記厚鋼板のそれぞれを用いて多層盛溶接継手を作製した。得られた多層盛溶接継手のそれぞれについて継手CTOD試験を行い、CGHAZにおけるき裂開口変位量およびSC/ICHAZにおけるき裂開口変位量を測定した。多層盛溶接継手の作製条件と、継手CTOD試験の条件を以下に説明する。 Next, multi-layer welded joints were produced using each of the thick steel plates. A joint CTOD test was performed on each of the multi-layer welded joints obtained, and the crack opening displacement amount in CGHAZ and the crack opening displacement amount in SC/ICHAZ were measured. The conditions for producing a multi-layer welded joint and the conditions for the joint CTOD test will be described below.
[継手CTOD試験]
 継手CTOD試験に用いる溶接継手は、K開先形状、入熱量5.0kJ/mmのサブマージアーク溶接(多層盛溶接)により作製した。試験方法は、BS規格EN10225(2019)に準拠し、断面がt×t(tは板厚)の正方形である試験片を用いて、試験温度:-40℃におけるき裂開口変位量[CTOD値(δ)]を評価した。
[Joint CTOD test]
Welded joints used in the joint CTOD test were produced by submerged arc welding (multilayer welding) with a K groove shape and a heat input of 5.0 kJ/mm. The test method conforms to BS standard EN10225 (2019), using a test piece with a square cross section of t × t (t is the plate thickness), test temperature: -40 ° C crack opening displacement amount [CTOD value (δ)] was evaluated.
 前記継手CTOD試験では、切欠位置をK開先の直線形状側のCGHAZとした試験と、SC/ICHAZ境界とした試験を行い、CGHAZのδとSC/ICHAZ境界のδを、それぞれ測定した。なお、厚鋼板のそれぞれについて、切欠位置ごとに3本の試験片を用いて試験を行い、測定値の最低値をδとした。 In the above-mentioned joint CTOD test, a test where the notch position was the CGHAZ on the linear shape side of the K groove and a test where the SC/ICHAZ boundary was used were performed, and δ of the CGHAZ and δ of the SC/ICHAZ boundary were measured respectively. For each thick steel plate, the test was performed using three test pieces for each notch position, and the lowest value of the measured values was defined as δ.
 前記試験後、試験片破面で、疲労予亀裂の先端がEN10225(2019)で規定するCGHAZと、SC/ICHAZ境界のそれぞれにあることを確認した。なお、多層盛溶接の継手CTOD試験の場合、切欠位置がCGHAZであっても、一定量のICCGHAZが含まれるため、試験結果には、CGHAZとICCGHAZの両方の靭性が反映される。
 以上の測定結果を、表2に併記する。
After the test, it was confirmed on the fracture surface of the test piece that the tip of the fatigue pre-crack was on each of the CGHAZ and SC/ICHAZ boundaries defined by EN10225 (2019). In the case of the multi-layer welding joint CTOD test, even if the notch position is CGHAZ, a certain amount of ICCGHAZ is included, so the test results reflect the toughness of both CGHAZ and ICCGHAZ.
The above measurement results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-I000012
 表2に記載の通り、本発明の条件を満たす厚鋼板(発明例)は、製造条件、母材の有効結晶粒径、ポロシティの個数密度のいずれもが発明の範囲を満たし、板厚1/4位置および板厚中心位置における降伏強度が320MPa以上であり、CGHAZのCTOD値とSC/ICHAZ境界のCTOD値の両方が-40℃において0.30mm以上と、高強度と優れた継手CTOD特性を兼ね備えていた。 As shown in Table 2, the steel plate satisfying the conditions of the present invention (Invention Example) satisfies the range of the invention in all of the manufacturing conditions, the effective crystal grain size of the base material, and the number density of porosity, and is 1/thickness. The yield strength at the 4th position and the plate thickness center position is 320 MPa or more, and both the CGHAZ CTOD value and the SC/ICHAZ boundary CTOD value are 0.30 mm or more at -40°C, indicating high strength and excellent joint CTOD characteristics. I had it.
 これに対して、本発明の条件を満たさない厚鋼板(比較例)のうち、No.42、43、47は、板厚1/4位置および板厚中心位置における降伏強度が320MPa未満である。No.20は、板厚1/4位置および板厚中心位置における降伏強度が320MPa未満かつSC/ICHAZ境界のCTOD値が0.30mm未満である。No.52は板厚1/4位置における降伏強度は320MPa以上であるが、板厚中心位置における降伏強度が320MPa未満である。その他の比較例は、CGHAZのCTOD値とSC/ICHAZ境界のCTOD値の一方または両方が0.30mm未満である。いずれの比較例も、発明例に比べて母材強度や継手CTOD特性が劣っていた。 On the other hand, among the thick steel plates (comparative examples) that do not satisfy the conditions of the present invention, No. 42, 43 and 47 have a yield strength of less than 320 MPa at the 1/4 plate thickness position and the plate thickness center position. No. No. 20 has a yield strength of less than 320 MPa at the quarter thickness position and the thickness center position and a CTOD value of less than 0.30 mm at the SC/ICHAZ boundary. No. 52 has a yield strength of 320 MPa or more at the position of 1/4 of the plate thickness, but less than 320 MPa at the position of the center of the plate thickness. Other comparative examples have one or both of the CGHAZ CTOD value and the SC/ICHAZ boundary CTOD value of less than 0.30 mm. All comparative examples were inferior to the invention examples in base material strength and joint CTOD characteristics.

Claims (4)

  1.  質量%で、
      C :0.02~0.12%、
      Si:0.70%以下、
      Mn:0.3~3.0%、
      P :0.050%以下、
      S :0.0050%以下、
      Al:0.002~0.100%、
      Ti:0.002~0.060%、
      N :0.0130%以下、および
      O :0.0100%以下を含み、
      残部がFeおよび不可避的不純物であって、以下の(1)~(3)式を満たす成分組成を有し、
     板厚中心部における平均有効結晶粒径が20μm以下であって、かつ鋼板における円相当径:180μm以上のポロシティが1mm当たりの個数で0.10個以下である鋼板。
    1.50≦Ti/N≦5.00 …(1)
    0.280%≦Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.540% …(2)
    Pcm(=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B])≦0.250% …(3)
    (ただし、(1)~(3)式における括弧は、括弧内の元素の含有量(質量%)を表し、当該元素が含有されない場合にはゼロとする)
    in % by mass,
    C: 0.02 to 0.12%,
    Si: 0.70% or less,
    Mn: 0.3 to 3.0%,
    P: 0.050% or less,
    S: 0.0050% or less,
    Al: 0.002 to 0.100%,
    Ti: 0.002 to 0.060%,
    N: 0.0130% or less, and O: 0.0100% or less,
    The balance is Fe and unavoidable impurities, and has a component composition that satisfies the following formulas (1) to (3),
    A steel sheet having an average effective crystal grain size of 20 μm or less at the center of the sheet thickness, and having 0.10 or less porosities per 1 mm 2 having an equivalent circle diameter of 180 μm or more in the steel sheet.
    1.50≤Ti/N≤5.00 (1)
    0.280% ≤ Ceq (= [C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 5) ≤ 0.540% ... (2)
    P cm (= [C] + [Si] / 30 + ([Mn] + [Cu] + [Cr]) / 20 + [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B]) ≤ 0.250 % ... (3)
    (However, the parentheses in the formulas (1) to (3) represent the content (% by mass) of the elements in the parentheses, and are zero when the elements are not contained.)
  2.  前記成分組成が、さらに、質量%で、
      Ni:2.0%以下、
      Ca:0.0180%以下、
      Cu:2.00%以下、
      Cr:2.00%以下、
      Mo:2.00%以下、
      Nb:0.070%以下、
      V :0.20%以下、
      W :0.50%以下、
      B :0.0050%以下、
      REM:0.030%以下および、
      Mg:0.0150%以下からなる群より選択される1種または2種以上を含む、請求項1に記載の鋼板。
    The component composition further, in mass %,
    Ni: 2.0% or less,
    Ca: 0.0180% or less,
    Cu: 2.00% or less,
    Cr: 2.00% or less,
    Mo: 2.00% or less,
    Nb: 0.070% or less,
    V: 0.20% or less,
    W: 0.50% or less,
    B: 0.0050% or less,
    REM: 0.030% or less and
    The steel sheet according to claim 1, containing one or more selected from the group consisting of Mg: 0.0150% or less.
  3.  請求項1または2に記載の鋼板を製造する方法であって、
     請求項1または2に記載の成分組成を有する鋼片を、990℃以上1200℃以下の範囲に加熱し、以下の(4)式の条件を満足し、かつ板厚中心の温度が950℃以上の圧延においては圧下率/パスが3%以上の圧下を累積圧下率で30%以上とし、板厚中心の温度が950℃未満の圧延においては累積圧下率を40%以上とする熱間圧延を行い、次いで、板厚中心の平均冷却速度を1.0℃/s以上で600℃以下の冷却停止温度まで冷却するに際し、上記冷却停止温度が500℃以下の場合は、700℃から500℃までの冷却速度の平均値を上記平均冷却速度とし、上記冷却停止温度が500℃よりも高い場合は、700℃から上記500℃よりも高い冷却停止温度までの冷却速度の平均値を上記平均冷却速度とする鋼板の製造方法。
    fm(板厚中心)/kfm(表面)≦0.70 …(4)
    (ここで、kfmは(5)式による)
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    (ただし、式(5)~(7)における[C]はCの質量%、Tは板厚中心または鋼板表面の絶対温度(K)、hは圧延入側の板厚、hは圧延出側の板厚、nはロール回転速度(rpm)、rは圧下率、Rはロール半径(mm)を表す)
    A method for manufacturing the steel sheet according to claim 1 or 2,
    A steel billet having the chemical composition according to claim 1 or 2 is heated to a temperature in the range of 990° C. or higher and 1200° C. or lower, the condition of the following formula (4) is satisfied, and the temperature at the center of the plate thickness is 950° C. or higher. In the rolling, the cumulative reduction ratio is 30% or more when the reduction ratio/pass is 3% or more, and in the rolling where the temperature at the thickness center is less than 950 ° C, the cumulative reduction ratio is 40% or more. Then, when cooling to a cooling stop temperature of 600 ° C. or less at an average cooling rate of 1.0 ° C./s or more at the center of the plate thickness, when the cooling stop temperature is 500 ° C. or less, from 700 ° C. to 500 ° C. The average value of the cooling rate is the average cooling rate, and when the cooling stop temperature is higher than 500 ° C., the average value of the cooling rate from 700 ° C. to the cooling stop temperature higher than 500 ° C. is the average cooling rate. A steel plate manufacturing method.
    k fm (plate thickness center)/k fm (surface) ≤ 0.70 (4)
    (Here, k fm is according to formula (5))
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    (However, [C] in formulas (5) to (7) is the mass % of C, Tk is the absolute temperature (K) at the center of the plate thickness or the surface of the steel plate, h0 is the plate thickness at the entry side of rolling, and h1 is Plate thickness on the rolling exit side, n is the roll rotation speed (rpm), r is the rolling reduction, and R is the roll radius (mm))
  4.  前記冷却停止温度まで冷却した後、700℃以下の温度で焼戻し処理を行う、請求項3に記載の鋼板の製造方法。 The steel sheet manufacturing method according to claim 3, wherein after cooling to the cooling stop temperature, tempering is performed at a temperature of 700°C or less.
PCT/JP2023/000227 2022-02-03 2023-01-06 Steel sheet and method for manufacturing same WO2023149157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023524825A JP7493140B2 (en) 2022-02-03 2023-01-06 Steel plate and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-015943 2022-02-03
JP2022015943 2022-02-03

Publications (1)

Publication Number Publication Date
WO2023149157A1 true WO2023149157A1 (en) 2023-08-10

Family

ID=87552290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000227 WO2023149157A1 (en) 2022-02-03 2023-01-06 Steel sheet and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP7493140B2 (en)
WO (1) WO2023149157A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344417A (en) * 1989-07-11 1991-02-26 Nippon Steel Corp Production of thick steel plate for welded structure having excellent internal quality
JP2007302908A (en) * 2006-04-10 2007-11-22 Sumitomo Metal Ind Ltd High tensile strength steel plate and its manufacturing method
WO2016035110A1 (en) * 2014-09-05 2016-03-10 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same
WO2018216665A1 (en) * 2017-05-22 2018-11-29 Jfeスチール株式会社 Thick steel plate and method for manufacturing same
WO2021182618A1 (en) * 2020-03-13 2021-09-16 日本製鉄株式会社 Steel sheet for wind power generation plants and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344417A (en) * 1989-07-11 1991-02-26 Nippon Steel Corp Production of thick steel plate for welded structure having excellent internal quality
JP2007302908A (en) * 2006-04-10 2007-11-22 Sumitomo Metal Ind Ltd High tensile strength steel plate and its manufacturing method
WO2016035110A1 (en) * 2014-09-05 2016-03-10 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same
WO2018216665A1 (en) * 2017-05-22 2018-11-29 Jfeスチール株式会社 Thick steel plate and method for manufacturing same
WO2021182618A1 (en) * 2020-03-13 2021-09-16 日本製鉄株式会社 Steel sheet for wind power generation plants and method for producing same

Also Published As

Publication number Publication date
JP7493140B2 (en) 2024-05-31
JPWO2023149157A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
CA2280923C (en) High-tensile-strength steel and method of manufacturing the same
RU2518830C1 (en) Hot-rolled steel sheet and method of its production
EP2224028B1 (en) Steel plate for line pipes and steel pipes
JP5748032B1 (en) Steel plate for line pipe and line pipe
JP5733484B1 (en) Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP5618037B1 (en) Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
KR102289071B1 (en) Steel plate and method of producing same
WO2020170333A1 (en) Electric-resistance-welded steel pipe for line pipe
WO2021020220A1 (en) High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
JP2015183279A (en) Thick steel sheet for marine vessel, for marine structure and for hydraulic pressure steel pipe excellent in brittle crack arrest property
JP7493140B2 (en) Steel plate and its manufacturing method
JP7468800B2 (en) Steel plate and its manufacturing method
JP7468814B1 (en) High strength extra thick steel plate and its manufacturing method
WO2024105967A1 (en) High-strength extremely thick steel sheet and method for manufacturing same
WO2024116737A1 (en) High-strength ultra-thick steel plate and method for producing same
AU1113301A (en) High-tensile-strength steel and method of manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023524825

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749474

Country of ref document: EP

Kind code of ref document: A1