WO2024116737A1 - High-strength ultra-thick steel plate and method for producing same - Google Patents

High-strength ultra-thick steel plate and method for producing same Download PDF

Info

Publication number
WO2024116737A1
WO2024116737A1 PCT/JP2023/039940 JP2023039940W WO2024116737A1 WO 2024116737 A1 WO2024116737 A1 WO 2024116737A1 JP 2023039940 W JP2023039940 W JP 2023039940W WO 2024116737 A1 WO2024116737 A1 WO 2024116737A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
plate thickness
steel plate
temperature
rolling
Prior art date
Application number
PCT/JP2023/039940
Other languages
French (fr)
Japanese (ja)
Inventor
智久 矢野
直樹 ▲高▼山
俊一 橘
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024116737A1 publication Critical patent/WO2024116737A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a high-strength, extra-thick steel plate with excellent brittle crack propagation arrest properties suitable for use in large structures such as ships, marine structures, low-temperature storage tanks, architectural structures, and civil engineering structures, and a method for manufacturing the same.
  • Ni content in steel has been known as a means of improving the brittle crack arrestability of steel materials.
  • 9% Ni steel is used on a commercial scale in liquefied natural gas (LNG) storage tanks, which require brittle crack arrestability at extremely low temperatures.
  • LNG liquefied natural gas
  • increasing the amount of Ni in steel necessitates a significant increase in manufacturing costs, making it difficult to apply to applications other than LNG storage tanks.
  • the TMCP Thermo-Mechanical Control Process
  • the microstructure is a mixed structure of ferrite and bainite, or a mixed structure of ferrite, pearlite and bainite, and the average crystal grain size in the center of the plate thickness is controlled to 5 to 20 ⁇ m, thereby improving toughness.
  • Patent Document 1 discloses a technology that improves brittle crack propagation arrestability.
  • Patent Document 2 a technique for ultra-fine-graining the structure of the surface layer of the steel material is disclosed, for example, in Patent Document 2 and Patent Document 3.
  • Patent Document 2 attention is paid to the fact that a shear lip (i.e., a plastic deformation region) that occurs in the surface layer of a steel material when a brittle crack propagates is effective in improving the brittle crack propagation arrest property.
  • Patent Document 2 discloses that the crystal grains in the shear lip portion are refined to absorb the propagation energy of the propagating brittle crack with the crystal grains.
  • the steel material is subjected to a rolling reduction while a process of cooling the surface layer portion to a temperature below the Ar3 transformation point by controlled cooling after hot rolling and then stopping the controlled cooling to reheat the surface layer portion to a temperature above the Ar3 transformation point is repeated one or more times. Patent Document 2 discloses that this causes repeated transformation or processing recrystallization to generate an ultrafine ferrite structure or bainite structure in the surface layer portion.
  • Patent Document 3 in order to improve the brittle crack propagation arrest properties of a steel material with a microstructure mainly composed of ferrite-pearlite, both surface portions of the steel material are composed of layers having a ferrite structure with ferrite grains having a circular equivalent grain size of 5 ⁇ m or less and an aspect ratio of 2 or more at 50% or more by area, while suppressing the variation in ferrite grain size.
  • Patent Document 3 discloses that as a method of suppressing this variation, the maximum reduction rate per pass during finish rolling is set to 12% or less to suppress local recrystallization phenomena.
  • Patent Document 4 the average equivalent circle diameter of effective crystal grains is 25 ⁇ m or less in the surface layer portion of a thick steel plate and 35 ⁇ m or less in the center portion of the plate thickness, and the texture intensity ratio with respect to the rolling surface and rolling direction is as follows: I ⁇ 001 ⁇ 110>+I ⁇ 112 ⁇ 110>+I ⁇ 332 ⁇ 113>>5, I ⁇ 110 ⁇ 001>+I ⁇ 110 ⁇ 110>+I ⁇ 001 ⁇ 010> ⁇ 3 Satisfied, And at the center of the plate thickness, I ⁇ 001 ⁇ 110>+I ⁇ 112 ⁇ 110>+I ⁇ 332 ⁇ 113> ⁇ 3.5
  • the texture is controlled so as to satisfy the following:
  • Patent Document 4 discloses a technique for improving the brittle crack propagation arrestability by controlling the texture so as to satisfy the following:
  • the steel plate is divided into three layers: a front and back layer extending from the front and back sides in the thickness direction up to 25%; and the remaining central portion of the plate thickness.
  • a front and back layer extending from the front and back sides in the thickness direction up to 25%; and the remaining central portion of the plate thickness.
  • an area of 5% to 25% of the plate thickness has a texture in which the (100) X-ray plane intensity ratio parallel to the rolling surface is 1.5 or more and less than 2.0, and in the central portion of the plate thickness, a texture in which the (111) and/or (211) X-ray plane intensity ratio parallel to the rolling surface is 2.0 or more is controlled.
  • Patent Documents 2 and 3 involve cooling only the surface layer of the steel material, then reheating it, and processing it during reheating to obtain a specific structure. This means that it is difficult to control on an actual production scale, and there are problems with the large load placed on the rolling and cooling equipment.
  • Patent Documents 1 to 5 all have a yield strength of 460 MPa or less, taking into consideration the manufacturing conditions and the disclosed experimental data.
  • a yield strength of 500 MPa for the hatch side coamings for large container ships exceeding the 24,000 TEU class, which are in demand due to the increase in logistics volume in recent years.
  • Kca (-10°C) an arrestability index at -10°C
  • the present invention was made in consideration of the above problems, and aims to provide a high-strength, extra-thick steel plate that has excellent toughness and brittle crack propagation arrest properties, even if the steel plate has a yield strength of 500 MPa, and a manufacturing method thereof.
  • high strength in the present invention refers to a high-strength extra thick steel plate having a yield strength (YS) of 500 MPa or more at the 1/2 plate thickness position.
  • excellent toughness refers to a Charpy fracture appearance transition temperature at the 1/2 plate thickness position of a high strength extra thick steel plate being vTrs ⁇ 105° C.
  • excellent brittle crack propagation arrestability (arrestability) refers to a Kca (-10°C) value of 9000 N/mm3 /2 or more.
  • the above-mentioned steel plate having a yield strength of 500 MPa class refers to a steel plate having a yield strength of 500 MPa or more.
  • the yield strength, vTrs and Kca values can be measured by the methods described in the Examples below.
  • the above “good internal quality” refers to a state in which the circle equivalent diameter of the largest porosity remaining in the center of the steel plate is 200 ⁇ m or less. In order to achieve even better internal quality, in addition to this condition, it is effective to ensure that the length in the plate thickness direction of the largest porosity remaining in the center of the steel plate is 100 ⁇ m or less.
  • the steel structure In order to achieve excellent toughness in the above-mentioned extra thick steel plate, it is effective to control the steel structure at the 1/2 position of the plate thickness so that the average grain size of bainite crystal grains surrounded by grain boundaries with an orientation difference of 15° or more is 20 ⁇ m or less, and to control so that the circle equivalent diameter of the maximum porosity remaining in the center part of the steel plate (1/2 position of the steel plate) is 200 ⁇ m or less. Since the grain size refining effect improves toughness and makes it difficult for porosity to become the starting point of fracture, the Charpy toughness at the 1/2 position of the plate thickness, where the properties are the lowest, achieves vTrs ⁇ 105°C. As described above, in addition to configuring the steel structure at half the plate thickness as described above, the length in the plate thickness direction of the maximum porosity remaining in the center of the steel plate is controlled to 100 ⁇ m or less, thereby further improving toughness.
  • the hot rolling process is controlled so that the cumulative reduction in the austenite non-recrystallization temperature range is 50.0% or more, the reduction ratio is 4.00 or more, and the rolling end temperature at the 1/2 thickness position is Ar3 or more.
  • This control effectively refines the crystal grains of the steel structure at the 1/2 thickness position and controls the texture at the 1/2 thickness position. This makes it possible to achieve excellent toughness while elongating the austenite in the rolling direction and develop a bainite transformation texture in a specific direction. As a result, a texture is obtained in which the X-ray intensity ratio of the (211) plane on the rolled surface at the 1/2 thickness position is 1.70 or more.
  • Ceq C + Mn/6 + Cu/15 + Ni/15 + Cr/5 + Mo/5 + V/5 ...
  • C, Mn, Cu, Ni, Cr, Mo and V in formula (1) represent the content (mass %) of each element, and the content of an element that is not contained is set to 0.
  • Group A one or more selected from Ti: 0.030% or less, Nb: 0.050% or less, Cu: 2.00% or less, Ni: 2.50% or less, and Cr: 2.00% or less
  • Group B one or more selected from Mo: 0.50% or less, V: 0.50% or less, W: 0.50% or less,
  • [5] A method for producing a high-strength extra thick steel plate according to any one of [1] to [4], A steel material having the above-mentioned composition is heated to a heating temperature of 1000 to 1200°C, Next, the rolling start temperature at the 1/2 thickness position is ( Ar3 point + 100) ° C. or higher, the cumulative reduction rate in the austenite recrystallization temperature range at the 1/2 thickness position is 25.0% or higher, the cumulative reduction rate in the austenite non-recrystallization temperature range at the 1/2 thickness position is 50.0% or higher, and the rolling end temperature at the 1/2 thickness position is Ar3 point or higher.
  • the slab is hot-rolled under the conditions of a thickness of 200 mm or more and a reduction ratio (representing the ratio of the slab thickness to the plate thickness of the final product) of 4.00 or more.
  • cooling is performed under the conditions of a cooling start temperature at the 1/2 plate thickness position: Ar 3 point or higher, an average cooling rate in a temperature range of 700 to 500°C at the 1/2 plate thickness position: 3.5°C/s or higher, and a cooling stop temperature at the 1/2 plate thickness position: 500°C or lower.
  • the temperature at the 1/2 position of the plate thickness is the average reduction rate/pass in the austenite non-recrystallization temperature range: 4.5% or more;
  • the method for producing a high-strength extra thick steel plate according to [5] is carried out under the conditions that the rolling end temperature at the 1/4 plate thickness position is (the rolling end temperature at the 1/2 plate thickness position - 20) ° C. or more, and the rolling end temperature at a position 2 mm in the plate thickness direction from the steel plate surface is (the rolling end temperature at the 1/2 plate thickness position - 30) ° C. or more.
  • the texture of the rolled surface at 1/2 the plate thickness position is appropriately controlled by a mixed structure consisting of bainite and ferrite, and the steel structure at 1/2 the plate thickness position is refined, improving toughness and brittle crack propagation properties.
  • the rolling conditions in the hot rolling process are optimized, so that the extra thick steel plate of the present invention has good internal quality and excellent toughness and brittle crack propagation properties, even though it has a high strength of 500 MPa or more in yield strength.
  • the high-strength extra-thick steel plate of the present invention can be applied to deck members joined to hatch side coamings in the strong deck structures of container ships and bulk carriers, thereby contributing to improved ship safety.
  • the present invention is extremely useful industrially.
  • C 0.040 to 0.130%
  • C is an element that acts to increase the hardenability of steel and is necessary to achieve the desired strength characteristics.
  • the C content is set to 0.040% or more.
  • the C content is set to the range of 0.040 to 0.130%.
  • the preferred lower limit of the C content is 0.050% or more.
  • the preferred upper limit of the C content is 0.100% or less.
  • Si 0.020 to 0.50%
  • Silicon is a component necessary for deoxidization and the like, and is also an element that has the effect of increasing the hardenability of steel by suppressing the formation of coarse carbides.
  • silicon is contained at 0.020% or more.
  • the silicon content is set to a range of 0.020 to 0.50%.
  • the lower limit of the silicon content is preferably 0.050% or more.
  • the upper limit of the silicon content is preferably 0.30% or less.
  • Mn 1.00 to 2.50%
  • Mn is an element that acts to increase the hardenability of steel and is necessary to exhibit the desired strength.
  • the Mn content is set to 1.00% or more.
  • the Mn content is set to 2.50% or less. Therefore, the Mn content is set to the range of 1.00 to 2.50%.
  • the lower limit of the Mn content is preferably 1.50% or more.
  • the upper limit of the Mn content is preferably 2.35% or less.
  • P 0.020% or less
  • S 0.010% or less
  • P and S are inevitable impurities in steel. If their contents increase, toughness deteriorates.
  • the P content is suppressed to 0.020% or less and the S content is suppressed to 0.010% or less.
  • the P content is preferably 0.015% or less, and more preferably 0.006% or less.
  • the S content is preferably 0.006% or less, and more preferably 0.002% or less.
  • the lower limits of the P content and S content are not particularly limited. Since excessive reduction of P and S leads to increased manufacturing costs, the P content and S content are each preferably 0.0005% or more, and more preferably 0.0010% or more.
  • Al 0.010 to 0.100%
  • Al is an element that acts as a deoxidizer, and in order to obtain this effect, the Al content must be 0.010% or more.
  • the Al content is set to a range of 0.010 to 0.100%.
  • the lower limit of the Al content is preferably 0.020% or more, and more preferably 0.040% or more.
  • the upper limit of the Al content is preferably 0.080% or less, more preferably 0.070% or less, and even more preferably 0.050% or less.
  • N 0.0010 to 0.0100% N combines with Al in the steel and precipitates as AlN during rolling, resulting in a pinning effect that refines the austenite grain size, thereby strengthening the steel and improving its toughness.
  • the N content must be 0.0010% or more.
  • the N content exceeds 0.0100%, toughness deteriorates. Therefore, the N content is set to 0.0100% or less. Therefore, the N content is set to a range of 0.0010 to 0.0100%.
  • the lower limit of the N content is preferably 0.0020% or more, and more preferably 0.0040% or more.
  • the upper limit of the N content is preferably 0.0070% or less.
  • O 0.0100% or less
  • O oxygen
  • the O content is preferably 0.0050% or less, and more preferably 0.0030% or less.
  • the lower limit of the O content is not particularly limited and may be 0%.
  • O is an element that is inevitably contained in steel as an impurity, so industrially it may be more than 0%.
  • excessive reduction of O leads to an increase in refining costs, so from the viewpoint of cost, it is preferable to set the O content to 0.0020% or more.
  • each element is contained within the above range, and Ceq (carbon equivalent) (%) defined by formula (1) satisfies the following range.
  • Ceq C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5...
  • C, Mn, Cu, Ni, Cr, Mo and V in formula (1) represent the content (mass %) of each element, and the content of an element that is not contained is set to 0.
  • Ceq 0.480% or more
  • Ceq represented by formula (1) is adjusted to 0.480% or more. This improves the hardenability of the steel plate, and even at the 1/2 plate thickness position where the cooling rate is the smallest, the steel structure becomes bainite throughout, thereby improving strength.
  • Ceq is preferably 0.495% or more. Note that there is no particular upper limit for Ceq. If Ceq is excessively increased, the alloy cost becomes too high, so Ceq is preferably 0.560% or less, and more preferably 0.545% or less.
  • the high-strength extra-thick steel plate of the present invention can obtain the desired characteristics.
  • each of the following components Ti, Nb, Cu, Ni, Cr, Mo, V, W, Co, B, Ca, Mg, and REM can be contained as necessary, so these components may be 0%.
  • Group A One or more selected from Ti: 0.030% or less, Nb: 0.050% or less, Cu: 2.00% or less, Ni: 2.50% or less, and Cr: 2.00% or less
  • Ti 0.030% or less Ti has the effect of forming nitrides, carbides, or carbonitrides by containing a small amount of Ti, refining the crystal grains, and improving the toughness of the base material. In order to obtain this effect, it is preferable to set the Ti content to 0.005% or more. On the other hand, if the Ti content exceeds 0.030%, the toughness of the base material and the welded heat affected zone decreases. Therefore, when Ti is contained, the Ti content is preferably 0.030% or less, and more preferably 0.025% or less. The Ti content is more preferably 0.010% or more, and even more preferably 0.019% or more.
  • Nb 0.050% or less Nb has the effect of increasing the hardenability of steel and expanding the non-recrystallization temperature range in rolling in the austenite region (i.e., hot rolling). In order to obtain this effect, it is preferable to set the Nb content to 0.005% or more. On the other hand, if the Nb content exceeds 0.050%, coarse NbC may precipitate, resulting in a decrease in toughness. Therefore, when Nb is contained, the Nb content is preferably 0.050% or less, and more preferably 0.040% or less. The Nb content is more preferably 0.010% or more, and even more preferably 0.020% or more.
  • Cu 2.00% or less
  • Cu is an element that enhances the hardenability of steel. This element directly contributes to improving the strength after rolling.
  • Cu can be contained to improve functions such as toughness, high-temperature strength, and weather resistance.
  • the Cu content is 0.01% or more.
  • the Cu content is preferably 2.00% or less, and more preferably 1.00% or less. It is more preferable that the Cu content is 0.05% or more.
  • Ni is an element that enhances the hardenability of steel. Ni directly contributes to improving the strength after rolling. In addition, Ni can be contained to improve functions such as toughness, high-temperature strength, and weather resistance. In order to obtain the above effects of this element, it is preferable that the Ni content is 0.01% or more. On the other hand, if the Ni content exceeds 2.50%, it will cause deterioration of weldability and toughness and an increase in alloy cost. Therefore, when Ni is contained, it is preferable that the Ni content is 2.50% or less, and more preferably 2.00% or less. It is more preferable that the Ni content is 0.10% or more.
  • Cr 2.00% or less
  • Cr is an element that enhances the hardenability of steel. This element directly contributes to improving the strength after rolling.
  • Cr can be contained to improve functions such as toughness, high-temperature strength, and weather resistance.
  • the Cr content is 0.01% or more.
  • the Cr content is 2.00% or less, and more preferably 1.00% or less. It is more preferable that the Cr content is 0.05% or more.
  • Group B One or more selected from Mo: 0.50% or less, V: 0.50% or less, W: 0.50% or less, Co: 0.50% or less, B: 0.0100% or less, Ca: 0.0100% or less, Mg: 0.0100% or less, and REM: 0.0200% or less
  • Mo 0.50% or less
  • Mo is an element that enhances the hardenability of steel. This element directly contributes to improving the strength after rolling.
  • Mo can be contained to improve functions such as toughness, high-temperature strength, and weather resistance.
  • the Mo content is 0.01% or more.
  • the Mo content is 0.50% or less, and more preferably 0.30% or less. It is more preferable that the Mo content is 0.03% or more.
  • V 0.50% or less
  • V is an element that improves the strength of steel by precipitation strengthening, which is precipitated as V(CN). This effect is exhibited by making the V content 0.001% or more. However, if the V content exceeds 0.50%, the toughness may decrease. Therefore, when V is contained, the V content is preferably 0.50% or less, and more preferably 0.30% or less. The V content is more preferably 0.005% or more.
  • W 0.50% or less W is an element that has the effect of improving the strength of the steel plate.
  • the W content is preferably 0.001% or more.
  • the W content is preferably 0.50% or less, and more preferably 0.30% or less.
  • the W content is more preferably 0.005% or more.
  • Co 0.50% or less
  • Co is an element that has the effect of improving the strength of the steel plate.
  • the Co content is preferably 0.001% or more.
  • the Co content is preferably 0.50% or less, and more preferably 0.30% or less.
  • the Co content is more preferably 0.005% or more.
  • B 0.0100% or less
  • B is an element that enhances the hardenability of steel in small amounts. However, if the B content exceeds 0.0100%, the toughness of the welded part is reduced. Therefore, when B is contained, the B content is preferably 0.0100% or less, and more preferably 0.0030% or less. In order to improve the strength of the steel plate, the B content is preferably 0.0001% or more, and more preferably 0.0005% or more.
  • Ca 0.0100% or less Ca refines the structure of the weld heat affected zone and improves toughness.
  • the Ca content is preferably 0.0005% or more, more preferably 0.0020% or more.
  • the Ca content exceeds 0.0100%, coarse inclusions are formed, which deteriorates toughness. Therefore, when Ca is contained, the Ca content is preferably 0.0100% or less, more preferably 0.0050% or less.
  • Mg 0.0100% or less Like Ca, Mg refines the structure of the welded heat affected zone and improves toughness. In order to obtain this effect, when Mg is contained, the Mg content is preferably 0.0005% or more, and more preferably 0.0020% or more. On the other hand, when the Mg content exceeds 0.0100%, coarse inclusions are formed, which deteriorates toughness. Therefore, when Mg is contained, the Mg content is preferably 0.0100% or less, and more preferably 0.0050% or less.
  • REM 0.0200% or less
  • the REM content is preferably 0.0005% or more, more preferably 0.0015% or more.
  • the REM content is preferably 0.0200% or less, more preferably 0.0100% or less.
  • ⁇ Texture> [X-ray intensity ratio of the (211) plane on the rolled surface at the 1/2 position of the plate thickness: 1.70 or more]
  • the X-ray intensity ratio of the (211) plane on the rolled surface at the plate thickness 1/2 position is made 1.70 or more.
  • the X-ray intensity ratio of the (211) plane is preferably made 1.80 or more, more preferably 1.90 or more.
  • the upper limit of the X-ray intensity ratio of the (211) plane is not particularly specified. From the viewpoints of rolling efficiency and production load, the X-ray intensity ratio of the (211) plane is preferably 2.50 or less, and more preferably 2.25 or less.
  • the X-ray intensity ratio of the (211) plane is a value that represents the degree of integration of the (211) crystal plane of the target material (high-strength extra-thick steel plate).
  • the X-ray intensity ratio of the (211) plane is calculated as the ratio (I(211)/I0 (211)) of the X-ray diffraction intensity of the reflection of the (211) plane of the target material (I( 211)) to the X-ray diffraction intensity of the reflection of the (211) plane of a random standard sample without texture (I0 ( 211) ) , as described in the Examples below.
  • the steel structure at the 1/2 sheet thickness position is a mixed structure having an area fraction of 85 to 100% of bainite phase and an area fraction of 0 to 15% of ferrite phase, the average grain size of bainite crystal grains surrounded by grain boundaries having an orientation difference of 15° or more is 20 ⁇ m or less, and the circle equivalent diameter of the maximum porosity remaining in the center of the steel sheet is 200 ⁇ m or less.
  • the area fraction of the bainite phase at the 1/2 sheet thickness position must be 85% or more.
  • the area fraction of the bainite phase is 90% or more.
  • the upper limit of the area fraction of the bainite phase is 100%.
  • the high-strength extra-thick steel plate of the present invention needs to have an area fraction of ferrite phase at 1/2 thickness position of 0 to 15%. If the area fraction of ferrite phase exceeds 15%, the fraction of hard structure decreases and the texture of the (211) plane does not develop sufficiently, resulting in a decrease in strength and brittle crack propagation arrestability. Therefore, the area fraction of ferrite phase at 1/2 thickness position is set to 15% or less. In order to further increase the strength and brittle crack propagation arrestability, the area fraction of the ferrite phase is preferably set to 10% or less, more preferably 5% or less.
  • the area fraction in the present invention can be measured by the method described in the Examples below.
  • the average grain size of the bainite grains in the steel structure at the 1/2 position of the plate thickness (average grain size of bainite) must be 20 ⁇ m or less. If the average grain size exceeds 20 ⁇ m, the grain size becomes coarse and the fracture surface unit of the cleavage fracture surface of the grain becomes large, so that the toughness and the brittle crack arrestability are reduced, and as a result, the brittle crack arrestability of the plate thickness is reduced.
  • the average grain size is preferably 18 ⁇ m or less, and more preferably 15 ⁇ m or less.
  • the lower limit of the average grain size is 1 ⁇ m. Therefore, the average grain size is preferably 1 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • grain size is defined as the circle-equivalent diameter of a grain surrounded by a grain boundary (high-angle grain boundary) with an orientation difference of 15° or more with adjacent grains.
  • average grain size refers to the average grain size at the 1/2 position of the plate thickness.
  • the average grain size at the 1/2 plate thickness position can be measured using the method described in the examples below.
  • the high-strength extra-thick steel plate of the present invention needs to have a circle-equivalent diameter of the maximum porosity remaining in the center of the steel plate (at 1/2 the plate thickness position) of 200 ⁇ m or less. If the circle-equivalent diameter of the maximum porosity exceeds 200 ⁇ m, the porosity becomes the fracture origin and the toughness is significantly reduced. Therefore, the circle-equivalent diameter of the maximum porosity remaining at the 1/2 plate thickness position is set to 200 ⁇ m or less.
  • the circle-equivalent diameter is preferably set to 150 ⁇ m or less, and more preferably set to 100 ⁇ m or less.
  • the lower limit of the circle-equivalent diameter is not particularly specified. From the viewpoint of rolling efficiency, the circle-equivalent diameter is preferably set to 25 ⁇ m or more, and more preferably set to 50 ⁇ m or more.
  • the length in the thickness direction of the maximum porosity remaining in the center of the steel plate is 100 ⁇ m or less. If the length in the thickness direction of the maximum porosity exceeds 100 ⁇ m, the porosity may become the starting point of fracture, resulting in a significant decrease in toughness.
  • the length in the thickness direction is more preferably 75 ⁇ m or less, and even more preferably 50 ⁇ m or less. There is no particular lower limit for the length in the thickness direction. From the viewpoint of rolling efficiency, the length in the thickness direction is preferably 10 ⁇ m or more, and more preferably 25 ⁇ m or more.
  • the length in the thickness direction of the maximum porosity at the 1/2 position of the plate thickness can be measured by the method described in the examples below. Note that the "length in the thickness direction of the maximum porosity" and the “circle equivalent diameter of the maximum porosity” are different. The former is an indicator of the defect size of the porosity, and the latter is an indicator of the shape of the porosity.
  • the present invention may also have the configurations described below.
  • the number density of the segregated grains exceeds 2.0 grains/ mm2 , the number of segregated grains that can become fracture initiation points increases, making the material more susceptible to brittle fracture and reducing toughness.
  • the number density is preferably 1.5 grains/ mm2 or less, and more preferably 1.0 grains/ mm2 or less.
  • the thickness and number density of the segregated grains described above can be measured using the method described in the examples below.
  • the high-strength extra-thick steel plate of the present invention has a yield strength of 500 MPa or more, measured using a JIS 14A tensile test piece with a diameter of 14 mm taken from the 1/2 position of the plate thickness. From the viewpoint of ensuring the hull strength of large container ships exceeding the 24,000 TEU class, it is necessary to use a high-strength and thick steel plate. From the viewpoint of use in the above-mentioned large container ships, the plate thickness of the extra-thick steel plate is set to 50 mm or more and less than 100 mm.
  • vTrs at the 1/2 plate thickness position In order to improve the brittle crack propagation arrestability of a high-strength extra-thick steel plate having a yield strength of 500 MPa or more, it is necessary to set vTrs at the 1/2 plate thickness position to -105°C or less.
  • vTrs When the transition temperature is higher than -105°C (i.e., when vTrs exceeds -105°C), cracks tend to propagate in one direction, and as a result, the brittle crack propagation arrestability of the plate thickness decreases.
  • vTrs at the 1/2 plate thickness position is set to -105°C or less.
  • the vTrs is preferably -160°C or higher, and more preferably -150°C or higher.
  • vTrs can be evaluated by taking a JIS No. 4 impact test specimen from the 1/2 position of the plate thickness of a high-strength extra-thick steel plate and conducting a Charpy test, as described in the examples below.
  • ⁇ Brittle crack propagation arrest properties > [Kca (-10°C) value: 9000 N/mm3 /2 or more] High-strength extra thick steel plate with a yield strength of 500 MPa or more must have a Kca (-10°C) value of 9000 N/mm3 /2 or more to prevent brittle crack propagation in the hull.
  • the Kca value at -10°C is preferably 10000 N/mm3 /2 or more, and more preferably 11000 N/mm3 /2 or more.
  • the Kca value at -10°C is preferably 25000 N/mm 3/2 or less, and more preferably 20000 N/mm 3/2 or less.
  • the Kca value can be evaluated by a standard temperature gradient ESSO test as described in the Examples below.
  • the high-strength extra-thick steel plate of the present invention has high strength and high (excellent) brittle crack propagation arrest properties and toughness.
  • the high-strength extra thick steel plate of the present invention is produced by subjecting a steel material having the above-mentioned composition to a heating step, a hot rolling step, and a cooling step under specific conditions described below.
  • the temperature in each process refers to the temperature at the 1/2 plate thickness position of the steel material and hot-rolled plate. For example, it can be determined by calculating the temperature distribution in the cross section of the steel plate using heat transfer analysis and correcting the result by the surface temperature of the steel plate.
  • a steel material (slab) having the above-mentioned composition is heated to a heating temperature of 1000 to 1200°C.
  • Heating temperature of steel material 1000-1200°C
  • the heating temperature is set to 1200°C or less.
  • the above heating temperature is preferably 1050°C or more, more preferably 1080°C or more.
  • the above heating temperature is preferably 1150°C or less, more preferably 1130°C or less.
  • the heated steel material is hot rolled under the following conditions: a rolling start temperature at the 1/2 thickness position: ( Ar3 point + 100)°C or higher; a cumulative reduction rate in the austenite recrystallization temperature range at the 1/2 thickness position: 25.0% or higher; a cumulative reduction rate in the austenite non-recrystallization temperature range at the 1/2 thickness position: 50.0% or higher; and a rolling end temperature at the 1/2 thickness position: Ar3 point or higher, the slab thickness is 200 mm or more, and the reduction ratio, which represents the ratio of the slab thickness to the plate thickness of the final product, is 4.00 or more.
  • Rolling start temperature ( Ar3 point + 100) ° C. or higher]
  • the temperature at which hot rolling is started at the 1/2 plate thickness position is less than ( Ar3 point + 100) ° C.
  • recrystallization does not occur sufficiently in the hot-rolled plate after the hot rolling process is completed. Therefore, the austenite grain size does not become fine, and the toughness decreases. As a result, the desired brittle crack propagation arrest property is not obtained. Therefore, the above-mentioned rolling start temperature is set to ( Ar3 point + 100) ° C. or higher.
  • the above-mentioned rolling start temperature is preferably set to ( Ar3 point + 150) ° C. or higher, and more preferably set to ( Ar3 point + 200) ° C. or higher.
  • the upper limit of the rolling start temperature should be in accordance with the heating temperature of the steel material described above. That is, the rolling start temperature is preferably 1150°C or less, more preferably 1130°C or less, and even more preferably 1000°C or less.
  • the Ar3 point (also referred to as the " Ar3 transformation point") (°C) can be calculated according to the following formula (3).
  • Ar 3 point (°C) 910 - 273 x C - 74 x Mn - 57 x Ni - 16 x Cr - 9 x Mo - 5 x Cu ...
  • each element symbol represents the content (mass%) of the corresponding element in the steel, and elements that are not contained are represented as 0.
  • the cumulative reduction in this temperature range is preferably 40.0% or more, more preferably 50.0% or more, and even more preferably 55.0% or more.
  • the upper limit of the cumulative rolling reduction in this temperature range is not particularly limited. Since the effect of improving grain refinement described above becomes saturated, the cumulative rolling reduction in this temperature range is preferably 75.0% or less, more preferably 70.0% or less, even more preferably 65.0% or less, and even more preferably 60.0% or less.
  • the cumulative rolling reduction is preferably 25.0% or more in the temperature range of 1100 to 950°C.
  • the cumulative reduction in this temperature range is less than 50.0%, the refinement of the bainite crystal grains becomes insufficient, and the Charpy fracture transition temperature (vTrs): -105°C or less at the 1/2 thickness position is not achieved.
  • vTrs Charpy fracture transition temperature
  • a texture in which the X-ray intensity ratio of the (211) plane on the rolled surface at the 1/2 thickness position is 1.70 or more is not obtained.
  • the cumulative rolling reduction in this temperature range is preferably 55% or more, and more preferably 60% or more.
  • the upper limit of the cumulative reduction in this temperature range is not particularly limited. From the viewpoint of not impeding the rolling efficiency, the cumulative reduction in this temperature range is preferably 75% or less, and more preferably 70% or less.
  • the cumulative rolling reduction is preferably 50.0% or more in the temperature range of less than 950°C and equal to or greater than 700°C.
  • the rolling end temperature is preferably ( Ar3 point + 10) °C or higher from the viewpoint of setting the cooling start temperature of the subsequent process to Ar3 point (°C) or higher.
  • the rolling end temperature is preferably ( Ar3 point + 60)°C or less, and more preferably ( Ar3 point + 50)°C or less.
  • the thickness of the slab is set to 200 mm or more, and the rolling in the hot rolling process is controlled so that the ratio of the slab thickness to the plate thickness of the final product (i.e., the reduction ratio) is 4.00 or more. If the reduction ratio is less than 4.00, the bainite grains are not sufficiently refined, and the toughness is not improved. As a result, the Charpy fracture transition temperature at the 1/2 plate thickness position: -105°C or less is not achieved.
  • the thickness of the slab is preferably 300 mm or more, and more preferably 350 mm or more.
  • the reduction ratio is preferably 4.50 or more, and more preferably 5.00 or more.
  • the upper limit of the reduction ratio is not particularly limited. From the viewpoint of rolling efficiency, the reduction ratio is preferably 7.50 or less, and more preferably 7.00 or less.
  • the hot rolling step is performed under the above-mentioned hot rolling conditions, thereby obtaining the effects. From the viewpoint of obtaining the effects more effectively, it is also effective to further have the following hot rolling conditions in the hot rolling step.
  • the average reduction rate/pass in the austenite recrystallization temperature range at the 1/2 position of the plate thickness is set to 4.0% or more.
  • the temperature at the 1/2 thickness position is set to an average reduction rate/pass in the austenite non-recrystallization temperature region of 4.5% or more
  • the rolling end temperature at the 1/4 thickness position is set to be (the rolling end temperature at the 1/2 thickness position-20)°C or more
  • the rolling end temperature in the surface layer is set to be (the rolling end temperature at the 1/2 thickness position-30)°C or more.
  • the strain caused by rolling in a high temperature range which is effective in reducing the thickness of the voids inside the steel plate, cannot be applied to the 1/2 plate thickness position of the steel plate, and as a result, defects inside the steel plate that are the fracture origin may remain large, and the toughness may decrease.
  • the above-mentioned adjustment of the length in the plate thickness direction of the maximum porosity remaining in the center of the steel plate can be achieved by controlling the hot rolling conditions.
  • the average reduction rate/pass in this temperature range is more preferably 4.5% or more, even more preferably 5.0% or more, and even more preferably 6.0% or more.
  • the upper limit of the average rolling reduction/pass in this temperature range is not particularly limited. From the viewpoint of production load, the average rolling reduction/pass in this temperature range is preferably 10.0% or less, more preferably 8.0% or less, and even more preferably 7.0% or less.
  • the reduction rate may be insufficient in the low temperature range when the deformation resistance difference between the thicknesses is large, and the amount of strain applied to the 1/2 thickness position may decrease, and as a result, the segregation where the alloy elements are concentrated, which is the fracture origin, may not be dispersed, and the toughness may decrease.
  • the average reduction rate/pass in this temperature range is more preferably 5.0% or more, and even more preferably 6.0% or more.
  • the upper limit of the average rolling reduction/pass in this temperature range is not particularly limited. From the viewpoint of production load, the average rolling reduction/pass in this temperature range is preferably 10% or less, more preferably 7.0% or less, and even more preferably 6.0% or less.
  • average reduction rate/pass refers to the average reduction rate per pass during rolling within a certain temperature range.
  • the rolling end temperature at the 1/4 thickness position is at a temperature of (rolling end temperature at 1/2 thickness - 20) ° C or less at the 1/4 thickness position. If the temperature at the 1/4 thickness position of the hot rolled sheet during hot rolling exceeds (rolling end temperature at 1/2 thickness - 20) ° C, the rolling reduction in the state where the deformation resistance difference between the sheet thicknesses is large in the low temperature range becomes insufficient, and the amount of strain applied to the 1/2 thickness position decreases. In addition, the segregation where the alloy elements that are the fracture origin are concentrated cannot be dispersed. As a result, the toughness decreases.
  • This rolling end temperature is preferably (Ar 3 point - 30) ° C or less.
  • the upper limit of the rolling end temperature at the 1/4 sheet thickness position is not particularly limited. From the viewpoint of rolling efficiency, the rolling end temperature is preferably ( Ar3 point - 50) ° C. or higher, and more preferably ( Ar3 point - 40) ° C. or higher.
  • This rolling end temperature is preferably (Ar 3 point - 40) ° C or less.
  • the rolling end temperature of the surface layer is preferably ( Ar3 point - 60) ° C. or more, and more preferably ( Ar3 point - 50) ° C. or more.
  • the above-mentioned “surface layer” refers to a position 2 mm from the surface of the steel sheet in the sheet thickness direction.
  • the hot-rolled hot-rolled sheet is cooled under the following conditions: a cooling start temperature at 1/2 thickness position: Ar 3 point or higher, an average cooling rate in the temperature range of 700 to 500°C at the 1/2 thickness position: 3.5°C/s or higher, and a cooling stop temperature at the 1/2 thickness position: 500°C or lower.
  • the cooling start temperature is set to be Ar3 point (°C) or higher.
  • the cooling start temperature is preferably set to be ( Ar3 point + 10) °C or higher, and is preferably set to be ( Ar3 point + 40) °C or lower.
  • the average cooling rate in the temperature range of 700 to 500 ° C: 3.5 ° C/s or more If the average cooling rate in the temperature range from 700°C to the cooling stop temperature (500°C or less) at the 1/2 plate thickness position is less than 3.5°C/s, a large amount of ferrite is generated in the steel by slow cooling, and the volume fraction of bainite cannot be increased. As a result, the X-ray intensity ratio of the (211) plane decreases, and excellent brittle crack propagation arrest properties cannot be obtained. In addition, strength decreases.
  • the average cooling rate in the temperature range of 700 to 500°C at the 1/2 plate thickness position is 3.5°C/s or more.
  • the average cooling rate in this temperature range is preferably 4.0°C/s or more.
  • the average cooling rate in the above temperature range is preferably 20°C/s or less, and more preferably 10°C/s or less.
  • the temperature range for measuring this average cooling rate is 700 to 500°C, where most of the austenite structure transforms and contributes greatly to the properties.
  • Average cooling rates outside the above temperature range of 700 to 500°C are not specified because they do not have a significant effect on bainite formation. From the standpoint of manufacturing efficiency, it is preferable to set the rate at 0.5 to 0.1°C/s.
  • the cooling process needs to be performed until the temperature at the 1/2 position of the plate thickness is 500°C or less. In other words, it needs to be performed until the cooling stop temperature is 500°C or less. If the cooling stop temperature exceeds 500°C, a large amount of ferrite is generated in the steel, so the volume fraction of bainite cannot be increased. As a result, the X-ray intensity ratio of the (211) plane decreases, and excellent brittle crack propagation stopping properties cannot be obtained. In addition, the strength decreases.
  • the cooling stop temperature is preferably 450°C or less, more preferably 400°C or less.
  • the cooling stop temperature is preferably 200°C or more, more preferably 300°C or more.
  • Table 1 shows the chemical composition of the test steel
  • Table 2 shows the manufacturing conditions. Molten steel (steel symbols: A to AD) with each chemical composition shown in Table 1 was melted in a converter and made into steel material using a continuous casting method. After that, the heating process, hot rolling process, and cooling process were carried out in that order under the manufacturing conditions shown in Table 2 to manufacture high-strength extra thick steel plates (steel symbols: 1 to 43) with thicknesses of 50 to 100 mm. Note that blank spaces in Table 1 indicate that no element was intentionally added, and include not only cases where no element is contained (0%), but also cases where an element is unavoidably contained.
  • the area fraction of the bainite phase and the ferrite phase was evaluated by calculating the area fraction by image analysis, assuming that the structure revealed as a white mass in the obtained photograph was ferrite and the remaining part was bainite.
  • the obtained values are shown in the columns of "Bainite Phase Area Fraction” and "Ferrite Phase Area Fraction” in Table 3.
  • the length of the plate thickness direction was obtained at a pitch of 20 ⁇ m along the plate width direction for each porosity, and the maximum value was taken as the above-mentioned length in the plate thickness direction.
  • the length of the remaining porosity in the plate thickness direction was measured, and the maximum of the obtained values was taken as the length of the maximum porosity in the plate thickness direction.
  • the obtained values were recorded in the "Length of the maximum porosity in the plate thickness direction" column in Table 3.
  • the toughness was evaluated in terms of the Charpy fracture transition temperature at the 1/2 plate thickness position.
  • a JIS No. 4 impact test piece was taken from the 1/2 position of the plate thickness of the obtained high-strength extra thick steel plate so that the longitudinal axis of the test piece was parallel to the rolling direction, and a Charpy impact test was performed in accordance with the provisions of JIS Z 2242 (2005) to determine the Charpy fracture transition temperature (vTrs). Three pieces were tested per test temperature, and the Charpy fracture transition temperature was calculated from the average brittle fracture rate of the three pieces.
  • vTrs ⁇ -105°C was evaluated as excellent toughness.
  • the brittle crack propagation arrest property was evaluated by determining the Kca value.
  • a temperature gradient type standard ESSO test was conducted to determine the Kca value at -10°C (Kca (-10°C) value (N/mm3 /2 )).
  • Three specimens were taken from each of the obtained high strength extra thick steel plates. The size of the specimen was total thickness x L: 500 x W: 500 (mm).
  • the Kca value was determined from the results of the three-body test.
  • specimens with a Kca (-10°C) value of 9000 N/mm3 /2 or more were evaluated as having excellent brittle crack arrest properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided are a high-strength ultra-thick steel plate and a method for producing same. The high-strength ultra-thick steel plate has a specific component composition, includes an aggregate structure in which the X-ray intensity ratio of the (211) plane in a rolled surface at a position of 1/2 the plate thickness is 1.70 or more, and includes a steel structure at the position of 1/2 the plate thickness which is a mixed structure comprising an area fraction of 85-100% of a bainite phase and an area fraction of 0-15% of a ferrite phase. The average grain size of the bainite is 20 μm or less, the circle-equivalent diameter of the maximum porosity remaining in the center of the plate thickness is 200 μm or less, the plate thickness is 50-100 mm, the yield strength at the position of 1/2 the plate thickness is 500 MPa or more, vTrs at the position of 1/2 the plate thickness is -105ºC, and the value of Kca(-10ºC) is 9000 N/mm3/2 or more.

Description

高強度極厚鋼板およびその製造方法High strength extra thick steel plate and its manufacturing method
 本発明は、例えば船舶、海洋構造物、低温貯蔵タンク、建築構造物および土木構造物等の大型構造物に好適に使用される、脆性き裂伝播停止特性に優れた高強度極厚鋼板およびその製造方法に関する。 The present invention relates to a high-strength, extra-thick steel plate with excellent brittle crack propagation arrest properties suitable for use in large structures such as ships, marine structures, low-temperature storage tanks, architectural structures, and civil engineering structures, and a method for manufacturing the same.
 船舶、海洋構造物、低温貯蔵タンク、建築構造物および土木構造物等の大型構造物は、脆性破壊に伴う事故が起きた場合に社会経済および環境に及ぼす影響が大きい。そのため、大型構造物には安全性の向上が常に求められている。大型構造物に使用される鋼材には、特に、使用温度における靭性および強度、並びに、脆性亀裂が伝播することを防止する脆性亀裂伝播停止特性(アレスト性能)が高いレベルで要求されている。 Large structures such as ships, marine structures, low-temperature storage tanks, architectural structures, and civil engineering structures have a large impact on society, the economy, and the environment if an accident involving brittle fracture occurs. For this reason, there is a constant demand for improving the safety of large structures. Steel materials used in large structures are required to have high levels of toughness and strength at operating temperatures, as well as brittle crack propagation arrestability (arrest performance) that prevents the propagation of brittle cracks.
 コンテナ船およびバルクキャリアー等の船舶は、一般的な甲板を設けずにハッチカバー上にまで積荷を積載し、大きな荷重のかかる波を受けながら海洋を走行するので、構造上および使用上の理由から、繰り返し大きな曲げ応力を受ける。そのため、船体外板には、この曲げ応力に耐え得る高強度かつ厚肉な鋼板を使用することが常である。近年では、船体の大型化に伴って、使用される鋼板の高強度厚肉化が一層進んでいる。  Ships such as container ships and bulk carriers do not have standard decks, and are loaded even onto hatch covers, and travel on the ocean while being hit by waves that place heavy loads on them, so for structural and operational reasons they are repeatedly subjected to large bending stresses. For this reason, it is customary to use high-strength, thick steel plates for the hull that can withstand this bending stress. In recent years, as ships have become larger, the steel plates used have become even stronger and thicker.
 一般に、鋼板は高強度または厚肉となるほど、脆性亀裂伝播停止特性に劣る傾向がある。このため、近年のコンテナ船等に使用される鋼板の高強度厚肉化に際し、要求される脆性亀裂伝播停止特性を満たすことが難しくなっている。 In general, the higher the strength or thickness of a steel plate, the worse its brittle crack arrestability tends to be. For this reason, it has become difficult to meet the required brittle crack arrestability when steel plates used in container ships and other vessels are made stronger and thicker in recent years.
 鋼材の脆性亀裂伝播停止特性を向上させる手段として、従来から、鋼中のNi含有量を増加させる方法が知られている。例えば、極低温下での脆性亀裂伝播停止特性が要求される液化天然ガス(LNG)の貯槽タンクにおいては、9%Ni鋼が商業規模で使用されている。しかし、鋼中Ni量の増加は、製造コストの大幅な上昇を余儀なくさせるため、LNG貯槽タンク以外の用途には適用が難しい。 Increasing the Ni content in steel has been known as a means of improving the brittle crack arrestability of steel materials. For example, 9% Ni steel is used on a commercial scale in liquefied natural gas (LNG) storage tanks, which require brittle crack arrestability at extremely low temperatures. However, increasing the amount of Ni in steel necessitates a significant increase in manufacturing costs, making it difficult to apply to applications other than LNG storage tanks.
 他方、LNGのような極低温下にまで至らない、例えば船舶やラインパイプに使用される、板厚が50mm未満の比較的薄手の鋼材に対しては、TMCP(Thermo-Mechanical Control Process)法により細粒化を図り、靭性を向上させる。これにより、優れた脆性亀裂伝播停止特性を付与することができる。 On the other hand, for relatively thin steel materials with a plate thickness of less than 50 mm, such as those used in ships and line pipes that do not reach the extremely low temperatures of LNG, the TMCP (Thermo-Mechanical Control Process) method is used to refine the grains and improve toughness. This can give the material excellent brittle crack propagation arrest properties.
 例えば、特許文献1では、ミクロ組織がフェライトおよびベイナイトの混合組織、または、フェライト、パーライトおよびベイナイトの混合組織であり、かつ、板厚中心部における平均結晶粒径を5~20μmに制御することで、靭性を向上させる。これにより、脆性亀裂伝播停止特性を高める技術が特許文献1に開示されている。 For example, in Patent Document 1, the microstructure is a mixed structure of ferrite and bainite, or a mixed structure of ferrite, pearlite and bainite, and the average crystal grain size in the center of the plate thickness is controlled to 5 to 20 μm, thereby improving toughness. Patent Document 1 discloses a technology that improves brittle crack propagation arrestability.
 また、合金コストを上昇させることなく、脆性亀裂伝播停止特性を向上させるために、鋼材の表層部の組織を超微細化する技術が、例えば特許文献2および特許文献3に開示されている。 Furthermore, in order to improve the brittle crack propagation arrestability without increasing the alloy cost, a technique for ultra-fine-graining the structure of the surface layer of the steel material is disclosed, for example, in Patent Document 2 and Patent Document 3.
 特許文献2では、脆性亀裂が伝播する際に鋼材表層部に発生するシアリップ(すなわち塑性変形領域)が、脆性亀裂伝播停止特性の向上に効果があることに着目している。シアリップ部分の結晶粒を微細化させることによって、伝播する脆性亀裂が有する伝播エネルギーを該結晶粒で吸収することが特許文献2に開示されている。また、特許文献2の製造方法では、熱間圧延後の制御冷却によって表層部分をAr3変態点以下の温度に冷却した後、制御冷却を停止して表層部分をAr3変態点以上の温度に復熱させる工程を1回以上繰り返して行う間に、鋼材に圧下を加える。これにより、繰り返し変態を生じさせ、または加工再結晶させることで、表層部分に超微細なフェライト組織またはベイナイト組織を生成させることが、特許文献2に開示されている。 In Patent Document 2, attention is paid to the fact that a shear lip (i.e., a plastic deformation region) that occurs in the surface layer of a steel material when a brittle crack propagates is effective in improving the brittle crack propagation arrest property. Patent Document 2 discloses that the crystal grains in the shear lip portion are refined to absorb the propagation energy of the propagating brittle crack with the crystal grains. In addition, in the manufacturing method of Patent Document 2, the steel material is subjected to a rolling reduction while a process of cooling the surface layer portion to a temperature below the Ar3 transformation point by controlled cooling after hot rolling and then stopping the controlled cooling to reheat the surface layer portion to a temperature above the Ar3 transformation point is repeated one or more times. Patent Document 2 discloses that this causes repeated transformation or processing recrystallization to generate an ultrafine ferrite structure or bainite structure in the surface layer portion.
 特許文献3では、フェライト-パーライトが主体のミクロ組織とする鋼材において脆性亀裂伝播停止特性を向上させるために、鋼材の両表面部を、円相当粒径:5μm以下かつアスペクト比:2以上のフェライト粒を有するフェライト組織を50面積%以上有する層で構成しつつ、フェライト粒径のバラツキを抑える。このバラツキを抑える方法として、仕上げ圧延中の1パス当りの最大圧下率を12%以下とすることで局所的な再結晶現象を抑制することが、特許文献3に開示されている。 In Patent Document 3, in order to improve the brittle crack propagation arrest properties of a steel material with a microstructure mainly composed of ferrite-pearlite, both surface portions of the steel material are composed of layers having a ferrite structure with ferrite grains having a circular equivalent grain size of 5 μm or less and an aspect ratio of 2 or more at 50% or more by area, while suppressing the variation in ferrite grain size. Patent Document 3 discloses that as a method of suppressing this variation, the maximum reduction rate per pass during finish rolling is set to 12% or less to suppress local recrystallization phenomena.
 また、制御圧延において、変態したフェライトに圧下を加えて集合組織を発達させることにより、脆性き裂伝播停止特性を向上させる方法も知られている。例えば、特許文献4および特許文献5の技術が挙げられる。 In addition, a method is also known in which the brittle crack propagation arrest properties are improved by applying a reduction to the transformed ferrite in controlled rolling to develop the texture. For example, the techniques of Patent Document 4 and Patent Document 5 can be mentioned.
 特許文献4では、有効結晶粒の平均円相当径が、厚鋼板の表層部では25μm以下、かつ板厚中心部では35μm以下であり、また、圧延面、圧延方向に対する集合組織強度比が、厚鋼板の表層部では、
I{001}<110>+I{112}<110>+I{332}<113> > 5、
I{110}<001>+I{110}<110>+I{001}<010> ≦ 3
を満足し、
かつ板厚中心部では、
I{001}<110>+I{112}<110>+I{332}<113>≧ 3.5
を満足するように集合組織を制御する。これにより脆性亀裂伝播停止特性を高める技術が、特許文献4に開示されている。
In Patent Document 4, the average equivalent circle diameter of effective crystal grains is 25 μm or less in the surface layer portion of a thick steel plate and 35 μm or less in the center portion of the plate thickness, and the texture intensity ratio with respect to the rolling surface and rolling direction is as follows:
I{001}<110>+I{112}<110>+I{332}<113>>5,
I{110}<001>+I{110}<110>+I{001}<010>≦3
Satisfied,
And at the center of the plate thickness,
I{001}<110>+I{112}<110>+I{332}<113>≧3.5
The texture is controlled so as to satisfy the following: Patent Document 4 discloses a technique for improving the brittle crack propagation arrestability by controlling the texture so as to satisfy the following:
 特許文献5では、鋼板の表裏面から板厚方向に25%までの表裏層部とそれ以外の板厚中心部との三層に分け、該表裏層部で、板厚の5%以上25%以下の領域において圧延面と平行な(100)X線面強度比が1.5以上2.0未満の集合組織を有し、該板厚中心部において圧延面と平行な(111)または/および(211)X線面強度比が2.0以上の集合組織を有するように制御する。これにより、脆性亀裂伝播停止特性を高める技術が、特許文献5に開示されている。 In Patent Document 5, the steel plate is divided into three layers: a front and back layer extending from the front and back sides in the thickness direction up to 25%; and the remaining central portion of the plate thickness. In the front and back layer, an area of 5% to 25% of the plate thickness has a texture in which the (100) X-ray plane intensity ratio parallel to the rolling surface is 1.5 or more and less than 2.0, and in the central portion of the plate thickness, a texture in which the (111) and/or (211) X-ray plane intensity ratio parallel to the rolling surface is 2.0 or more is controlled. This technology for improving brittle crack propagation arrest properties is disclosed in Patent Document 5.
国際公開第2011/96456号International Publication No. 2011/96456 特開2002-256375号公報JP 2002-256375 A 特開2011-184754号公報JP 2011-184754 A 特開2012-172258号公報JP 2012-172258 A 特開2008-169467号公報JP 2008-169467 A
 しかしながら、特許文献2、3に記載の技術は、鋼材表層部のみを一旦冷却した後に復熱させ、かつ復熱中に加工を加えることによって、特定の組織を得るものである。そのため、実生産規模では制御が容易でなく、圧延設備および冷却設備への負荷が大きい問題がある。 However, the technologies described in Patent Documents 2 and 3 involve cooling only the surface layer of the steel material, then reheating it, and processing it during reheating to obtain a specific structure. This means that it is difficult to control on an actual production scale, and there are problems with the large load placed on the rolling and cooling equipment.
 また、特許文献1~5に記載の技術は、いずれも、製造条件や開示されている実験データを考慮すると、主に降伏強度460MPa級以下である。一方で、近年の物流量増大に伴い要求される24,000TEU級を上回る大型コンテナ船においては、船体強度確保の観点から、ハッチサイドコーミングに降伏強度が500MPa級の鋼材を適用する必要がある。しかし、上記特許文献の製造方法では所定の特性が得られるか不明である。 Furthermore, the technologies described in Patent Documents 1 to 5 all have a yield strength of 460 MPa or less, taking into consideration the manufacturing conditions and the disclosed experimental data. On the other hand, in order to ensure the strength of the hull, it is necessary to use steel with a yield strength of 500 MPa for the hatch side coamings, for large container ships exceeding the 24,000 TEU class, which are in demand due to the increase in logistics volume in recent years. However, it is unclear whether the manufacturing methods described in the above patent documents can obtain the required characteristics.
 さらに、鋼板の高強度化にともない要求される脆性き裂伝播停止特性は上昇するため、降伏強度が500MPa級の鋼板にはアレスト性指数である-10℃でのKca値(以下、「Kca(-10℃)」と記す場合もある):9000N/mm3/2以上が要求される。しかし、このような高強度アレスト鋼およびその安定的かつ効率的な製造方法は、確立されていない。 Furthermore, since the required brittle crack arrestability increases with increasing strength of steel plate, a steel plate with a yield strength of 500 MPa is required to have an arrestability index, Kca value at -10°C (hereinafter sometimes referred to as "Kca (-10°C)"), of 9000 N/mm3 /2 or more. However, such a high-strength arrestable steel and a stable and efficient method for manufacturing it have not yet been established.
 そして、船体の剛性を保持しつつ脆性き裂伝播停止特性を向上させるためには、50mm以上100mm以下の厚肉材であっても、高強度および優れた靭性を兼ね備えることも要求される。 In order to improve brittle crack propagation arrestability while maintaining the rigidity of the hull, even thick materials between 50 mm and 100 mm are required to have both high strength and excellent toughness.
 本発明は、上記課題に鑑みてなされたものであり、降伏強度が500MPa級の鋼板であっても、靭性および脆性き裂伝播停止特性に優れた高強度極厚鋼板およびその製造方法を提供することを目的とする。 The present invention was made in consideration of the above problems, and aims to provide a high-strength, extra-thick steel plate that has excellent toughness and brittle crack propagation arrest properties, even if the steel plate has a yield strength of 500 MPa, and a manufacturing method thereof.
 ここで、本発明における「高強度」とは、高強度極厚鋼板の板厚1/2位置における降伏強度(YS)が500MPa以上であることを指す。
本発明における「靭性に優れた」とは、高強度極厚鋼板の板厚1/2位置におけるシャルピー破面遷移温度がvTrs≦-105℃であることを指す。
本発明における「脆性き裂伝播停止特性(アレスト特性)に優れた」とは、Kca(-10℃)の値が9000N/mm3/2以上であることを指す。
また、上記の降伏強度が500MPa級の鋼板とは、降伏強度:500MPa以上の鋼板を指す。
なお、降伏強度、vTrsおよびKca値は、後述する実施例に記載の方法で測定できる。
Here, "high strength" in the present invention refers to a high-strength extra thick steel plate having a yield strength (YS) of 500 MPa or more at the 1/2 plate thickness position.
In the present invention, "excellent toughness" refers to a Charpy fracture appearance transition temperature at the 1/2 plate thickness position of a high strength extra thick steel plate being vTrs≦−105° C.
In the present invention, "excellent brittle crack propagation arrestability (arrestability)" refers to a Kca (-10°C) value of 9000 N/mm3 /2 or more.
The above-mentioned steel plate having a yield strength of 500 MPa class refers to a steel plate having a yield strength of 500 MPa or more.
The yield strength, vTrs and Kca values can be measured by the methods described in the Examples below.
 本発明者らは、上記課題を解決するために、降伏強度が500MPa以上でも優れた脆性き裂伝播停止特性および靭性を有し、かつ内質が良好な高強度極厚鋼板、および当該鋼板を安定して得る製造方法について、鋭意研究を重ねた。その結果、以下の知見を得た。 In order to solve the above problems, the inventors have conducted extensive research into high-strength, extra-thick steel plates that have excellent brittle crack propagation arrest properties and toughness even when the yield strength is 500 MPa or more, and that have good internal quality, as well as a manufacturing method for stably obtaining such steel plates. As a result, the following findings were obtained.
 なお、上記の「内質が良好な」とは、鋼板中心部に残存する最大ポロシティの円相当径が200μm以下となる状態を指す。より一層、内質を良好とするには、この条件に加えて、鋼板中心部に残存する最大ポロシティの板厚方向の長さが100μm以下となる状態とすることが、有効である。 The above "good internal quality" refers to a state in which the circle equivalent diameter of the largest porosity remaining in the center of the steel plate is 200 μm or less. In order to achieve even better internal quality, in addition to this condition, it is effective to ensure that the length in the plate thickness direction of the largest porosity remaining in the center of the steel plate is 100 μm or less.
 具体的には、降伏強度が500MPa以上となる高強度を達成するためには、炭素当量(Ceq)を0.480質量%以上に制御することが有効である。 Specifically, in order to achieve high strength with a yield strength of 500 MPa or more, it is effective to control the carbon equivalent (Ceq) to 0.480 mass% or more.
 また、上記極厚鋼板における優れた靭性を達成するためには、板厚1/2位置における鋼組織を、方位差15°以上の粒界に囲まれたまれたベイナイトの結晶粒の平均粒径が20μm以下となるように制御し、かつ、鋼板中心部(鋼板1/2位置)に残存する最大ポロシティの円相当径が200μm以下となるように制御することが有効である。粒径微細化効果により靭性が向上し、かつ、ポロシティが破壊起点となりにくくなるため、最も特性の低くなる板厚1/2位置におけるシャルピー靭性がvTrs≦-105℃を達成する。
なお上述のように、板厚1/2における鋼組織を上記構成とすることに加えて、鋼板中心部に残存する最大ポロシティの板厚方向の長さが100μm以下となるように制御することで、靭性をより一層向上できる。
In order to achieve excellent toughness in the above-mentioned extra thick steel plate, it is effective to control the steel structure at the 1/2 position of the plate thickness so that the average grain size of bainite crystal grains surrounded by grain boundaries with an orientation difference of 15° or more is 20 μm or less, and to control so that the circle equivalent diameter of the maximum porosity remaining in the center part of the steel plate (1/2 position of the steel plate) is 200 μm or less. Since the grain size refining effect improves toughness and makes it difficult for porosity to become the starting point of fracture, the Charpy toughness at the 1/2 position of the plate thickness, where the properties are the lowest, achieves vTrs≦−105°C.
As described above, in addition to configuring the steel structure at half the plate thickness as described above, the length in the plate thickness direction of the maximum porosity remaining in the center of the steel plate is controlled to 100 μm or less, thereby further improving toughness.
 また、上記極厚鋼板における優れた脆性き裂伝播停止特性を達成するためには、優れた靭性を有し、かつ板厚1/2位置における圧延面での(211)面のX線強度比が1.70以上となる集合組織とすることが有効である。これにより脆性亀裂が直進的に進展することを阻害し、Kca(-10℃)の値(N/mm3/2)が9000N/mm3/2以上を達成する。 In order to achieve excellent brittle crack arrestability in the extra thick steel plate, it is effective to provide a texture that has excellent toughness and an X-ray intensity ratio of the (211) plane on the rolled surface at the 1/2 position of the plate thickness of 1.70 or more. This inhibits the linear propagation of brittle cracks and achieves a Kca (-10°C) value (N/mm3 /2 ) of 9000 N/mm3 /2 or more.
 そして、上記の靭性を得るためには、熱間圧延工程において、板厚1/2位置における温度がオーステナイト未再結晶温度域での累計圧下率:50.0%以上に制御し、かつ、最終製品の板厚に対するスラブの厚みの比率を表す圧下比:4.00以上となるように制御することが有効である。これにより、板厚が50mm以上100mm以下の極厚鋼板であっても、板厚の影響を受けることなく、板厚1/2位置に十分な圧縮応力を付与することができる。その結果、上記ベイナイトの結晶粒の平均粒径に制御でき、かつ破壊起点となる鋼板の板厚1/2位置のポロシティを圧着させることができるため、優れた靭性を達成する。
なお、上記の「最大ポロシティの板厚方向の長さ」には、板厚1/2位置における温度がオーステナイト再結晶温度域での平均圧下率/パスを適切に制御することが有効である。
In order to obtain the above toughness, it is effective to control the temperature at the 1/2 thickness position in the hot rolling process to a cumulative reduction rate in the austenite non-recrystallization temperature range of 50.0% or more, and to control the reduction ratio, which represents the ratio of the slab thickness to the plate thickness of the final product, to 4.00 or more. This makes it possible to impart sufficient compressive stress to the 1/2 thickness position without being affected by the plate thickness, even in the case of an extra-thick steel plate with a plate thickness of 50 mm to 100 mm. As a result, the average grain size of the bainite crystal grains can be controlled, and the porosity at the 1/2 thickness position of the steel plate, which is the fracture origin, can be compressed, thereby achieving excellent toughness.
In addition, for the above-mentioned "length of maximum porosity in the sheet thickness direction", it is effective to appropriately control the average reduction rate/pass when the temperature at the 1/2 sheet thickness position is in the austenite recrystallization temperature range.
 また、上記の脆性き裂伝播停止特性を得るためには、熱間圧延工程において、上記オーステナイト未再結晶温度域での累計圧下率:50.0%以上に制御し、かつ、上記圧下比:4.00以上となるように制御し、かつ、板厚1/2位置における圧延終了温度:Ar3点以上となるように制御する。この制御によって、板厚1/2位置での鋼組織の結晶粒を微細にするとともに、板厚1/2位置での集合組織を制御することが有効である。これにより、優れた靭性を達成しつつ、オーステナイトを圧延方向に延伸させてベイナイト変態集合組織を特定の方位に揃って発達させることができる。その結果、板厚1/2位置における圧延面での(211)面のX線強度比が1.70以上となる集合組織が得られる。 In order to obtain the brittle crack propagation arrestability, the hot rolling process is controlled so that the cumulative reduction in the austenite non-recrystallization temperature range is 50.0% or more, the reduction ratio is 4.00 or more, and the rolling end temperature at the 1/2 thickness position is Ar3 or more. This control effectively refines the crystal grains of the steel structure at the 1/2 thickness position and controls the texture at the 1/2 thickness position. This makes it possible to achieve excellent toughness while elongating the austenite in the rolling direction and develop a bainite transformation texture in a specific direction. As a result, a texture is obtained in which the X-ray intensity ratio of the (211) plane on the rolled surface at the 1/2 thickness position is 1.70 or more.
 本発明は、上記した知見に、さらに検討を加えて完成されたものであり、本発明の要旨は次のとおりである。
[1] 質量%で、
C:0.040~0.130%、
Si:0.020~0.50%、
Mn:1.00~2.50%、
P:0.020%以下、
S:0.010%以下、
Al:0.010~0.100%、
N:0.0010~0.0100%、および
O:0.0100%以下
を含有し、かつ、式(1)で定義されるCeqが0.480%以上であり、残部がFeおよび不可避的不純物からなる成分組成を有し、
 板厚1/2位置における圧延面での(211)面のX線強度比が1.70以上である集合組織を有し、
 ベイナイト相の面積分率が85~100%およびフェライト相の面積分率が0~15%からなる混合組織であり、かつ、方位差15°以上の粒界に囲まれたベイナイトの結晶粒の平均粒径が20μm以下であり、かつ、鋼板中心部に残存する最大ポロシティの円相当径が200μm以下である、板厚1/2位置における鋼組織を有し、
 板厚が50mm以上100mm以下であり、
 板厚1/2位置における降伏強度が500MPa以上であり、板厚1/2位置におけるシャルピー破面遷移温度がvTrs≦-105℃であり、かつ、Kca(-10℃)の値が9000N/mm3/2以上である、高強度極厚鋼板。
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5 …(1)
ここで、式(1)におけるC、Mn、Cu、Ni、Cr、MoおよびVは各元素の含有量(質量%)を表し、含有しない元素は含有量を0とする。
[2] 前記成分組成に加えて、質量%で、以下のA群およびB群のうちから選ばれた1群または2群を含有する、[1]に記載の高強度極厚鋼板。
A群:Ti:0.030%以下、Nb:0.050%以下、Cu:2.00%以下、Ni:2.50%以下、およびCr:2.00%以下のうちから選ばれた1種または2種以上
B群:Mo:0.50%以下、V:0.50%以下、W:0.50%以下、Co:0.50%以下、B:0.0100%以下、Ca:0.0100%以下、Mg:0.0100%以下、およびREM:0.0200%以下のうちから選ばれた1種または2種以上
[3] 前記板厚1/2位置における鋼組織は、厚さ100μm以上の偏析粒の1mm2あたりの個数が2.0個以下である、[1]または[2]に記載の高強度極厚鋼板。
[4] 前記板厚1/2位置における鋼組織は、鋼板中心部に残存する最大ポロシティの板厚方向の長さが100μm以下である、[1]~[3]のいずれか1つに記載の高強度極厚鋼板。
[5] [1]~[4]のいずれか1つに記載の高強度極厚鋼板の製造方法であって、
 前記成分組成を有する鋼素材を、1000~1200℃の加熱温度に加熱し、
 次いで、板厚1/2位置における圧延開始温度:(Ar3点+100)℃以上、板厚1/2位置における温度がオーステナイト再結晶温度域での累積圧下率:25.0%以上、板厚1/2位置における温度がオーステナイト未再結晶温度域での累計圧下率:50.0%以上、および板厚1/2位置における圧延終了温度:Ar3点以上となる条件、
かつ、スラブの厚みを200mm以上とし、最終製品の板厚に対するスラブの厚みの比率を表す圧下比:4.00以上となる条件で、熱間圧延を施し、
 次いで、板厚1/2位置における冷却開始温度:Ar3点以上、板厚1/2位置における温度が700~500℃の温度域での平均冷却速度:3.5℃/s以上、かつ、板厚1/2位置における冷却停止温度:500℃以下となる条件で冷却を施す、高強度極厚鋼板の製造方法。
[6] 前記熱間圧延では、さらに、
板厚1/2位置における温度がオーステナイト未再結晶温度域での平均圧下率/パス:4.5%以上とし、
かつ、板厚1/4位置における圧延終了温度:(前記板厚1/2位置における圧延終了温度-20)℃以上、および鋼板表面から板厚方向に2mmの位置における圧延終了温度:(前記板厚1/2位置における圧延終了温度-30)℃以上となる条件で施す、[5]に記載の高強度極厚鋼板の製造方法。
[7] 前記熱間圧延では、さらに、
板厚1/2位置における温度がオーステナイト再結晶温度域での平均圧下率/パス:4.0%以上となる条件で施す、[5]または[6]に記載の高強度極厚鋼板の製造方法。
The present invention has been completed based on the above findings and further investigations, and the gist of the present invention is as follows.
[1] In mass%,
C: 0.040 to 0.130%,
Si: 0.020 to 0.50%,
Mn: 1.00 to 2.50%,
P: 0.020% or less,
S: 0.010% or less,
Al: 0.010 to 0.100%,
The steel sheet has a composition comprising N: 0.0010 to 0.0100%, O: 0.0100% or less, Ceq defined by formula (1) being 0.480% or more, and the balance being Fe and unavoidable impurities;
The X-ray intensity ratio of the (211) plane on the rolled surface at the 1/2 position of the sheet thickness is 1.70 or more,
The steel sheet has a steel structure at a 1/2 position in the sheet thickness direction, which is a mixed structure having an area fraction of 85 to 100% of a bainite phase and an area fraction of 0 to 15% of a ferrite phase, and the average grain size of the bainite crystal grains surrounded by grain boundaries having an orientation difference of 15° or more is 20 μm or less, and the circle equivalent diameter of the maximum porosity remaining in the center of the steel sheet is 200 μm or less,
The plate thickness is 50 mm or more and 100 mm or less,
A high-strength extra-thick steel plate having a yield strength of 500 MPa or more at the 1/2 plate thickness position, a Charpy fracture transition temperature vTrs≦-105°C at the 1/2 plate thickness position, and a Kca(-10°C) value of 9000 N/mm3 /2 or more.
Ceq = C + Mn/6 + Cu/15 + Ni/15 + Cr/5 + Mo/5 + V/5 ... (1)
Here, C, Mn, Cu, Ni, Cr, Mo and V in formula (1) represent the content (mass %) of each element, and the content of an element that is not contained is set to 0.
[2] The high-strength extra thick steel plate according to [1], further comprising, in addition to the above-mentioned chemical composition, one or two of the following groups A and B, in mass %:
Group A: one or more selected from Ti: 0.030% or less, Nb: 0.050% or less, Cu: 2.00% or less, Ni: 2.50% or less, and Cr: 2.00% or less; Group B: one or more selected from Mo: 0.50% or less, V: 0.50% or less, W: 0.50% or less, Co: 0.50% or less, B: 0.0100% or less, Ca: 0.0100% or less, Mg: 0.0100% or less, and REM: 0.0200% or less. [3] The high-strength extra thick steel plate according to [1] or [2], wherein the steel structure at the 1/2 position of the plate thickness has 2.0 or less segregation grains having a thickness of 100 μm or more per mm2.
[4] The high-strength extra thick steel plate according to any one of [1] to [3], wherein the steel structure at the plate thickness 1/2 position has a length in the plate thickness direction of the maximum porosity remaining in the center of the steel plate of 100 μm or less.
[5] A method for producing a high-strength extra thick steel plate according to any one of [1] to [4],
A steel material having the above-mentioned composition is heated to a heating temperature of 1000 to 1200°C,
Next, the rolling start temperature at the 1/2 thickness position is ( Ar3 point + 100) ° C. or higher, the cumulative reduction rate in the austenite recrystallization temperature range at the 1/2 thickness position is 25.0% or higher, the cumulative reduction rate in the austenite non-recrystallization temperature range at the 1/2 thickness position is 50.0% or higher, and the rolling end temperature at the 1/2 thickness position is Ar3 point or higher.
The slab is hot-rolled under the conditions of a thickness of 200 mm or more and a reduction ratio (representing the ratio of the slab thickness to the plate thickness of the final product) of 4.00 or more.
Next, cooling is performed under the conditions of a cooling start temperature at the 1/2 plate thickness position: Ar 3 point or higher, an average cooling rate in a temperature range of 700 to 500°C at the 1/2 plate thickness position: 3.5°C/s or higher, and a cooling stop temperature at the 1/2 plate thickness position: 500°C or lower.
[6] In the hot rolling,
The temperature at the 1/2 position of the plate thickness is the average reduction rate/pass in the austenite non-recrystallization temperature range: 4.5% or more;
The method for producing a high-strength extra thick steel plate according to [5] is carried out under the conditions that the rolling end temperature at the 1/4 plate thickness position is (the rolling end temperature at the 1/2 plate thickness position - 20) ° C. or more, and the rolling end temperature at a position 2 mm in the plate thickness direction from the steel plate surface is (the rolling end temperature at the 1/2 plate thickness position - 30) ° C. or more.
[7] In the hot rolling,
The method for producing a high-strength extra thick steel plate according to [5] or [6], wherein the temperature at the 1/2 position of the plate thickness is set under conditions such that the average reduction rate/pass in the austenite recrystallization temperature range is 4.0% or more.
 本発明によれば、ベイナイトとフェライトからなる混合組織により板厚1/2位置の圧延面の集合組織が適性に制御され、かつ、板厚1/2位置の鋼組織が微細化されるため、靭性および脆性き裂伝播特性が向上する。また、本発明の製造方法によれば、熱間圧延工程の圧延条件を最適化しているので、本発明の極厚鋼板は、降伏強度:500MPa以上と高強度であっても、内質が良好であり、靭性および脆性き裂伝播特性に優れる。 According to the present invention, the texture of the rolled surface at 1/2 the plate thickness position is appropriately controlled by a mixed structure consisting of bainite and ferrite, and the steel structure at 1/2 the plate thickness position is refined, improving toughness and brittle crack propagation properties. In addition, according to the manufacturing method of the present invention, the rolling conditions in the hot rolling process are optimized, so that the extra thick steel plate of the present invention has good internal quality and excellent toughness and brittle crack propagation properties, even though it has a high strength of 500 MPa or more in yield strength.
 例えば、本発明の高強度極厚鋼板を、造船分野ではコンテナ船やバルクキャリアーの強力甲板部構造においてハッチサイドコーミングに接合される甲板部材へ適用することにより、船舶の安全性向上に寄与することができる。このように、本発明は、産業上極めて有用である。 For example, in the shipbuilding industry, the high-strength extra-thick steel plate of the present invention can be applied to deck members joined to hatch side coamings in the strong deck structures of container ships and bulk carriers, thereby contributing to improved ship safety. In this way, the present invention is extremely useful industrially.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 The following describes an embodiment of the present invention. Note that the present invention is not limited to the following embodiment.
 まず、本発明において高強度極厚鋼板の成分組成を限定した理由について説明する。本明細書において、成分組成に関する「%」は、特に断らない限り「質量%」を意味する。 First, we will explain the reason why the composition of the high-strength extra-thick steel plate in this invention is limited. In this specification, "%" in relation to the composition means "mass %" unless otherwise specified.
 C:0.040~0.130%
 Cは、鋼の焼き入れ性を増加させる作用を有する元素であり、所望の強度特性を達成するために必要である。本発明では、上記効果を得るために、C含有量を0.040%以上とする。一方で、C含有量が0.130%を超えると、溶接性が劣化するばかりか、破壊起点となる粗大な炭化物を多量に生成するため靭性にも悪影響がある。したがって、C含有量は、0.040~0.130%の範囲とする。なお、下限について、好ましいC含有量は0.050%以上である。上限について、好ましいC含有量は0.100%以下である。
C: 0.040 to 0.130%
C is an element that acts to increase the hardenability of steel and is necessary to achieve the desired strength characteristics. In the present invention, in order to obtain the above effect, the C content is set to 0.040% or more. On the other hand, if the C content exceeds 0.130%, not only does the weldability deteriorate, but also a large amount of coarse carbides that become the starting point of fracture are generated, which has an adverse effect on toughness. Therefore, the C content is set to the range of 0.040 to 0.130%. The preferred lower limit of the C content is 0.050% or more. The preferred upper limit of the C content is 0.100% or less.
 Si:0.020~0.50%
 Siは、脱酸などに必要な成分であり、また粗大な炭化物生成を抑制することで鋼の焼入れ性を増加させる作用を有する元素である。所望の強度特性を達成するためには、0.020%以上でSiを含有する。一方、Si含有量が0.50%を超えると鋼の表面性状を損なうばかりか、靭性が極端に劣化する。したがって、Si含有量は、0.020~0.50%の範囲とする。なお、下限について、好ましいSi含有量は0.050%以上である。上限について、好ましいSi含有量は0.30%以下である。
Si: 0.020 to 0.50%
Silicon is a component necessary for deoxidization and the like, and is also an element that has the effect of increasing the hardenability of steel by suppressing the formation of coarse carbides. In order to achieve the desired strength characteristics, silicon is contained at 0.020% or more. On the other hand, if the silicon content exceeds 0.50%, not only is the surface quality of the steel impaired, but the toughness is also extremely deteriorated. Therefore, the silicon content is set to a range of 0.020 to 0.50%. The lower limit of the silicon content is preferably 0.050% or more. The upper limit of the silicon content is preferably 0.30% or less.
 Mn:1.00~2.50%
 Mnは、鋼の焼入れ性を増加させる作用を有する元素であり、所望の強度を発揮するために必要である。上記効果を得るためには、Mn含有量を1.00%以上とする。一方、Mn含有量が多いと、強度が過剰に上がるため、靭性が低下することに加え、合金コストが過度に高くなってしまう。これらの観点から、Mn含有量は2.50%以下とする。したがって、Mn含有量は、1.00~2.50%の範囲とする。なお、下限について、好ましいMn含有量は1.50%以上である。上限について、好ましいMn含有量は2.35%以下である。
Mn: 1.00 to 2.50%
Mn is an element that acts to increase the hardenability of steel and is necessary to exhibit the desired strength. In order to obtain the above effect, the Mn content is set to 1.00% or more. On the other hand, if the Mn content is high, the strength increases excessively, and in addition to reducing the toughness, the alloy cost becomes excessively high. From these viewpoints, the Mn content is set to 2.50% or less. Therefore, the Mn content is set to the range of 1.00 to 2.50%. The lower limit of the Mn content is preferably 1.50% or more. The upper limit of the Mn content is preferably 2.35% or less.
 P:0.020%以下、S:0.010%以下
 P、Sは、鋼中の不可避的不純物である。これらの含有量が多くなると靭性が劣化する。板厚が50mm以上100mm以下の極厚鋼板において、良好な靭性を保つためには、P含有量は0.020%以下、S含有量は0.010%以下に抑制する。なお、P含有量は、0.015%以下が好ましく、0.006%以下がより好ましい。S含有量が、0.006%以下が好ましく、0.002%以下がより好ましい。
P: 0.020% or less, S: 0.010% or less P and S are inevitable impurities in steel. If their contents increase, toughness deteriorates. In order to maintain good toughness in extra-thick steel plates with a plate thickness of 50 mm or more and 100 mm or less, the P content is suppressed to 0.020% or less and the S content is suppressed to 0.010% or less. The P content is preferably 0.015% or less, and more preferably 0.006% or less. The S content is preferably 0.006% or less, and more preferably 0.002% or less.
 なお、P含有量およびS含有量の下限は特に限定しない。PおよびSの過度の低減は製造コストの増加を招くため、P含有量およびS含有量は、それぞれ、好ましくは0.0005%以上とし、より好ましくは0.0010%以上とする。 The lower limits of the P content and S content are not particularly limited. Since excessive reduction of P and S leads to increased manufacturing costs, the P content and S content are each preferably 0.0005% or more, and more preferably 0.0010% or more.
 Al:0.010~0.100%
 Alは、脱酸剤として作用する元素であり、その効果を得るためにAl含有量を0.010%以上にする必要がある。一方、Al含有量が0.100%を超えると、靭性が低下するとともに、溶接した場合に、溶接金属部の靭性が低下する。したがって、Al含有量は、0.010~0.100%の範囲とする。なお、下限について、好ましいAl含有量は、0.020%以上であり、より好ましくは0.040%以上である。上限について、Al含有量は、好ましくは0.080%以下であり、より好ましくは0.070%以下であり、さらに好ましくは0.050%以下である。
Al: 0.010 to 0.100%
Al is an element that acts as a deoxidizer, and in order to obtain this effect, the Al content must be 0.010% or more. On the other hand, if the Al content exceeds 0.100%, the toughness decreases, and when welding is performed, the toughness of the weld metal part decreases. Therefore, the Al content is set to a range of 0.010 to 0.100%. The lower limit of the Al content is preferably 0.020% or more, and more preferably 0.040% or more. The upper limit of the Al content is preferably 0.080% or less, more preferably 0.070% or less, and even more preferably 0.050% or less.
 N:0.0010~0.0100%
 Nは、鋼中のAlと結合し、圧延加工時にAlNとして析出してピン止め効果によりオーステナイト結晶粒径を細粒化し、鋼の強化と靭性を向上させる。この効果を得るためにはN含有量を0.0010%以上にする必要がある。一方、N含有量が0.0100%を超えると靭性が劣化する。そこで、N含有量は0.0100%以下とする。したがって、N含有量は、0.0010~0.0100%の範囲とする。なお、下限について、好ましいN含有量は、0.0020%以上であり、より好ましくは0.0040%以上である。上限について、好ましいN含有量は0.0070%以下である。
N: 0.0010 to 0.0100%
N combines with Al in the steel and precipitates as AlN during rolling, resulting in a pinning effect that refines the austenite grain size, thereby strengthening the steel and improving its toughness. To achieve this effect, the N content must be 0.0010% or more. On the other hand, if the N content exceeds 0.0100%, toughness deteriorates. Therefore, the N content is set to 0.0100% or less. Therefore, the N content is set to a range of 0.0010 to 0.0100%. The lower limit of the N content is preferably 0.0020% or more, and more preferably 0.0040% or more. The upper limit of the N content is preferably 0.0070% or less.
 O:0.0100%以下
 O(酸素)は不可避的不純物として含有される元素であるが、特に低減すべき元素であるため、その含有量を規定する。Oは酸化物を形成し脆性破壊の発生起点となるため、靭性低下とそれに伴う脆性き裂伝播停止特性の低下などの悪影響を及ぼす。そのため、O含有量を0.0100%以下に制限する。O含有量は、0.0050%以下とすることが好ましく、0.0030%以下とすることがより好ましい。なお、O含有量の下限は特に限定されず、0%であってもよい。通常、Oは不純物として鋼中に不可避的に含有される元素であるため、工業的には0%超であってよい。また、Oを過剰に低減することは精錬コストの高騰を招くため、コストの観点からは、O含有量を0.0020%以上とすることが好ましい。
O: 0.0100% or less O (oxygen) is an element contained as an inevitable impurity, but since it is an element that should be particularly reduced, its content is specified. O forms oxides and becomes the starting point of brittle fracture, so it has adverse effects such as a decrease in toughness and a decrease in brittle crack propagation arrestability. Therefore, the O content is limited to 0.0100% or less. The O content is preferably 0.0050% or less, and more preferably 0.0030% or less. The lower limit of the O content is not particularly limited and may be 0%. Usually, O is an element that is inevitably contained in steel as an impurity, so industrially it may be more than 0%. In addition, excessive reduction of O leads to an increase in refining costs, so from the viewpoint of cost, it is preferable to set the O content to 0.0020% or more.
 また、本発明では、各元素を上記範囲内とし、かつ式(1)で定義されるCeq(炭素当量)(%)が以下の範囲を満足するように含有する。
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5…(1)
ここで、式(1)におけるC、Mn、Cu、Ni、Cr、MoおよびVは各元素の含有量(質量%)を表し、含有しない元素は含有量を0とする。
In the present invention, each element is contained within the above range, and Ceq (carbon equivalent) (%) defined by formula (1) satisfies the following range.
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5... (1)
Here, C, Mn, Cu, Ni, Cr, Mo and V in formula (1) represent the content (mass %) of each element, and the content of an element that is not contained is set to 0.
 Ceq:0.480%以上
 本発明の極厚鋼板における、焼入性向上による優れた強度と、集合組織発達に伴う脆性き裂伝播停止特性向上とを実現するためには、式(1)で表すCeqを0.480%以上に調整する。これより鋼板の焼き入れ性が上昇し、冷却速度が最も小さくなる板厚1/2位置であっても鋼組織が全面的にベイナイトとなり、強度向上を得られる。Ceqは、好ましくは0.495%以上とする。なお、Ceqの上限は特に規定しない。Ceqを過剰に上げると合金コストが高くなりすぎてしまうため、Ceqを0.560%以下とすることが好ましく、0.545%以下とすることがより好ましい。
Ceq: 0.480% or more In order to realize excellent strength due to improved hardenability and improved brittle crack propagation arrestability due to texture development in the extra thick steel plate of the present invention, Ceq represented by formula (1) is adjusted to 0.480% or more. This improves the hardenability of the steel plate, and even at the 1/2 plate thickness position where the cooling rate is the smallest, the steel structure becomes bainite throughout, thereby improving strength. Ceq is preferably 0.495% or more. Note that there is no particular upper limit for Ceq. If Ceq is excessively increased, the alloy cost becomes too high, so Ceq is preferably 0.560% or less, and more preferably 0.545% or less.
 以上が本発明の基本の成分組成であり、残部はFeおよび不可避的不純物である。 The above is the basic composition of the present invention, with the remainder being Fe and unavoidable impurities.
 この基本の成分組成を有し、かつ、上記の式(1)を満足することで、本発明の高強度極厚鋼板は目的とする特性を得られる。  By having this basic composition and satisfying the above formula (1), the high-strength extra-thick steel plate of the present invention can obtain the desired characteristics.
 本発明では、さらに特性を向上させるため、基本の成分組成に加えて、必要に応じて後述のA群およびB群のうちから選ばれた1群または2群を含有することが可能である。なお、以下に示すTi、Nb、Cu、Ni、Cr、Mo、V、W、Co、B、Ca、Mg、REMの各成分は必要に応じて含有できるので、これらの成分は0%であってもよい。 In the present invention, in order to further improve the properties, in addition to the basic composition, it is possible to contain one or two groups selected from Group A and Group B described below as necessary. Note that each of the following components Ti, Nb, Cu, Ni, Cr, Mo, V, W, Co, B, Ca, Mg, and REM can be contained as necessary, so these components may be 0%.
 A群:Ti:0.030%以下、Nb:0.050%以下、Cu:2.00%以下、Ni:2.50%以下、およびCr:2.00%以下のうちから選ばれた1種または2種以上  Group A: One or more selected from Ti: 0.030% or less, Nb: 0.050% or less, Cu: 2.00% or less, Ni: 2.50% or less, and Cr: 2.00% or less
 Ti:0.030%以下
 Tiは、微量の含有により、窒化物、炭化物、あるいは炭窒化物を形成し、結晶粒を微細化して母材靭性を向上させる効果を有する。その効果を得るためには、Ti含有量を0.005%以上にすることが好ましい。一方、Ti含有量が0.030%を超えると、母材および溶接熱影響部の靭性が低下する。そのため、Tiを含有する場合には、Ti含有量は0.030%以下とすることが好ましく、0.025%以下とすることがより好ましい。Ti含有量は、0.010%以上とすることがより好ましく、0.019%以上とすることがさらに好ましい。
Ti: 0.030% or less Ti has the effect of forming nitrides, carbides, or carbonitrides by containing a small amount of Ti, refining the crystal grains, and improving the toughness of the base material. In order to obtain this effect, it is preferable to set the Ti content to 0.005% or more. On the other hand, if the Ti content exceeds 0.030%, the toughness of the base material and the welded heat affected zone decreases. Therefore, when Ti is contained, the Ti content is preferably 0.030% or less, and more preferably 0.025% or less. The Ti content is more preferably 0.010% or more, and even more preferably 0.019% or more.
 Nb:0.050%以下
 Nbは、鋼の焼入れ性を増加させると共に、オーステナイト域の圧延(すなわち熱間圧延)において未再結晶温度域を拡大させる効果を有する。その効果を得るためには、Nb含有量を0.005%以上にすることが好ましい。一方で、Nb含有量が0.050%を超えると、粗大なNbCが析出して、靭性の低下を招く場合がある。そのため、Nbを含有する場合には、Nb含有量は0.050%以下とすることが好ましく、0.040%以下とすることがより好ましい。Nb含有量は、0.010%以上とすることがより好ましく、0.020%以上とすることがさらに好ましい。
Nb: 0.050% or less Nb has the effect of increasing the hardenability of steel and expanding the non-recrystallization temperature range in rolling in the austenite region (i.e., hot rolling). In order to obtain this effect, it is preferable to set the Nb content to 0.005% or more. On the other hand, if the Nb content exceeds 0.050%, coarse NbC may precipitate, resulting in a decrease in toughness. Therefore, when Nb is contained, the Nb content is preferably 0.050% or less, and more preferably 0.040% or less. The Nb content is more preferably 0.010% or more, and even more preferably 0.020% or more.
 Cu:2.00%以下
 Cuは、鋼の焼入れ性を高める元素である。この元素は、圧延後の強度向上に直接寄与する。これとともに、靭性、高温強度、あるいは耐候性などの機能向上のために、Cuを含有させることができる。この元素による上記効果を得るためには、Cu含有量を0.01%以上とするのが好ましい。一方、Cu含有量が2.00%を超えると、溶接性および靭性の劣化や、合金コストの上昇を招く。そのため、Cuを含有する場合には、Cu含有量は2.00%以下とすることが好ましく、1.00%以下とすることがより好ましい。Cu含有量は、0.05%以上とすることがより好ましい。
Cu: 2.00% or less Cu is an element that enhances the hardenability of steel. This element directly contributes to improving the strength after rolling. In addition, Cu can be contained to improve functions such as toughness, high-temperature strength, and weather resistance. In order to obtain the above effects of this element, it is preferable that the Cu content is 0.01% or more. On the other hand, if the Cu content exceeds 2.00%, it will cause deterioration of weldability and toughness and an increase in alloy cost. Therefore, when Cu is contained, the Cu content is preferably 2.00% or less, and more preferably 1.00% or less. It is more preferable that the Cu content is 0.05% or more.
 Ni:2.50%以下
 Niは、鋼の焼入れ性を高める元素である。Niは、圧延後の強度向上に直接寄与する。これとともに、靭性、高温強度、あるいは耐候性などの機能向上のために、Niを含有させることができる。この元素による上記効果を得るためには、Ni含有量を0.01%以上とするのが好ましい。一方、Ni含有量が2.50%を超えると、溶接性および靭性の劣化や、合金コストの上昇を招く。そのため、Niを含有する場合には、Ni含有量を2.50%以下とすることが好ましく、2.00%以下とすることがより好ましい。Ni含有量は、0.10%以上とすることがより好ましい。
Ni: 2.50% or less Ni is an element that enhances the hardenability of steel. Ni directly contributes to improving the strength after rolling. In addition, Ni can be contained to improve functions such as toughness, high-temperature strength, and weather resistance. In order to obtain the above effects of this element, it is preferable that the Ni content is 0.01% or more. On the other hand, if the Ni content exceeds 2.50%, it will cause deterioration of weldability and toughness and an increase in alloy cost. Therefore, when Ni is contained, it is preferable that the Ni content is 2.50% or less, and more preferably 2.00% or less. It is more preferable that the Ni content is 0.10% or more.
 Cr:2.00%以下
 Crは、鋼の焼入れ性を高める元素である。この元素は、圧延後の強度向上に直接寄与する。これとともに、靭性、高温強度、あるいは耐候性などの機能向上のために、Crを含有させることができる。この元素による上記効果を得るには、Cr含有量を0.01%以上とするのが好ましい。一方、Cr含有量が2.00%を超えると、溶接性および靭性の劣化や、合金コストの上昇を招く。そのため、Crを含有する場合には、Cr含有量を2.00%以下とすることが好ましく、1.00%以下とすることがより好ましい。Cr含有量は、0.05%以上とすることがより好ましい。
Cr: 2.00% or less Cr is an element that enhances the hardenability of steel. This element directly contributes to improving the strength after rolling. In addition, Cr can be contained to improve functions such as toughness, high-temperature strength, and weather resistance. In order to obtain the above effects of this element, it is preferable that the Cr content is 0.01% or more. On the other hand, if the Cr content exceeds 2.00%, it will cause deterioration of weldability and toughness and increase in alloy cost. Therefore, when Cr is contained, it is preferable that the Cr content is 2.00% or less, and more preferably 1.00% or less. It is more preferable that the Cr content is 0.05% or more.
 B群:Mo:0.50%以下、V:0.50%以下、W:0.50%以下、Co:0.50%以下、B:0.0100%以下、Ca:0.0100%以下、Mg:0.0100%以下、およびREM:0.0200%以下のうちから選ばれた1種または2種以上  Group B: One or more selected from Mo: 0.50% or less, V: 0.50% or less, W: 0.50% or less, Co: 0.50% or less, B: 0.0100% or less, Ca: 0.0100% or less, Mg: 0.0100% or less, and REM: 0.0200% or less
 Mo:0.50%以下
 Moは、鋼の焼入れ性を高める元素である。この元素は、圧延後の強度向上に直接寄与する。これとともに、靭性、高温強度、あるいは耐候性などの機能向上のために、Moを含有させることができる。この元素による上記効果を得るには、Mo含有量を0.01%以上とするのが好ましい。一方、Mo含有量が0.50%を超えると、溶接性および靭性の劣化や、合金コストの上昇を招く。そのため、Moを含有する場合には、Mo含有量を0.50%以下とすることが好ましく、0.30%以下とすることがより好ましい。Mo含有量は、0.03%以上とすることがより好ましい。
Mo: 0.50% or less Mo is an element that enhances the hardenability of steel. This element directly contributes to improving the strength after rolling. In addition, Mo can be contained to improve functions such as toughness, high-temperature strength, and weather resistance. In order to obtain the above effects of this element, it is preferable that the Mo content is 0.01% or more. On the other hand, if the Mo content exceeds 0.50%, it will cause deterioration of weldability and toughness and an increase in alloy cost. Therefore, when Mo is contained, it is preferable that the Mo content is 0.50% or less, and more preferably 0.30% or less. It is more preferable that the Mo content is 0.03% or more.
 V:0.50%以下
 Vは、V(CN)として析出する析出強化によって、鋼の強度を向上させる元素である。この効果は、V含有量を0.001%以上にすることにより発揮される。しかし、V含有量が0.50%を超えると、靭性が低下する場合がある。そのため、Vを含有する場合には、V含有量を0.50%以下とすることが好ましく、0.30%以下とすることがより好ましい。V含有量は、0.005%以上とすることがより好ましい。
V: 0.50% or less V is an element that improves the strength of steel by precipitation strengthening, which is precipitated as V(CN). This effect is exhibited by making the V content 0.001% or more. However, if the V content exceeds 0.50%, the toughness may decrease. Therefore, when V is contained, the V content is preferably 0.50% or less, and more preferably 0.30% or less. The V content is more preferably 0.005% or more.
 W:0.50%以下
 Wは、鋼板の強度を向上させる作用を有する元素である。この効果を得るためにはW含有量を0.001%以上とすることが好ましい。一方、W含有量が0.50%を超えると、溶接性の劣化や合金コストの上昇を招く。そのため、Wを含有する場合には、W含有量を0.50%以下とすることが好ましく、0.30%以下とすることがより好ましい。W含有量は、0.005%以上とすることがより好ましい。
W: 0.50% or less W is an element that has the effect of improving the strength of the steel plate. In order to obtain this effect, the W content is preferably 0.001% or more. On the other hand, if the W content exceeds 0.50%, it leads to deterioration of weldability and an increase in alloy cost. Therefore, when W is contained, the W content is preferably 0.50% or less, and more preferably 0.30% or less. The W content is more preferably 0.005% or more.
 Co:0.50%以下
 Coは、鋼板の強度を向上させる作用を有する元素である。この効果を得るためにはCo含有量を0.001%以上とすることが好ましい。一方、Co含有量が0.50%を超えると、溶接性の劣化や合金コストの上昇を招く。そのため、Coを含有する場合には、Co含有量を0.50%以下とすることが好ましく、0.30%以下とすることがより好ましい。Co含有量は、0.005%以上とすることがより好ましい。
Co: 0.50% or less Co is an element that has the effect of improving the strength of the steel plate. In order to obtain this effect, the Co content is preferably 0.001% or more. On the other hand, if the Co content exceeds 0.50%, it leads to deterioration of weldability and an increase in alloy cost. Therefore, when Co is contained, the Co content is preferably 0.50% or less, and more preferably 0.30% or less. The Co content is more preferably 0.005% or more.
 B:0.0100%以下
 Bは、微量で鋼の焼入れ性を高める元素である。しかし、0.0100%を超えてBを含有すると溶接部の靭性を低下させる。そのため、Bを含有する場合には、B含有量は0.0100%以下とすることが好ましく、0.0030%以下とすることがより好ましい。鋼板の強度を向上させるため、B含有量は0.0001%以上とすることが好ましく、0.0005%以上とすることがより好ましい。
B: 0.0100% or less B is an element that enhances the hardenability of steel in small amounts. However, if the B content exceeds 0.0100%, the toughness of the welded part is reduced. Therefore, when B is contained, the B content is preferably 0.0100% or less, and more preferably 0.0030% or less. In order to improve the strength of the steel plate, the B content is preferably 0.0001% or more, and more preferably 0.0005% or more.
 Ca:0.0100%以下
 Caは、溶接熱影響部の組織を微細化し、靭性を向上させる。この効果を得るために、Caを含有する場合には、Ca含有量を0.0005%以上とすることが好ましく、0.0020%以上とすることがより好ましい。一方、Ca含有量が0.0100%を超えると、粗大な介在物を形成し、靭性を劣化させる。そのため、Caを含有する場合には、Ca含有量を0.0100%以下とすることが好ましく、0.0050%以下とすることがより好ましい。
Ca: 0.0100% or less Ca refines the structure of the weld heat affected zone and improves toughness. In order to obtain this effect, when Ca is contained, the Ca content is preferably 0.0005% or more, more preferably 0.0020% or more. On the other hand, when the Ca content exceeds 0.0100%, coarse inclusions are formed, which deteriorates toughness. Therefore, when Ca is contained, the Ca content is preferably 0.0100% or less, more preferably 0.0050% or less.
 Mg:0.0100%以下
 Mgは、Caと同様、溶接熱影響部の組織を微細化し、靭性を向上させる。この効果を得るために、Mgを含有する場合には、Mg含有量を0.0005%以上とすることが好ましく、0.0020%以上とすることがより好ましい。一方、Mg含有量が0.0100%を超えると、粗大な介在物を形成し、靭性を劣化させる。そのため、Mgを含有する場合には、Mg含有量を0.0100%以下とすることが好ましく、0.0050%以下とすることがより好ましい。
Mg: 0.0100% or less Like Ca, Mg refines the structure of the welded heat affected zone and improves toughness. In order to obtain this effect, when Mg is contained, the Mg content is preferably 0.0005% or more, and more preferably 0.0020% or more. On the other hand, when the Mg content exceeds 0.0100%, coarse inclusions are formed, which deteriorates toughness. Therefore, when Mg is contained, the Mg content is preferably 0.0100% or less, and more preferably 0.0050% or less.
 REM:0.0200%以下
 REM(希土類金属)は、Caと同様、溶接熱影響部の組織を微細化し、靭性を向上させる。この効果を得るために、REMを含有する場合には、REM有量を0.0005%以上とすることが好ましく、0.0015%以上とすることがより好ましい。一方、REM含有量が0.0200%を超えると、粗大な介在物を形成し、靭性を劣化させる。そのため、REMを含有する場合には、REM含有量を0.0200%以下とすることが好ましく、0.0100%以下とすることがより好ましい。
REM: 0.0200% or less Like Ca, REM (rare earth metal) refines the structure of the weld heat affected zone and improves toughness. In order to obtain this effect, when REM is contained, the REM content is preferably 0.0005% or more, more preferably 0.0015% or more. On the other hand, when the REM content exceeds 0.0200%, coarse inclusions are formed, which deteriorates toughness. Therefore, when REM is contained, the REM content is preferably 0.0200% or less, more preferably 0.0100% or less.
 <集合組織>
 [板厚1/2位置における圧延面での(211)面のX線強度比:1.70以上]
 板厚が50mm以上100mm以下の極厚鋼板において、脆性き裂伝播停止特性を向上させるためには、板厚1/2位置における圧延面での(211)面のX線強度比を1.70以上とする必要がある。(211)面のX線強度比が1.70未満の場合、脆性亀裂が直進的に進展しやすくなり、その結果、板厚の脆性き裂伝播停止特性が低下する。そのため、板厚1/2位置における圧延面での(211)面のX線強度比を1.70以上とする。脆性き裂伝播停止特性をさらに高めるためには、上記の(211)面のX線強度比は、1.80以上とすることが好ましく、1.90以上とすることがより好ましい。
なお、上記の(211)面のX線強度比の上限は特に規定しない。圧延能率および製造負荷の観点から、上記の(211)面のX線強度比は2.50以下とすることが好ましく、2.25以下とすることがより好ましい。
<Texture>
[X-ray intensity ratio of the (211) plane on the rolled surface at the 1/2 position of the plate thickness: 1.70 or more]
In order to improve the brittle crack propagation arrestability of an extra-thick steel plate having a plate thickness of 50 mm or more and 100 mm or less, it is necessary to make the X-ray intensity ratio of the (211) plane on the rolled surface at the plate thickness 1/2 position 1.70 or more. If the X-ray intensity ratio of the (211) plane is less than 1.70, the brittle crack tends to progress linearly, and as a result, the brittle crack propagation arrestability of the plate thickness is reduced. Therefore, the X-ray intensity ratio of the (211) plane on the rolled surface at the plate thickness 1/2 position is made 1.70 or more. In order to further improve the brittle crack propagation arrestability, the X-ray intensity ratio of the (211) plane is preferably made 1.80 or more, more preferably 1.90 or more.
The upper limit of the X-ray intensity ratio of the (211) plane is not particularly specified. From the viewpoints of rolling efficiency and production load, the X-ray intensity ratio of the (211) plane is preferably 2.50 or less, and more preferably 2.25 or less.
 ここで、(211)面のX線強度比とは、対象材(高強度極厚鋼板)の(211)結晶面の集積度を表す数値である。(211)面のX線強度比は、後述の実施例に記載のように、対象材の(211)面の反射のX線回折強度(I(211))と、集合組織のないランダムな標準試料の(211)面の反射のX線回折強度(I0(211))との比(I(211)/I0(211))として算出される。 Here, the X-ray intensity ratio of the (211) plane is a value that represents the degree of integration of the (211) crystal plane of the target material (high-strength extra-thick steel plate). The X-ray intensity ratio of the (211) plane is calculated as the ratio (I(211)/I0 (211)) of the X-ray diffraction intensity of the reflection of the (211) plane of the target material (I( 211)) to the X-ray diffraction intensity of the reflection of the (211) plane of a random standard sample without texture (I0 ( 211) ) , as described in the Examples below.
 <板厚1/2位置の鋼組織>
 本発明では、板厚1/2位置における鋼組織は、ベイナイト相の面積分率が85~100%およびフェライト相の面積分率が0~15%からなる混合組織であり、かつ、方位差15°以上の粒界に囲まれたベイナイトの結晶粒の平均粒径が20μm以下であり、かつ、鋼板中心部に残存する最大ポロシティの円相当径が200μm以下である。
<Steel structure at 1/2 plate thickness>
In the present invention, the steel structure at the 1/2 sheet thickness position is a mixed structure having an area fraction of 85 to 100% of bainite phase and an area fraction of 0 to 15% of ferrite phase, the average grain size of bainite crystal grains surrounded by grain boundaries having an orientation difference of 15° or more is 20 μm or less, and the circle equivalent diameter of the maximum porosity remaining in the center of the steel sheet is 200 μm or less.
 [ベイナイト相の面積分率:85~100%]
 本発明では、板厚1/2位置におけるベイナイト相の面積分率を85%以上とする必要がある。鋼組織をこのように制御することにより脆性き裂伝播特性に有利な(211)面方位を高めることができる。なお、上記ベイナイト相の面積分率は、90%以上とすることがより好ましい。上記ベイナイト相の面積分率の上限は、100%とする。
[Area fraction of bainite phase: 85 to 100%]
In the present invention, the area fraction of the bainite phase at the 1/2 sheet thickness position must be 85% or more. By controlling the steel structure in this way, it is possible to increase the (211) plane orientation, which is advantageous for brittle crack propagation properties. It is more preferable that the area fraction of the bainite phase is 90% or more. The upper limit of the area fraction of the bainite phase is 100%.
 [板厚1/2位置におけるフェライト相の面積分率:0~15%]
 本発明の高強度極厚鋼板は、板厚1/2位置におけるフェライト相の面積分率が0~15%である必要がある。フェライト相の面積分率が15%を超える場合、硬質な組織の分率が低下し、かつ(211)面の集合組織が十分に発達しないため、強度および脆性き裂伝播停止特性が低下する。したがって、板厚1/2位置におけるフェライト相の面積分率を15%以下とする。強度および脆性き裂伝播停止特性をさらに高めるためには、上記フェライト相の面積分率は、10%以下とすることが好ましく、5%以下とすることがより好ましい。
[Area fraction of ferrite phase at 1/2 sheet thickness position: 0 to 15%]
The high-strength extra-thick steel plate of the present invention needs to have an area fraction of ferrite phase at 1/2 thickness position of 0 to 15%. If the area fraction of ferrite phase exceeds 15%, the fraction of hard structure decreases and the texture of the (211) plane does not develop sufficiently, resulting in a decrease in strength and brittle crack propagation arrestability. Therefore, the area fraction of ferrite phase at 1/2 thickness position is set to 15% or less. In order to further increase the strength and brittle crack propagation arrestability, the area fraction of the ferrite phase is preferably set to 10% or less, more preferably 5% or less.
 なお、本発明における面積分率は、後述の実施例に記載の方法で測定することができる。 The area fraction in the present invention can be measured by the method described in the Examples below.
 [板厚1/2位置におけるベイナイトの結晶粒の平均粒径:20μm以下]
 本発明の高強度極厚鋼板は、靭性を向上させ、かつ、脆性き裂伝播停止特性を向上させるために、板厚1/2位置における鋼組織のベイナイトの結晶粒の平均粒径(ベイナイトの平均結晶粒径)を20μm以下とする必要がある。上記の平均粒径が20μm超えの場合、粒径粗大化に伴い結晶粒の劈開破面の破面単位が大きくなるため、靭性および脆性き裂伝播停止特性が低下し、その結果、板厚の脆性き裂伝播停止特性が低下する。上記の平均粒径は、18μm以下が好ましく、15μm以下がより好ましい。
[Average grain size of bainite grains at 1/2 position of plate thickness: 20 μm or less]
In order to improve the toughness and the brittle crack arrestability of the high-strength extra-thick steel plate of the present invention, the average grain size of the bainite grains in the steel structure at the 1/2 position of the plate thickness (average grain size of bainite) must be 20 μm or less. If the average grain size exceeds 20 μm, the grain size becomes coarse and the fracture surface unit of the cleavage fracture surface of the grain becomes large, so that the toughness and the brittle crack arrestability are reduced, and as a result, the brittle crack arrestability of the plate thickness is reduced. The average grain size is preferably 18 μm or less, and more preferably 15 μm or less.
 一方、上記の平均粒径は小さいほど靭性および脆性き裂伝播停止特性が有利となるため、その下限は特に限定されない。圧延能率の観点から、上記の平均粒径は1μmが下限値となる。したがって、上記の平均粒径は、1μm以上が好ましく、3μm以上がより好ましい。 On the other hand, the smaller the average grain size, the more advantageous the toughness and brittle crack propagation arrest properties, so there is no particular limit to the lower limit. From the viewpoint of rolling efficiency, the lower limit of the average grain size is 1 μm. Therefore, the average grain size is preferably 1 μm or more, and more preferably 3 μm or more.
 ここで「結晶粒の粒径」とは、隣接する結晶粒との方位差が15°以上の粒界(大角粒界)で囲まれた結晶粒の円相当直径として定義される。また、上記の「結晶粒の平均粒径」とは、板厚1/2位置における結晶粒の粒径の平均値を指す。 Here, "grain size" is defined as the circle-equivalent diameter of a grain surrounded by a grain boundary (high-angle grain boundary) with an orientation difference of 15° or more with adjacent grains. In addition, the above "average grain size" refers to the average grain size at the 1/2 position of the plate thickness.
 なお、上記板厚1/2位置における結晶粒の平均粒径は、後述する実施例に記載した方法で測定することができる。 The average grain size at the 1/2 plate thickness position can be measured using the method described in the examples below.
 [鋼板中心部に残存する最大ポロシティの円相当径:200μm以下]
 本発明の高強度極厚鋼板は、鋼板中心部(板厚1/2位置)に残存する最大ポロシティの円相当径が200μm以下である必要がある。最大ポロシティの円相当径が200μm超えの場合、ポロシティが破壊起点となり靭性が著しく低下する。したがって、板厚1/2位置における残存する最大ポロシティの円相当径は200μm以下とする。靭性をさらに高めるためには、上記の円相当径は、150μm以下とすることが好ましく、100μm以下とすることがより好ましい。なお、上記の円相当径の下限は特に規定しない。圧延能率の観点から、上記の円相当径は25μm以上とすることが好ましく、50μm以上とすることがより好ましい。
[Circle equivalent diameter of maximum porosity remaining in the center of steel sheet: 200 μm or less]
The high-strength extra-thick steel plate of the present invention needs to have a circle-equivalent diameter of the maximum porosity remaining in the center of the steel plate (at 1/2 the plate thickness position) of 200 μm or less. If the circle-equivalent diameter of the maximum porosity exceeds 200 μm, the porosity becomes the fracture origin and the toughness is significantly reduced. Therefore, the circle-equivalent diameter of the maximum porosity remaining at the 1/2 plate thickness position is set to 200 μm or less. In order to further increase the toughness, the circle-equivalent diameter is preferably set to 150 μm or less, and more preferably set to 100 μm or less. The lower limit of the circle-equivalent diameter is not particularly specified. From the viewpoint of rolling efficiency, the circle-equivalent diameter is preferably set to 25 μm or more, and more preferably set to 50 μm or more.
 ここで、上述のように、より一層内質を良好とするには、上記の最大ポロシティの円相当径に加えて、鋼板中心部に残存する最大ポロシティの板厚方向の長さが100μm以下となることが、有効である。その理由は、次の通りである。 As mentioned above, in order to further improve the internal quality, it is effective to make the length in the plate thickness direction of the maximum porosity remaining in the center of the steel plate 100 μm or less, in addition to the circle equivalent diameter of the maximum porosity mentioned above. The reasons for this are as follows.
 本発明の高強度極厚鋼板は、鋼板中心部に残存する最大ポロシティの板厚方向の長さを100μm以下とすることが望ましい。最大ポロシティの板厚方向の長さが100μm超えの場合、ポロシティが破壊起点となり靭性が著しく低下するおそれがある。靭性をさらに高めるためには、上記の板厚方向の長さは、75μm以下とすることがより好ましく、50μm以下とすることがさらに好ましい。なお、上記の板厚方向の長さの下限は特に規定しない。圧延能率の観点から、上記の板厚方向の長さは10μm以上とすることが好ましく、25μm以上とすることがより好ましい。上記の板厚1/2位置における最大ポロシティの板厚方向の長さは、後述する実施例に記載した方法で測定することができる。なお、この「最大ポロシティの板厚方向の長さ」と上記の「最大ポロシティの円相当径」とは、異なるものである。前者はポロシティの欠陥寸法に関する指標であり、後者はポロシティの形状に関する指標である。 In the high-strength extra-thick steel plate of the present invention, it is desirable that the length in the thickness direction of the maximum porosity remaining in the center of the steel plate is 100 μm or less. If the length in the thickness direction of the maximum porosity exceeds 100 μm, the porosity may become the starting point of fracture, resulting in a significant decrease in toughness. In order to further increase toughness, the length in the thickness direction is more preferably 75 μm or less, and even more preferably 50 μm or less. There is no particular lower limit for the length in the thickness direction. From the viewpoint of rolling efficiency, the length in the thickness direction is preferably 10 μm or more, and more preferably 25 μm or more. The length in the thickness direction of the maximum porosity at the 1/2 position of the plate thickness can be measured by the method described in the examples below. Note that the "length in the thickness direction of the maximum porosity" and the "circle equivalent diameter of the maximum porosity" are different. The former is an indicator of the defect size of the porosity, and the latter is an indicator of the shape of the porosity.
 なお、本発明では、上述の鋼組織及び集合組織に加えて、さらに、以下に説明する構成を有していてもよい。 In addition to the above-mentioned steel structure and texture, the present invention may also have the configurations described below.
 [板厚1/2位置における偏析粒の個数密度](好適条件)
 厚さ100μm以上の偏析粒の1mm2あたりの個数:2.0個以下
 100μm以上の大きな偏析粒は靭性を劣化させるため、本発明の高強度極厚鋼板は、板厚1/2位置における厚さ100μm以上の偏析粒の個数密度が2.0個/mm2以下であることが望ましい。なお、偏析粒は板厚方向から見ると圧延方向に引き伸ばされた楕円型をしていることから、その楕円の板厚方向の長さを、本発明では「厚さ」と称する。
[Number density of segregated grains at 1/2 sheet thickness position] (preferred conditions)
Number of segregation grains of 100 μm or more per mm2 : 2.0 or less Large segregation grains of 100 μm or more deteriorate toughness, so in the high-strength extra thick steel plate of the present invention, the number density of segregation grains of 100 μm or more at the 1/2 position of the plate thickness is desirably 2.0 or less per mm2 . Note that, since the segregation grains have an elliptical shape stretched in the rolling direction when viewed from the plate thickness direction, the length of the ellipse in the plate thickness direction is referred to as the "thickness" in the present invention.
 また、偏析粒の個数密度が2.0個/mm2を超える場合、破壊起点となる偏析粒が増え、脆性破壊しやすくなり、靭性が低下するおそれがある。強度および脆性き裂伝播停止特性をさらに高めるためには、上記の個数密度は、1.5個/mm2以下とすることが好ましく、1.0個/mm2以下とすることがより好ましい。 Furthermore, if the number density of the segregated grains exceeds 2.0 grains/ mm2 , the number of segregated grains that can become fracture initiation points increases, making the material more susceptible to brittle fracture and reducing toughness. In order to further increase the strength and brittle crack propagation arrestability, the number density is preferably 1.5 grains/ mm2 or less, and more preferably 1.0 grains/ mm2 or less.
 上記した偏析粒の厚さ、および個数密度は、後述する実施例に記載した方法で測定することができる。 The thickness and number density of the segregated grains described above can be measured using the method described in the examples below.
 <強度>
 [板厚1/2位置における降伏強度:500MPa以上]
 本発明の高強度極厚鋼板は、板厚1/2位置から採取したΦ14mmのJIS 14A号引張試験片を用いて測定した降伏強度が500MPa以上である。24,000TEU級を上回る大型コンテナ船の船体強度確保の観点から高強度かつ厚肉な鋼板を使用することが必要である。上述の大型コンテナ船に用いる観点より、極厚鋼板の板厚は50mm以上100mm未満とする。
<Strength>
[Yield strength at 1/2 plate thickness: 500 MPa or more]
The high-strength extra-thick steel plate of the present invention has a yield strength of 500 MPa or more, measured using a JIS 14A tensile test piece with a diameter of 14 mm taken from the 1/2 position of the plate thickness. From the viewpoint of ensuring the hull strength of large container ships exceeding the 24,000 TEU class, it is necessary to use a high-strength and thick steel plate. From the viewpoint of use in the above-mentioned large container ships, the plate thickness of the extra-thick steel plate is set to 50 mm or more and less than 100 mm.
 <シャルピー破面遷移温度>
 [板厚1/2位置におけるvTrs:-105℃以下]
 降伏強度が500MPa以上の高強度極厚鋼板において、脆性き裂伝播停止特性を向上させるためには、板厚1/2位置におけるvTrsを-105℃以下とする必要がある。vTrs:-105℃よりも遷移温度が高い場合(すなわち、vTrsが-105℃を超える場合)には、一方向にき裂が伝播しやすくなり、その結果、板厚の脆性き裂伝播停止特性が低下する。そのため、本発明の高強度極厚鋼板は、板厚1/2位置におけるvTrsを-105℃以下とする。脆性き裂伝播停止特性をさらに高めるためには、vTrsを-110℃以下とすることが好ましく、vTrsを-120℃以下とすることがより好ましい。
<Charpy fracture transition temperature>
[vTrs at 1/2 plate thickness: -105°C or less]
In order to improve the brittle crack propagation arrestability of a high-strength extra-thick steel plate having a yield strength of 500 MPa or more, it is necessary to set vTrs at the 1/2 plate thickness position to -105°C or less. vTrs: When the transition temperature is higher than -105°C (i.e., when vTrs exceeds -105°C), cracks tend to propagate in one direction, and as a result, the brittle crack propagation arrestability of the plate thickness decreases. Therefore, in the high-strength extra-thick steel plate of the present invention, vTrs at the 1/2 plate thickness position is set to -105°C or less. In order to further improve the brittle crack propagation arrestability, it is preferable to set vTrs to -110°C or less, and more preferably to set vTrs to -120°C or less.
 なお、vTrsの下限は特に規定しない。圧延能率の観点から、上記vTrsは-160℃以上とすることが好ましく、-150℃以上とすることがより好ましい。 Note that there is no particular lower limit for vTrs. From the viewpoint of rolling efficiency, the vTrs is preferably -160°C or higher, and more preferably -150°C or higher.
 vTrsは、後述の実施例に記載のように、高強度極厚鋼板の板厚1/2位置からJIS 4号の衝撃試験片を採取し、シャルピー試験を実施することで評価できる。 vTrs can be evaluated by taking a JIS No. 4 impact test specimen from the 1/2 position of the plate thickness of a high-strength extra-thick steel plate and conducting a Charpy test, as described in the examples below.
 <脆性き裂伝播停止特性>
 [Kca(-10℃)の値:9000N/mm3/2以上]
 降伏強度が500MPa以上の高強度極厚鋼板は、船体の脆性き裂伝播を防止するために、Kca(-10℃)の値を9000N/mm3/2以上とする必要がある。脆性き裂伝播停止特性をさらに高めるためには、-10℃におけるKca値を10000N/mm3/2以上とすることが好ましく、11000N/mm3/2以上とすることがより好ましい。
<Brittle crack propagation arrest properties>
[Kca (-10°C) value: 9000 N/mm3 /2 or more]
High-strength extra thick steel plate with a yield strength of 500 MPa or more must have a Kca (-10°C) value of 9000 N/mm3 /2 or more to prevent brittle crack propagation in the hull. To further improve brittle crack propagation arrestability, the Kca value at -10°C is preferably 10000 N/mm3 /2 or more, and more preferably 11000 N/mm3 /2 or more.
 なお、上記Kca値の下限は特に規定しない。圧延能率の観点から、-10℃におけるKca値は25000N/mm3/2以下とすることが好ましく、20000N/mm3/2以下とすることがより好ましい。
Kca値は、後述の実施例に記載のように、温度勾配型標準ESSO試験することで評価できる。
There is no particular lower limit for the Kca value. From the viewpoint of rolling efficiency, the Kca value at -10°C is preferably 25000 N/mm 3/2 or less, and more preferably 20000 N/mm 3/2 or less.
The Kca value can be evaluated by a standard temperature gradient ESSO test as described in the Examples below.
 以上説明したように、上記の成分組成の調整や集合組織や板厚1/2位置の鋼組織の微細化により、本発明の高強度極厚鋼板は、高強度と、高い(優れた)脆性き裂伝播停止特性および靭性とを有する。 As explained above, by adjusting the composition of the components and refining the texture and the steel structure at the 1/2 plate thickness position, the high-strength extra-thick steel plate of the present invention has high strength and high (excellent) brittle crack propagation arrest properties and toughness.
 次に、本発明の一実施形態における高強度極厚鋼板の製造方法について説明する。
本発明の高強度極厚鋼板は、上述の成分組成を有する鋼素材に対し、以下に説明する特定の条件で加熱工程、熱間圧延工程および冷却工程を行うことによって、製造される。
Next, a method for producing a high-strength extra thick steel plate according to one embodiment of the present invention will be described.
The high-strength extra thick steel plate of the present invention is produced by subjecting a steel material having the above-mentioned composition to a heating step, a hot rolling step, and a cooling step under specific conditions described below.
 以下に、各工程について詳細に説明する。各工程における温度は、別段の記載がない限り、鋼素材および熱延板の板厚1/2位置における温度を指すものとする。例えば、鋼板断面内の温度分布を伝熱解析により計算し、その結果を鋼板の表面温度によって補正することで求めることができる。 Each process is explained in detail below. Unless otherwise specified, the temperature in each process refers to the temperature at the 1/2 plate thickness position of the steel material and hot-rolled plate. For example, it can be determined by calculating the temperature distribution in the cross section of the steel plate using heat transfer analysis and correcting the result by the surface temperature of the steel plate.
 <加熱工程>
 まず、上述の成分組成を有する鋼素材(スラブ)を、1000~1200℃の加熱温度に加熱する。
<Heating process>
First, a steel material (slab) having the above-mentioned composition is heated to a heating temperature of 1000 to 1200°C.
 [鋼素材の加熱温度:1000~1200℃]
 鋼素材の加熱温度が1000℃未満では、加熱温度が低すぎて変形抵抗が高くなり、熱間圧延機への負荷が増大するので、後に続く熱間圧延が困難になる。一方、鋼素材の加熱温度が1200℃を超える高温では、オーステナイト粒が粗大化し、その結果、靭性が低下し、所望の脆性亀裂伝播停止特性が得られない。また、鋼板の強度が低下する。さらに、酸化が著しくなって酸化ロスが増大し、歩留りが低下するおそれがある。このような理由から、加熱温度を1200℃以下とする。なお、上記の加熱温度は、1050℃以上が好ましく、1080℃以上がより好ましい。上記の加熱温度は、1150℃以下が好ましく、1130℃以下がより好ましい。
[Heating temperature of steel material: 1000-1200°C]
If the heating temperature of the steel material is less than 1000°C, the heating temperature is too low, resulting in high deformation resistance and an increased load on the hot rolling machine, making the subsequent hot rolling difficult. On the other hand, if the heating temperature of the steel material is high and exceeds 1200°C, the austenite grains become coarse, resulting in a decrease in toughness and a failure to obtain the desired brittle crack propagation arrest characteristic. In addition, the strength of the steel plate decreases. Furthermore, oxidation becomes severe, increasing oxidation loss and possibly decreasing yield. For these reasons, the heating temperature is set to 1200°C or less. The above heating temperature is preferably 1050°C or more, more preferably 1080°C or more. The above heating temperature is preferably 1150°C or less, more preferably 1130°C or less.
 <熱間圧延工程>
 次いで、加熱された鋼素材に、板厚1/2位置における圧延開始温度:(Ar3点+100)℃以上、板厚1/2位置における温度がオーステナイト再結晶温度域での累積圧下率:25.0%以上、板厚1/2位置における温度がオーステナイト未再結晶温度域での累計圧下率:50.0%以上、および板厚1/2位置における圧延終了温度:Ar3点以上となる条件、かつ、スラブの厚みを200mm以上とし、最終製品の板厚に対するスラブの厚みの比率を表す圧下比:4.00以上となる条件で、熱間圧延を施す。
<Hot rolling process>
Next, the heated steel material is hot rolled under the following conditions: a rolling start temperature at the 1/2 thickness position: ( Ar3 point + 100)°C or higher; a cumulative reduction rate in the austenite recrystallization temperature range at the 1/2 thickness position: 25.0% or higher; a cumulative reduction rate in the austenite non-recrystallization temperature range at the 1/2 thickness position: 50.0% or higher; and a rolling end temperature at the 1/2 thickness position: Ar3 point or higher, the slab thickness is 200 mm or more, and the reduction ratio, which represents the ratio of the slab thickness to the plate thickness of the final product, is 4.00 or more.
 [圧延開始温度:(Ar3点+100)℃以上]
 上述の加熱工程で加熱された鋼素材を熱間圧延するに際し、板厚1/2位置における熱間圧延を開始する温度が(Ar3点+100)℃未満では、熱間圧延工程終了後の熱延板において再結晶が十分に起こらない。そのため、オーステナイト粒径が細かくならず、靭性が低下する。その結果、所望の脆性亀裂伝播停止特性が得られない。したがって、上記の圧延開始温度は(Ar3点+100)℃以上とする。後述の未再結晶領域において熱間圧延を行う時間を確保する観点からは、上記の圧延開始温度は(Ar3点+150)℃以上とすることが好ましく、(Ar3点+200)℃以上とすることがより好ましい。
[Rolling start temperature: ( Ar3 point + 100) ° C. or higher]
When hot rolling the steel material heated in the above-mentioned heating process, if the temperature at which hot rolling is started at the 1/2 plate thickness position is less than ( Ar3 point + 100) ° C., recrystallization does not occur sufficiently in the hot-rolled plate after the hot rolling process is completed. Therefore, the austenite grain size does not become fine, and the toughness decreases. As a result, the desired brittle crack propagation arrest property is not obtained. Therefore, the above-mentioned rolling start temperature is set to ( Ar3 point + 100) ° C. or higher. From the viewpoint of securing the time to perform hot rolling in the non-recrystallized region described later, the above-mentioned rolling start temperature is preferably set to ( Ar3 point + 150) ° C. or higher, and more preferably set to ( Ar3 point + 200) ° C. or higher.
 なお、上記の圧延開始温度の上限は、上述した鋼素材の加熱温度に従えばよい。すなわち、圧延開始温度は、1150℃以下とすることが好ましく、1130℃以下とすることがより好ましく、1000℃以下とすることがさらに好ましい。 The upper limit of the rolling start temperature should be in accordance with the heating temperature of the steel material described above. That is, the rolling start temperature is preferably 1150°C or less, more preferably 1130°C or less, and even more preferably 1000°C or less.
 なお、Ar3点(「Ar3変態点」とも称する)(℃)は、以下の式(3)にしたがって求めることができる。
Ar3点(℃)=910-273×C-74×Mn-57×Ni-16×Cr-9×Mo-5×Cu …(3)
ここで、式(3)中、各元素記号は該元素の鋼中含有量(質量%)を表し、含有されない元素については0とする。
The Ar3 point (also referred to as the " Ar3 transformation point") (°C) can be calculated according to the following formula (3).
Ar 3 point (°C) = 910 - 273 x C - 74 x Mn - 57 x Ni - 16 x Cr - 9 x Mo - 5 x Cu ... (3)
In formula (3), each element symbol represents the content (mass%) of the corresponding element in the steel, and elements that are not contained are represented as 0.
 [オーステナイト再結晶温度域での累積圧下率:25.0%以上]
 板厚1/2位置における温度がオーステナイト再結晶温度域での累積圧下率を25.0%以上とする熱間圧延を行う。この温度域での累積圧下率が25.0%未満であると、オーステナイトの細粒化が不十分であり、靭性が向上せず、その結果、板厚1/2位置におけるシャルピー破面遷移温度:-105℃以下が達成されない。また、鋼板内部の空隙を圧着するのに有効な高温域での圧下が取れず、その結果、鋼板内部に欠陥が残存したままになってしまう。この温度域での累積圧下率は、好ましくは40.0%以上であり、より好ましくは50.0%以上であり、さらに好ましくは55.0%以上である。
[Cumulative reduction in austenite recrystallization temperature range: 25.0% or more]
Hot rolling is performed such that the cumulative reduction in the austenite recrystallization temperature range at the temperature at 1/2 the plate thickness is 25.0% or more. If the cumulative reduction in this temperature range is less than 25.0%, the austenite grains are not sufficiently refined, and the toughness is not improved, and as a result, the Charpy fracture transition temperature at the 1/2 plate thickness position: -105°C or less is not achieved. In addition, reduction in the high temperature range effective for pressing the voids inside the steel plate cannot be achieved, and as a result, defects remain inside the steel plate. The cumulative reduction in this temperature range is preferably 40.0% or more, more preferably 50.0% or more, and even more preferably 55.0% or more.
 この温度域で累積圧下率の上限は特に限定されない。上述の細粒化の向上効果が飽和するため、この温度域での累積圧下率は、75.0%以下とすることが好ましく、70.0%以下とすることがより好ましく、65.0%以下とすることがさらに好ましく、60.0%以下とすることがさらに一層好ましい。 The upper limit of the cumulative rolling reduction in this temperature range is not particularly limited. Since the effect of improving grain refinement described above becomes saturated, the cumulative rolling reduction in this temperature range is preferably 75.0% or less, more preferably 70.0% or less, even more preferably 65.0% or less, and even more preferably 60.0% or less.
 なお、本発明の成分組成の場合、上記の累積圧下率は、1100~950℃の温度域での累積圧下率を25.0%以上とすることが好ましい。 In the case of the component composition of the present invention, the cumulative rolling reduction is preferably 25.0% or more in the temperature range of 1100 to 950°C.
 [オーステナイト未再結晶温度域での累積圧下率:50.0%以上]
 さらに、板厚1/2位置における温度がオーステナイト未再結晶温度域にあるときの累積圧下率を50.0%以上とする熱間圧延を行う。この温度域での累積圧下率を50.0%以上とすることにより、オーステナイト相を圧延する時に発達した圧延集合組織が、オーステナイトからベイナイトに変態する。この時に、バリアント選択によって選択された滑り系にそって相変態することで、板厚1/2位置における圧延面での(211)面のX線強度比が1.70以上となる集合組織を得られる。一方、この温度域での累積圧下率が50.0%未満であると、ベイナイトの結晶粒の微細化が不十分となり、板厚1/2位置におけるシャルピー破面遷移温度(vTrs):-105℃以下が達成されない。また、板厚1/2位置における圧延面での(211)面のX線強度比が1.70以上となる集合組織も得られない。この温度域での累積圧下率は、好ましくは55%以上であり、より好ましくは60%以上である。
[Cumulative reduction in austenite non-recrystallization temperature range: 50.0% or more]
Furthermore, hot rolling is performed with a cumulative reduction of 50.0% or more when the temperature at the 1/2 thickness position is in the austenite non-recrystallization temperature range. By setting the cumulative reduction in this temperature range to 50.0% or more, the rolling texture developed when rolling the austenite phase is transformed from austenite to bainite. At this time, by performing phase transformation along the slip system selected by variant selection, a texture is obtained in which the X-ray intensity ratio of the (211) plane on the rolled surface at the 1/2 thickness position is 1.70 or more. On the other hand, if the cumulative reduction in this temperature range is less than 50.0%, the refinement of the bainite crystal grains becomes insufficient, and the Charpy fracture transition temperature (vTrs): -105°C or less at the 1/2 thickness position is not achieved. In addition, a texture in which the X-ray intensity ratio of the (211) plane on the rolled surface at the 1/2 thickness position is 1.70 or more is not obtained. The cumulative rolling reduction in this temperature range is preferably 55% or more, and more preferably 60% or more.
 この温度域での累積圧下率の上限は特に限定されない。圧延能率を阻害しない観点から、この温度域での累積圧下率は75%以下であることが好ましく、70%以下とすることがより好ましい。 The upper limit of the cumulative reduction in this temperature range is not particularly limited. From the viewpoint of not impeding the rolling efficiency, the cumulative reduction in this temperature range is preferably 75% or less, and more preferably 70% or less.
 なお、本発明の成分組成の場合、上記の累積圧下率は、950℃未満700℃以上の温度域での累積圧下率を50.0%以上とすることが好ましい。 In the case of the component composition of the present invention, the cumulative rolling reduction is preferably 50.0% or more in the temperature range of less than 950°C and equal to or greater than 700°C.
 [板厚1/2位置における圧延終了温度:Ar3点以上]
 熱間圧延工程は、板厚1/2位置における圧延終了温度が、Ar3点(℃)以上の温度で終了する必要がある。熱間圧延に際して熱延板の温度がAr3点(℃)未満となると、フェライトへの相変態が開始し、(211)面のX線強度を高めるベイナイトの分率が低下するため、(211)面のX線強度比が低下する。その結果、優れた脆性亀裂伝播停止特性が得られなくなる。更に、低温ほど変形抵抗が増加するため、熱間圧延機への負荷が大きくなるといった問題が生じる。なお、この圧延終了温度は、後工程の冷却開始温度をAr3点(℃)以上とする観点から、(Ar3点+10)℃以上であることが好ましい。
この圧延終了温度の上限は特に限定されない。圧延能率の観点から、圧延終了温度は(Ar3点+60)℃以下とすることが好ましく、(Ar3点+50)℃以下とすることがより好ましい。
[Rolling end temperature at 1/2 plate thickness position: Ar 3 point or higher]
The hot rolling process must be completed at a rolling end temperature at the 1/2 thickness position of Ar3 point (°C) or higher. If the temperature of the hot rolled sheet becomes lower than Ar3 point (°C) during hot rolling, phase transformation to ferrite begins, and the fraction of bainite that increases the X-ray intensity of the (211) plane decreases, so the X-ray intensity ratio of the (211) plane decreases. As a result, excellent brittle crack propagation arrest properties cannot be obtained. Furthermore, the lower the temperature, the higher the deformation resistance, which causes a problem of increased load on the hot rolling machine. In addition, the rolling end temperature is preferably ( Ar3 point + 10) °C or higher from the viewpoint of setting the cooling start temperature of the subsequent process to Ar3 point (°C) or higher.
There is no particular upper limit to the rolling end temperature. From the viewpoint of rolling efficiency, the rolling end temperature is preferably ( Ar3 point + 60)°C or less, and more preferably ( Ar3 point + 50)°C or less.
 [圧下比:4.00以上]
 本発明では、上述の熱間圧延の条件に加えて、熱間圧延工程終了後の熱延板の厚みを制御することも重要である。
[Reduction ratio: 4.00 or more]
In the present invention, in addition to the above-mentioned hot rolling conditions, it is also important to control the thickness of the hot-rolled sheet after the hot rolling process is completed.
 具体的には、スラブの厚みを200mm以上とし、最終製品の板厚に対するスラブの厚みの比率(すなわち圧下比)が4.00以上となるように、熱間圧延工程での圧延を制御する。この圧下比が4.00未満であると、ベイナイトの結晶粒の細粒化が不十分であるために靭性が向上しない。その結果、板厚1/2位置におけるシャルピー破面遷移温度:-105℃以下が達成されない。上記のスラブの厚みは、300mm以上が好ましく、350mm以上がより好ましい。また、上記の圧下比は、4.50以上が好ましく、5.00以上がより好ましい。
上記の圧下比の上限は、特に限定されない。圧延能率の観点から、上記の圧下比は7.50以下であることが好ましく、7.00以下であることがより好ましい。
Specifically, the thickness of the slab is set to 200 mm or more, and the rolling in the hot rolling process is controlled so that the ratio of the slab thickness to the plate thickness of the final product (i.e., the reduction ratio) is 4.00 or more. If the reduction ratio is less than 4.00, the bainite grains are not sufficiently refined, and the toughness is not improved. As a result, the Charpy fracture transition temperature at the 1/2 plate thickness position: -105°C or less is not achieved. The thickness of the slab is preferably 300 mm or more, and more preferably 350 mm or more. The reduction ratio is preferably 4.50 or more, and more preferably 5.00 or more.
The upper limit of the reduction ratio is not particularly limited. From the viewpoint of rolling efficiency, the reduction ratio is preferably 7.50 or less, and more preferably 7.00 or less.
 本発明では、上述の熱間圧延条件で熱間圧延工程を行うことで、作用効果を得ることができる。作用効果をより有効に得る観点から、熱間圧延工程では、さらに次の熱間圧延条件を有することも有効である。
具体的には、板厚1/2位置における温度がオーステナイト再結晶温度域での平均圧下率/パス:4.0%以上とする。
また具体的には、板厚1/2位置における温度がオーステナイト未再結晶温度域での平均圧下率/パス:4.5%以上とし、かつ、板厚1/4位置における圧延終了温度:(上記板厚1/2位置における圧延終了温度-20)℃以上、および表層における圧延終了温度:(上記板厚1/2位置における圧延終了温度-30)℃以上とする。
In the present invention, the hot rolling step is performed under the above-mentioned hot rolling conditions, thereby obtaining the effects. From the viewpoint of obtaining the effects more effectively, it is also effective to further have the following hot rolling conditions in the hot rolling step.
Specifically, the average reduction rate/pass in the austenite recrystallization temperature range at the 1/2 position of the plate thickness is set to 4.0% or more.
More specifically, the temperature at the 1/2 thickness position is set to an average reduction rate/pass in the austenite non-recrystallization temperature region of 4.5% or more, the rolling end temperature at the 1/4 thickness position is set to be (the rolling end temperature at the 1/2 thickness position-20)°C or more, and the rolling end temperature in the surface layer is set to be (the rolling end temperature at the 1/2 thickness position-30)°C or more.
 [オーステナイト再結晶温度域での平均圧下率/パス:4.0%以上](任意条件)
 熱間圧延工程では、板厚1/2位置の温度がオーステナイト再結晶温度域での圧延の平均圧下率/パスを4.0%以上とする熱間圧延を行うことが好ましい。この温度域での平均圧下率/パスが4.0%未満であると、オーステナイト粒の再結晶による細粒化効果が不十分となり、変態後のベイナイトの細粒化が不十分となる場合がある。かつ、鋼板内部の空隙を減厚するのに有効となる、高温域での圧延による歪を鋼板の板厚1/2位置に付与することができず、その結果、破壊起点となる鋼板内部の欠陥が粗大なまま残存し、靭性が低下する場合がある。上述の鋼板中心部に残存する最大ポロシティの板厚方向の長さの調整は、この熱間圧延条件を制御することで達成できる。この温度域での平均圧下率/パスは、より好ましくは4.5%以上であり、さらに好ましくは5.0%以上であり、さらに一層好ましくは6.0%以上である。
[Average reduction rate/pass in the austenite recrystallization temperature range: 4.0% or more] (optional conditions)
In the hot rolling process, it is preferable to perform hot rolling with an average reduction rate/pass of 4.0% or more in the austenite recrystallization temperature range at the temperature at 1/2 the plate thickness. If the average reduction rate/pass in this temperature range is less than 4.0%, the grain refinement effect due to the recrystallization of austenite grains becomes insufficient, and the grain refinement of bainite after transformation may become insufficient. In addition, the strain caused by rolling in a high temperature range, which is effective in reducing the thickness of the voids inside the steel plate, cannot be applied to the 1/2 plate thickness position of the steel plate, and as a result, defects inside the steel plate that are the fracture origin may remain large, and the toughness may decrease. The above-mentioned adjustment of the length in the plate thickness direction of the maximum porosity remaining in the center of the steel plate can be achieved by controlling the hot rolling conditions. The average reduction rate/pass in this temperature range is more preferably 4.5% or more, even more preferably 5.0% or more, and even more preferably 6.0% or more.
 なお、この温度域での平均圧下率/パスの上限は特に限定されない。製造負荷の観点化から、この温度域での平均圧下率/パスは、10.0%以下とすることが好ましく、8.0%以下とすることがより好ましく、7.0%以下とすることがさらに好ましい。 The upper limit of the average rolling reduction/pass in this temperature range is not particularly limited. From the viewpoint of production load, the average rolling reduction/pass in this temperature range is preferably 10.0% or less, more preferably 8.0% or less, and even more preferably 7.0% or less.
 [オーステナイト未再結晶温度域での平均圧下率/パス:4.5%以上](任意条件)
 熱間圧延工程では、板厚1/2位置の温度がオーステナイト未再結晶温度域での圧延の平均圧下率/パスを4.5%以上とする熱間圧延を行うことが好ましい。この温度域での平均圧下率/パスが4.5%未満であると、オーステナイト粒の延伸が不十分となりベイナイトの細粒化が不十分となる場合がある。かつ、低温域で板厚間の変形抵抗差が大きくなっている状態での圧下が不十分となり板厚1/2位置へ付与する歪量が低下し、その結果、破壊起点となる合金元素が濃化した偏析の分散ができず靭性が低下する場合がある。この温度域での平均圧下率/パスは、より好ましくは5.0%以上であり、さらに好ましくは6.0%以上である。
[Average reduction rate/pass in austenite non-recrystallization temperature range: 4.5% or more] (optional condition)
In the hot rolling process, it is preferable to perform hot rolling with an average reduction rate/pass of 4.5% or more in the austenite non-recrystallization temperature range at the 1/2 thickness position. If the average reduction rate/pass in this temperature range is less than 4.5%, the austenite grains may not be elongated sufficiently, and the bainite grains may not be refined sufficiently. In addition, the reduction rate may be insufficient in the low temperature range when the deformation resistance difference between the thicknesses is large, and the amount of strain applied to the 1/2 thickness position may decrease, and as a result, the segregation where the alloy elements are concentrated, which is the fracture origin, may not be dispersed, and the toughness may decrease. The average reduction rate/pass in this temperature range is more preferably 5.0% or more, and even more preferably 6.0% or more.
 なお、この温度域での平均圧下率/パスの上限は特に限定されない。製造負荷の観点から、この温度域での平均圧下率/パスは、10%以下とすることが好ましく、7.0%以下とすることがより好ましく、6.0%以下とすることがさらに好ましい。 The upper limit of the average rolling reduction/pass in this temperature range is not particularly limited. From the viewpoint of production load, the average rolling reduction/pass in this temperature range is preferably 10% or less, more preferably 7.0% or less, and even more preferably 6.0% or less.
 上記の「平均圧下率/パス」とは、一定の温度域内の圧延における1パス毎の圧下率の平均値を指す。 The above "average reduction rate/pass" refers to the average reduction rate per pass during rolling within a certain temperature range.
 [板厚1/4位置における圧延終了温度:(板厚1/2における圧延終了温度-20)℃以下](任意条件)
 熱間圧延工程では、板厚1/4位置における圧延終了温度が、板厚1/4位置において(板厚1/2における圧延終了温度-20)℃以下の温度で終了することが好ましい。熱間圧延に際して熱延板の板厚1/4位置の温度が、(板厚1/2における圧延終了温度-20)℃超となると、低温域で板厚間の変形抵抗差が大きくなっている状態での圧下が不十分となり、板厚1/2位置へ付与する歪量が低下する。また、破壊起点となる合金元素が濃化した偏析の分散ができない。その結果、靭性が低下する。この圧延終了温度は、(Ar3点-30)℃以下であることが好ましい。
[Rolling end temperature at 1/4 plate thickness position: (Rolling end temperature at 1/2 plate thickness - 20) ° C or less] (arbitrary condition)
In the hot rolling process, it is preferable that the rolling end temperature at the 1/4 thickness position is at a temperature of (rolling end temperature at 1/2 thickness - 20) ° C or less at the 1/4 thickness position. If the temperature at the 1/4 thickness position of the hot rolled sheet during hot rolling exceeds (rolling end temperature at 1/2 thickness - 20) ° C, the rolling reduction in the state where the deformation resistance difference between the sheet thicknesses is large in the low temperature range becomes insufficient, and the amount of strain applied to the 1/2 thickness position decreases. In addition, the segregation where the alloy elements that are the fracture origin are concentrated cannot be dispersed. As a result, the toughness decreases. This rolling end temperature is preferably (Ar 3 point - 30) ° C or less.
 なお、板厚1/4位置の圧延終了温度の上限は特に限定されない。圧延能率の観点から、この圧延終了温度は、(Ar3点-50)℃以上とすることが好ましく、(Ar3点-40)℃以上とすることがより好ましい。 The upper limit of the rolling end temperature at the 1/4 sheet thickness position is not particularly limited. From the viewpoint of rolling efficiency, the rolling end temperature is preferably ( Ar3 point - 50) ° C. or higher, and more preferably ( Ar3 point - 40) ° C. or higher.
 [鋼板表面から板厚方向に2mmの位置における圧延終了温度:(板厚1/2における圧延終了温度-30)℃以下](任意条件)
 熱間圧延工程は、鋼板表面から板厚方向に2mmの位置における圧延終了温度が、(板厚1/2における圧延終了温度-30)℃以下の温度で終了することが好ましい。熱間圧延に際して熱延板の鋼板表面から板厚方向に2mmの位置の温度が、(板厚1/2における圧延終了温度-30)℃超となると、低温域で板厚間の変形抵抗差が大きくなっている状態での圧下が不十分となり、板厚1/2位置へ付与する歪量が低下する。また、破壊起点となる合金元素が濃化した偏析の分散ができない。その結果、靭性が低下する。この圧延終了温度は(Ar3点-40)℃以下であることが好ましい。
[Rolling end temperature at a position 2 mm from the steel plate surface in the plate thickness direction: (Rolling end temperature at 1/2 plate thickness - 30) ° C or less] (arbitrary condition)
The hot rolling process is preferably completed at a rolling end temperature at a position 2 mm from the steel sheet surface in the sheet thickness direction at a temperature of (rolling end temperature at 1/2 sheet thickness - 30) ° C or less. If the temperature at a position 2 mm from the steel sheet surface in the sheet thickness direction of the hot rolled sheet during hot rolling exceeds (rolling end temperature at 1/2 sheet thickness - 30) ° C, the rolling reduction in the state where the deformation resistance difference between the sheet thicknesses is large in the low temperature range becomes insufficient, and the amount of strain applied to the sheet thickness 1/2 position decreases. In addition, the segregation where the alloy elements that are the fracture origin are concentrated cannot be dispersed. As a result, the toughness decreases. This rolling end temperature is preferably (Ar 3 point - 40) ° C or less.
 なお、鋼板表面から板厚方向に2mmの位置の圧延終了温度の上限は特に限定されない。製造負荷の観点から、表層の圧延終了温度は、(Ar3点-60)℃以上とすることが好ましく、(Ar3点-50)℃以上とすることがより好ましい。
上記の「表層」とは、鋼板表面から板厚方向に2mmの位置を指す。
In addition, there is no particular upper limit to the rolling end temperature at a position 2 mm from the steel sheet surface in the sheet thickness direction. From the viewpoint of production load, the rolling end temperature of the surface layer is preferably ( Ar3 point - 60) ° C. or more, and more preferably ( Ar3 point - 50) ° C. or more.
The above-mentioned "surface layer" refers to a position 2 mm from the surface of the steel sheet in the sheet thickness direction.
 <冷却工程>
 次いで、熱間圧延された熱延板を、板厚1/2位置における冷却開始温度:Ar3点以上、板厚1/2位置における温度が700~500℃の温度域での平均冷却速度:3.5℃/s以上、かつ、板厚1/2位置における冷却停止温度:500℃以下となる条件で冷却を施す。
<Cooling process>
Next, the hot-rolled hot-rolled sheet is cooled under the following conditions: a cooling start temperature at 1/2 thickness position: Ar 3 point or higher, an average cooling rate in the temperature range of 700 to 500°C at the 1/2 thickness position: 3.5°C/s or higher, and a cooling stop temperature at the 1/2 thickness position: 500°C or lower.
 [冷却開始温度:Ar3点以上]
 上述の熱間圧延工程を経て得られた熱延板に対し、板厚1/2位置における温度がAr3点(℃)以上の温度で冷却を開始する必要がある。冷却開始温度がAr3点(℃)を下回ると、鋼中に多量のフェライトが生成するため、強度を高めることができない。その結果、(211)面のX線強度比が低下し、優れた脆性亀裂伝播停止特性が得られなくなる。そのため、この冷却開始温度はAr3点(℃)以上とする。冷却開始温度は(Ar3点+10)℃以上とすることが好ましく、また(Ar3点+40)℃以下とすることが好ましい。
[Cooling start temperature: Ar 3 point or higher]
It is necessary to start cooling the hot-rolled sheet obtained through the above-mentioned hot rolling process at a temperature at 1/2 the sheet thickness position of the Ar3 point (°C) or higher. If the cooling start temperature is lower than the Ar3 point (°C), a large amount of ferrite is generated in the steel, making it impossible to increase the strength. As a result, the X-ray intensity ratio of the (211) plane decreases, and excellent brittle crack propagation arrest properties cannot be obtained. Therefore, the cooling start temperature is set to be Ar3 point (°C) or higher. The cooling start temperature is preferably set to be ( Ar3 point + 10) °C or higher, and is preferably set to be ( Ar3 point + 40) °C or lower.
 [700~500℃の温度域での平均冷却速度:3.5℃/s以上]
 700℃から板厚1/2位置の温度が冷却停止温度(500℃以下)になるまでの温度域における平均冷却速度が3.5℃/s未満であると、徐冷により鋼中に多量のフェライトが生成するため、ベイナイトの体積率を高めることができない。その結果、(211)面のX線強度比が低下し、優れた脆性亀裂伝播停止特性が得られなくなる。また、強度が低下する。本発明では、板厚1/2位置における700~500℃の温度域での平均冷却速度は3.5℃/s以上とする。この温度域での平均冷却速度は、好ましくは4.0℃/s以上とする。
[Average cooling rate in the temperature range of 700 to 500 ° C: 3.5 ° C/s or more]
If the average cooling rate in the temperature range from 700°C to the cooling stop temperature (500°C or less) at the 1/2 plate thickness position is less than 3.5°C/s, a large amount of ferrite is generated in the steel by slow cooling, and the volume fraction of bainite cannot be increased. As a result, the X-ray intensity ratio of the (211) plane decreases, and excellent brittle crack propagation arrest properties cannot be obtained. In addition, strength decreases. In the present invention, the average cooling rate in the temperature range of 700 to 500°C at the 1/2 plate thickness position is 3.5°C/s or more. The average cooling rate in this temperature range is preferably 4.0°C/s or more.
 一方、上記温度域での平均冷却速度の上限は特に限定されない。過度の急冷による冷却コストの増大を回避するため、上記温度域での平均冷却速度は、20℃/s以下とすることが好ましく、10℃/s以下とすることがより好ましい。 On the other hand, there is no particular upper limit to the average cooling rate in the above temperature range. In order to avoid an increase in cooling costs due to excessive rapid cooling, the average cooling rate in the above temperature range is preferably 20°C/s or less, and more preferably 10°C/s or less.
 なお、かかる平均冷却速度を測定する温度範囲は、大部分のオーステナイト組織の変態が起こり特性に大きく寄与する、700~500℃とする。 The temperature range for measuring this average cooling rate is 700 to 500°C, where most of the austenite structure transforms and contributes greatly to the properties.
 上記の700~500℃の温度域の範囲外の平均冷却速度は、ベイナイト生成に大きく影響を与えないため特に規定しない。製造能率の観点から、0.5~0.1℃/sとすることが好ましい。  Average cooling rates outside the above temperature range of 700 to 500°C are not specified because they do not have a significant effect on bainite formation. From the standpoint of manufacturing efficiency, it is preferable to set the rate at 0.5 to 0.1°C/s.
 [冷却停止温度:500℃以下]
 冷却工程は、板厚1/2位置における温度が500℃以下になるまで行う必要がある。換言すれば、冷却停止温度が500℃以下の温度となるまで行う必要がある。冷却停止温度が500℃を超えると、鋼中に多量のフェライトが生成するため、ベイナイトの体積率を高めることができない。その結果、(211)面のX線強度比が低下し、優れた脆性亀裂伝播停止特性が得られなくなる。また、強度が低下する。冷却停止温度は、好ましくは450℃以下であり、より好ましくは400℃以下である。一方、冷却停止温度の下限は限定されないが、冷却停止温度が低すぎると鋼板の形状が悪くなる。そのため、冷却停止温度は、好ましくは200℃以上であり、より好ましくは300℃以上である。
[Cooling stop temperature: 500°C or less]
The cooling process needs to be performed until the temperature at the 1/2 position of the plate thickness is 500°C or less. In other words, it needs to be performed until the cooling stop temperature is 500°C or less. If the cooling stop temperature exceeds 500°C, a large amount of ferrite is generated in the steel, so the volume fraction of bainite cannot be increased. As a result, the X-ray intensity ratio of the (211) plane decreases, and excellent brittle crack propagation stopping properties cannot be obtained. In addition, the strength decreases. The cooling stop temperature is preferably 450°C or less, more preferably 400°C or less. On the other hand, although the lower limit of the cooling stop temperature is not limited, if the cooling stop temperature is too low, the shape of the steel plate will be deteriorated. Therefore, the cooling stop temperature is preferably 200°C or more, more preferably 300°C or more.
 次に、本発明を実施例に基づいて具体的に説明する。なお、以下の実施例は本発明の好適な一例を示すものであり、本発明はこの実施例に限定されない。 Next, the present invention will be specifically described based on examples. Note that the following examples are only preferred examples of the present invention, and the present invention is not limited to these examples.
 表1に供試鋼の成分組成を示し、表2に製造条件を示した。表1に示す各成分組成の溶鋼(鋼記号:A~AD)を転炉で溶製し、連続鋳造法で鋼素材とした。その後、表2に示す製造条件で加熱工程、熱間圧延工程、および冷却工程をこの順に行い、板厚が50~100mmの高強度極厚鋼板(鋼記号:1~43)を製造した。なお、表1中の空欄は、意図的に元素を添加しないことを表しており、元素を含有しない(0%)場合だけでなく、元素を不可避的に含有する場合も含む。 Table 1 shows the chemical composition of the test steel, and Table 2 shows the manufacturing conditions. Molten steel (steel symbols: A to AD) with each chemical composition shown in Table 1 was melted in a converter and made into steel material using a continuous casting method. After that, the heating process, hot rolling process, and cooling process were carried out in that order under the manufacturing conditions shown in Table 2 to manufacture high-strength extra thick steel plates (steel symbols: 1 to 43) with thicknesses of 50 to 100 mm. Note that blank spaces in Table 1 indicate that no element was intentionally added, and include not only cases where no element is contained (0%), but also cases where an element is unavoidably contained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた各高強度極厚鋼板について、以下に説明する方法で、(1)集合組織、(2)鋼組織、(3)強度、(4)靭性、(5)脆性き裂伝播停止特性を評価した。 Each of the obtained high-strength extra-thick steel plates was evaluated for (1) texture, (2) steel structure, (3) strength, (4) toughness, and (5) brittle crack propagation arrest properties using the methods described below.
 (1)集合組織
 [(211)面のX線強度比]
 集合組織の評価は、鋼板の板厚1/2位置における(211)面のX線強度比を測定して行った。
得られた高強度極厚鋼板から、板厚1/2位置を板厚中心として板厚1mm、圧延方向と平行な方向に22mm、かつ圧延方向と垂直な方向に25mmとする寸法の板状のサンプルを採取し、該サンプルの表面に平行な面を機械研磨および電解研磨することにより、X線回折用の試験片を用意した。この試験片を用いて、Mo線源を用いたX線回折装置を使用して、X線回折測定を実施し、(211)面のX線強度比を求めた。得られた値を表3の「X(211)面のX線強度比」欄に記した。
(1) Texture [X-ray intensity ratio of (211) plane]
The texture was evaluated by measuring the X-ray intensity ratio of the (211) plane at the 1/2 position of the sheet thickness of the steel sheet.
From the obtained high-strength extra-thick steel plate, a plate-shaped sample having dimensions of 1 mm in thickness, 22 mm in a direction parallel to the rolling direction, and 25 mm in a direction perpendicular to the rolling direction was taken from the plate thickness center at the plate thickness 1/2 position, and a test piece for X-ray diffraction was prepared by mechanically polishing and electrolytically polishing a surface parallel to the surface of the sample. Using this test piece, X-ray diffraction measurement was performed using an X-ray diffractometer using a Mo radiation source to determine the X-ray intensity ratio of the (211) plane. The obtained values are listed in the "X-ray intensity ratio of X(211) plane" column in Table 3.
 (2)鋼組織
 [板厚1/2位置の鋼組織]
 板厚1/2位置の鋼組織は、次の通り測定した。
圧延方向と垂直な面が観察面となるように、鋼板の幅中央、板厚1/2位置から試料を採取した。試料の寸法は板厚方向に20mm、圧延方向と平行な方向に10mm、かつ圧延方向と垂直な方向に1mmとした。この試料の圧延方向に垂直な面を鏡面研磨した後、ナイタール腐食により現出させた金属組織の光学顕微鏡写真を撮影した。撮影部は板厚1/2位置で倍率は200倍とした。得られた写真から白い塊状として現出した組織をフェライト、残部をベイナイトとして画像解析によって面積分率を計算することによりベイナイト相およびフェライト相の面積分率を評価した。得られた値を表3の「ベイナイト相面積分率」および「フェライト相面積分率」の各欄に記した。
(2) Steel structure [Steel structure at 1/2 plate thickness position]
The steel structure at the 1/2 sheet thickness position was measured as follows.
A sample was taken from the center of the width of the steel plate at 1/2 the plate thickness so that the surface perpendicular to the rolling direction was the observation surface. The dimensions of the sample were 20 mm in the plate thickness direction, 10 mm in the direction parallel to the rolling direction, and 1 mm in the direction perpendicular to the rolling direction. The surface perpendicular to the rolling direction of this sample was mirror-polished, and then an optical microscope photograph of the metal structure revealed by nital etching was taken. The photographed part was at 1/2 the plate thickness position and the magnification was 200 times. The area fraction of the bainite phase and the ferrite phase was evaluated by calculating the area fraction by image analysis, assuming that the structure revealed as a white mass in the obtained photograph was ferrite and the remaining part was bainite. The obtained values are shown in the columns of "Bainite Phase Area Fraction" and "Ferrite Phase Area Fraction" in Table 3.
 [板厚1/2位置のベイナイトの結晶粒の平均粒径]
圧延方向と垂直な面が観察面となるように、鋼板の幅中央、板厚1/2位置から試料を採取した。試料の寸法は板厚方向に20mm、圧延方向と平行な方向に10mm、かつ圧延方向と垂直な方向に1mmとした。この試料の圧延方向に垂直な面を鏡面研磨した後、板厚1/2位置を下記の条件でEBSP解析を行った。得られた結晶方位マップより、隣接する結晶粒との方位差が15°以上の大角粒界で囲まれた組織の円相当直径を求め、下記の解析領域における円相当直径の平均値を平均有効結晶粒径とした。得られた値を表3の「ベイナイトの平均結晶粒径」欄に記した。
(EBSP条件)
・加速電圧:20KV、照射電流:50nA
・ビーム径:50nm
・解析領域:板厚中心の1mm×1mm領域
・ステップサイズ:0.4μm
[Average grain size of bainite grains at 1/2 position of plate thickness]
A sample was taken from the center of the width of the steel plate, at 1/2 the plate thickness, so that the surface perpendicular to the rolling direction was the observation surface. The dimensions of the sample were 20 mm in the plate thickness direction, 10 mm in the direction parallel to the rolling direction, and 1 mm in the direction perpendicular to the rolling direction. After the surface perpendicular to the rolling direction of this sample was mirror-polished, EBSP analysis was performed at the 1/2 plate thickness position under the following conditions. From the obtained crystal orientation map, the circle equivalent diameter of the structure surrounded by high-angle grain boundaries with an orientation difference of 15° or more with adjacent crystal grains was obtained, and the average value of the circle equivalent diameter in the following analysis region was taken as the average effective crystal grain size. The obtained values are shown in the "Average crystal grain size of bainite" column in Table 3.
(EBSP conditions)
Acceleration voltage: 20 KV, irradiation current: 50 nA
Beam diameter: 50 nm
Analysis area: 1 mm x 1 mm area at the center of plate thickness Step size: 0.4 μm
 [最大ポロシティの円相当径]
 鋼板内部の欠陥の検出には、非破壊で検査できるため超音波探傷が用いられることが多いが、本実施例では正確に欠陥部の状態を確認するために直接観察をおこなって、ポロシティのサイズを測定した。まず、圧延材の板厚1/2位置において板幅方向に対して平行に観察用のサンプルを1~2断面採取し、鏡面研磨仕上げとした。次いで、作製したサンプルを光学顕微鏡にて観察して写真を撮影した。倍率は400倍とした。得られた写真を画像解析して、存在するポロシティ個々の円相当径を求め、最大ポロシティの円相当径を算出した。得られた値を表3の「最大ポロシティの円相当径」欄に記した。
[Circle equivalent diameter of maximum porosity]
Ultrasonic testing is often used to detect defects inside steel sheets because it allows non-destructive testing, but in this embodiment, direct observation was performed to accurately confirm the state of the defective parts and measure the size of the porosity. First, one or two cross-sections of samples for observation were taken parallel to the plate width direction at the 1/2 plate thickness position of the rolled material and mirror polished. Next, the prepared samples were observed with an optical microscope and photographed. The magnification was 400 times. The obtained photographs were subjected to image analysis to determine the circle equivalent diameter of each of the existing porosities, and the circle equivalent diameter of the maximum porosity was calculated. The obtained values were recorded in the "Circle equivalent diameter of maximum porosity" column in Table 3.
 [最大ポロシティの板厚方向の長さ]
 鋼板内部の欠陥の検出には、非破壊で検査できるため超音波探傷が用いられることが多いが、本実施例では正確に欠陥部の状態を確認するために直接観察をおこなって、ポロシティのサイズを測定した。まず、圧延材の板厚1/2位置において板幅方向に対して平行に観察用のサンプルを1~2断面採取し、鏡面研磨仕上げとした。次いで、作製したサンプルを光学顕微鏡にて観察して写真を撮影した。倍率は400倍とした。得られた写真を画像解析して、存在するポロシティ個々の板厚方向の長さを測定し、最大ポロシティの板厚方向の長さを算出した。具体的には、各ポロシティに対し、板幅方向に沿って20μmピッチで板厚方向の長さをそれぞれ求め、その最大値を上記の板厚方向の長さとする。同様にして残りのポロシティの板厚方向の長さを測定し、得られた値のうち最大となるものを最大ポロシティの板厚方向の長さとした。得られた値を表3の「最大ポロシティの板厚方向の長さ」欄に記した。
[Maximum porosity length in plate thickness direction]
Ultrasonic testing is often used to detect defects inside a steel plate because it can be inspected non-destructively, but in this embodiment, direct observation was performed to accurately confirm the state of the defective portion, and the size of the porosity was measured. First, one or two cross-sections of samples for observation were taken parallel to the plate width direction at the plate thickness 1/2 position of the rolled material, and mirror polished. Next, the prepared samples were observed with an optical microscope and photographed. The magnification was 400 times. The obtained photographs were subjected to image analysis to measure the length of each existing porosity in the plate thickness direction, and the length of the maximum porosity in the plate thickness direction was calculated. Specifically, the length of the plate thickness direction was obtained at a pitch of 20 μm along the plate width direction for each porosity, and the maximum value was taken as the above-mentioned length in the plate thickness direction. Similarly, the length of the remaining porosity in the plate thickness direction was measured, and the maximum of the obtained values was taken as the length of the maximum porosity in the plate thickness direction. The obtained values were recorded in the "Length of the maximum porosity in the plate thickness direction" column in Table 3.
 [板厚1/2位置の厚さ100μm以上の偏析粒の1mm2あたりの個数]
 得られた高強度極厚鋼板の板幅方向に対して平行に板状のサンプルを採取し、中心偏析部を含むようにMnのEPMA分析を実施した。得られたデータから、Mn濃度がEPMA測定範囲の平均値の1.25倍以上となっている箇所を偏析部とし、厚さと個数を計測した。
偏析粒の厚さは、圧延方向から見たときの板厚方向の長さを厚さとして測定し求めた。
そして、1mm2あたりの個数は、測定領域内の厚さ100μm以上の偏析粒を測定領域の面積で割ることで求めた。得られた値を表3の「偏析粒の個数密度」欄に記した。
(EPMA測定条件)
・照射電流:100nA
・ビーム径:20μm
・測定領域:中心偏析部を含む、高さ方向3mm×幅方向20mm領域
・ステップ:20μm
[Number of segregation grains of 100 μm or more at the 1/2 position per 1 mm2]
Plate-shaped samples were taken parallel to the plate width direction of the obtained high-strength extra thick steel plate, and EPMA analysis of Mn was performed so as to include the central segregation part. From the obtained data, the part where the Mn concentration was 1.25 times or more the average value of the EPMA measurement range was determined as the segregation part, and the thickness and number were measured.
The thickness of the segregation grains was determined by measuring the length in the sheet thickness direction as viewed from the rolling direction.
The number per mm2 was calculated by dividing the number of segregated grains having a thickness of 100 μm or more in the measurement area by the area of the measurement area. The obtained values are shown in the “Number density of segregated grains” column in Table 3.
(EPMA measurement conditions)
Irradiation current: 100 nA
Beam diameter: 20 μm
Measurement area: 3 mm height x 20 mm width including central segregation area Step: 20 μm
 (3)強度
 得られた極厚鋼板の板厚1/2位置より、試験片の長手軸の方向が圧延方向と垂直となるように、Φ14のJIS 14A号試験片を採取し、JIS Z 2241(2011)の規定に準拠して引張試験を行い、降伏強度(YS)、引張強さ(TS)を測定した。ここでは、降伏強度が500MPa以上を高強度であると評価した。
(3) Strength A Φ14 JIS 14A test piece was taken from the 1/2 position of the plate thickness of the obtained extra thick steel plate so that the longitudinal axis of the test piece was perpendicular to the rolling direction, and a tensile test was carried out in accordance with the provisions of JIS Z 2241 (2011) to measure the yield strength (YS) and tensile strength (TS). Here, a yield strength of 500 MPa or more was evaluated as high strength.
 (4)靭性
 靭性の評価は、板厚1/2位置のシャルピー破面遷移温度で行った。
得られた高強度極厚鋼板の板厚1/2位置より、試験片の長手軸の方向が圧延方向と平行となるように、JIS4号衝撃試験片を採取し、JIS Z 2242(2005)の規定に準拠してシャルピー衝撃試験を行って、シャルピー破面遷移温度(vTrs)を求めた。なお、1試験温度につき3本試験し、3本の脆性破面率の平均値から計算した。ここでは、vTrs≦-105℃を靭性に優れると評価した。
(4) Toughness The toughness was evaluated in terms of the Charpy fracture transition temperature at the 1/2 plate thickness position.
A JIS No. 4 impact test piece was taken from the 1/2 position of the plate thickness of the obtained high-strength extra thick steel plate so that the longitudinal axis of the test piece was parallel to the rolling direction, and a Charpy impact test was performed in accordance with the provisions of JIS Z 2242 (2005) to determine the Charpy fracture transition temperature (vTrs). Three pieces were tested per test temperature, and the Charpy fracture transition temperature was calculated from the average brittle fracture rate of the three pieces. Here, vTrs≦-105°C was evaluated as excellent toughness.
 (5)脆性き裂伝播停止特性
 脆性き裂伝播停止特性の評価は、Kca値を求めて行った。
脆性亀裂伝播停止特性を評価するため、温度勾配型標準ESSO試験を行い、-10℃におけるKca値(Kca(-10℃)の値(N/mm3/2))を求めた。試験体は、得られた高強度極厚鋼板から3本ずつ採取した。試験体のサイズは、全厚×L:500×W:500(mm)とした。3体試験の結果から、Kca値を求めた。ここでは、Kca(-10℃)の値が9000N/mm3/2以上のものを脆性き裂伝播停止特性に優れると評価した。
(5) Brittle Crack Propagation Arrest Property The brittle crack propagation arrest property was evaluated by determining the Kca value.
In order to evaluate the brittle crack arrest properties, a temperature gradient type standard ESSO test was conducted to determine the Kca value at -10°C (Kca (-10°C) value (N/mm3 /2 )). Three specimens were taken from each of the obtained high strength extra thick steel plates. The size of the specimen was total thickness x L: 500 x W: 500 (mm). The Kca value was determined from the results of the three-body test. Here, specimens with a Kca (-10°C) value of 9000 N/mm3 /2 or more were evaluated as having excellent brittle crack arrest properties.
 表3にこれらの試験結果を示した。 The test results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示された結果から、次のことが分かった。本発明例(製造No.1~16、35、38、42、43)の場合、成分組成および製造条件が本発明範囲内であり、板厚1/2位置の集合組織が(211)面のX線強度比:1.70以上を満足し、かつ、ベイナイト相の面積分率が85%以上を満足し、かつ、ベイナイト相の平均有効結晶粒径が20μm以下を満足していた。これにより、板厚1/2位置における降伏強度が500MPa以上、板厚1/2位置におけるシャルピー破面遷移温度が-105℃以下、かつKca(-10℃)の値が9000N/mm3/2以上の特性を得られた。 From the results shown in Table 3, the following was found. In the case of the invention examples (production Nos. 1 to 16, 35, 38, 42, and 43), the component composition and production conditions were within the range of the invention, the texture at the 1/2 sheet thickness position satisfied the X-ray intensity ratio of the (211) plane: 1.70 or more, the area fraction of the bainite phase satisfied 85% or more, and the average effective grain size of the bainite phase satisfied 20 μm or less. As a result, the properties were obtained in which the yield strength at the 1/2 sheet thickness position was 500 MPa or more, the Charpy fracture appearance transition temperature at the 1/2 sheet thickness position was -105°C or less, and the Kca (-10°C) value was 9000 N/mm3 /2 or more.
 一方、比較例(製造No.17~34、36~37、39~41)の場合、成分組成および製造条件のいずれか1つ以上で本発明範囲外となったため板厚1/2位置における集合組織、板厚1/2位置における鋼組織が得られず、板厚1/2位置での目標特性を満足しなかった。 On the other hand, in the case of the comparative examples (production Nos. 17-34, 36-37, 39-41), one or more of the component composition and manufacturing conditions were outside the range of the present invention, so the texture at the 1/2 plate thickness position and the steel structure at the 1/2 plate thickness position were not obtained, and the target properties at the 1/2 plate thickness position were not met.

Claims (12)

  1.  質量%で、
    C:0.040~0.130%、
    Si:0.020~0.50%、
    Mn:1.00~2.50%、
    P:0.020%以下、
    S:0.010%以下、
    Al:0.010~0.100%、
    N:0.0010~0.0100%、および
    O:0.0100%以下
    を含有し、かつ、式(1)で定義されるCeqが0.480%以上であり、残部がFeおよび不可避的不純物からなる成分組成を有し、
     板厚1/2位置における圧延面での(211)面のX線強度比が1.70以上である集合組織を有し、
     ベイナイト相の面積分率が85~100%およびフェライト相の面積分率が0~15%からなる混合組織であり、かつ、方位差15°以上の粒界に囲まれたベイナイトの結晶粒の平均粒径が20μm以下であり、かつ、鋼板中心部に残存する最大ポロシティの円相当径が200μm以下である、板厚1/2位置における鋼組織を有し、
     板厚が50mm以上100mm以下であり、
     板厚1/2位置における降伏強度が500MPa以上であり、板厚1/2位置におけるシャルピー破面遷移温度がvTrs≦-105℃であり、かつ、Kca(-10℃)の値が9000N/mm3/2以上である、高強度極厚鋼板。
    Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5 …(1)
    ここで、式(1)におけるC、Mn、Cu、Ni、Cr、MoおよびVは各元素の含有量(質量%)を表し、含有しない元素は含有量を0とする。
    In mass percent,
    C: 0.040 to 0.130%,
    Si: 0.020 to 0.50%,
    Mn: 1.00 to 2.50%,
    P: 0.020% or less,
    S: 0.010% or less,
    Al: 0.010 to 0.100%,
    The steel sheet has a composition comprising N: 0.0010 to 0.0100%, O: 0.0100% or less, Ceq defined by formula (1) being 0.480% or more, and the balance being Fe and unavoidable impurities;
    The X-ray intensity ratio of the (211) plane on the rolled surface at the 1/2 position of the sheet thickness is 1.70 or more,
    The steel sheet has a steel structure at a 1/2 position in the sheet thickness direction, which is a mixed structure having an area fraction of 85 to 100% of a bainite phase and an area fraction of 0 to 15% of a ferrite phase, and the average grain size of the bainite crystal grains surrounded by grain boundaries having an orientation difference of 15° or more is 20 μm or less, and the circle equivalent diameter of the maximum porosity remaining in the center of the steel sheet is 200 μm or less,
    The plate thickness is 50 mm or more and 100 mm or less,
    A high-strength extra-thick steel plate having a yield strength of 500 MPa or more at the 1/2 plate thickness position, a Charpy fracture appearance transition temperature vTrs≦-105°C at the 1/2 plate thickness position, and a Kca(-10°C) value of 9000 N/mm3 /2 or more.
    Ceq = C + Mn/6 + Cu/15 + Ni/15 + Cr/5 + Mo/5 + V/5 ... (1)
    Here, C, Mn, Cu, Ni, Cr, Mo and V in formula (1) represent the content (mass %) of each element, and the content of an element that is not contained is set to 0.
  2.  前記成分組成に加えて、質量%で、以下のA群およびB群のうちから選ばれた1群または2群を含有する、請求項1に記載の高強度極厚鋼板。
    A群:Ti:0.030%以下、Nb:0.050%以下、Cu:2.00%以下、Ni:2.50%以下、およびCr:2.00%以下のうちから選ばれた1種または2種以上
    B群:Mo:0.50%以下、V:0.50%以下、W:0.50%以下、Co:0.50%以下、B:0.0100%以下、Ca:0.0100%以下、Mg:0.0100%以下、およびREM:0.0200%以下のうちから選ばれた1種または2種以上
    The high-strength extra thick steel plate according to claim 1, further comprising, in addition to the above-mentioned composition, one or two of the following groups A and B, in mass %:
    Group A: one or more selected from Ti: 0.030% or less, Nb: 0.050% or less, Cu: 2.00% or less, Ni: 2.50% or less, and Cr: 2.00% or less. Group B: one or more selected from Mo: 0.50% or less, V: 0.50% or less, W: 0.50% or less, Co: 0.50% or less, B: 0.0100% or less, Ca: 0.0100% or less, Mg: 0.0100% or less, and REM: 0.0200% or less.
  3.  前記板厚1/2位置における鋼組織は、厚さ100μm以上の偏析粒の1mm2あたりの個数が2.0個以下である、請求項1に記載の高強度極厚鋼板。 2. The high-strength extra thick steel plate according to claim 1, wherein the steel structure at the 1/2 plate thickness position has a number of segregation grains of 100 μm or more in thickness of 2.0 or less per mm 2 .
  4.  前記板厚1/2位置における鋼組織は、厚さ100μm以上の偏析粒の1mm2あたりの個数が2.0個以下である、請求項2に記載の高強度極厚鋼板。 3. The high-strength extra thick steel plate according to claim 2, wherein the steel structure at the 1/2 plate thickness position has a number of segregation grains of 100 μm or more in thickness of 2.0 or less per mm 2 .
  5.  前記板厚1/2位置における鋼組織は、鋼板中心部に残存する最大ポロシティの板厚方向の長さが100μm以下である、請求項1に記載の高強度極厚鋼板。 The high-strength extra-thick steel plate according to claim 1, wherein the steel structure at the 1/2 plate thickness position has a maximum porosity remaining in the center of the steel plate with a length in the plate thickness direction of 100 μm or less.
  6.  前記板厚1/2位置における鋼組織は、鋼板中心部に残存する最大ポロシティの板厚方向の長さが100μm以下である、請求項2に記載の高強度極厚鋼板。 The high-strength extra-thick steel plate according to claim 2, wherein the steel structure at the 1/2 plate thickness position has a length in the plate thickness direction of the maximum porosity remaining in the center of the steel plate of 100 μm or less.
  7.  前記板厚1/2位置における鋼組織は、鋼板中心部に残存する最大ポロシティの板厚方向の長さが100μm以下である、請求項3に記載の高強度極厚鋼板。 The high-strength extra-thick steel plate according to claim 3, wherein the steel structure at the 1/2 plate thickness position has a length in the plate thickness direction of the maximum porosity remaining in the center of the steel plate of 100 μm or less.
  8.  前記板厚1/2位置における鋼組織は、鋼板中心部に残存する最大ポロシティの板厚方向の長さが100μm以下である、請求項4に記載の高強度極厚鋼板。 The high-strength extra-thick steel plate according to claim 4, wherein the steel structure at the 1/2 plate thickness position has a maximum porosity remaining in the center of the steel plate with a length in the plate thickness direction of 100 μm or less.
  9.  請求項1~8のいずれか1項に記載の高強度極厚鋼板の製造方法であって、
     前記成分組成を有する鋼素材を、1000~1200℃の加熱温度に加熱し、
     次いで、板厚1/2位置における圧延開始温度:(Ar3点+100)℃以上、板厚1/2位置における温度がオーステナイト再結晶温度域での累積圧下率:25.0%以上、板厚1/2位置における温度がオーステナイト未再結晶温度域での累計圧下率:50.0%以上、および板厚1/2位置における圧延終了温度:Ar3点以上となる条件、
    かつ、スラブの厚みを200mm以上とし、最終製品の板厚に対するスラブの厚みの比率を表す圧下比:4.00以上となる条件で、熱間圧延を施し、
     次いで、板厚1/2位置における冷却開始温度:Ar3点以上、板厚1/2位置における温度が700~500℃の温度域での平均冷却速度:3.5℃/s以上、かつ、板厚1/2位置における冷却停止温度:500℃以下となる条件で冷却を施す、高強度極厚鋼板の製造方法。
    A method for producing a high-strength extra thick steel plate according to any one of claims 1 to 8,
    A steel material having the above-mentioned composition is heated to a heating temperature of 1000 to 1200°C,
    Next, the rolling start temperature at the 1/2 thickness position is ( Ar3 point + 100) ° C. or higher, the cumulative reduction rate in the austenite recrystallization temperature range at the 1/2 thickness position is 25.0% or higher, the cumulative reduction rate in the austenite non-recrystallization temperature range at the 1/2 thickness position is 50.0% or higher, and the rolling end temperature at the 1/2 thickness position is Ar3 point or higher.
    The slab is hot-rolled under the conditions of a thickness of 200 mm or more and a reduction ratio (representing the ratio of the slab thickness to the plate thickness of the final product) of 4.00 or more.
    Next, cooling is performed under the conditions of a cooling start temperature at the 1/2 plate thickness position: Ar 3 point or higher, an average cooling rate in a temperature range of 700 to 500°C at the 1/2 plate thickness position: 3.5°C/s or higher, and a cooling stop temperature at the 1/2 plate thickness position: 500°C or lower.
  10.  前記熱間圧延では、さらに、
    板厚1/2位置における温度がオーステナイト未再結晶温度域での平均圧下率/パス:4.5%以上とし、
    かつ、板厚1/4位置における圧延終了温度:(前記板厚1/2位置における圧延終了温度-20)℃以上、および鋼板表面から板厚方向に2mmの位置における圧延終了温度:(前記板厚1/2位置における圧延終了温度-30)℃以上となる条件で施す、請求項9に記載の高強度極厚鋼板の製造方法。
    In the hot rolling,
    The temperature at the 1/2 position of the plate thickness is the average reduction rate/pass in the austenite non-recrystallization temperature range: 4.5% or more;
    The rolling end temperature at the 1/4 plate thickness position is (the rolling end temperature at the 1/2 plate thickness position-20) ° C. or higher, and the rolling end temperature at a position 2 mm in the plate thickness direction from the steel plate surface is (the rolling end temperature at the 1/2 plate thickness position-30) ° C. or higher. The method for producing a high-strength extra thick steel plate according to claim 9,
  11.  前記熱間圧延では、さらに、
    板厚1/2位置における温度がオーステナイト再結晶温度域での平均圧下率/パス:4.0%以上となる条件で施す、請求項9に記載の高強度極厚鋼板の製造方法。
    In the hot rolling,
    The method for producing a high strength extra thick steel plate according to claim 9, wherein the rolling is performed under conditions where the temperature at the 1/2 position of the plate thickness is an average reduction rate/pass of 4.0% or more in the austenite recrystallization temperature range.
  12.  前記熱間圧延では、さらに、
    板厚1/2位置における温度がオーステナイト再結晶温度域での平均圧下率/パス:4.0%以上となる条件で施す、請求項10に記載の高強度極厚鋼板の製造方法。
    In the hot rolling,
    The method for producing a high strength extra thick steel plate according to claim 10, wherein the rolling is performed under conditions where the temperature at the 1/2 position of the plate thickness is an average reduction rate/pass of 4.0% or more in the austenite recrystallization temperature range.
PCT/JP2023/039940 2022-11-29 2023-11-06 High-strength ultra-thick steel plate and method for producing same WO2024116737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-190505 2022-11-29
JP2022190505 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024116737A1 true WO2024116737A1 (en) 2024-06-06

Family

ID=91323813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039940 WO2024116737A1 (en) 2022-11-29 2023-11-06 High-strength ultra-thick steel plate and method for producing same

Country Status (1)

Country Link
WO (1) WO2024116737A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262638A1 (en) * 2019-06-27 2020-12-30 日本製鉄株式会社 Steel material and method for producing same
WO2022045351A1 (en) * 2020-08-31 2022-03-03 日本製鉄株式会社 Steel sheet and method for manufacturing same
WO2022045352A1 (en) * 2020-08-31 2022-03-03 日本製鉄株式会社 Steel sheet and method for producing same
WO2022097589A1 (en) * 2020-11-05 2022-05-12 Jfeスチール株式会社 Steel sheet and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262638A1 (en) * 2019-06-27 2020-12-30 日本製鉄株式会社 Steel material and method for producing same
WO2022045351A1 (en) * 2020-08-31 2022-03-03 日本製鉄株式会社 Steel sheet and method for manufacturing same
WO2022045352A1 (en) * 2020-08-31 2022-03-03 日本製鉄株式会社 Steel sheet and method for producing same
WO2022097589A1 (en) * 2020-11-05 2022-05-12 Jfeスチール株式会社 Steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR101642196B1 (en) Steel sheet
RU2518830C1 (en) Hot-rolled steel sheet and method of its production
EP2309014B1 (en) Thick, high tensile-strength hot-rolled steel sheets with excellent low temperature toughness and manufacturing method therefor
JP5337412B2 (en) Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
WO2012108543A1 (en) Thick steel plate of at least 50mm in thickness with superior long brittle fracture propagation stopping properties, manufacturing method for same, and method for evaluating long brittle fracture propagation stopping performance and test apparatus for same
KR101681491B1 (en) High strength steel plate having excellent brittle crack arrestability
WO2019069771A1 (en) Steel sheet and method for producing steel sheet
JP5096087B2 (en) High tensile strength steel plate for high heat input welding with excellent base metal low temperature toughness
KR20140079861A (en) High-strength thick steel plate having excellent arrestability
JP6682967B2 (en) Steel plate and method of manufacturing the same
WO2013099318A1 (en) High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
JP6536514B2 (en) High strength steel plate for structure excellent in brittle crack propagation arresting property and method of manufacturing the same
JP5598617B1 (en) High strength thick steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics and method for producing the same
US11299798B2 (en) Steel plate and method of producing same
JP5181496B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
WO2015075771A1 (en) Steel sheet
JP5812193B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP7127752B2 (en) Steel plate and its manufacturing method
JP7508029B1 (en) High strength extra thick steel plate and its manufacturing method
JP7468814B1 (en) High strength extra thick steel plate and its manufacturing method
WO2024116737A1 (en) High-strength ultra-thick steel plate and method for producing same
JP5838801B2 (en) Thick steel plate and method for manufacturing thick steel plate
KR102239631B1 (en) High-strength thick steel plate and its manufacturing method
WO2024105967A1 (en) High-strength extremely thick steel sheet and method for manufacturing same
JP6504131B2 (en) High strength thick steel plate and method of manufacturing the same