WO2022045352A1 - Steel sheet and method for producing same - Google Patents

Steel sheet and method for producing same Download PDF

Info

Publication number
WO2022045352A1
WO2022045352A1 PCT/JP2021/031921 JP2021031921W WO2022045352A1 WO 2022045352 A1 WO2022045352 A1 WO 2022045352A1 JP 2021031921 W JP2021031921 W JP 2021031921W WO 2022045352 A1 WO2022045352 A1 WO 2022045352A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
steel
rolling
cooling
Prior art date
Application number
PCT/JP2021/031921
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 中井
大貴 今城
真吾 中村
祥晃 新宅
清孝 中島
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202180026262.3A priority Critical patent/CN115398018B/en
Priority to KR1020227033732A priority patent/KR20220147126A/en
Priority to JP2022505648A priority patent/JP7127753B2/en
Publication of WO2022045352A1 publication Critical patent/WO2022045352A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Definitions

  • the present invention relates to a steel sheet and a method for manufacturing the same.
  • the welded structure is required to have a brittle crack propagation stopping property (hereinafter referred to as "arrest property") in which the brittle crack is stopped by the base metal even if a brittle crack is generated at the welded joint. Be done.
  • arrest property a brittle crack propagation stopping property
  • An object of the present invention is to solve the above-mentioned problems and to provide a steel sheet having high strength and excellent low temperature toughness, fracture toughness and arrest property, and a method for producing the same.
  • the gist of the present invention is the following steel sheet and its manufacturing method.
  • the chemical composition of the steel sheet is mass%.
  • the metallographic structure at a position 1/4 t from the surface of the steel sheet is formed.
  • In% area it contains more than 80% bainite and The average length of the bainite ferrite constituting the bainite in the major axis direction is 10 ⁇ m or less.
  • the average length of the former austenite grains at a position 1 / 4t from the surface of the steel sheet in the thickness direction is 20 ⁇ m or less, and the average aspect ratio is 2.
  • the grain boundary density at a position 1/10 t from the surface of the steel sheet is 500 to 1100 mm / mm 2
  • the grain boundary density at a position 1 / 4t from the surface of the steel sheet is 400 to 1000 mm / mm 2
  • the grain boundary density at a position 1 / 2t from the surface of the steel sheet is 300 to 900 mm / mm 2 .
  • the chemical composition is, instead of a part of the Fe, by mass%.
  • Cu 1.50% or less
  • Ni 2.50% or less
  • Cr 1.00% or less
  • Mo 1.00% or less
  • V 0.150% or less
  • B 0.0050% or less
  • It contains at least one selected from the group consisting of The steel sheet according to (1) above.
  • the chemical composition is, instead of a part of the Fe, by mass%.
  • Mg 0.0100% or less
  • Ca 0.0100% or less
  • REM 0.0100% or less
  • It contains at least one selected from the group consisting of The steel sheet according to (1) or (2) above.
  • the chemical composition is, instead of a part of the Fe, by mass%.
  • the chemical composition is, instead of a part of the Fe, by mass%.
  • W 1.00% or less
  • Sn 0.50% or less, It contains at least one selected from the group consisting of The steel sheet according to any one of (1) to (4) above.
  • the chemical composition satisfies the following formula (ii).
  • the average circle equivalent diameter of the TiN particles at a position 1 / 10t from the surface of the steel sheet is 60 nm or less, and the area ratio of the TiN particles is 0.0001% or more.
  • the steel sheet according to any one of (1) to (6) above. Ti ⁇ N ⁇ 3.0 ⁇ 10-5 ... (ii)
  • the element symbol in the above formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
  • a heating step, a hot rolling step, and an accelerated cooling step are sequentially performed on a steel piece having the chemical composition according to any one of (1) to (6) above.
  • the steel pieces are heated to a heating temperature of 950 to 1050 ° C.
  • the hot rolling step includes rough rolling and finish rolling.
  • the rough rolling was carried out in a range where the surface temperature of the steel pieces was Trex or higher.
  • the cumulative rolling reduction in the rough rolling is 10 to 75%.
  • the finish rolling was carried out in a range where the surface temperature of the steel piece was Ar 3 or more and less than Trex .
  • the cumulative rolling reduction in the finish rolling is 65 to 90%, and the time between passes is 15 seconds or less.
  • the time from the completion of the finish rolling to the start of cooling in the accelerated cooling step is set to 50 seconds or less.
  • the cooling stop temperature is 0 to 550 ° C. under the condition that the cooling start temperature is Trex -10 ° C or lower and the average cooling rate from the cooling start to the cooling end is 5 to 50 ° C / sec.
  • Ar 3 is obtained by the following formula (iii)
  • Trex is obtained by the following formula (iv).
  • the element symbol in the following formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
  • T in the above formula represents the heating temperature (° C.) of the steel piece in the heating step.
  • the hot rolling step includes rough rolling and finish rolling.
  • the rough rolling was carried out in a range where the surface temperature of the steel pieces was Trex or higher.
  • the cumulative rolling reduction in the rough rolling is 10 to 75%.
  • the finish rolling was carried out in a range where the surface temperature of the steel piece was Ar 3 or more and less than Trex .
  • the cumulative rolling reduction in the finish rolling is 65 to 90%, and the time between passes is 15 seconds or less.
  • the time from the completion of the finish rolling to the start of cooling in the accelerated cooling step is set to 50 seconds or less.
  • the cooling stop temperature is 0 to 550 ° C.
  • Nb the amount of solid solution obtained by the following formula (v) is determined by sol.
  • Nb Nb ⁇ sol.
  • [Nb *] sol. Nb Nb ⁇ sol.
  • [Nb *] Nb
  • Nb (10 (-6770 / (T + 273) + 2.26) ) / (C + 12/14 ⁇ N) ⁇ ⁇ ⁇ (v)
  • T in the above formula represents the heating temperature (° C.) of the steel piece in the heating step.
  • the present inventors first investigated a method for achieving both high strength and improvement of low temperature toughness and fracture toughness. As a result, the strength is increased by using bainite as the main component of the metal structure, and in addition to the miniaturization and flattening of the bainite structure, the bainite ferrite constituting the bainite is refined not only to have low temperature toughness. It was found that the decrease in fracture toughness can be suppressed.
  • C 0.040 to 0.160% C is contained in an amount of 0.040% or more in order to secure the strength of the steel sheet.
  • the C content is 0.040% or more, preferably 0.050% or more or more than 0.050%, more preferably 0.060% or more or more than 0.075%.
  • the C content is 0.160% or less, preferably 0.140% or less, and more preferably 0.120% or less.
  • Si 0.01-0.50% Since Si is effective as a deoxidizing element and a strengthening element, it is contained in an amount of 0.01% or more. On the other hand, if the Si content exceeds 0.50%, the low temperature toughness and the fracture toughness are significantly deteriorated, so the Si content is set to 0.50% or less. Therefore, the Si content is 0.01% or more, preferably 0.03% or more, and more preferably 0.05% or more. The Si content is 0.50% or less, preferably 0.40% or less, more preferably 0.35% or less, still more preferably 0.30% or less.
  • Mn 0.70 to 2.50% Mn is contained in an amount of 0.70% or more in order to economically secure the strength of the steel sheet.
  • the Mn content is set to 2.50% or less. .. Therefore, the Mn content is 0.70% or more, preferably 0.90% or more, and more preferably 1.20% or more.
  • the Mn content is 2.50% or less, preferably 2.00% or less, more preferably 1.80% or less, still more preferably 1.60% or less.
  • P 0.030% or less
  • P is an element present in steel as an impurity.
  • the content of P is 0.030% or less. It is preferably 0.020% or less, more preferably 0.015% or less.
  • the lower limit is 0%, but the P content may be 0.0001% or more in consideration of the cost for reducing the P content.
  • S 0.020% or less S is an element present in steel as an impurity.
  • the S content exceeds 0.020%, a large amount of MnS stretched in the central segregation portion is generated, and the low temperature toughness, fracture toughness and ductility deteriorate. Therefore, the S content is set to 0.020% or less. It is preferably 0.010% or less. The lower the S content is, the more preferable it is, so the lower limit is not particularly specified, but the S content may be 0.0001% or more from the viewpoint of manufacturing cost.
  • Al 0.001 to 0.100%
  • Al is generally an element positively contained as a deoxidizing element, and the Al content is 0.001% or more.
  • the Al content is 0.100% or less, preferably 0.050% or less.
  • N 0.0010 to 0.0080% Since N has the effect of forming a Ti nitride and suppressing an increase in the austenite particle size when the steel piece is heated, it is contained in an amount of 0.0010% or more. However, if the N content exceeds 0.0080%, the steel sheet becomes embrittlement, so the N content is set to 0.0080% or less. Therefore, the N content is 0.0010% or more, preferably 0.0015% or more, and more preferably 0.0020% or more. The N content is 0.0080% or less, preferably 0.0065% or less, and more preferably 0.0060% or less.
  • Nb 0.003 to 0.050% Nb can improve the strength and toughness of the steel sheet. Further, in order to obtain a predetermined microstructure, rolling in the unrecrystallized austenite region is required, but Nb is an effective element for expanding the unrecrystallized temperature region, and raises the rolling temperature. It also contributes to productivity improvement. In order to obtain this effect, it is contained in an amount of 0.003% or more. However, if the Nb content exceeds 0.050%, the low temperature toughness, fracture toughness and weldability deteriorate, so the Nb content is set to 0.050% or less. Therefore, the Nb content is 0.003% or more, preferably 0.005% or more, and more preferably 0.008% or more. The Nb content is 0.050% or less, preferably 0.025% or less, and more preferably 0.018% or less.
  • Ti 0.003 to 0.050% Ti can improve the strength and toughness of the steel sheet. Further, by containing Ti, TiN is formed, which suppresses the increase in austenite grain size when the steel piece is heated. As the austenite grain size increases, the crystal grain size of the transformed structure also increases, making it difficult to obtain a predetermined grain boundary density, and the toughness and arrest property deteriorate. In order to obtain the effect of TiN, Ti is contained in an amount of 0.003% or more.
  • the Ti content exceeds 0.050%, TiC is formed and the HAZ toughness decreases, so the Ti content should be 0.050% or less. Therefore, the Ti content is 0.003% or more, preferably 0.006% or more, and more preferably 0.008% or more.
  • the Ti content is 0.050% or less, preferably 0.020% or less, and more preferably 0.015% or less.
  • the Ti content satisfies the following formula (i) in relation to the N content.
  • the solid solution N can be fixed and the arrest property can be improved.
  • the solid solution N is excessive, for example, the solid solution N promotes the susceptibility to cleft fracture, the solid solution N promotes grain boundary brittleness, the solid solution N forms MA, and the Fe nitride that fixes dislocations causes brittleness. It is considered that the arrest property is lowered due to the phenomenon such as conversion.
  • the Ti / N value is preferably 2.0 to 3.0, more preferably 2.3 to 2.7. 1.7 ⁇ Ti / N ⁇ 3.4 ... (i)
  • the element symbol in the above formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
  • the Ti content preferably satisfies the following equation (ii) in relation to the N content.
  • the average circle equivalent diameter is 60 nm or less and the area ratio is 0.
  • TiN particles of 0001% or more can be obtained, which contributes to the improvement of arrest property.
  • the value of Ti ⁇ N is preferably 4.0 ⁇ 10 -5 to 10.0 ⁇ 10 -5 , and more preferably 5.0 ⁇ 10 -5 to 8.0 ⁇ 10 -5 .
  • the element symbol in the above formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
  • At least one selected from the group consisting of Cu, Ni, Cr, Mo, V and B for the purpose of improving the strength is described below. It may be contained in the range shown. The reason for limiting each element will be described.
  • Cu 1.50% or less Cu has the effect of improving the strength and toughness of the steel sheet, and may be contained as necessary. However, if Cu is contained in an excessive amount, the performance is not improved in proportion to the increase in alloy cost, but rather it may cause surface cracking. Therefore, the Cu content is 1.50% or less, preferably 1.20% or less, and more preferably 1.00% or less. When the above effect is to be obtained more reliably, the Cu content is preferably 0.005% or more, more preferably 0.010% or more, still more preferably 0.050% or more.
  • Ni 2.50% or less
  • Ni is an element having an effect of improving the strength of the steel sheet, and may be contained as necessary. Further, Ni is an element having an effect of increasing the toughness of the steel matrix (fabric) in the solid solution state. However, if Ni is excessively contained, the low temperature toughness, fracture toughness and weldability are deteriorated. Therefore, the Ni content is 2.50% or less, preferably 1.00% or less, more preferably 0.50% or less, still more preferably 0.30% or less. When the above effect is to be obtained more reliably, the Ni content is preferably 0.005% or more, more preferably 0.010% or more, still more preferably 0.050% or more.
  • Cr 1.00% or less Cr is an element having an effect of improving the strength of the steel sheet, and may be contained as necessary. However, if Cr is excessively contained, low temperature toughness, fracture toughness and weldability are deteriorated. Therefore, the Cr content is 1.00% or less, preferably 0.80% or less, more preferably 0.50% or less, still more preferably 0.30% or less. When the above effect is to be obtained more reliably, the Cr content is preferably 0.005% or more, more preferably 0.010% or more, still more preferably 0.050% or more.
  • Mo 1.00% or less Mo is an element having an effect of improving the strength of the steel sheet, and may be contained as necessary. However, if Mo is contained in an excessive amount, low temperature toughness, fracture toughness and weldability are deteriorated. Therefore, the Mo content is 1.00% or less, preferably 0.80% or less, more preferably 0.50% or less, still more preferably 0.30% or less. When the above effect is to be obtained more reliably, the Mo content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
  • V 0.150% or less Since V is an element having an effect of improving the strength of the steel sheet, it may be contained if necessary. However, if V is excessively contained, low temperature toughness, fracture toughness and weldability are deteriorated. Therefore, the V content is 0.150% or less, preferably 0.100% or less, more preferably 0.070% or less, still more preferably 0.050% or less. When the above effect is to be obtained more reliably, the V content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
  • B 0.0050% or less
  • B is an element that enhances hardenability and contributes to improving the strength of the steel sheet, and may be contained as necessary. However, if B is contained in an excessive amount, the low temperature toughness and the fracture toughness are lowered. Therefore, the B content is 0.0050% or less, preferably 0.0040% or less, and more preferably 0.0030% or less. When the above effect is to be obtained more reliably, the B content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • At least one selected from the group consisting of Mg, Ca and REM is further contained in the range shown below for the purpose of controlling inclusions. You may. The reason for limiting each element will be described.
  • Mg 0.0100% or less
  • Mg is a deoxidizing element, which suppresses the formation of coarse inclusions by forming sulfides and suppresses the formation of harmful inclusions by forming fine oxides. It is an element that does. Therefore, it may be contained as needed. However, if Mg is excessively contained, coarse oxides, sulfides, and acid sulfides are likely to be formed, and low temperature toughness and fracture toughness are deteriorated. Therefore, the Mg content is 0.0100% or less, preferably 0.0070% or less, and more preferably 0.0050% or less. When the above effect is to be obtained more reliably, the Mg content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • Ca 0.0100% or less
  • Ca is a deoxidizing element, which suppresses the formation of coarse inclusions by forming sulfides and suppresses the formation of harmful inclusions by forming fine oxides. It is an element to be used. Therefore, it may be contained as needed. However, if Ca is excessively contained, coarse oxides, sulfides, and acid sulfides are likely to be formed, and low temperature toughness and fracture toughness are deteriorated. Therefore, the Ca content is 0.0100% or less, preferably 0.0070% or less, and more preferably 0.0050% or less. When the above effect is to be obtained more reliably, the Ca content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • REM 0.0100% or less REM is a deoxidizing element, which suppresses the formation of coarse inclusions by forming sulfides and suppresses the formation of harmful inclusions by forming fine oxides. It is an element that does. Therefore, it may be contained as needed. However, if REM is excessively contained, coarse oxides, sulfides, and acid sulfides are likely to be formed, and low temperature toughness and fracture toughness are deteriorated. Therefore, the REM content is 0.0100% or less, preferably 0.0070% or less, and more preferably 0.0050% or less. When the above effect is desired to be obtained more reliably, the REM content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the content of the REM means the total content of these elements.
  • Lanthanoids are industrially added in the form of misch metal.
  • At least one selected from the group consisting of Zr and Te is further contained in the range shown below for the purpose of miniaturizing the metal structure. May be good. The reason for limiting each element will be described.
  • Zr 0.0100% or less
  • Zr is an element that contributes to the improvement of toughness by miniaturizing the structure of the steel sheet.
  • Zr also functions as a deoxidizing element. Therefore, it may be contained as needed.
  • excessive Zr content reduces low temperature toughness and fracture toughness. Therefore, the Zr content is 0.0100% or less, preferably 0.0070% or less, and more preferably 0.0050% or less.
  • the Zr content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • Te 0.0100% or less Te is an element that contributes to the improvement of toughness by refining the structure of the steel sheet, and may be contained as necessary. However, even if Te is excessively contained, the above effect is saturated. Therefore, the Te content is 0.0100% or less, preferably 0.0070% or less, and more preferably 0.0050% or less. When the above effect is to be obtained more reliably, the Te content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • At least one selected from the group consisting of W and Sn may be contained in the range shown below for the purpose of improving corrosion resistance. .. The reason for limiting each element will be described.
  • W 1.00% or less W is an element that dissolves and adsorbs to rust in the form of oxygen acid ion WO 4- , suppresses the permeation of chloride ions in the rust layer, and improves corrosion resistance, so it is necessary. It may be contained according to the above. However, even if W is excessively contained, not only the above effect is saturated, but also low temperature toughness and fracture toughness may be lowered. Therefore, the W content is 1.00% or less, preferably 0.75% or less. When the above effect is to be obtained more reliably, the W content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
  • Sn 0.50% or less
  • Sn is an element that dissolves as Sn 2+ and has an action of suppressing corrosion by an inhibitory action in an acidic chloride solution.
  • Sn has an effect of suppressing the anode melting reaction of steel and improving corrosion resistance. Therefore, it may be contained as needed.
  • the Sn content is 0.50% or less, preferably 0.30% or less.
  • the Sn content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
  • the balance is Fe and impurities.
  • impurity is a component mixed with raw materials such as ore and scrap and various factors in the manufacturing process when the steel sheet is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something. O can also be mixed in the steel sheet as an impurity, but it is permissible if the O content is 0.0040% or less.
  • the metal structure is mainly bainite. Specifically, by setting the area ratio of bainite at the 1 / 4t position on the C cross section to 80% or more, it is possible to secure the strength of the steel sheet.
  • the area ratio of bainite is preferably 90% or more. It is not necessary to set an upper limit on the area ratio of bainite, that is, it may be bainite single phase.
  • Ferrite, pearlite, and martensite / austenite mixed phase may be mixed as the residual structure, but it is permissible if the total area ratio of these is 20% or less.
  • the total area ratio is preferably 10% or less. It is preferable that the total area ratio of these is small, and the lower limit is not particularly limited.
  • the total area ratio may be 0%. Further, it may be more than 0% or 1% or more.
  • bainite As described above, in addition to using bainite as the main component, by making the bainite structure finer and flatter, and further making the bainite ferrite finer, it is possible to achieve both the strength of the steel sheet and the low temperature toughness and fracture toughness. can. Specifically, the bainite organization must meet the following provisions.
  • Average length of bainitic ferrite 10 ⁇ m or less At the 1 / 4t position in the C cross section, the average length of bainite ferrite constituting bainite in the major axis direction shall be 10 ⁇ m or less.
  • the average length of bainitic ferrite is preferably 8 ⁇ m or less.
  • Average length in the thickness direction of the old austenite grains 20 ⁇ m or less
  • Average aspect ratio of the old austenite grains 2.5 or more
  • the miniaturization of the bainite structure controls the heating temperature before hot rolling to a low level and does not recrystallize. This can be achieved by performing finish rolling at a high-pressure reduction ratio in the region. That is, the old austenite grains of bainite have a shape elongated in the rolling direction. Therefore, at the 1 / 4t position in the L cross section, the average length of the old austenite grains in the thickness direction is 20 ⁇ m or less, and the average aspect ratio is 2.5 or more.
  • the average length of the old austenite grains in the thickness direction is preferably 15 ⁇ m or less. Further, the average aspect ratio of the old austenite grains is preferably more than 2.5, more preferably 4.0 or more.
  • the area ratio of the metal structure is calculated as follows. First, a sample is taken from the steel plate so that the 1 / 4t position on the C cross section is the observation surface. Then, the observation surface is night-game-etched, and after etching, eight fields of view are photographed at a magnification of 500 using an optical microscope. Then, image analysis is performed on the obtained tissue photograph, and the area ratio of each is obtained by using ferrite as the one that looks white and pearlite as the one that looks black.
  • the night-game-etched part is repeller-etched, the part that looks gray by night-game etching is image-analyzed, and the area ratio is obtained with the part that looks white as the MA phase.
  • the average length of bainite ferrite and the area ratio of bainite are calculated by KAM (Kernel Average Missionation) analysis using EBSD (Electron Back Scatter Diffraction).
  • KAM Kernel Average Missionation
  • EBSD Electro Back Scatter Diffraction
  • the region where the local orientation difference exceeds 1.0 ° is bainitic ferrite.
  • bainitic ferrite having a length in the major axis direction of 1 ⁇ m or more is targeted.
  • the area ratio of bainite is the sum of the area ratios of bainite ferrite.
  • the average length and aspect ratio of the old austenite grains in the thickness direction are measured according to JIS G 0551: 2013.
  • a sample is taken from the steel plate so that the 1 / 4t position on the L cross section is the observation surface.
  • the observation surface is mirror-polished, it is corroded by the Behcet-Beaujard method using a saturated aqueous solution of picric acid.
  • the grains that appear black due to corrosion are called old austenite grains.
  • the observation surface on which the old austenite grains are exposed is observed with an optical microscope, and a field of view having an area of 0.05 mm 2 or more is photographed with 8 fields or more (total 0.40 mm 2 or more). Then, the thickness of the old austenite grains is measured by a cutting method based on the tissue photograph taken by an optical microscope, and the average value thereof is taken as the average length in the thickness direction of the old austenite grains. In the measurement, the old austenite grains having a length of 1 ⁇ m or more in the thickness direction are targeted.
  • the maximum length in the major axis direction and the maximum length in the minor axis direction orthogonal to the major axis direction were measured for each old austenite grain, and the ratio (maximum length / short axis in the major axis direction) was measured. Axis maximum length) is calculated. Then, the average value is taken as the average aspect ratio of the old austenite grains.
  • finish rolling is performed in the unrecrystallized region at a high pressure reduction rate, the old austenite grains show a shape extended in the rolling direction, so the major axis direction is the rolling direction and the minor axis direction is the plate thickness direction ( The so-called ND direction).
  • Grain boundary density at 1 / 10t position in C cross section 500 to 1100 mm / mm 2
  • Grain boundary density at 1 / 4t position in C cross section 400-1000 mm / mm 2
  • Grain boundary density at 1 / 2t position in C cross section 300-900 mm / mm 2
  • the total length of the grain boundaries per unit area (hereinafter referred to as "grain boundary density”) is defined, and the arrest property is used. It was found that the correlation was the best when the relationship with was organized.
  • the "crystal grain boundary density” means "the total length per unit area of the crystal grain boundaries having a crystal orientation difference of 15 ° or more". The reason why the crystal orientation difference is set to 15 ° or more is that if the crystal orientation difference is less than 15 °, the grain boundaries are unlikely to interfere with brittle crack propagation, and the effect of improving arrestability is reduced.
  • the grain boundary densities in the C cross section are 600 mm / mm 2 or more at the 1 / 10t position, 500 mm / mm 2 or more at the 1 / 4t position, and 1 / 2t, respectively.
  • the position is preferably 400 mm / mm 2 or more.
  • the grain boundary density in the C cross section is set to 1100 mm / mm 2 or less at the 1 / 10t position, 1000 mm / mm 2 or less at the 1 / 4t position, and 900 mm / mm 2 or less at the 1 / 2t position.
  • the grain boundary densities in the C cross section are preferably 1000 mm / mm 2 or less at the 1 / 10t position, 900 mm / mm 2 or less at the 1 / 4t position, and 800 mm / mm 2 or less at the 1 / 2t position, respectively.
  • the grain boundary density at the 1 / 2t position is mainly controlled. At other plate thickness positions, the temperature is inevitably low and the cooling rate is high, so that the grain boundary density tends to increase. Therefore, it is often sufficient to specify only the grain boundary density at the 1 / 2t position.
  • the grain boundary densities at the 1 / 10t position, the 1 / 4t position, and the 1 / 2t position are defined as the representative values of the grain boundary densities of the average plate thickness.
  • the grain boundary density is measured by the electron backscatter diffraction (EBSD) method.
  • EBSD electron backscatter diffraction
  • the 500 ⁇ m ⁇ 500 ⁇ m region at the 1 / 10t position, 1 / 4t position, and 1 / 2t position is measured at a pitch of 1 ⁇ m, and the boundary where the crystal orientation difference from the adjacent grain is 15 ° or more is defined. It is defined as a grain boundary and can be obtained by dividing the total length of the crystal grain boundary at that time by the measured area.
  • TiN particles average circle equivalent diameter at 1 / 10t position: 60 nm or less Area ratio: 0.0001% or more
  • the average circle equivalent diameter of the TiN particles existing at the 1 / 10t position is 60 nm or less and the area ratio is 0.0001% or more.
  • the average circle equivalent diameter of the TiN particles is more preferably 50 nm or less, and further preferably 40 nm or less.
  • the lower limit of the average circle equivalent diameter of the TiN particles is not particularly limited, and may be, for example, 10 nm or more.
  • the area ratio of the TiN particles is more preferably 0.0002% or more, further preferably 0.0003% or more.
  • the upper limit of the area ratio of TiN particles is not particularly limited, and may be, for example, 0.0020% or less.
  • the average circle-equivalent diameter and area ratio of TiN particles are measured by the following methods.
  • EDX energy dispersive X-ray analyzer
  • the electron beam diameter of the TEM used for quantitative analysis of the particles is 1 to 20 nm, the observation magnification is 50,000 to 1,000,000 times, and any position in the particles is quantitatively analyzed.
  • the average circle equivalent diameter of TiN particles is an arithmetic mean of the area of each TiN particle determined above and the equivalent diameter (diameter) of a circle having the same area.
  • the area ratio of the TiN particles is a value obtained by dividing the total area of the individual TiN particles determined above by the area of the observed visual field.
  • the average circle-equivalent diameter of the TiN particles is the arithmetic mean of the circle-equivalent diameters (diameters) of the individual identified TiN particles, as described above.
  • the area ratio of TiN particles is a value obtained by dividing the total area of TiN particles that have been observed until the number of TiN particles reaches 100 or more by the total area of the visual field observed so far.
  • the total number of identified TiN particles was less than 100. In this case, it is considered that TiN particles do not exist, and it is out of the scope of the present application.
  • the mechanical properties of the steel sheet according to the present invention are not particularly limited, but the steel sheet according to the present invention has high strength and is excellent in low temperature toughness, fracture toughness and arrest property. Specifically, it is preferable that the yield stress (YS) is 460 to 860 MPa and the tensile strength (TS) is 570 to 980 MPa. Further, it is preferable that the fracture surface transition temperature (vTrs), which is an index of low temperature toughness, is ⁇ 60 ° C. or lower. Further, it is preferable that the Crack Tip Opening Displacement (CTOD) value at ⁇ 10 ° C., which is an index of fracture toughness, is 0.50 mm or more.
  • YS yield stress
  • TS tensile strength
  • vTrs fracture surface transition temperature
  • CTOD Crack Tip Opening Displacement
  • the tensile strength (TS) and yield stress (YS) are measured using a No. 1B tensile test piece collected from the center of the plate thickness in the direction perpendicular to the rolling direction based on JIS Z 2241: 2011. Specifically, the yield stress (YS) is the proof stress of the permanent elongation method at 0.2% permanent elongation.
  • the evaluation of the fracture surface transition temperature (vTrs) is based on JIS Z 2242: 2005, and the test piece is a V-notch test piece and is collected so as to include the 1 / 4t position of the steel plate. Further, according to ISO 15653: 2018, a CTOD test piece having the total thickness in the plate thickness direction of the base metal as the notch position of 3-point bending is collected, and the CTOD value at ⁇ 10 ° C. is measured.
  • the brittle crack propagation stop toughness value Kca (hereinafter referred to as “arest toughness value Kca -10 ° C ”) at a test temperature of ⁇ 10 ° C. is 6000 N / mm 1.5 or more. It is preferably 8000 N / mm 1.5 or more, and more preferably 8000 N / mm 1.5 or more. By satisfying this characteristic, the steel sheet has excellent arrest property.
  • Arrest toughness value Kca -10 ° C is NK Ship Class Association Steel Ship Regulation Inspection Procedure K Edition Annex K3.12.2-1. Measurements are performed in accordance with (2016) "Inspection Guidelines for Temperature Gradient ESSO Test and Temperature Gradient Double Tensile Test".
  • the non-ductile transition temperature (hereinafter referred to as “NDT temperature”) in the NRL drop test is preferably ⁇ 100 ° C. or lower, and more preferably ⁇ 110 ° C. or lower. By satisfying this characteristic, the steel sheet has excellent arrest property.
  • the NDT temperature is determined by conducting a test in accordance with the NRL drop weight test method specified in ASTM E208-06.
  • the NRL drop test method will be described in detail.
  • a type P3 test piece specified in ASTM E208 is collected so as to include the outermost surface of the steel plate.
  • the type P3 test piece is a test piece having a length of 130 mm, a width of 50 mm, and a thickness of 16 mm. At this time, the sample is collected so that the thickness direction of the test piece coincides with the plate thickness direction of the steel sheet and the longitudinal direction of the test piece coincides with the rolling direction of the steel sheet.
  • a weld bead extending in a direction parallel to the longitudinal direction of the test piece is formed on the outermost surface of the steel plate perpendicular to the thickness direction of the test piece.
  • the welding material having low toughness specified in ASTM E208 is used.
  • the length of the weld bead is adjusted to be in the range of 60 to 70 mm and the width is adjusted to be in the range of 12 to 16 mm.
  • a notch parallel to the width direction of the test piece is formed on the weld bead. At this time, the width of the notch is set to 1.5 mm or less, and the distance between the groove bottom of the notch and the test piece is adjusted to be in the range of 1.8 to 2.0 mm.
  • the impact bending load due to the drop weight is applied to the surface opposite to the surface on which the weld bead is formed.
  • Break with crack propagation
  • No Break without crack propagation
  • the above drop test is performed using two test pieces, for example, starting from the condition of -100 ° C and changing the test temperature at 5 ° C intervals (in the case of No Break, the temperature drops by 5 ° C, Break's (In the case of an increase of 5 ° C.), the temperature 5 ° C. lower than the lowest test temperature at which No Break was obtained for both of the two test pieces is defined as the non-ductile transition temperature.
  • the thickness of the steel plate according to the present invention is not particularly limited, but when used as a welded structure, the thickness is preferably 10 to 70 mm, preferably 20 to 60 mm. Is more preferable. Further, the effect of improving the low temperature toughness and the fracture toughness in the present invention is remarkably exhibited when the thickness is less than 50 mm.
  • (E) Method for manufacturing steel plate The manufacturing conditions for the steel plate according to the present invention are not particularly limited, but for example, the refining step, the continuous casting step, the heating step, the hot rolling step and the accelerated cooling step are sequentially performed under the conditions shown below. By doing so, it can be manufactured. Each process will be described.
  • the refining process is a process for producing molten steel.
  • the conditions of the refining process are not particularly limited, and a conventional method may be used.
  • the addition of Ti can be performed, for example, in a recirculation type degassing device.
  • the continuous casting step is a step of continuously casting molten steel to produce steel pieces having the above-mentioned chemical composition.
  • the conditions of the continuous casting process are not particularly limited, and a conventional method may be used. However, if the average circle equivalent diameter of TiN particles at the 1 / 10t position is 60 nm or less and the area ratio is 0.0001% or more, the average cooling rate when the surface temperature of the steel pieces is between 1200 and 900 ° C. is set. It is preferably 0.1 to 0.5 ° C./sec. If the average cooling rate is less than 0.1 ° C./sec, the TiN particles may be coarsened, and if it exceeds 0.5 ° C./sec, the area ratio of TiN may decrease.
  • the heating step is a step that contributes to the microstructure control of the austenite phase by heating the steel pieces.
  • the above steel pieces are heated to a heating temperature of 950 to 1080 ° C.
  • the heating step may be performed in a heating furnace.
  • heating the steel pieces to 950 to 1080 ° C. means heating the steel pieces so that the average temperature of the total thickness of the steel pieces when extracted from the heating furnace is in the range of 950 to 1080 ° C., and is described in the present specification.
  • the average temperature of the total thickness of the steel pieces is referred to as the heating temperature of the steel pieces.
  • the total thickness average temperature can be calculated from the temperature in the heating furnace, the heating time, and the surface temperature of the steel piece.
  • the heating temperature is less than 950 ° C., austeniticization becomes insufficient and hardenability is lowered due to the miniaturization of austenite grains, so that it is difficult to obtain a thick steel sheet and high strength steel sheet. Further, the miniaturization of the austenite grains promotes recrystallization during finish rolling, so that the aspect ratio of the old austenite grains is lowered. Further, when the heating temperature exceeds 1080 ° C., the austenite grains become coarse and it becomes difficult to make the bainite structure finer in the final structure.
  • the preferred heating temperature range is 1000-1050 ° C.
  • TiN can be finely dispersed by appropriately controlling the timing of adding Ti in the refining process and appropriately controlling the average cooling rate between 1200 and 900 ° C. in the continuous casting process.
  • the grain boundary density can be controlled within the above range.
  • the heating temperature of the steel pieces may be 1080 ° C. or lower.
  • the heating temperature of the steel pieces in the heating process is 1050 ° C. or lower.
  • the hot rolling process includes rough rolling and finish rolling.
  • Rough rolling is carried out in the range where the surface temperature of the steel pieces is Trex or higher. That is, the rough rolling is started when the surface temperature of the steel pieces is Trex or higher, and the rough rolling is finished when the surface temperature of the steel pieces is Trex or higher.
  • the surface temperature at the end of rough rolling may be higher than the surface temperature at the start of rough rolling. It is considered that this is due to the effect of processing heat generation due to rough rolling and the effect of heat transfer in the plate thickness direction of the steel piece due to the internal temperature being higher than the surface temperature.
  • the cumulative rolling reduction in rough rolling shall be in the range of 10 to 75%.
  • the cumulative rolling reduction in rough rolling is a value obtained by subtracting the plate thickness after the end of rough rolling from the plate thickness at the start of rough rolling and dividing by the plate thickness at the start of rough rolling. If the cumulative rolling reduction during rough rolling is less than 10%, it is difficult to make the austenite finer by recrystallization, and porosity may remain to cause internal cracking, resulting in deterioration of ductility and toughness. In addition, when the cumulative rolling reduction rate exceeds 75%, the austenite grains become excessively fine, and recrystallization during finish rolling is promoted, so that the aspect ratio of the old austenite grains decreases and the number of passes increases. As a result, productivity decreases.
  • the preferred cumulative reduction rate is 30-60%.
  • the steel piece after rough rolling is referred to as a steel plate.
  • Subsequent finish rolling is carried out in the range where the surface temperature of the steel sheet is Ar 3 or more and less than Trex . That is, it is cooled after the rough rolling is completed, the finish rolling is started when the surface temperature of the steel sheet is Ar 3 or more and less than Trex , and the finish rolling is finished when the surface temperature of the steel sheet is Ar 3 or more and less than Trex . ..
  • By performing the finish rolling in the range of less than Trex it becomes possible to impart strain to the austenite grains without recrystallization. This makes it possible to miniaturize bainite in the final structure.
  • the finishing temperature is set in the range where the surface temperature is Trex or higher, recrystallization is promoted and the aspect ratio of the old austenite grains is lowered.
  • the finish rolling is performed in the range where the surface temperature is less than Ar 3 , processed ferrite may be generated and the final structure may not have a bainite-based structure.
  • the cumulative rolling reduction in finish rolling shall be in the range of 65 to 90%.
  • the cumulative rolling reduction in finish rolling is a value obtained by subtracting the plate thickness after the end of finish rolling from the plate thickness at the start of finish rolling (after the end of rough rolling) and dividing by the plate thickness at the start of finish rolling.
  • the time between passes in finish rolling shall be 15 seconds or less.
  • the inter-pass time exceeds 15 seconds, the strain applied by the processing is recovered, the bainite in the final structure cannot be sufficiently refined, recrystallization is promoted, and the aspect ratio of the old austenite grains is lowered.
  • the shorter the inter-pass time the more preferable it is. Therefore, it is not necessary to set a lower limit, but it is preferably 3 seconds or more from the viewpoint of operability.
  • finish rolling is performed by reverse rolling.
  • the time between passes in finish rolling means that the steel sheet is rolled by a rolling roll while moving forward, the rear end of the steel sheet comes out of the rolling roll, the traveling direction of the steel sheet is reversed backward, and the rear end of the steel sheet is again. Means the time it takes for the roll to be bitten into the rolling roll.
  • the time from the completion of finish rolling to the start of cooling in the accelerated cooling process described later is set to 50 seconds or less.
  • the time from the completion of finish rolling to the start of cooling exceeds 50 seconds, the strain applied by the processing is recovered, bainite in the final structure cannot be sufficiently refined, recrystallization is promoted, and the old austenite grains are promoted.
  • the aspect ratio of is reduced.
  • the time from the completion of finish rolling to the start of cooling means the time from when the tip of the steel sheet traveling forward passes through the rolling roll in the final pass to the start of water cooling.
  • Ar 3 means the transformation start temperature at which the transformation from the austenite particles to the ferrite particles starts in the temperature lowering process, and is obtained by the following equation (iii).
  • Trex means the recrystallization temperature which is the lowest temperature at which equiaxial recrystallized grains can be generated and grown, and is obtained by the following equation (iv).
  • the element symbol in the following formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
  • T in the above formula represents the heating temperature (° C.) of the steel piece in the heating step.
  • (E) Accelerated cooling process In the accelerated cooling process, the steel sheet that has been finished rolled is water-cooled. At this time, water cooling is performed to a cooling stop temperature of 0 to 550 ° C. under the condition that the cooling start temperature is Trex -10 ° C. or lower and the average cooling rate from the cooling start to the cooling end is 5 to 50 ° C./sec. ..
  • the final structure can be made mainly bainite by water cooling to a cooling stop temperature of 0 to 550 ° C at an average cooling rate of 5 to 50 ° C / sec.
  • the average cooling rate and the cooling stop temperature are adjusted according to the value of Ceq in the chemical composition of the steel sheet, and are set to conditions under which martensitic transformation does not occur.
  • (F) Tempering step After the accelerated cooling step, a tempering step of heating to a temperature range of 350 to 650 ° C. may be further provided. By performing the tempering step, it is possible to reduce the dislocation density that has become excessively high due to cooling. When the cooling stop temperature in the accelerated cooling step is high, the self-tempering effect can be obtained, so that the tempering step does not have to be performed. On the other hand, in the accelerated cooling step, for example, when the cooling is performed to about room temperature, it is preferable to perform a tempering step.
  • the hot metal ejected from the blast furnace was desulfurized by hot metal pretreatment, de-P and de-C treated in a converter type refining vessel, and then steel was received in a ladle. At the time of steel ejection, alloying elements were added and cover slag for heat insulation was added.
  • the molten steel in the ladle was depressurized with an RH vacuum degassing device.
  • molten steel samples were taken as appropriate and subjected to analysis to obtain molten steel components.
  • the molten steel temperature changed from 1560 ° C to 1610 ° C.
  • Vacuum degassing was performed in the first half of the RH treatment to adjust the dissolved O concentration.
  • the dissolved O concentration was measured using an oxygen concentration probe.
  • Ti was added and a reflux treatment was performed to mix them uniformly.
  • steel pieces having the chemical compositions shown in Tables 1 and 2 were produced by a continuous casting method.
  • the average cooling rate was appropriately adjusted when the surface temperature of the steel pieces was between 1200 and 900 ° C.
  • Tables 3 and 4 show the dissolved O concentration (% by mass) in the molten steel when Ti is added, and the average cooling rate (° C./sec) between 1200 and 900 ° C. in continuous casting.
  • a steel plate having a plate thickness of 10 to 70 mm was prototyped according to the production conditions shown in Tables 5 and 6.
  • the metallographic structure of the obtained steel sheet was observed, and the area ratio of each structure was measured. Specifically, first, a sample was taken from the steel plate so that the 1 / 4t position on the C cross section was the observation surface. Then, the observation surface is nital-etched, and after etching, eight fields of view are photographed at a magnification of 500 using an optical microscope, and image analysis is performed on the obtained microstructure photograph. Was taken as pearl light, and the area ratio of each was calculated.
  • the part that had been etched by night game was subjected to repera etching, and the image analysis was performed on the part that looked gray by night game etching, and the area ratio was calculated with the part that looked white as the MA phase.
  • the average length of bainitic ferrite and the area ratio of bainite were calculated by KAM analysis using EBSD.
  • the region where the local orientation difference exceeds 1.0 ° was defined as bainitic ferrite.
  • bainitic ferrite having a length in the major axis direction of 1 ⁇ m or more was targeted.
  • the area ratio of bainite is the sum of the area ratios of bainite ferrite.
  • the average length and the average aspect ratio of the old austenite grains in the thickness direction were measured according to JIS G 0551: 2013.
  • a sample was taken from the steel plate so that the 1 / 4t position on the L cross section was the observation surface.
  • the observation surface was mirror-polished, it was corroded by the Behcet-Beaujard method using a saturated aqueous solution of picric acid to reveal old austenite grains.
  • the observation surface on which the old austenite grains appeared was observed with an optical microscope, and a field of view with an area of 0.05 mm 2 or more was photographed for 8 fields or more (total 0.40 mm 2 or more). Then, the thickness of the old austenite grains was measured by a cutting method based on the tissue photograph taken by an optical microscope, and the average value was taken as the average length in the thickness direction of the old austenite grains. In the measurement, old austenite grains having a length of 1 ⁇ m or more in the thickness direction were targeted.
  • the maximum length in the major axis direction and the maximum length in the minor axis direction orthogonal to the major axis direction were measured for each old austenite grain, and the ratio (maximum length / short axis) was measured. The maximum axis length) was calculated, and the average value was taken as the average aspect ratio of the old austenite grains.
  • the average circle-equivalent diameter and area ratio of TiN particles were measured using a TEM with EDX.
  • an extraction replica was prepared from the 1 / 10t position of the steel plate, and particles having a size of 15 to 200 nm were observed by TEM with an observation area of 15 ⁇ m 2 or more in one field of view at a magnification of 30,000 times or more. All observed particles are analyzed using EDX, and particles containing 1% by mass or more of Ti, less than 1% by mass of O (oxygen), and 1% by mass or more of N are discriminated as TiN particles. did.
  • the electron beam diameter of the TEM was 1 to 20 nm, the observation magnification was 50,000 to 1,000,000 times, and an arbitrary position in the particle was quantitatively analyzed.
  • the average circle equivalent diameter of TiN particles is an arithmetic mean of the area of each TiN particle determined above and the equivalent diameter (diameter) of a circle having the same area.
  • the area ratio of the TiN particles is a value obtained by dividing the total area of the individual TiN particles determined above by the area of the observed visual field.
  • the grain boundary density was measured by the EBSD method. Specifically, by the EBSD method, the 500 ⁇ m ⁇ 500 ⁇ m region at the 1 / 10t position, 1 / 4t position, and 1 / 2t position is measured at a pitch of 1 ⁇ m, and the boundary where the crystal orientation difference from the adjacent grain is 15 ° or more is defined. It was defined as a grain boundary and obtained by dividing the total length of the crystal grain boundary at that time by the measured area.
  • the measurement results are shown in Tables 7 and 8.
  • the ferrite area ratio is "F fraction”
  • the pearlite area ratio is “P fraction”
  • the bainite area ratio is “B fraction”
  • the MA phase area ratio is "MA fraction”.
  • the average length of bainitic ferrite in the major axis direction is referred to as "BF length”.
  • TS tensile strength
  • YS yield stress
  • the test piece was measured using a No. 1B tensile test piece collected with the direction perpendicular to the rolling direction (width direction) from the center of the plate thickness as the longitudinal direction.
  • the yield stress (YS) was the proof stress of the permanent elongation method when the permanent elongation was 0.2%.
  • those having a YS of 460 MPa or more and a TS of 570 MPa or more are considered to have high strength.
  • V-notch test pieces were collected so as to include the 1 / 4t position of the steel plate, and the fracture surface transition temperature (vTrs) was evaluated in accordance with JIS Z 2242: 2005. At this time, two V-notch test pieces were taken so that the longitudinal direction of the test pieces coincided with the rolling direction and the width direction of the steel sheet. In this example, the two test pieces having vTrs of ⁇ 60 ° C. or lower were considered to have excellent low temperature toughness.
  • CTOD test pieces having the total thickness in the plate thickness direction of the base metal as the notch position of 3-point bending were collected, and the CTOD value at ⁇ 10 ° C. was measured.
  • the test was performed 3 times and the minimum values are shown in the table. In this example, those having a minimum CTOD value of 0.50 mm or more at ⁇ 10 ° C. are considered to have excellent fracture toughness.
  • test number 30 has a high dissolved O concentration when Ti is added in the refining step, and the heating step in the heating step is high, and test number 31 has a high average cooling rate in the continuous casting step. Since the TiN particles did not precipitate and the grain boundary density could not be optimized, the arrest property deteriorated. In Test No. 32, since the average cooling rate in the continuous casting process was low, coarse TiN particles were precipitated and the grain boundary density could not be optimized, so that the arrest property was deteriorated.
  • Test number 33 had an excessive C content, so that the low temperature toughness and fracture toughness deteriorated.
  • Test No. 34 had a low C content, did not have a bainite-based structure, had insufficient strength, and deteriorated low temperature toughness and fracture toughness.
  • Test No. 35 the low temperature toughness and the fracture toughness deteriorated due to the excessive Si content.
  • Test No. 36 the low temperature toughness and the fracture toughness deteriorated due to the excessive Mn content.
  • Test No. 37 had a low Mn content and insufficient strength.
  • Test number 38 had an excessive content of P and S
  • test number 39 had an excessive content of Al
  • test number 40 had an excessive content of N, so that low temperature toughness and fracture toughness deteriorated.
  • the N content was low, the BF length and the old austenite grains became coarse, and the grain boundary density could not be optimized, so that the low temperature toughness, fracture toughness and arrest property deteriorated.
  • Test number 42 had an excessive Nb content, so that the low temperature toughness and fracture toughness deteriorated.
  • the Nb content was low, the BF length and the austenite grains were coarsened, the aspect ratio of the austenite grains was small, and the grain boundary density could not be optimized. Therefore, low temperature toughness and fracture occurred. Toughness and arrestability deteriorated.
  • the low temperature toughness and the fracture toughness deteriorated due to the excessive Ti content.
  • the TiN particles are coarsened and the heating temperature in the heating step is high, the grain boundary density cannot be optimized and the arrest property is also deteriorated.
  • the Ti content was low, the BF length and the old austenite grains were coarsened, and the grain boundary density could not be optimized, so that the low temperature toughness, the fracture toughness and the arrest property were deteriorated.
  • test numbers 46 and 47 the heating temperature in the heating step was high, the BF length and the old austenite grains were coarsened, and the grain boundary density could not be optimized. Therefore, low temperature toughness, fracture toughness and arrest property were obtained. Deteriorated. In Test No. 48, the heating temperature was low and the bainite area ratio was low, so that the strength was insufficient and the low temperature toughness and fracture toughness deteriorated. In test number 49, the end temperature of rough rolling was less than Trex , the BF length and the old austenite grains were coarsened, and the grain boundary density could not be optimized, so that the low temperature toughness, fracture toughness and arrest property deteriorated. did.
  • test number 50 the cumulative reduction rate of rough rolling was high, the BF length and the old austenite grains were coarsened, the aspect ratio of the old austenite grains was lowered, and the grain boundary density could not be optimized, so that the temperature was low. Deteriorated toughness, fracture toughness and arrestability.
  • Test No. 51 the cumulative reduction rate was low, the BF length and the old austenite grains were coarsened, and the grain boundary density could not be optimized, so that the low temperature toughness, fracture toughness and arrest property deteriorated.
  • test number 52 the start temperature of finish rolling is Trex or higher, the BF length and the old austenite grains are coarsened, the aspect ratio of the old austenite grains is lowered, and the grain boundary density cannot be optimized. Therefore, the low temperature toughness, fracture toughness and arrest property deteriorated.
  • Test No. 53 since the finish rolling end temperature was less than Ar 3 , processed ferrite was excessively generated, the strength became insufficient, and the low temperature toughness and fracture toughness deteriorated.
  • Test No. 54 has a high cumulative reduction rate of finish rolling
  • Test No. 55 has a low cumulative reduction rate, both of which coarsen the BF length and the former austenite grains, reduce the aspect ratio of the former austenite grains, and further. Since the grain boundary density could not be optimized, the low temperature toughness, fracture toughness and arrest property deteriorated.
  • test number 56 the time between passes is long
  • test number 57 the time from the completion of finish rolling to the start of cooling is long, both the BF length and the old austenite grains become coarse, and the aspect ratio of the old austenite grains decreases.
  • the grain boundary density could not be optimized, the low temperature toughness, fracture toughness and arrest property deteriorated.
  • Test No. 58 since the cooling rate in the accelerated cooling step was high, the MA phase was excessively generated, and the low temperature toughness and the fracture toughness deteriorated.
  • Test No. 59 had a low cooling rate, did not have a bainite-based structure, had insufficient strength, and deteriorated low temperature toughness and fracture toughness. Since the cooling stop temperature of the test number 60 was high, the structure was not mainly composed of bainite, the strength was insufficient, and the low temperature toughness, the fracture toughness and the arrest property were deteriorated. In Test No. 61, the cooling start temperature exceeded Trex -10 ° C. and the BF length became coarse, so that the low temperature toughness was good, but the fracture toughness deteriorated.
  • the steel plate according to the present invention can be suitably used as a material for welded structures such as ships, high-rise buildings, other buildings, bridges, marine structures, LNG storage tanks and other large tanks, and line pipes. ..

Abstract

Provided is a steel sheet having a chemical composition of, in mass percentage, 0.040-0.160% of C, 0.01-0.50% of Si, 0.70-2.50% of Mn, 0.030% or less of P, 0.020% or less of S, 0.001-0.100% of Al, 0.0010-0.0080% of N, 0.003-0.050% of Nb, 0.003-0.050% of Ti, and a balance of Fe and impurities, wherein the metal structure at a 1/4t point in the C-section contains bainite occupying 80% or more of the area thereof, the average length of bainitic ferrite forming said bainite, in the direction of the long axis thereof, is 10μm or less, the average length of prior austenite grains at a 1/4t point in the L-section, in a thickness direction, is 20μm or less with the average aspect ratio thereof being 2.5 or more, and the crystal grain boundary density at a 1/10t point, a 1/4t point, and a 1/2t point in the C-section is 500-1100mm/mm2, 400-1000mm/mm2, and 300-900mm/mm2, respectively.

Description

鋼板およびその製造方法Steel plate and its manufacturing method
 本発明は、鋼板およびその製造方法に関する。 The present invention relates to a steel sheet and a method for manufacturing the same.
 鋼板の用途として、船舶、高層建築物、その他の建築物、橋梁、海洋構造物、LNG貯蔵タンクその他の大型タンク、ラインパイプ等の溶接構造物が挙げられる(例えば、特許文献1~5参照)。近年、コンテナ船の積載重量増大等のため、溶接構造物の大型化が進められている。これに伴い、鋼板には板厚の厚肉化および高強度化が求められている。加えて、上記のような溶接構造物では、一層の安全性および信頼性の観点から、低温靱性および破壊靱性のさらなる向上が課題になっている。 Applications of steel sheets include ships, high-rise buildings, other buildings, bridges, marine structures, LNG storage tanks and other large tanks, welded structures such as line pipes (see, for example, Patent Documents 1 to 5). .. In recent years, the size of welded structures has been increasing due to the increase in the load weight of container ships. Along with this, steel sheets are required to be thicker and stronger. In addition, in the welded structure as described above, further improvement of low temperature toughness and fracture toughness is an issue from the viewpoint of further safety and reliability.
 さらに、溶接構造物には、万が一、脆性き裂が溶接継手箇所に発生した場合でも、脆性き裂を母材で停止させる脆性き裂伝播停止特性(以下、「アレスト性」という。)が求められる。 Further, the welded structure is required to have a brittle crack propagation stopping property (hereinafter referred to as "arrest property") in which the brittle crack is stopped by the base metal even if a brittle crack is generated at the welded joint. Be done.
特開2019-023322号公報Japanese Unexamined Patent Publication No. 2019-0233222 特開2019-023323号公報Japanese Unexamined Patent Publication No. 2019-0233323 特開2019-023324号公報Japanese Unexamined Patent Publication No. 2019-0233224 特開2019-035107号公報Japanese Unexamined Patent Publication No. 2019-035107 国際公開第2019/069771号International Publication No. 2019/069771
 しかしながら、一般的に、強度と低温靱性との間には、いわゆるトレードオフの関係が存在するため、これらを両立することは容易ではなかった。加えて、アレスト性の向上も容易ではなく、重要な課題となっていた。さらに、破壊靱性の向上に関しては、これまでほとんど検討がなされていなかったのが現状である。 However, in general, there is a so-called trade-off relationship between strength and low temperature toughness, so it was not easy to achieve both. In addition, it was not easy to improve the arrest property, which was an important issue. Furthermore, the current situation is that almost no studies have been made on the improvement of fracture toughness.
 本発明は、上記の課題を解決し、高い強度を有し、かつ低温靱性、破壊靱性およびアレスト性に優れる鋼板およびその製造方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a steel sheet having high strength and excellent low temperature toughness, fracture toughness and arrest property, and a method for producing the same.
 本発明は、下記の鋼板およびその製造方法を要旨とする。 The gist of the present invention is the following steel sheet and its manufacturing method.
 (1)鋼板の化学組成が、質量%で、
 C :0.040~0.160%、
 Si:0.01~0.50%、
 Mn:0.70~2.50%、
 P :0.030%以下、
 S :0.020%以下、
 Al:0.001~0.100%、
 N :0.0010~0.0080%、
 Nb:0.003~0.050%、
 Ti:0.003~0.050%、
 残部:Feおよび不純物であり、
 前記鋼板の圧延方向に垂直な断面において、前記鋼板の厚さをtとした時に、前記鋼板の表面から1/4tの位置における金属組織が、
 面積%で、80%以上のベイナイトを含み、かつ、
 前記ベイナイトを構成するベイニティックフェライトの長軸方向の平均長さが10μm以下であり、
 前記鋼板の圧延方向および厚さ方向に平行な断面において、前記鋼板の表面から1/4tの位置における旧オーステナイト粒の、厚さ方向における平均長さが20μm以下であり、アスペクト比の平均が2.5以上であり、
 前記鋼板の圧延方向に垂直な断面において、
 前記鋼板の表面から1/10tの位置における結晶粒界密度が500~1100mm/mm
 前記鋼板の表面から1/4tの位置における結晶粒界密度が400~1000mm/mm
 前記鋼板の表面から1/2tの位置における結晶粒界密度が300~900mm/mmである、
 鋼板。
(1) The chemical composition of the steel sheet is mass%.
C: 0.040 to 0.160%,
Si: 0.01-0.50%,
Mn: 0.70 to 2.50%,
P: 0.030% or less,
S: 0.020% or less,
Al: 0.001 to 0.100%,
N: 0.0010 to 0.0080%,
Nb: 0.003 to 0.050%,
Ti: 0.003 to 0.050%,
Remaining: Fe and impurities,
In the cross section perpendicular to the rolling direction of the steel sheet, when the thickness of the steel sheet is t, the metallographic structure at a position 1/4 t from the surface of the steel sheet is formed.
In% area, it contains more than 80% bainite and
The average length of the bainite ferrite constituting the bainite in the major axis direction is 10 μm or less.
In the cross section parallel to the rolling direction and the thickness direction of the steel sheet, the average length of the former austenite grains at a position 1 / 4t from the surface of the steel sheet in the thickness direction is 20 μm or less, and the average aspect ratio is 2. .5 or more,
In the cross section perpendicular to the rolling direction of the steel sheet,
The grain boundary density at a position 1/10 t from the surface of the steel sheet is 500 to 1100 mm / mm 2 ,
The grain boundary density at a position 1 / 4t from the surface of the steel sheet is 400 to 1000 mm / mm 2 ,
The grain boundary density at a position 1 / 2t from the surface of the steel sheet is 300 to 900 mm / mm 2 .
Steel plate.
 (2)前記化学組成が、前記Feの一部に代えて、質量%で、
 Cu:1.50%以下、
 Ni:2.50%以下、
 Cr:1.00%以下、
 Mo:1.00%以下、
 V :0.150%以下、および
 B :0.0050%以下、
 からなる群から選択される少なくとも1種以上を含有するものである、
 上記(1)に記載の鋼板。
(2) The chemical composition is, instead of a part of the Fe, by mass%.
Cu: 1.50% or less,
Ni: 2.50% or less,
Cr: 1.00% or less,
Mo: 1.00% or less,
V: 0.150% or less, and B: 0.0050% or less,
It contains at least one selected from the group consisting of
The steel sheet according to (1) above.
 (3)前記化学組成が、前記Feの一部に代えて、質量%で、
 Mg :0.0100%以下、
 Ca :0.0100%以下、および
 REM:0.0100%以下、
 からなる群から選択される少なくとも1種以上を含有するものである、
 上記(1)または(2)に記載の鋼板。
(3) The chemical composition is, instead of a part of the Fe, by mass%.
Mg: 0.0100% or less,
Ca: 0.0100% or less, and REM: 0.0100% or less,
It contains at least one selected from the group consisting of
The steel sheet according to (1) or (2) above.
 (4)前記化学組成が、前記Feの一部に代えて、質量%で、
 Zr:0.0100%以下、および
 Te:0.0100%以下、
 からなる群から選択される少なくとも1種以上を含有するものである、
 上記(1)から(3)までのいずれかに記載の鋼板。
(4) The chemical composition is, instead of a part of the Fe, by mass%.
Zr: 0.0100% or less, and Te: 0.0100% or less,
It contains at least one selected from the group consisting of
The steel sheet according to any one of (1) to (3) above.
 (5)前記化学組成が、前記Feの一部に代えて、質量%で、
 W :1.00%以下、および
 Sn:0.50%以下、
 からなる群から選択される少なくとも1種以上を含有するものである、
 上記(1)から(4)までのいずれかに記載の鋼板。
(5) The chemical composition is, instead of a part of the Fe, by mass%.
W: 1.00% or less, and Sn: 0.50% or less,
It contains at least one selected from the group consisting of
The steel sheet according to any one of (1) to (4) above.
 (6)前記化学組成が、下記(i)式を満足する、
 上記(1)から(5)までのいずれかに記載の鋼板。
 1.7≦Ti/N≦3.4  ・・・(i)
 但し、上記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
(6) The chemical composition satisfies the following formula (i).
The steel sheet according to any one of (1) to (5) above.
1.7 ≤ Ti / N ≤ 3.4 ... (i)
However, the element symbol in the above formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
 (7)前記化学組成が、下記(ii)式を満足し、
 前記鋼板の圧延方向に垂直な断面において、前記鋼板の表面から1/10tの位置におけるTiN粒子の平均円相当径が60nm以下であり、かつ前記TiN粒子の面積率が0.0001%以上である、
 上記(1)から(6)までのいずれかに記載の鋼板。
 Ti×N≧3.0×10-5  ・・・(ii)
 但し、上記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
(7) The chemical composition satisfies the following formula (ii).
In the cross section perpendicular to the rolling direction of the steel sheet, the average circle equivalent diameter of the TiN particles at a position 1 / 10t from the surface of the steel sheet is 60 nm or less, and the area ratio of the TiN particles is 0.0001% or more. ,
The steel sheet according to any one of (1) to (6) above.
Ti × N ≧ 3.0 × 10-5 ... (ii)
However, the element symbol in the above formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
 (8)上記(1)から(6)までのいずれか1項に記載の鋼板の製造方法であって、
 上記(1)から(6)までのいずれかに記載の化学組成を有する鋼片に対して、加熱工程、熱間圧延工程および加速冷却工程を順に施す、鋼板の製造方法において、
 前記加熱工程では、前記鋼片を950~1050℃の加熱温度まで加熱し、
 前記熱間圧延工程は、粗圧延と仕上圧延とを含み、
 前記粗圧延は、前記鋼片の表面温度がTrex以上の範囲で実施し、
 前記粗圧延における累積圧下率を10~75%とし、
 前記仕上圧延は、前記鋼片の表面温度がAr以上Trex未満の範囲で実施し、
 前記仕上圧延における累積圧下率を65~90%として、かつパス間時間を15秒以下とし、
 前記仕上圧延完了から、前記加速冷却工程における冷却開始までの時間を50秒以下とし、
 前記加速冷却工程では、冷却開始温度をTrex-10℃以下とし、かつ、冷却開始から冷却終了までの平均冷却速度が5~50℃/秒となる条件で、0~550℃の冷却停止温度まで水冷する、
 鋼板の製造方法。
 但し、Arは下記(iii)式で求められ、Trexは下記(iv)式で求められる。なお、下記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
 Ar=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo   ・・・(iii)
 Trex=-91900[Nb*]+9400[Nb*]+770   ・・・(iv)
 但し、下記(v)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
 Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
 Nb<sol.Nbの場合は、[Nb*]=Nb
 とする。
 sol.Nb=(10(-6770/(T+273)+2.26))/(C+12/14×N)   ・・・(v)
 なお、上記式中のTは加熱工程における鋼片の加熱温度(℃)を表す。
(8) The method for manufacturing a steel sheet according to any one of (1) to (6) above.
In a method for manufacturing a steel sheet, a heating step, a hot rolling step, and an accelerated cooling step are sequentially performed on a steel piece having the chemical composition according to any one of (1) to (6) above.
In the heating step, the steel pieces are heated to a heating temperature of 950 to 1050 ° C.
The hot rolling step includes rough rolling and finish rolling.
The rough rolling was carried out in a range where the surface temperature of the steel pieces was Trex or higher.
The cumulative rolling reduction in the rough rolling is 10 to 75%.
The finish rolling was carried out in a range where the surface temperature of the steel piece was Ar 3 or more and less than Trex .
The cumulative rolling reduction in the finish rolling is 65 to 90%, and the time between passes is 15 seconds or less.
The time from the completion of the finish rolling to the start of cooling in the accelerated cooling step is set to 50 seconds or less.
In the accelerated cooling step, the cooling stop temperature is 0 to 550 ° C. under the condition that the cooling start temperature is Trex -10 ° C or lower and the average cooling rate from the cooling start to the cooling end is 5 to 50 ° C / sec. Water-cooled to
Steel sheet manufacturing method.
However, Ar 3 is obtained by the following formula (iii), and Trex is obtained by the following formula (iv). The element symbol in the following formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
Ar 3 = 910-310 x C + 65 x Si-80 x Mn-20 x Cu-55 x Ni-15 x Cr-80 x Mo ... (iii)
TRex = -91900 [Nb *] 2 +9400 [Nb *] +770 ... (iv)
However, the amount of solid solution Nb (mass%) obtained by the following formula (v) is determined by sol. When it is Nb,
Nb ≧ sol. In the case of Nb, [Nb *] = sol. Nb
Nb <sol. In the case of Nb, [Nb *] = Nb
And.
sol. Nb = (10 (-6770 / (T + 273) + 2.26) ) / (C + 12/14 × N) ・ ・ ・ (v)
In addition, T in the above formula represents the heating temperature (° C.) of the steel piece in the heating step.
 (9)上記(7)に記載の鋼板の製造方法であって、
 溶鋼を製造する精錬工程と、前記溶鋼を連続鋳造して、上記(1)から(6)までのいずれかに記載の化学組成を有する鋼片を製造する連続鋳造工程とを備え、得られた前記鋼片に対して、加熱工程、熱間圧延工程および加速冷却工程を順に施す、鋼板の製造方法において、
 前記精錬工程では、前記溶鋼中の溶存O濃度が0.0050%以下となってからTiを添加し、
 前記連続鋳造工程では、前記鋼片の表面温度が1200~900℃の間における平均冷却速度を0.1~0.5℃/秒とし、
 前記加熱工程では、前記鋼片を950~1080℃の加熱温度まで加熱し、
 前記熱間圧延工程は、粗圧延と仕上圧延とを含み、
 前記粗圧延は、前記鋼片の表面温度がTrex以上の範囲で実施し、
 前記粗圧延における累積圧下率を10~75%とし、
 前記仕上圧延は、前記鋼片の表面温度がAr以上Trex未満の範囲で実施し、
 前記仕上圧延における累積圧下率を65~90%として、かつパス間時間を15秒以下とし、
 前記仕上圧延完了から、前記加速冷却工程における冷却開始までの時間を50秒以下とし、
 前記加速冷却工程では、冷却開始温度をTrex-10℃以下とし、かつ、冷却開始から冷却終了までの平均冷却速度が5~50℃/秒となる条件で、0~550℃の冷却停止温度まで水冷する、
 鋼板の製造方法。
 ここで、Arは下記(iii)式で求められ、Trexは下記(iv)式で求められる。なお、下記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
 Ar=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo   ・・・(iii)
 Trex=-91900[Nb*]+9400[Nb*]+770   ・・・(iv)
 但し、下記(v)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
 Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
 Nb<sol.Nbの場合は、[Nb*]=Nb
 とする。
 sol.Nb=(10(-6770/(T+273)+2.26))/(C+12/14×N)   ・・・(v)
 なお、上記式中のTは加熱工程における鋼片の加熱温度(℃)を表す。
(9) The method for manufacturing a steel sheet according to (7) above.
Obtained by comprising a refining step for producing molten steel and a continuous casting step for continuously casting the molten steel to produce a steel piece having the chemical composition according to any one of (1) to (6) above. In a method for manufacturing a steel plate, a heating step, a hot rolling step, and an accelerated cooling step are sequentially performed on the steel pieces.
In the refining step, Ti is added after the dissolved O concentration in the molten steel becomes 0.0050% or less.
In the continuous casting step, the average cooling rate when the surface temperature of the steel pieces is between 1200 and 900 ° C. is 0.1 to 0.5 ° C./sec.
In the heating step, the steel pieces are heated to a heating temperature of 950 to 1080 ° C.
The hot rolling step includes rough rolling and finish rolling.
The rough rolling was carried out in a range where the surface temperature of the steel pieces was Trex or higher.
The cumulative rolling reduction in the rough rolling is 10 to 75%.
The finish rolling was carried out in a range where the surface temperature of the steel piece was Ar 3 or more and less than Trex .
The cumulative rolling reduction in the finish rolling is 65 to 90%, and the time between passes is 15 seconds or less.
The time from the completion of the finish rolling to the start of cooling in the accelerated cooling step is set to 50 seconds or less.
In the accelerated cooling step, the cooling stop temperature is 0 to 550 ° C. under the condition that the cooling start temperature is Trex -10 ° C or lower and the average cooling rate from the cooling start to the cooling end is 5 to 50 ° C / sec. Water-cooled to
Steel sheet manufacturing method.
Here, Ar 3 is obtained by the following formula (iii), and Trex is obtained by the following formula (iv). The element symbol in the following formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
Ar 3 = 910-310 x C + 65 x Si-80 x Mn-20 x Cu-55 x Ni-15 x Cr-80 x Mo ... (iii)
TRex = -91900 [Nb *] 2 +9400 [Nb *] +770 ... (iv)
However, the amount of solid solution Nb (mass%) obtained by the following formula (v) is determined by sol. When it is Nb,
Nb ≧ sol. In the case of Nb, [Nb *] = sol. Nb
Nb <sol. In the case of Nb, [Nb *] = Nb
And.
sol. Nb = (10 (-6770 / (T + 273) + 2.26) ) / (C + 12/14 × N) ・ ・ ・ (v)
In addition, T in the above formula represents the heating temperature (° C.) of the steel piece in the heating step.
 (10)前記加速冷却工程の後に、350~650℃の温度範囲まで加熱する焼戻し工程をさらに施す、
 上記(8)または(9)に記載の鋼板の製造方法。
(10) After the accelerated cooling step, a tempering step of heating to a temperature range of 350 to 650 ° C. is further performed.
The method for manufacturing a steel sheet according to (8) or (9) above.
 本発明によれば、高い強度を有し、かつ低温靱性、破壊靱性およびアレスト性に優れる鋼板を得ることが可能になる。 According to the present invention, it is possible to obtain a steel sheet having high strength and excellent low temperature toughness, fracture toughness and arrest property.
 本発明者らは上記課題に対して詳細な検討を行った結果、以下の知見を得るに至った。 As a result of detailed studies on the above problems, the present inventors have obtained the following findings.
 上述のように、強度と低温靱性との間には、いわゆるトレードオフの関係が存在する。加えて、本発明者らの検討の結果、強度と破壊靱性との両立も容易でないことが分かった。そこで、まず、本発明者らは高強度化と低温靱性および破壊靱性の向上とを両立する方法について検討を行った。その結果、金属組織をベイナイト主体とすることで高強度化するとともに、ベイナイト組織の微細化および扁平化に加えて、ベイナイトを構成するベイニティックフェライトを微細化することで、低温靱性だけでなく破壊靱性の低下を抑制できることが分かった。 As mentioned above, there is a so-called trade-off relationship between strength and low temperature toughness. In addition, as a result of the studies by the present inventors, it was found that it is not easy to achieve both strength and fracture toughness. Therefore, the present inventors first investigated a method for achieving both high strength and improvement of low temperature toughness and fracture toughness. As a result, the strength is increased by using bainite as the main component of the metal structure, and in addition to the miniaturization and flattening of the bainite structure, the bainite ferrite constituting the bainite is refined not only to have low temperature toughness. It was found that the decrease in fracture toughness can be suppressed.
 また、熱間圧延前の加熱温度を低く制御し、かつ未再結晶域で高圧下率での仕上圧延を行うことで、ベイナイト組織の微細化および扁平化ならびにベイニティックフェライトの微細化を達成できることを見出した。 In addition, by controlling the heating temperature before hot rolling to a low level and performing finish rolling at a high pressure reduction rate in the unrecrystallized region, miniaturization and flattening of the bainite structure and miniaturization of bainitic ferrite are achieved. I found out what I could do.
 次に、アレスト性を改善する方法について検討を行った結果、鋼板の板厚方向における結晶粒界密度を制御することにより、鋼板表面に平行な方向、例えば、圧延方向と垂直または平行な方向のアレスト性を向上させることができることを見出した。 Next, as a result of examining a method for improving the arrest property, by controlling the crystal grain boundary density in the plate thickness direction of the steel sheet, the direction parallel to the surface of the steel sheet, for example, the direction perpendicular to or parallel to the rolling direction. It was found that the arrest property can be improved.
 本発明は、上記知見に基づいてなされたものである。以下、本発明の各要件について詳しく説明する。 The present invention has been made based on the above findings. Hereinafter, each requirement of the present invention will be described in detail.
 (A)化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値および上限値として含む意味で使用される。
(A) Chemical composition The reasons for limiting each element are as follows. In the following description, "%" for the content means "mass%". Further, in the present specification, "-" indicating a numerical range is used to mean that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value unless otherwise specified.
 C:0.040~0.160%
 Cは、鋼板の強度を確保するために0.040%以上含有させる。一方、C含有量が0.160%を超えると、良好な低温靱性および破壊靱性を確保することが困難になるので、Cの含有量は、0.160%以下とする。したがって、C含有量は0.040%以上、好ましくは0.050%以上または0.050%超、より好ましくは0.060%以上または0.075%超である。また、C含有量は0.160%以下、好ましくは0.140%以下、より好ましくは0.120%以下である。
C: 0.040 to 0.160%
C is contained in an amount of 0.040% or more in order to secure the strength of the steel sheet. On the other hand, if the C content exceeds 0.160%, it becomes difficult to secure good low temperature toughness and fracture toughness, so the C content is set to 0.160% or less. Therefore, the C content is 0.040% or more, preferably 0.050% or more or more than 0.050%, more preferably 0.060% or more or more than 0.075%. The C content is 0.160% or less, preferably 0.140% or less, and more preferably 0.120% or less.
 Si:0.01~0.50%
 Siは、脱酸元素および強化元素として有効であるので、0.01%以上含有させる。一方、Si含有量が0.50%を超えると、低温靱性および破壊靱性が大きく劣化するので、Si含有量は0.50%以下とする。したがって、Si含有量は0.01%以上、好ましくは0.03%以上、より好ましくは0.05%以上である。また、Si含有量は0.50%以下、好ましくは0.40%以下、より好ましくは0.35%以下、さらに好ましくは0.30%以下である。
Si: 0.01-0.50%
Since Si is effective as a deoxidizing element and a strengthening element, it is contained in an amount of 0.01% or more. On the other hand, if the Si content exceeds 0.50%, the low temperature toughness and the fracture toughness are significantly deteriorated, so the Si content is set to 0.50% or less. Therefore, the Si content is 0.01% or more, preferably 0.03% or more, and more preferably 0.05% or more. The Si content is 0.50% or less, preferably 0.40% or less, more preferably 0.35% or less, still more preferably 0.30% or less.
 Mn:0.70~2.50%
 Mnは、鋼板の強度を経済的に確保するために0.70%以上含有させる。一方、Mn含有量が2.50%を超えると、中心偏析が顕著となり、中心偏析が生じた部分の低温靱性および破壊靱性が劣化するので、Mnの含有量は、2.50%以下とする。したがって、Mn含有量は0.70%以上、好ましくは0.90%以上、より好ましくは1.20%以上である。また、Mn含有量は2.50%以下、好ましくは2.00%以下、より好ましくは1.80%以下、さらに好ましくは1.60%以下である。
Mn: 0.70 to 2.50%
Mn is contained in an amount of 0.70% or more in order to economically secure the strength of the steel sheet. On the other hand, when the Mn content exceeds 2.50%, the central segregation becomes remarkable and the low temperature toughness and the fracture toughness of the portion where the central segregation occurs deteriorates. Therefore, the Mn content is set to 2.50% or less. .. Therefore, the Mn content is 0.70% or more, preferably 0.90% or more, and more preferably 1.20% or more. The Mn content is 2.50% or less, preferably 2.00% or less, more preferably 1.80% or less, still more preferably 1.60% or less.
 P:0.030%以下
 Pは、不純物として鋼中に存在する元素である。低温靱性および破壊靱性を安定的に確保するために、Pの含有量を0.030%以下とする。好ましくは、0.020%以下、さらに好ましくは、0.015%以下である。下限は0%であるが、P含有量を低減させるためのコストを考慮し、P含有量は0.0001%以上としてもよい。
P: 0.030% or less P is an element present in steel as an impurity. In order to stably secure low temperature toughness and fracture toughness, the content of P is 0.030% or less. It is preferably 0.020% or less, more preferably 0.015% or less. The lower limit is 0%, but the P content may be 0.0001% or more in consideration of the cost for reducing the P content.
 S:0.020%以下
 Sは、不純物として鋼中に存在する元素である。S含有量が0.020%を超えると中心偏析部において延伸したMnSが多量に生成し、低温靱性、破壊靱性および延性が劣化する。このためS含有量を0.020%以下とする。好ましくは0.010%以下である。S含有量は少ないほど好ましいので下限は特に規定しないが、製造コストの観点から、S含有量は0.0001%以上であってもよい。
S: 0.020% or less S is an element present in steel as an impurity. When the S content exceeds 0.020%, a large amount of MnS stretched in the central segregation portion is generated, and the low temperature toughness, fracture toughness and ductility deteriorate. Therefore, the S content is set to 0.020% or less. It is preferably 0.010% or less. The lower the S content is, the more preferable it is, so the lower limit is not particularly specified, but the S content may be 0.0001% or more from the viewpoint of manufacturing cost.
 Al:0.001~0.100%
 Alは、一般的には、脱酸元素として、積極的に含有させる元素であり、Al含有量は0.001%以上とする。しかし、Al含有量が過剰になると、粗大なクラスター状のアルミナ(Al)系介在物の形成が助長され、低温靱性および破壊靱性が劣化する。よって、Al含有量は0.100%以下、好ましくは0.050%以下である。
Al: 0.001 to 0.100%
Al is generally an element positively contained as a deoxidizing element, and the Al content is 0.001% or more. However, when the Al content becomes excessive, the formation of coarse cluster-like alumina (Al 2 O 3 ) -based inclusions is promoted, and the low temperature toughness and the fracture toughness deteriorate. Therefore, the Al content is 0.100% or less, preferably 0.050% or less.
 N:0.0010~0.0080%
 Nは、Ti窒化物を形成し、鋼片加熱時にオーステナイト粒径が大きくなることを抑制する効果を有するため、0.0010%以上含有させる。しかし、N含有量が0.0080%を超えると、鋼板が脆化するので、Nの含有量は、0.0080%以下とする。したがって、N含有量は0.0010%以上、好ましくは0.0015%以上、より好ましくは0.0020%以上である。また、N含有量は0.0080%以下、好ましくは0.0065%以下、より好ましくは0.0060%以下である。
N: 0.0010 to 0.0080%
Since N has the effect of forming a Ti nitride and suppressing an increase in the austenite particle size when the steel piece is heated, it is contained in an amount of 0.0010% or more. However, if the N content exceeds 0.0080%, the steel sheet becomes embrittlement, so the N content is set to 0.0080% or less. Therefore, the N content is 0.0010% or more, preferably 0.0015% or more, and more preferably 0.0020% or more. The N content is 0.0080% or less, preferably 0.0065% or less, and more preferably 0.0060% or less.
 Nb:0.003~0.050%
 Nbは、鋼板の強度および靱性を向上することができる。また、所定のミクロ組織を得るためには、未再結晶オーステナイト域での圧延が必要となるところ、Nbは未再結晶温度域を拡大させるために有効な元素であり、圧延温度を上昇させ、生産性向上にも寄与する。この効果を得るためには、0.003%以上含有させる。ただし、Nbの含有量が0.050%を超えると低温靱性、破壊靱性および溶接性が低下するので、Nbの含有量は、0.050%以下とする。したがって、Nb含有量は0.003%以上、好ましくは0.005%以上、より好ましくは0.008%以上である。また、Nb含有量は0.050%以下、好ましくは0.025%以下、より好ましくは0.018%以下である。
Nb: 0.003 to 0.050%
Nb can improve the strength and toughness of the steel sheet. Further, in order to obtain a predetermined microstructure, rolling in the unrecrystallized austenite region is required, but Nb is an effective element for expanding the unrecrystallized temperature region, and raises the rolling temperature. It also contributes to productivity improvement. In order to obtain this effect, it is contained in an amount of 0.003% or more. However, if the Nb content exceeds 0.050%, the low temperature toughness, fracture toughness and weldability deteriorate, so the Nb content is set to 0.050% or less. Therefore, the Nb content is 0.003% or more, preferably 0.005% or more, and more preferably 0.008% or more. The Nb content is 0.050% or less, preferably 0.025% or less, and more preferably 0.018% or less.
 Ti:0.003~0.050%
 Tiは、鋼板の強度および靱性を向上することができる。また、Tiを含有させることによりTiNが形成され、鋼片加熱時にオーステナイト粒径が大きくなることを抑制する。オーステナイト粒径が大きくなると変態組織の結晶粒径も大きくなるため、所定の結晶粒界密度を得ることが困難となり、靱性およびアレスト性が低下する。TiNによる効果を得るためには、Tiを0.003%以上含有させる。
Ti: 0.003 to 0.050%
Ti can improve the strength and toughness of the steel sheet. Further, by containing Ti, TiN is formed, which suppresses the increase in austenite grain size when the steel piece is heated. As the austenite grain size increases, the crystal grain size of the transformed structure also increases, making it difficult to obtain a predetermined grain boundary density, and the toughness and arrest property deteriorate. In order to obtain the effect of TiN, Ti is contained in an amount of 0.003% or more.
 しかし、Tiの含有量が0.050%を超えると、TiCが形成されHAZ靱性が低下するので、Tiの含有量は0.050%以下とする。したがって、Ti含有量は0.003%以上、好ましくは0.006%以上、より好ましくは0.008%以上ある。また、Ti含有量は0.050%以下、好ましくは0.020%以下、より好ましくは0.015%以下である。 However, if the Ti content exceeds 0.050%, TiC is formed and the HAZ toughness decreases, so the Ti content should be 0.050% or less. Therefore, the Ti content is 0.003% or more, preferably 0.006% or more, and more preferably 0.008% or more. The Ti content is 0.050% or less, preferably 0.020% or less, and more preferably 0.015% or less.
 また、Ti含有量はN含有量との関係において、下記(i)式を満足するのが好ましい。Ti/Nの値を1.7以上とすることにより、固溶Nを固定し、アレスト性を向上させることができる。なお、固溶Nが過剰な場合、例えば、固溶Nによるへき開破壊感受性の助長、固溶Nによる粒界脆化の促進、固溶NによるMAの形成、転位を固着するFe窒化物による脆化等の現象に起因して、アレスト性が低下すると考えられる。 Further, it is preferable that the Ti content satisfies the following formula (i) in relation to the N content. By setting the Ti / N value to 1.7 or more, the solid solution N can be fixed and the arrest property can be improved. When the solid solution N is excessive, for example, the solid solution N promotes the susceptibility to cleft fracture, the solid solution N promotes grain boundary brittleness, the solid solution N forms MA, and the Fe nitride that fixes dislocations causes brittleness. It is considered that the arrest property is lowered due to the phenomenon such as conversion.
 一方、Ti/Nの値を3.4以下とすることにより、粗大なTiN、TiC等の形成を抑制し、アレスト性を向上させることができる。Ti/Nの値は、2.0~3.0であることが好ましく、2.3~2.7であることがより好ましい。
 1.7≦Ti/N≦3.4  ・・・(i)
 但し、上記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
On the other hand, by setting the Ti / N value to 3.4 or less, it is possible to suppress the formation of coarse TiN, TiC and the like, and improve the arrest property. The Ti / N value is preferably 2.0 to 3.0, more preferably 2.3 to 2.7.
1.7 ≤ Ti / N ≤ 3.4 ... (i)
However, the element symbol in the above formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
 さらに、Ti含有量はN含有量との関係において、下記(ii)式を満足するのが好ましい。Ti×Nの値を3.0×10-5以上とすることにより、後述するように、鋼板の表面から1/10t位置において、平均円相当径が60nm以下であり、かつ面積率が0.0001%以上であるTiN粒子が得られ、アレスト性の向上に寄与する。Ti×Nの値は、4.0×10-5~10.0×10-5であることが好ましく、5.0×10-5~8.0×10-5であることがより好ましい。
 Ti×N≧3.0×10-5  ・・・(ii)
 但し、上記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
Further, the Ti content preferably satisfies the following equation (ii) in relation to the N content. By setting the value of Ti × N to 3.0 × 10-5 or more, as will be described later, the average circle equivalent diameter is 60 nm or less and the area ratio is 0. At the position 1/10 t from the surface of the steel sheet. TiN particles of 0001% or more can be obtained, which contributes to the improvement of arrest property. The value of Ti × N is preferably 4.0 × 10 -5 to 10.0 × 10 -5 , and more preferably 5.0 × 10 -5 to 8.0 × 10 -5 .
Ti × N ≧ 3.0 × 10-5 ... (ii)
However, the element symbol in the above formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
 本発明の鋼板の化学組成において、上記の元素に加えて、強度の向上を目的として、さらにCu、Ni、Cr、Mo、VおよびBからなる群から選択される少なくとも1種以上を、以下に示す範囲において含有させてもよい。各元素の限定理由について説明する。 In the chemical composition of the steel sheet of the present invention, in addition to the above elements, at least one selected from the group consisting of Cu, Ni, Cr, Mo, V and B for the purpose of improving the strength is described below. It may be contained in the range shown. The reason for limiting each element will be described.
 Cu:1.50%以下
 Cuは、鋼板の強度および靱性を向上する効果を有するため、必要に応じて含有させてもよい。しかしながら、Cuを過剰に含有させると、合金コスト上昇に見合った性能の改善が見られず、むしろ表面割れの原因となる場合がある。そのため、Cu含有量は1.50%以下、好ましくは1.20%以下、より好ましくは1.00%以下である。上記の効果をより確実に得たい場合は、Cu含有量は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.050%以上である。
Cu: 1.50% or less Cu has the effect of improving the strength and toughness of the steel sheet, and may be contained as necessary. However, if Cu is contained in an excessive amount, the performance is not improved in proportion to the increase in alloy cost, but rather it may cause surface cracking. Therefore, the Cu content is 1.50% or less, preferably 1.20% or less, and more preferably 1.00% or less. When the above effect is to be obtained more reliably, the Cu content is preferably 0.005% or more, more preferably 0.010% or more, still more preferably 0.050% or more.
 Ni:2.50%以下
 Niは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。また、Niは固溶状態において鋼のマトリックス(生地)の靱性を高める効果を有する元素である。しかしながら、Niを過剰に含有させると、低温靱性、破壊靱性および溶接性が悪化する。そのため、Ni含有量は2.50%以下、好ましくは1.00%以下、より好ましくは0.50%以下、さらに好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Ni含有量は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.050%以上である。
Ni: 2.50% or less Ni is an element having an effect of improving the strength of the steel sheet, and may be contained as necessary. Further, Ni is an element having an effect of increasing the toughness of the steel matrix (fabric) in the solid solution state. However, if Ni is excessively contained, the low temperature toughness, fracture toughness and weldability are deteriorated. Therefore, the Ni content is 2.50% or less, preferably 1.00% or less, more preferably 0.50% or less, still more preferably 0.30% or less. When the above effect is to be obtained more reliably, the Ni content is preferably 0.005% or more, more preferably 0.010% or more, still more preferably 0.050% or more.
 Cr:1.00%以下
 Crは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。しかしながら、Crを過剰に含有させると、低温靱性、破壊靱性および溶接性が悪化する。そのため、Cr含有量は1.00%以下、好ましくは0.80%以下、より好ましくは0.50%以下、さらに好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Cr含有量は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.050%以上である。
Cr: 1.00% or less Cr is an element having an effect of improving the strength of the steel sheet, and may be contained as necessary. However, if Cr is excessively contained, low temperature toughness, fracture toughness and weldability are deteriorated. Therefore, the Cr content is 1.00% or less, preferably 0.80% or less, more preferably 0.50% or less, still more preferably 0.30% or less. When the above effect is to be obtained more reliably, the Cr content is preferably 0.005% or more, more preferably 0.010% or more, still more preferably 0.050% or more.
 Mo:1.00%以下
 Moは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。しかしながら、Moを過剰に含有させると、低温靱性、破壊靱性および溶接性が悪化する。そのため、Mo含有量は1.00%以下、好ましくは0.80%以下、より好ましくは0.50%以下、さらに好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Mo含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
Mo: 1.00% or less Mo is an element having an effect of improving the strength of the steel sheet, and may be contained as necessary. However, if Mo is contained in an excessive amount, low temperature toughness, fracture toughness and weldability are deteriorated. Therefore, the Mo content is 1.00% or less, preferably 0.80% or less, more preferably 0.50% or less, still more preferably 0.30% or less. When the above effect is to be obtained more reliably, the Mo content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
 V:0.150%以下
 Vは、鋼板の強度を向上させる効果を有する元素であるため、必要に応じて含有させてもよい。しかしながら、Vを過剰に含有させると、低温靱性、破壊靱性および溶接性が悪化する。そのため、V含有量は0.150%以下、好ましくは0.100%以下、より好ましくは0.070%以下、さらに好ましくは0.050%以下である。上記の効果をより確実に得たい場合は、V含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
V: 0.150% or less Since V is an element having an effect of improving the strength of the steel sheet, it may be contained if necessary. However, if V is excessively contained, low temperature toughness, fracture toughness and weldability are deteriorated. Therefore, the V content is 0.150% or less, preferably 0.100% or less, more preferably 0.070% or less, still more preferably 0.050% or less. When the above effect is to be obtained more reliably, the V content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
 B:0.0050%以下
 Bは、焼入れ性を高め、鋼板の強度向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Bを過剰に含有させると、低温靱性および破壊靱性が低下する。そのため、B含有量は0.0050%以下、好ましくは0.0040%以下、より好ましくは0.0030%以下である。上記の効果をより確実に得たい場合は、B含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
B: 0.0050% or less B is an element that enhances hardenability and contributes to improving the strength of the steel sheet, and may be contained as necessary. However, if B is contained in an excessive amount, the low temperature toughness and the fracture toughness are lowered. Therefore, the B content is 0.0050% or less, preferably 0.0040% or less, and more preferably 0.0030% or less. When the above effect is to be obtained more reliably, the B content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
 本発明の鋼板の化学組成において、上記の元素に加えて、介在物の制御を目的として、さらにMg、CaおよびREMからなる群から選択される少なくとも1種以上を、以下に示す範囲において含有させてもよい。各元素の限定理由について説明する。 In the chemical composition of the steel sheet of the present invention, in addition to the above elements, at least one selected from the group consisting of Mg, Ca and REM is further contained in the range shown below for the purpose of controlling inclusions. You may. The reason for limiting each element will be described.
 Mg:0.0100%以下
 Mgは、脱酸元素であり、硫化物を形成することで粗大な介在物の生成を抑制し、微細な酸化物を形成して、有害な介在物の生成を抑制する元素である。そのため、必要に応じて含有させてもよい。しかしながら、Mgを過剰に含有させると、粗大な酸化物、硫化物、および酸硫化物が形成されやすくなり、低温靱性および破壊靱性が低下する。そのため、Mg含有量は0.0100%以下、好ましくは0.0070%以下、より好ましくは0.0050%以下である。上記の効果をより確実に得たい場合は、Mg含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
Mg: 0.0100% or less Mg is a deoxidizing element, which suppresses the formation of coarse inclusions by forming sulfides and suppresses the formation of harmful inclusions by forming fine oxides. It is an element that does. Therefore, it may be contained as needed. However, if Mg is excessively contained, coarse oxides, sulfides, and acid sulfides are likely to be formed, and low temperature toughness and fracture toughness are deteriorated. Therefore, the Mg content is 0.0100% or less, preferably 0.0070% or less, and more preferably 0.0050% or less. When the above effect is to be obtained more reliably, the Mg content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
 Ca:0.0100%以下
 Caは、脱酸元素であり、硫化物を形成することで粗大な介在物の生成を抑制し、微細な酸化物を形成して、有害な介在物の生成を抑制する元素である。そのため、必要に応じて含有させてもよい。しかしながら、Caを過剰に含有させると、粗大な酸化物、硫化物、および酸硫化物が形成されやすくなり、低温靱性および破壊靱性が低下する。そのため、Ca含有量は0.0100%以下、好ましくは0.0070%以下、より好ましくは0.0050%以下である。上記の効果をより確実に得たい場合は、Ca含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
Ca: 0.0100% or less Ca is a deoxidizing element, which suppresses the formation of coarse inclusions by forming sulfides and suppresses the formation of harmful inclusions by forming fine oxides. It is an element to be used. Therefore, it may be contained as needed. However, if Ca is excessively contained, coarse oxides, sulfides, and acid sulfides are likely to be formed, and low temperature toughness and fracture toughness are deteriorated. Therefore, the Ca content is 0.0100% or less, preferably 0.0070% or less, and more preferably 0.0050% or less. When the above effect is to be obtained more reliably, the Ca content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
 REM:0.0100%以下
 REMは、脱酸元素であり、硫化物を形成することで粗大な介在物の生成を抑制し、微細な酸化物を形成して、有害な介在物の生成を抑制する元素である。そのため、必要に応じて含有させてもよい。しかしながら、REMを過剰に含有させると、粗大な酸化物、硫化物、および酸硫化物が形成されやすくなり、低温靱性および破壊靱性が低下する。そのため、REM含有量は0.0100%以下、好ましくは0.0070%以下、より好ましくは0.0050%以下である。上記の効果をより確実に得たい場合は、REM含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
REM: 0.0100% or less REM is a deoxidizing element, which suppresses the formation of coarse inclusions by forming sulfides and suppresses the formation of harmful inclusions by forming fine oxides. It is an element that does. Therefore, it may be contained as needed. However, if REM is excessively contained, coarse oxides, sulfides, and acid sulfides are likely to be formed, and low temperature toughness and fracture toughness are deteriorated. Therefore, the REM content is 0.0100% or less, preferably 0.0070% or less, and more preferably 0.0050% or less. When the above effect is desired to be obtained more reliably, the REM content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
 ここで、本発明において、REMはSc、Yおよびランタノイドの合計17元素を指し、前記REMの含有量はこれらの元素の合計含有量を意味する。なお、ランタノイドは、工業的には、ミッシュメタルの形で添加される。 Here, in the present invention, REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the content of the REM means the total content of these elements. Lanthanoids are industrially added in the form of misch metal.
 本発明の鋼板の化学組成において、上記の元素に加えて、金属組織の微細化を目的として、さらにZrおよびTeからなる群から選択される少なくとも1種以上を、以下に示す範囲において含有させてもよい。各元素の限定理由について説明する。 In the chemical composition of the steel sheet of the present invention, in addition to the above elements, at least one selected from the group consisting of Zr and Te is further contained in the range shown below for the purpose of miniaturizing the metal structure. May be good. The reason for limiting each element will be described.
 Zr:0.0100%以下
 Zrは、鋼板の組織微細化によって靱性向上に寄与する元素である。また、Zrは脱酸元素としても機能する。そのため、必要に応じて含有させてもよい。しかしながら、Zrを過剰に含有させると、低温靱性および破壊靱性が低下する。そのため、Zr含有量は0.0100%以下、好ましくは0.0070%以下、より好ましくは0.0050%以下である。上記の効果をより確実に得たい場合は、Zr含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
Zr: 0.0100% or less Zr is an element that contributes to the improvement of toughness by miniaturizing the structure of the steel sheet. Zr also functions as a deoxidizing element. Therefore, it may be contained as needed. However, excessive Zr content reduces low temperature toughness and fracture toughness. Therefore, the Zr content is 0.0100% or less, preferably 0.0070% or less, and more preferably 0.0050% or less. When the above effect is to be obtained more reliably, the Zr content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
 Te:0.0100%以下
 Teは、鋼板の組織微細化によって靱性向上に寄与する元素であるため、必要に応じて含有させてもよい。しかしながら、Teを過剰に含有させても、上記効果は飽和する。そのため、Te含有量は0.0100%以下、好ましくは0.0070%以下、より好ましくは0.0050%以下である。上記の効果をより確実に得たい場合は、Te含有量は、好ましくは0.0001%以上、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
Te: 0.0100% or less Te is an element that contributes to the improvement of toughness by refining the structure of the steel sheet, and may be contained as necessary. However, even if Te is excessively contained, the above effect is saturated. Therefore, the Te content is 0.0100% or less, preferably 0.0070% or less, and more preferably 0.0050% or less. When the above effect is to be obtained more reliably, the Te content is preferably 0.0001% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
 本発明の鋼板の化学組成において、上記の元素に加えて、耐食性の向上を目的として、さらにWおよびSnからなる群から選択される少なくとも1種以上を、以下に示す範囲において含有させてもよい。各元素の限定理由について説明する。 In the chemical composition of the steel sheet of the present invention, in addition to the above elements, at least one selected from the group consisting of W and Sn may be contained in the range shown below for the purpose of improving corrosion resistance. .. The reason for limiting each element will be described.
 W:1.00%以下
 Wは、溶解して酸素酸イオンWO の形でさびに吸着し、さび層中の塩化物イオンの透過を抑制し、耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかしながら、Wを過剰に含有させても、上記効果が飽和するだけでなく、低温靱性および破壊靱性が低下する場合がある。そのため、W含有量は1.00%以下、好ましくは0.75%以下である。上記の効果をより確実に得たい場合は、W含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
W: 1.00% or less W is an element that dissolves and adsorbs to rust in the form of oxygen acid ion WO 4- , suppresses the permeation of chloride ions in the rust layer, and improves corrosion resistance, so it is necessary. It may be contained according to the above. However, even if W is excessively contained, not only the above effect is saturated, but also low temperature toughness and fracture toughness may be lowered. Therefore, the W content is 1.00% or less, preferably 0.75% or less. When the above effect is to be obtained more reliably, the W content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
 Sn:0.50%以下
 Snは、Sn2+となって溶解し、酸性塩化物溶液中でのインヒビター作用により腐食を抑制する作用を有する元素である。また、Snには鋼のアノード溶解反応を抑制し耐食性を向上させる作用がある。そのため、必要に応じて含有させてもよい。しかしながら、Snを過剰に含有させても、上記効果が飽和するだけでなく、鋼板の圧延割れが発生しやすくなる。そのため、Sn含有量は0.50%以下、好ましくは0.30%以下である。上記の効果をより確実に得たい場合は、Sn含有量は、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
Sn: 0.50% or less Sn is an element that dissolves as Sn 2+ and has an action of suppressing corrosion by an inhibitory action in an acidic chloride solution. In addition, Sn has an effect of suppressing the anode melting reaction of steel and improving corrosion resistance. Therefore, it may be contained as needed. However, even if Sn is contained in an excessive amount, not only the above effect is saturated, but also rolling cracks of the steel sheet are likely to occur. Therefore, the Sn content is 0.50% or less, preferably 0.30% or less. When the above effect is to be obtained more reliably, the Sn content is preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more.
 本発明の鋼板の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。鋼板中にはOも不純物として混入し得るが、O含有量は0.0040%以下であれば許容される。 In the chemical composition of the steel sheet of the present invention, the balance is Fe and impurities. Here, the "impurity" is a component mixed with raw materials such as ore and scrap and various factors in the manufacturing process when the steel sheet is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something. O can also be mixed in the steel sheet as an impurity, but it is permissible if the O content is 0.0040% or less.
 (B)鋼板の金属組織
 本発明の鋼板の金属組織について説明する。なお、以下の説明において「%」は、「面積%」を意味する。また、本発明では、鋼板の厚さをtとした時に、鋼板の圧延方向に垂直な断面における、該鋼板の表面から1/4tの位置を「C断面での1/4t位置」と呼び、鋼板の圧延方向および厚さ方向に平行な断面における、該鋼板の表面から1/4tの位置を「L断面での1/4t位置」と呼ぶこととする。さらに、上記の「圧延方向」は、仕上圧延における圧延方向を意味することとする。
(B) Metallic structure of steel sheet The metal structure of the steel sheet of the present invention will be described. In the following description, "%" means "area%". Further, in the present invention, when the thickness of the steel sheet is t, the position 1 / 4t from the surface of the steel sheet in the cross section perpendicular to the rolling direction of the steel sheet is referred to as "1 / 4t position in the C cross section". The position 1 / 4t from the surface of the steel sheet in the cross section parallel to the rolling direction and the thickness direction of the steel sheet is referred to as "1 / 4t position in the L cross section". Further, the above-mentioned "rolling direction" means a rolling direction in finish rolling.
 ベイナイト:80%以上
 本発明において、金属組織はベイナイトが主体である。具体的には、C断面での1/4t位置におけるベイナイトの面積率を80%以上とすることで、鋼板の強度を確保することが可能となる。ベイナイトの面積率は90%以上であることが好ましい。なお、ベイナイトの面積率に上限を設ける必要はなく、すなわち、ベイナイト単相であってもよい。
Bainite: 80% or more In the present invention, the metal structure is mainly bainite. Specifically, by setting the area ratio of bainite at the 1 / 4t position on the C cross section to 80% or more, it is possible to secure the strength of the steel sheet. The area ratio of bainite is preferably 90% or more. It is not necessary to set an upper limit on the area ratio of bainite, that is, it may be bainite single phase.
 なお、残部組織として、フェライト、パーライト、マルテンサイト・オーステナイト混合相(MA相)が混入する場合があるが、これらの合計面積率が20%以下であれば許容される。上記合計面積率は10%以下であるのが好ましい。これらの合計面積率は少ない方が好ましく、下限値は特に限定されるものではない。例えば、上記合計面積率は0%であってもよい。また、0%超であってもよく、1%以上であってもよい。 Ferrite, pearlite, and martensite / austenite mixed phase (MA phase) may be mixed as the residual structure, but it is permissible if the total area ratio of these is 20% or less. The total area ratio is preferably 10% or less. It is preferable that the total area ratio of these is small, and the lower limit is not particularly limited. For example, the total area ratio may be 0%. Further, it may be more than 0% or 1% or more.
 上述のように、ベイナイトを主体とすることに加えて、ベイナイト組織を微細かつ扁平化し、さらにベイニティックフェライトを微細化することで、鋼板の強度と低温靱性および破壊靱性とを両立することができる。具体的には、ベイナイト組織が以下の規定を満足する必要がある。 As described above, in addition to using bainite as the main component, by making the bainite structure finer and flatter, and further making the bainite ferrite finer, it is possible to achieve both the strength of the steel sheet and the low temperature toughness and fracture toughness. can. Specifically, the bainite organization must meet the following provisions.
 ベイニティックフェライトの平均長さ:10μm以下
 C断面での1/4t位置において、ベイナイトを構成するベイニティックフェライトの長軸方向の平均長さを10μm以下とする。ベイナイトを構成するベイニティックフェライトを微細化することで、破壊靱性を確保することが可能となる。ベイニティックフェライトの平均長さは8μm以下であるのが好ましい。
Average length of bainitic ferrite: 10 μm or less At the 1 / 4t position in the C cross section, the average length of bainite ferrite constituting bainite in the major axis direction shall be 10 μm or less. By refining the bainitic ferrite that constitutes bainite, it is possible to secure fracture toughness. The average length of bainitic ferrite is preferably 8 μm or less.
 旧オーステナイト粒の厚さ方向における平均長さ:20μm以下
 旧オーステナイト粒のアスペクト比の平均:2.5以上
 ベイナイト組織の微細化は、熱間圧延前の加熱温度を低く制御し、かつ未再結晶域で高圧下率での仕上圧延を行うことで達成できる。すなわち、ベイナイトの旧オーステナイト粒は圧延方向に伸長した形状となる。そのため、L断面での1/4t位置において、旧オーステナイト粒の厚さ方向における平均長さを20μm以下とし、かつアスペクト比の平均を2.5以上とする。旧オーステナイト粒の厚さ方向における平均長さは15μm以下であるのが好ましい。また、旧オーステナイト粒のアスペクト比の平均は2.5超であるのが好ましく、4.0以上であるのがより好ましい。
Average length in the thickness direction of the old austenite grains: 20 μm or less Average aspect ratio of the old austenite grains: 2.5 or more The miniaturization of the bainite structure controls the heating temperature before hot rolling to a low level and does not recrystallize. This can be achieved by performing finish rolling at a high-pressure reduction ratio in the region. That is, the old austenite grains of bainite have a shape elongated in the rolling direction. Therefore, at the 1 / 4t position in the L cross section, the average length of the old austenite grains in the thickness direction is 20 μm or less, and the average aspect ratio is 2.5 or more. The average length of the old austenite grains in the thickness direction is preferably 15 μm or less. Further, the average aspect ratio of the old austenite grains is preferably more than 2.5, more preferably 4.0 or more.
 ここで、本発明において、金属組織の面積率は以下のように求める。まず、鋼板からC断面での1/4t位置が観察面となるように、試料を採取する。そして、観察面をナイタールエッチングし、エッチング後に光学顕微鏡を用いて8視野を500倍で撮影する。そして得られた組織写真に対し、画像解析を行い、白色に見えるものをフェライト、黒色に見えるものをパーライトとして、それぞれの面積率を求める。 Here, in the present invention, the area ratio of the metal structure is calculated as follows. First, a sample is taken from the steel plate so that the 1 / 4t position on the C cross section is the observation surface. Then, the observation surface is night-game-etched, and after etching, eight fields of view are photographed at a magnification of 500 using an optical microscope. Then, image analysis is performed on the obtained tissue photograph, and the area ratio of each is obtained by using ferrite as the one that looks white and pearlite as the one that looks black.
 次に、ナイタールエッチングした部分をレペラエッチングし、ナイタールエッチングで灰色に見えた部分について画像解析を行い、白色に見えるものをMA相として面積率を求める。 Next, the night-game-etched part is repeller-etched, the part that looks gray by night-game etching is image-analyzed, and the area ratio is obtained with the part that looks white as the MA phase.
 ベイニティックフェライトの平均長さおよびベイナイトの面積率は、EBSD(Electron Back Scatter Diffraction)を用いたKAM(Kernel Average Misorientation)解析により算出する。KAM解析において、フェライトであると判断される組織において、局所方位差が1.0°を超える領域がベイニティックフェライトである。なお、測定に際しては、長軸方向の長さが1μm以上であるベイニティックフェライトを対象とする。また、ベイナイトの面積率はベイニティックフェライトの面積率を合計したものである。 The average length of bainite ferrite and the area ratio of bainite are calculated by KAM (Kernel Average Missionation) analysis using EBSD (Electron Back Scatter Diffraction). In the structure determined to be ferrite in KAM analysis, the region where the local orientation difference exceeds 1.0 ° is bainitic ferrite. In the measurement, bainitic ferrite having a length in the major axis direction of 1 μm or more is targeted. The area ratio of bainite is the sum of the area ratios of bainite ferrite.
 旧オーステナイト粒の厚さ方向における平均長さおよびアスペクト比の平均の測定は、JIS G 0551:2013に準じて行う。まず、鋼板からL断面での1/4t位置が観察面となるように、試料を採取する。次に、観察面を鏡面研磨した後、ピクリン酸飽和水溶液を用いて、Bechet-Beaujard法で腐食する。腐食によって黒色に現出した粒を旧オーステナイト粒とする。 The average length and aspect ratio of the old austenite grains in the thickness direction are measured according to JIS G 0551: 2013. First, a sample is taken from the steel plate so that the 1 / 4t position on the L cross section is the observation surface. Next, after the observation surface is mirror-polished, it is corroded by the Behcet-Beaujard method using a saturated aqueous solution of picric acid. The grains that appear black due to corrosion are called old austenite grains.
 旧オーステナイト粒を現出させた観察面を、光学顕微鏡により観察し、面積0.05mm以上の視野を8視野以上(合計0.40mm以上)撮影する。そして、光学顕微鏡により撮影した組織写真に基づいて、旧オーステナイト粒の厚さを切断法により測定し、その平均値を旧オーステナイト粒の厚さ方向における平均長さとする。なお、測定に際しては、厚さ方向の長さが1μm以上である旧オーステナイト粒を対象とする。 The observation surface on which the old austenite grains are exposed is observed with an optical microscope, and a field of view having an area of 0.05 mm 2 or more is photographed with 8 fields or more (total 0.40 mm 2 or more). Then, the thickness of the old austenite grains is measured by a cutting method based on the tissue photograph taken by an optical microscope, and the average value thereof is taken as the average length in the thickness direction of the old austenite grains. In the measurement, the old austenite grains having a length of 1 μm or more in the thickness direction are targeted.
 また、上記の組織写真から、各旧オーステナイト粒について、長軸方向の最大長さと、長軸方向と直交する短軸方向の最大長さとをそれぞれ測定し、その比(長軸最大長さ/短軸最大長さ)を求める。そして、その平均値を旧オーステナイト粒のアスペクト比の平均とする。なお、未再結晶域で高圧下率での仕上圧延を施した場合、旧オーステナイト粒は、圧延方向に伸びた形状を示すため、長軸方向は圧延方向となり、短軸方向は板厚方向(いわゆるND方向)となる。 Further, from the above microstructure photograph, the maximum length in the major axis direction and the maximum length in the minor axis direction orthogonal to the major axis direction were measured for each old austenite grain, and the ratio (maximum length / short axis in the major axis direction) was measured. Axis maximum length) is calculated. Then, the average value is taken as the average aspect ratio of the old austenite grains. When finish rolling is performed in the unrecrystallized region at a high pressure reduction rate, the old austenite grains show a shape extended in the rolling direction, so the major axis direction is the rolling direction and the minor axis direction is the plate thickness direction ( The so-called ND direction).
 上記の方法で旧オーステナイト粒を十分に現出できない場合は、「鋼のオーステナイト組織の再構築法の高精度化に向けた検討」(畑顕吾、脇田昌幸、藤原知哉、河野佳織、新日鉄住金技報第404号(2016)、p.24~30)に記載される再構築法によって旧オーステナイト粒を特定し、旧オーステナイト粒の厚さ方向における平均長さおよびアスペクト比の平均を求めることとする。 If the old austenite grains cannot be sufficiently expressed by the above method, "Study for improving the accuracy of the method for reconstructing the austenite structure of steel" (Kengo Hata, Masayuki Wakita, Tomoya Fujiwara, Kaori Kono, Nippon Steel & Sumitomo Metal) The old austenite grains are identified by the reconstruction method described in Bulletin No. 404 (2016), p.24-30), and the average length and aspect ratio of the old austenite grains in the thickness direction are obtained. ..
 C断面での1/10t位置における結晶粒界密度:500~1100mm/mm
 C断面での1/4t位置における結晶粒界密度:400~1000mm/mm
 C断面での1/2t位置における結晶粒界密度:300~900mm/mm
 アレスト性向上における支配因子として、脆性き裂伝播の障害となる結晶粒界の寄与が大きい。結晶粒界においては隣接結晶粒間で結晶方位が異なるため、この部分においてき裂が伝播する方向が変化する。このため未破断領域が生じ、未破断領域によって応力が分散され、き裂閉口応力となる。したがって、き裂伝播の駆動力が低下し、アレスト性が向上する。また、未破断領域が最終的に延性破壊するため、脆性破壊に要するエネルギーが吸収される。このため、アレスト性が向上する。
Grain boundary density at 1 / 10t position in C cross section: 500 to 1100 mm / mm 2
Grain boundary density at 1 / 4t position in C cross section: 400-1000 mm / mm 2
Grain boundary density at 1 / 2t position in C cross section: 300-900 mm / mm 2
As a controlling factor in improving arrestability, the contribution of grain boundaries, which hinder brittle crack propagation, is large. At the grain boundaries, the crystal orientation differs between adjacent crystal grains, so the direction in which cracks propagate changes at this portion. Therefore, an unbroken region is generated, and the stress is dispersed by the unbroken region, resulting in a crack closing stress. Therefore, the driving force for crack propagation is reduced, and the arrest property is improved. Further, since the unbroken region is finally ductile fractured, the energy required for brittle fracture is absorbed. Therefore, the arrest property is improved.
 これまでは、この結晶粒界を増加させるために結晶粒径を細かくすることが必要であると考えられていた。フェライトが主体の組織では、その通りであるが、板厚が厚く高強度の鋼では、ベイナイトの利用が不可欠である。このベイナイトはフェライトと異なり、下部組織の形状が複雑であるため、結晶粒の定義が極めて難しい。このため、円相当径に換算して結晶粒径とアレスト性との関係を求めてもばらつきが大きく、アレスト性向上に必要な結晶粒径を決定することが困難であった。 Until now, it was thought that it was necessary to make the crystal grain size finer in order to increase the grain boundaries. This is true for ferrite-based structures, but for thick, high-strength steels, the use of bainite is essential. Unlike ferrite, this bainite has a complicated substructure shape, so it is extremely difficult to define crystal grains. Therefore, even if the relationship between the crystal grain size and the arrest property is obtained in terms of the equivalent circle diameter, the variation is large, and it is difficult to determine the crystal grain size required for improving the arrest property.
 そこで、結晶粒界がき裂伝播の障害になるという基本原理に立ち返り、単位面積当たりの結晶粒界の総長さ(以下、「結晶粒界密度」という。)を定義し、それを用いてアレスト性との関係を整理すると最も相関がよいことを知見した。ここで、「結晶粒界密度」とは、「結晶方位差が15°以上の結晶粒界の単位面積当たりの総長さ」を意味する。結晶方位差を15°以上とした理由は、15°未満では、結晶粒界が脆性き裂伝播の障害とはなり難く、アレスト性向上効果が減少するからである。 Therefore, returning to the basic principle that the grain boundaries hinder crack propagation, the total length of the grain boundaries per unit area (hereinafter referred to as "grain boundary density") is defined, and the arrest property is used. It was found that the correlation was the best when the relationship with was organized. Here, the "crystal grain boundary density" means "the total length per unit area of the crystal grain boundaries having a crystal orientation difference of 15 ° or more". The reason why the crystal orientation difference is set to 15 ° or more is that if the crystal orientation difference is less than 15 °, the grain boundaries are unlikely to interfere with brittle crack propagation, and the effect of improving arrestability is reduced.
 C断面での結晶粒界密度を、1/10t位置において500mm/mm以上、1/4t位置において400mm/mm以上、1/2t位置において300mm/mm以上とすることで、優れたアレスト性が得られる。さらに安定的にアレスト性を向上させるためには、C断面での結晶粒界密度は、それぞれ、1/10t位置において600mm/mm以上、1/4t位置において500mm/mm以上、1/2t位置において400mm/mm以上であるのが好ましい。 Excellent arrest by setting the grain boundary density in the C cross section to 500 mm / mm 2 or more at the 1 / 10t position, 400 mm / mm 2 or more at the 1 / 4t position, and 300 mm / mm 2 or more at the 1 / 2t position. Sex is obtained. In order to further stably improve the arrest property, the grain boundary densities in the C cross section are 600 mm / mm 2 or more at the 1 / 10t position, 500 mm / mm 2 or more at the 1 / 4t position, and 1 / 2t, respectively. The position is preferably 400 mm / mm 2 or more.
 結晶粒界密度は増加するほどアレスト性は向上するが、過度の増加は、圧延負荷の増大を招き、ひいては生産性を低下させる。そのため、C断面での結晶粒界密度を、1/10t位置において1100mm/mm以下、1/4t位置において1000mm/mm以下、1/2t位置において900mm/mm以下とする。C断面での結晶粒界密度は、それぞれ、1/10t位置において1000mm/mm以下、1/4t位置において900mm/mm以下、1/2t位置において800mm/mm以下であるのが好ましい。 As the grain boundary density increases, the arrestability improves, but an excessive increase leads to an increase in the rolling load, which in turn lowers the productivity. Therefore, the grain boundary density in the C cross section is set to 1100 mm / mm 2 or less at the 1 / 10t position, 1000 mm / mm 2 or less at the 1 / 4t position, and 900 mm / mm 2 or less at the 1 / 2t position. The grain boundary densities in the C cross section are preferably 1000 mm / mm 2 or less at the 1 / 10t position, 900 mm / mm 2 or less at the 1 / 4t position, and 800 mm / mm 2 or less at the 1 / 2t position, respectively.
 なお、極厚材のアレスト性向上のためには、板厚全体の結晶粒界密度を増加させる必要がある。後述の製造方法では、1/2t位置の結晶粒界密度を主に制御する。それ以外の板厚位置では、必然的に温度は低く、冷却速度は大きくなるため、結晶粒界密度は増加する傾向にある。そのため、1/2t位置の結晶粒界密度のみを規定すれば十分な場合が多い。しかし、加熱の方法によっては、板厚方向に大きな温度勾配が発生して、例えば、1/4t位置と1/2t位置とで、結晶粒界密度が逆転する場合もある。そのため、本発明においては、板厚平均の結晶粒界密度の代表値として、1/10t位置、1/4t位置および1/2t位置での結晶粒界密度を規定する。 It is necessary to increase the grain boundary density of the entire plate thickness in order to improve the arrest property of the extra-thick material. In the production method described later, the grain boundary density at the 1 / 2t position is mainly controlled. At other plate thickness positions, the temperature is inevitably low and the cooling rate is high, so that the grain boundary density tends to increase. Therefore, it is often sufficient to specify only the grain boundary density at the 1 / 2t position. However, depending on the heating method, a large temperature gradient may occur in the plate thickness direction, and the grain boundary density may be reversed at, for example, the 1 / 4t position and the 1 / 2t position. Therefore, in the present invention, the grain boundary densities at the 1 / 10t position, the 1 / 4t position, and the 1 / 2t position are defined as the representative values of the grain boundary densities of the average plate thickness.
 本発明において、結晶粒界密度は、電子線後方散乱回折(EBSD)法により測定する。具体的には、EBSD法により、1/10t位置、1/4t位置および1/2t位置の500μm×500μmの領域を1μmピッチで測定し、隣接粒との結晶方位差が15°以上の境界を結晶粒界と定義し、そのときの結晶粒界の総長を測定面積で除することによって求めることができる。 In the present invention, the grain boundary density is measured by the electron backscatter diffraction (EBSD) method. Specifically, by the EBSD method, the 500 μm × 500 μm region at the 1 / 10t position, 1 / 4t position, and 1 / 2t position is measured at a pitch of 1 μm, and the boundary where the crystal orientation difference from the adjacent grain is 15 ° or more is defined. It is defined as a grain boundary and can be obtained by dividing the total length of the crystal grain boundary at that time by the measured area.
 1/10t位置におけるTiN粒子
 平均円相当径:60nm以下
 面積率:0.0001%以上
 1/10tにおいて、TiN粒子が微細分散していると、TiN粒子によるピン止め効果が効果的に発現し、旧オーステナイトの粗大化が抑制される。その結果、1/10t位置における結晶粒界密度が増加して、より一層鋼板のアレスト性が向上する。そのため、1/10t位置に存在するTiN粒子の平均円相当径が60nm以下であり、かつ面積率が0.0001%以上であるのが好ましい。
TiN particles average circle equivalent diameter at 1 / 10t position: 60 nm or less Area ratio: 0.0001% or more When TiN particles are finely dispersed at 1 / 10t, the pinning effect of TiN particles is effectively exhibited. The coarsening of old austenite is suppressed. As a result, the grain boundary density at the 1 / 10t position increases, and the arrest property of the steel sheet is further improved. Therefore, it is preferable that the average circle equivalent diameter of the TiN particles existing at the 1 / 10t position is 60 nm or less and the area ratio is 0.0001% or more.
 TiN粒子の平均円相当径は、50nm以下であることがより好ましく、40nm以下であることがさらに好ましい。TiN粒子の平均円相当径の下限は特に限定されず、例えば、10nm以上であってもよい。また、TiN粒子の面積率は、0.0002%以上であることがより好ましく、0.0003%以上であることがさらに好ましい。TiN粒子の面積率の上限値は特に限定されず、例えば、0.0020%以下であってもよい。 The average circle equivalent diameter of the TiN particles is more preferably 50 nm or less, and further preferably 40 nm or less. The lower limit of the average circle equivalent diameter of the TiN particles is not particularly limited, and may be, for example, 10 nm or more. Further, the area ratio of the TiN particles is more preferably 0.0002% or more, further preferably 0.0003% or more. The upper limit of the area ratio of TiN particles is not particularly limited, and may be, for example, 0.0020% or less.
 TiN粒子の平均円相当径および面積率は、以下の方法で測定する。まず、鋼板の1/10t位置から抽出レプリカを作製し、エネルギー分散型X線分析装置(EDX)付きのTEMで、3万倍以上の倍率により、1視野の観察面積を15μm以上として、15~200nmの大きさの粒子を観察する。観察された全ての粒子を、EDXを用いて分析し、1質量%以上のTiと、1質量%未満のO(酸素)と、1質量%以上のNと、を含む粒子をTiN粒子と判別する。 The average circle-equivalent diameter and area ratio of TiN particles are measured by the following methods. First, an extraction replica is prepared from the 1 / 10t position of the steel plate, and with a TEM equipped with an energy dispersive X-ray analyzer (EDX), the observation area of one field of view is set to 15 μm 2 or more at a magnification of 30,000 times or more, and 15 Observe particles with a size of ~ 200 nm. All observed particles are analyzed using EDX, and particles containing 1% by mass or more of Ti, less than 1% by mass of O (oxygen), and 1% by mass or more of N are discriminated as TiN particles. do.
 なお、粒子を定量分析するときに使用する、TEMの電子ビーム径は1~20nmで、観察倍率は5万倍~100万倍とし、粒子内の任意の位置を定量分析する。TiN粒子の平均円相当径は、上述により判別された個々のTiN粒子の面積と、同一の面積となる円の相当径(直径)を、算術平均したものである。TiN粒子の面積率は、上述により判別された個々のTiN粒子の面積の総和を、観察した視野の面積で除した値である。 The electron beam diameter of the TEM used for quantitative analysis of the particles is 1 to 20 nm, the observation magnification is 50,000 to 1,000,000 times, and any position in the particles is quantitatively analyzed. The average circle equivalent diameter of TiN particles is an arithmetic mean of the area of each TiN particle determined above and the equivalent diameter (diameter) of a circle having the same area. The area ratio of the TiN particles is a value obtained by dividing the total area of the individual TiN particles determined above by the area of the observed visual field.
 ここで、3万倍以上の倍率により、1視野の観察面積を15μm以上として、15~200nmの大きさの粒子を観察し、判別されたTiN粒子の数が100個に満たない場合は、別の視野を確認して、TiN粒子の数の合計が100個以上になるまで観察を続ける。この場合、TiN粒子の平均円相当径は、上述のとおり、個々の判別されたTiN粒子の円相当径(直径)の算術平均である。TiN粒子の面積率は、100個以上になるまで観察を続けたTiN粒子の面積の総和を、それまでに観察した視野の合計面積で除した値である。また、視野の追加の観察を続けて、観察を続けた視野の数が50視野となり、累計の観察面積が750μm以上になった時点で、判別されたTiN粒子の合計が100個に満たない場合は、TiN粒子は存在していないと考え、本願の範囲外とする。 Here, when the observation area of one field of view is 15 μm 2 or more at a magnification of 30,000 times or more, particles having a size of 15 to 200 nm are observed, and the number of discriminated TiN particles is less than 100, Check another field of view and continue observing until the total number of TiN particles is 100 or more. In this case, the average circle-equivalent diameter of the TiN particles is the arithmetic mean of the circle-equivalent diameters (diameters) of the individual identified TiN particles, as described above. The area ratio of TiN particles is a value obtained by dividing the total area of TiN particles that have been observed until the number of TiN particles reaches 100 or more by the total area of the visual field observed so far. Further, when the number of visual fields continued to be observed became 50 and the cumulative observation area became 750 μm 2 or more, the total number of identified TiN particles was less than 100. In this case, it is considered that TiN particles do not exist, and it is out of the scope of the present application.
 (C)鋼板の機械的特性
 本発明に係る鋼板の機械的特性について、特に制限はないが、本発明に係る鋼板は、高い強度を有し、かつ低温靱性、破壊靱性およびアレスト性に優れる。具体的には、降伏応力(YS)が460~860MPaで、引張強さ(TS)が570~980MPaであることが好ましい。また、低温靱性の指標となる破面遷移温度(vTrs)が-60℃以下であることが好ましい。さらに、破壊靱性の指標となる-10℃における亀裂先端開口変位(Crack Tip Opening Displacement:CTOD)値が0.50mm以上であることが好ましい。
(C) Mechanical Properties of Steel Sheet The mechanical properties of the steel sheet according to the present invention are not particularly limited, but the steel sheet according to the present invention has high strength and is excellent in low temperature toughness, fracture toughness and arrest property. Specifically, it is preferable that the yield stress (YS) is 460 to 860 MPa and the tensile strength (TS) is 570 to 980 MPa. Further, it is preferable that the fracture surface transition temperature (vTrs), which is an index of low temperature toughness, is −60 ° C. or lower. Further, it is preferable that the Crack Tip Opening Displacement (CTOD) value at −10 ° C., which is an index of fracture toughness, is 0.50 mm or more.
 なお、引張強さ(TS)および降伏応力(YS)は、JIS Z 2241:2011に基づき、板厚中心部から圧延方向と直角の方向に採取した、1B号引張試験片を用いて測定する。詳細には、降伏応力(YS)は永久伸び0.2%時の永久伸び法の耐力である。また、破面遷移温度(vTrs)の評価は、JIS Z 2242:2005に準拠し、試験片はVノッチ試験片とし、鋼板の1/4t位置を含むように採取する。さらに、ISO 15653:2018に準じて、母材の板厚方向の全厚を3点曲げのノッチ位置とするCTOD試験片を採取し、-10℃におけるCTOD値を測定する。 The tensile strength (TS) and yield stress (YS) are measured using a No. 1B tensile test piece collected from the center of the plate thickness in the direction perpendicular to the rolling direction based on JIS Z 2241: 2011. Specifically, the yield stress (YS) is the proof stress of the permanent elongation method at 0.2% permanent elongation. The evaluation of the fracture surface transition temperature (vTrs) is based on JIS Z 2242: 2005, and the test piece is a V-notch test piece and is collected so as to include the 1 / 4t position of the steel plate. Further, according to ISO 15653: 2018, a CTOD test piece having the total thickness in the plate thickness direction of the base metal as the notch position of 3-point bending is collected, and the CTOD value at −10 ° C. is measured.
 さらに、温度勾配型ESSO試験における、-10℃の試験温度での脆性亀裂伝播停止靱性値Kca(以下、「アレスト靱性値Kca-10℃」という。)が、6000N/mm1.5以上であることが好ましく、8000N/mm1.5以上であることがより好ましい。この特性を満足することで、鋼板は優れたアレスト性を有する。 Further, in the temperature gradient type ESSO test, the brittle crack propagation stop toughness value Kca (hereinafter referred to as “arest toughness value Kca -10 ° C ”) at a test temperature of −10 ° C. is 6000 N / mm 1.5 or more. It is preferably 8000 N / mm 1.5 or more, and more preferably 8000 N / mm 1.5 or more. By satisfying this characteristic, the steel sheet has excellent arrest property.
 アレスト靱性値Kca-10℃は、NK船級協会 鋼船規則検査要領 K編 付属書 K3.12.2-1.(2016年)の「温度勾配型ESSO試験及び温度勾配型二重引張試験に関する検査要領」に準拠して測定を行う。 Arrest toughness value Kca -10 ° C is NK Ship Class Association Steel Ship Regulation Inspection Procedure K Edition Annex K3.12.2-1. Measurements are performed in accordance with (2016) "Inspection Guidelines for Temperature Gradient ESSO Test and Temperature Gradient Double Tensile Test".
 また、NRL落重試験における無延性遷移温度(以下、「NDT温度」という。)が、-100℃以下であることが好ましく、-110℃以下であることがより好ましい。この特性を満足することで、鋼板は優れたアレスト性を有する。 Further, the non-ductile transition temperature (hereinafter referred to as “NDT temperature”) in the NRL drop test is preferably −100 ° C. or lower, and more preferably −110 ° C. or lower. By satisfying this characteristic, the steel sheet has excellent arrest property.
 NDT温度は、ASTM E208-06で規定された、NRL落重試験法に準拠して試験を行うことで求める。NRL落重試験法について詳しく説明する。まず、鋼板の最表面を含むようにして、ASTM E208に規定されるタイプP3試験片を採取する。タイプP3試験片とは、長さ130mm、幅50mm、厚さ16mmの試験片である。この際、試験片の厚さ方向が鋼板の板厚方向と一致し、試験片の長手方向が鋼板の圧延方向と一致するように採取する。 The NDT temperature is determined by conducting a test in accordance with the NRL drop weight test method specified in ASTM E208-06. The NRL drop test method will be described in detail. First, a type P3 test piece specified in ASTM E208 is collected so as to include the outermost surface of the steel plate. The type P3 test piece is a test piece having a length of 130 mm, a width of 50 mm, and a thickness of 16 mm. At this time, the sample is collected so that the thickness direction of the test piece coincides with the plate thickness direction of the steel sheet and the longitudinal direction of the test piece coincides with the rolling direction of the steel sheet.
 その後、上記試験片を用いて、ASTM E208-06に準拠したNRL落重試験を実施する。具体的には、まず上記試験片の厚さ方向に垂直な鋼板の最表面上に、試験片の長手方向に平行な方向に延びる溶接ビードを形成する。その際、溶接材料はASTM E208に規定される靱性の低い溶接材料を使用する。溶接ビードの長さは60~70mm、幅は12~16mmの範囲となるよう調整する。そして、溶接ビード上に試験片の幅方向に平行な切欠きを形成する。この時、切欠きの幅は1.5mm以下とし、切欠きの溝底と試験片との距離が1.8~2.0mmの範囲となるよう調整する。 Then, using the above test piece, carry out an NRL drop test in accordance with ASTM E208-06. Specifically, first, a weld bead extending in a direction parallel to the longitudinal direction of the test piece is formed on the outermost surface of the steel plate perpendicular to the thickness direction of the test piece. At that time, the welding material having low toughness specified in ASTM E208 is used. The length of the weld bead is adjusted to be in the range of 60 to 70 mm and the width is adjusted to be in the range of 12 to 16 mm. Then, a notch parallel to the width direction of the test piece is formed on the weld bead. At this time, the width of the notch is set to 1.5 mm or less, and the distance between the groove bottom of the notch and the test piece is adjusted to be in the range of 1.8 to 2.0 mm.
 そして、上記試験片の溶接ビードを形成した面を下側に向け、長さ方向の両端部を支持した後、溶接ビードを形成したのと反対側の面に対して、落重による衝撃曲げ荷重を加える。その後、切欠きから発生した脆性き裂が試験片に伝播する状態を調べることで、Break(き裂伝播あり)またはNo Break(き裂伝播なし)を判定する。切欠から発生した脆性き裂が試験片の表面を試験片幅方向に伝播してその端部まで進行した場合、試験結果はBreak(き裂伝播あり)と判定される。幅方向の端部にき裂が達しなかった場合、試験結果はNo Break(き裂伝播なし)と判定される。 Then, after the surface on which the weld bead is formed of the test piece is directed downward and both ends in the length direction are supported, the impact bending load due to the drop weight is applied to the surface opposite to the surface on which the weld bead is formed. Add. Then, by examining the state in which the brittle crack generated from the notch propagates to the test piece, Break (with crack propagation) or No Break (without crack propagation) is determined. If the brittle crack generated from the notch propagates on the surface of the test piece in the width direction of the test piece and progresses to the end thereof, the test result is determined to be Break (with crack propagation). If the crack does not reach the end in the width direction, the test result is determined to be No Break (no crack propagation).
 上記の落重試験は、2個ずつの試験片を用いて例えば、-100℃の条件から開始して、5℃間隔で試験温度を変化させながら(No Breakの場合は5℃低下、Breakの場合は5℃上昇)、2個の試験片ともにNo Breakが得られた最も低い試験温度から5℃低い温度を無延性遷移温度とする。 The above drop test is performed using two test pieces, for example, starting from the condition of -100 ° C and changing the test temperature at 5 ° C intervals (in the case of No Break, the temperature drops by 5 ° C, Break's (In the case of an increase of 5 ° C.), the temperature 5 ° C. lower than the lowest test temperature at which No Break was obtained for both of the two test pieces is defined as the non-ductile transition temperature.
 (D)鋼板の厚さ
 本発明に係る鋼板の厚さについて、特に制限はないが、溶接構造物として用いる場合には、板厚は10~70mmであるのが好ましく、20~60mmであるのがより好ましい。また、本発明における低温靱性および破壊靱性の向上効果は、厚さが50mm未満の場合に顕著に発揮される。
(D) Thickness of Steel Plate The thickness of the steel plate according to the present invention is not particularly limited, but when used as a welded structure, the thickness is preferably 10 to 70 mm, preferably 20 to 60 mm. Is more preferable. Further, the effect of improving the low temperature toughness and the fracture toughness in the present invention is remarkably exhibited when the thickness is less than 50 mm.
 (E)鋼板の製造方法
 本発明に係る鋼板の製造条件について特に制限はないが、例えば、以下に示す条件で精錬工程、連続鋳造工程、加熱工程、熱間圧延工程および加速冷却工程を順に行うことで、製造することができる。各工程について説明する。
(E) Method for manufacturing steel plate The manufacturing conditions for the steel plate according to the present invention are not particularly limited, but for example, the refining step, the continuous casting step, the heating step, the hot rolling step and the accelerated cooling step are sequentially performed under the conditions shown below. By doing so, it can be manufactured. Each process will be described.
 (a)精錬工程
 精錬工程は、溶鋼を製造する工程である。精錬工程の条件については特に制限はなく、常法を用いればよい。しかしながら、Tiの生成を抑制し、TiNを微細分散させ、具体的には、1/10t位置におけるTiN粒子の平均円相当径を60nm以下、かつ面積率を0.0001%以上としたい場合には、真空脱ガスを行い、溶鋼中の溶存O濃度が0.0050質量%以下となってからTiを添加することが好ましい。溶存O濃度が0.0050質量%を超える状態でTiを添加すると、Tiの生成を抑制することが困難になる。Tiの添加は、例えば、環流型脱ガス装置内において行うことができる。
(A) Refining process The refining process is a process for producing molten steel. The conditions of the refining process are not particularly limited, and a conventional method may be used. However, we want to suppress the formation of Ti 2 O 3 and finely disperse TiN. Specifically, we want the average circle equivalent diameter of TiN particles at the 1 / 10t position to be 60 nm or less and the area ratio to 0.0001% or more. In this case, it is preferable to perform vacuum degassing and add Ti after the dissolved O concentration in the molten steel becomes 0.0050% by mass or less. If Ti is added in a state where the dissolved O concentration exceeds 0.0050% by mass, it becomes difficult to suppress the formation of Ti 2 O 3 . The addition of Ti can be performed, for example, in a recirculation type degassing device.
 (b)連続鋳造工程
 連続鋳造工程は、溶鋼を連続鋳造して上述した化学組成を有する鋼片を製造する工程である。連続鋳造工程の条件については特に制限はなく、常法を用いればよい。しかしながら、1/10t位置におけるTiN粒子の平均円相当径を60nm以下、かつ面積率を0.0001%以上としたい場合には、鋼片の表面温度が1200~900℃の間における平均冷却速度を0.1~0.5℃/秒とすることが好ましい。平均冷却速度が0.1℃/秒未満ではTiN粒子が粗大化するおそれがあり、0.5℃/秒を超えるとTiNの面積率が低下するおそれがある。
(B) Continuous Casting Step The continuous casting step is a step of continuously casting molten steel to produce steel pieces having the above-mentioned chemical composition. The conditions of the continuous casting process are not particularly limited, and a conventional method may be used. However, if the average circle equivalent diameter of TiN particles at the 1 / 10t position is 60 nm or less and the area ratio is 0.0001% or more, the average cooling rate when the surface temperature of the steel pieces is between 1200 and 900 ° C. is set. It is preferably 0.1 to 0.5 ° C./sec. If the average cooling rate is less than 0.1 ° C./sec, the TiN particles may be coarsened, and if it exceeds 0.5 ° C./sec, the area ratio of TiN may decrease.
 (c)加熱工程
 加熱工程は、鋼片の加熱により、オーステナイト相の組織制御に寄与する工程である。加熱工程では、上記の鋼片を950~1080℃の加熱温度まで加熱する。加熱工程は加熱炉で行うとよい。なお、鋼片を950~1080℃に加熱するとは、加熱炉から抽出する際の鋼片の全厚平均温度が、950~1080℃の範囲になるように加熱することであり、本明細書では、この鋼片の全厚平均温度を鋼片の加熱温度と称する。また、全厚平均温度は、加熱炉内の温度、加熱時間、鋼片の表面温度から計算で求めることが可能である。
(C) Heating step The heating step is a step that contributes to the microstructure control of the austenite phase by heating the steel pieces. In the heating step, the above steel pieces are heated to a heating temperature of 950 to 1080 ° C. The heating step may be performed in a heating furnace. Note that heating the steel pieces to 950 to 1080 ° C. means heating the steel pieces so that the average temperature of the total thickness of the steel pieces when extracted from the heating furnace is in the range of 950 to 1080 ° C., and is described in the present specification. The average temperature of the total thickness of the steel pieces is referred to as the heating temperature of the steel pieces. Further, the total thickness average temperature can be calculated from the temperature in the heating furnace, the heating time, and the surface temperature of the steel piece.
 加熱温度が950℃未満では、オーステナイト化が不十分になるとともに、オーステナイト粒が微細化することにより焼入れ性が低下するため、板厚が厚く、強度が高い鋼板にすることが困難である。さらに、オーステナイト粒の微細化により仕上圧延時の再結晶が促進されることで、旧オーステナイト粒のアスペクト比が低下する。また、加熱温度が1080℃を超えると、オーステナイト粒が粗大化し、最終組織においてベイナイト組織を微細化することが困難になる。好ましい加熱温度の範囲は、1000~1050℃である。 If the heating temperature is less than 950 ° C., austeniticization becomes insufficient and hardenability is lowered due to the miniaturization of austenite grains, so that it is difficult to obtain a thick steel sheet and high strength steel sheet. Further, the miniaturization of the austenite grains promotes recrystallization during finish rolling, so that the aspect ratio of the old austenite grains is lowered. Further, when the heating temperature exceeds 1080 ° C., the austenite grains become coarse and it becomes difficult to make the bainite structure finer in the final structure. The preferred heating temperature range is 1000-1050 ° C.
 上述のように、精錬工程においてTiの添加タイミングを適切に管理し、かつ連続鋳造工程における1200~900℃の間の平均冷却速度を適切に制御することで、TiNを微細分散させることが可能となり、これにより結晶粒界密度を上述の範囲に制御することができる。この場合は、鋼片の加熱温度は1080℃以下であればよい。 As described above, TiN can be finely dispersed by appropriately controlling the timing of adding Ti in the refining process and appropriately controlling the average cooling rate between 1200 and 900 ° C. in the continuous casting process. As a result, the grain boundary density can be controlled within the above range. In this case, the heating temperature of the steel pieces may be 1080 ° C. or lower.
 一方、TiNを積極的に活用しない場合であっても、加熱工程における鋼片の加熱温度を低く調整することで、オーステナイトの粗大化を抑制し、結晶粒界密度を上述の範囲に制御することが可能である。その場合には、鋼片の加熱温度は1050℃以下とする。 On the other hand, even when TiN is not actively utilized, by adjusting the heating temperature of the steel pieces in the heating process to a low level, coarsening of austenite is suppressed and the grain boundary density is controlled within the above range. Is possible. In that case, the heating temperature of the steel pieces is 1050 ° C. or lower.
 (d)熱間圧延工程
 熱間圧延工程は、粗圧延と仕上圧延とを含む。粗圧延は、鋼片の表面温度がTrex以上の範囲で実施する。すなわち、鋼片の表面温度がTrex以上である状態で粗圧延を開始し、鋼片の表面温度がTrex以上である状態で粗圧延を終了する。粗圧延をTrex以上の範囲で実施することで、オーステナイト粒の再結晶により、微細化が可能となる。なお、粗圧延の終了時の表面温度が、粗圧延の開始時の表面温度よりも高い場合がある。これは、粗圧延によって加工発熱が発生した影響、および表面温度よりも内部温度の方が高温であることによる、鋼片の板厚方向の伝熱影響が考えられる。
(D) Hot rolling process The hot rolling process includes rough rolling and finish rolling. Rough rolling is carried out in the range where the surface temperature of the steel pieces is Trex or higher. That is, the rough rolling is started when the surface temperature of the steel pieces is Trex or higher, and the rough rolling is finished when the surface temperature of the steel pieces is Trex or higher. By carrying out rough rolling in the range of Trex or higher, miniaturization becomes possible by recrystallization of austenite grains. The surface temperature at the end of rough rolling may be higher than the surface temperature at the start of rough rolling. It is considered that this is due to the effect of processing heat generation due to rough rolling and the effect of heat transfer in the plate thickness direction of the steel piece due to the internal temperature being higher than the surface temperature.
 また、粗圧延における累積圧下率は10~75%の範囲とする。粗圧延における累積圧下率とは、粗圧延開始時の板厚から粗圧延終了後の板厚を引いたものを、粗圧延開始時の板厚で除した値である。粗圧延時の累積圧下率が10%未満では、オーステナイトの再結晶による微細化が困難であるとともに、ポロシティが残存して内部割れが生じ、延性および靱性の劣化が発生する可能性がある。また、累積圧下率が75%を超えると、オーステナイト粒が過度に微細化するため、仕上圧延時の再結晶が促進されることで、旧オーステナイト粒のアスペクト比が低下するとともに、パス数が増加して生産性が低下する。好ましい累積圧下率は、30~60%である。なお、以下の説明においては、粗圧延を施した後の鋼片を鋼板と呼ぶ。 In addition, the cumulative rolling reduction in rough rolling shall be in the range of 10 to 75%. The cumulative rolling reduction in rough rolling is a value obtained by subtracting the plate thickness after the end of rough rolling from the plate thickness at the start of rough rolling and dividing by the plate thickness at the start of rough rolling. If the cumulative rolling reduction during rough rolling is less than 10%, it is difficult to make the austenite finer by recrystallization, and porosity may remain to cause internal cracking, resulting in deterioration of ductility and toughness. In addition, when the cumulative rolling reduction rate exceeds 75%, the austenite grains become excessively fine, and recrystallization during finish rolling is promoted, so that the aspect ratio of the old austenite grains decreases and the number of passes increases. As a result, productivity decreases. The preferred cumulative reduction rate is 30-60%. In the following description, the steel piece after rough rolling is referred to as a steel plate.
 続く仕上圧延は、鋼板の表面温度がAr以上Trex未満の範囲で実施する。すなわち、粗圧延終了後に冷却し、鋼板の表面温度がAr以上Trex未満である状態で仕上圧延を開始し、鋼板の表面温度がAr以上Trex未満である状態で仕上圧延を終了する。仕上圧延をTrex未満の範囲で実施することで、再結晶させずにオーステナイト粒に歪みを付与することが可能となる。これにより、最終組織におけるベイナイトを微細化することができる。仕上温度を、表面温度がTrex以上の範囲で行うと、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下してしまう。一方、仕上圧延を、表面温度がAr未満の範囲で行うと、加工フェライトが生成し、最終組織においてベイナイト主体の組織とすることができなくなるおそれがある。 Subsequent finish rolling is carried out in the range where the surface temperature of the steel sheet is Ar 3 or more and less than Trex . That is, it is cooled after the rough rolling is completed, the finish rolling is started when the surface temperature of the steel sheet is Ar 3 or more and less than Trex , and the finish rolling is finished when the surface temperature of the steel sheet is Ar 3 or more and less than Trex . .. By performing the finish rolling in the range of less than Trex , it becomes possible to impart strain to the austenite grains without recrystallization. This makes it possible to miniaturize bainite in the final structure. When the finishing temperature is set in the range where the surface temperature is Trex or higher, recrystallization is promoted and the aspect ratio of the old austenite grains is lowered. On the other hand, if the finish rolling is performed in the range where the surface temperature is less than Ar 3 , processed ferrite may be generated and the final structure may not have a bainite-based structure.
 また、仕上圧延における累積圧下率は65~90%の範囲とする。仕上圧延における累積圧下率とは、仕上圧延開始時(粗圧延終了後)の板厚から仕上圧延終了後の板厚を引いたものを、仕上圧延開始時の板厚で除した値である。仕上圧延における累積圧下率を65%以上とすることで、オーステナイト粒に十分な歪みを付与することが可能となる。累積圧下率が65%未満であると、オーステナイト粒への歪の付与が不十分になるとともに、オーステナイト粒の扁平化が促進されず、アスペクト比が低下する。また、累積圧下率が90%を超えると、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下するとともに、パス数が増加して生産性が低下する。好ましい累積圧下率は、70~80%である。 In addition, the cumulative rolling reduction in finish rolling shall be in the range of 65 to 90%. The cumulative rolling reduction in finish rolling is a value obtained by subtracting the plate thickness after the end of finish rolling from the plate thickness at the start of finish rolling (after the end of rough rolling) and dividing by the plate thickness at the start of finish rolling. By setting the cumulative rolling reduction in finish rolling to 65% or more, it is possible to impart sufficient strain to the austenite grains. When the cumulative reduction rate is less than 65%, the strain is not sufficiently applied to the austenite grains, the flattening of the austenite grains is not promoted, and the aspect ratio is lowered. Further, when the cumulative reduction rate exceeds 90%, recrystallization is promoted, the aspect ratio of the old austenite grains is lowered, the number of passes is increased, and the productivity is lowered. The preferred cumulative reduction rate is 70-80%.
 さらに、仕上圧延におけるパス間時間は15秒以下とする。パス間時間が15秒を超えると加工によって付与した歪みが回復し、最終組織におけるベイナイトを十分に微細化することができなくなるとともに、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下する。パス間時間は短ければ短いほど好ましいため、下限を設ける必要はないが、操業性の観点から3秒以上とすることが好ましい。なお、一般的に仕上圧延はリバース圧延により行われる。仕上圧延におけるパス間時間とは、鋼板が前方に進行しながら圧延ロールにより圧延され、鋼板の後端が圧延ロールから抜けてから、鋼板の進行方向が後方へとリバースし、再度鋼板の後端が圧延ロールに噛み込まれるまでの時間を意味する。 Furthermore, the time between passes in finish rolling shall be 15 seconds or less. When the inter-pass time exceeds 15 seconds, the strain applied by the processing is recovered, the bainite in the final structure cannot be sufficiently refined, recrystallization is promoted, and the aspect ratio of the old austenite grains is lowered. The shorter the inter-pass time, the more preferable it is. Therefore, it is not necessary to set a lower limit, but it is preferably 3 seconds or more from the viewpoint of operability. In general, finish rolling is performed by reverse rolling. The time between passes in finish rolling means that the steel sheet is rolled by a rolling roll while moving forward, the rear end of the steel sheet comes out of the rolling roll, the traveling direction of the steel sheet is reversed backward, and the rear end of the steel sheet is again. Means the time it takes for the roll to be bitten into the rolling roll.
 そして、仕上圧延完了から、後述する加速冷却工程における冷却開始までの時間を50秒以下とする。仕上圧延完了から冷却開始までの時間が50秒を超えると、加工によって付与した歪みが回復し、最終組織におけるベイナイトを十分に微細化することができなくなるとともに、再結晶が促進され、旧オーステナイト粒のアスペクト比が低下する。仕上圧延完了から冷却開始までの時間は短ければ短いほど好ましいため、下限を設ける必要はないが、操業性の観点から5秒以上とすることが好ましい。なお、仕上圧延完了から冷却開始までの時間とは、前方へと進行する鋼板の先端が、最終パスにおける圧延ロールを抜けてから、水冷が開始されるまでの時間を意味する。 Then, the time from the completion of finish rolling to the start of cooling in the accelerated cooling process described later is set to 50 seconds or less. When the time from the completion of finish rolling to the start of cooling exceeds 50 seconds, the strain applied by the processing is recovered, bainite in the final structure cannot be sufficiently refined, recrystallization is promoted, and the old austenite grains are promoted. The aspect ratio of is reduced. The shorter the time from the completion of finish rolling to the start of cooling, the more preferable it is. Therefore, it is not necessary to set a lower limit, but it is preferably 5 seconds or more from the viewpoint of operability. The time from the completion of finish rolling to the start of cooling means the time from when the tip of the steel sheet traveling forward passes through the rolling roll in the final pass to the start of water cooling.
 上記説明において、Arは降温過程でオーステナイト粒からフェライト粒に変態が始まる変態開始温度を意味し、下記(iii)式で求められる。また、Trexは等軸な再結晶粒が生成し成長し得る最低温度である再結晶温度を意味し、下記(iv)式で求められる。なお、下記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。 In the above description, Ar 3 means the transformation start temperature at which the transformation from the austenite particles to the ferrite particles starts in the temperature lowering process, and is obtained by the following equation (iii). Further, Trex means the recrystallization temperature which is the lowest temperature at which equiaxial recrystallized grains can be generated and grown, and is obtained by the following equation (iv). The element symbol in the following formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
 Ar=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo   ・・・(iii)
 Trex=-91900[Nb*]+9400[Nb*]+770   ・・・(iv)
 但し、下記(v)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
 Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
 Nb<sol.Nbの場合は、[Nb*]=Nb
 とする。
 sol.Nb=(10(-6770/(T+273)+2.26))/(C+12/14×N)   ・・・(v)
 なお、上記式中のTは加熱工程における鋼片の加熱温度(℃)を表す。
Ar 3 = 910-310 x C + 65 x Si-80 x Mn-20 x Cu-55 x Ni-15 x Cr-80 x Mo ... (iii)
TRex = -91900 [Nb *] 2 +9400 [Nb *] +770 ... (iv)
However, the amount of solid solution Nb (mass%) obtained by the following formula (v) is determined by sol. When it is Nb,
Nb ≧ sol. In the case of Nb, [Nb *] = sol. Nb
Nb <sol. In the case of Nb, [Nb *] = Nb
And.
sol. Nb = (10 (-6770 / (T + 273) + 2.26) ) / (C + 12/14 × N) ・ ・ ・ (v)
In addition, T in the above formula represents the heating temperature (° C.) of the steel piece in the heating step.
 (e)加速冷却工程
 加速冷却工程では、仕上圧延が終了した鋼板を水冷する。この際、冷却開始温度をTrex-10℃以下とし、かつ、冷却開始から冷却終了までの平均冷却速度が5~50℃/秒となる条件で、0~550℃の冷却停止温度まで水冷する。
(E) Accelerated cooling process In the accelerated cooling process, the steel sheet that has been finished rolled is water-cooled. At this time, water cooling is performed to a cooling stop temperature of 0 to 550 ° C. under the condition that the cooling start temperature is Trex -10 ° C. or lower and the average cooling rate from the cooling start to the cooling end is 5 to 50 ° C./sec. ..
 仕上圧延をAr以上Trex未満の範囲で実施したとしても、その後の復熱によって冷却開始温度がTrex-10℃を超えると、加工によって付与した歪みの回復が促進され、最終組織におけるベイナイトを構成するベイニティックフェライトを十分に微細化することができなくなる。 Even if finish rolling is carried out in the range of Ar 3 or more and less than Trex , when the cooling start temperature exceeds Trex -10 ° C due to the subsequent reheating, recovery of strain applied by processing is promoted and bainite in the final structure is promoted. It becomes impossible to sufficiently miniaturize the bainitic ferrite constituting the above.
 加えて、5~50℃/秒の平均冷却速度で0~550℃の冷却停止温度まで水冷することで、最終組織をベイナイト主体の組織とすることができる。なお、平均冷却速度および冷却停止温度は、鋼板の化学組成におけるCeqの値に応じて調整し、マルテンサイト変態しない条件とする。 In addition, the final structure can be made mainly bainite by water cooling to a cooling stop temperature of 0 to 550 ° C at an average cooling rate of 5 to 50 ° C / sec. The average cooling rate and the cooling stop temperature are adjusted according to the value of Ceq in the chemical composition of the steel sheet, and are set to conditions under which martensitic transformation does not occur.
 (f)焼戻し工程
 加速冷却工程の後に、350~650℃の温度範囲まで加熱する焼戻し工程をさらに備えてもよい。焼戻し工程を行うことで、冷却によって過剰に高くなった転位密度を低減させることができる。なお、加速冷却工程における冷却停止温度が高い場合には、自己焼戻し効果が得られるため、焼戻し工程を行わなくてもよい。一方、加速冷却工程において、例えば室温程度まで冷却した場合には、焼戻し工程を行うことが好ましい。
(F) Tempering step After the accelerated cooling step, a tempering step of heating to a temperature range of 350 to 650 ° C. may be further provided. By performing the tempering step, it is possible to reduce the dislocation density that has become excessively high due to cooling. When the cooling stop temperature in the accelerated cooling step is high, the self-tempering effect can be obtained, so that the tempering step does not have to be performed. On the other hand, in the accelerated cooling step, for example, when the cooling is performed to about room temperature, it is preferable to perform a tempering step.
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
 高炉から出銑された溶銑を、溶銑予備処理で脱硫処理し、転炉型精錬容器にて脱Pおよび脱C処理した後、取鍋に受鋼した。出鋼の際、合金元素を添加し、保温用のカバースラグを添加した。 The hot metal ejected from the blast furnace was desulfurized by hot metal pretreatment, de-P and de-C treated in a converter type refining vessel, and then steel was received in a ladle. At the time of steel ejection, alloying elements were added and cover slag for heat insulation was added.
 続いて、取鍋内の溶鋼をRH真空脱ガス装置にて減圧処理を行った。溶製中は適宜溶鋼サンプルを採取し、分析に供して溶鋼成分を得た。溶鋼温度は1560℃から1610℃で推移した。RH処理前半で真空脱ガスを行い、溶存O濃度を調整した。溶存O濃度は、酸素濃度プローブを用いて測定した。その後、Tiを添加し、均一に混合するために環流処理を行った。 Subsequently, the molten steel in the ladle was depressurized with an RH vacuum degassing device. During melting, molten steel samples were taken as appropriate and subjected to analysis to obtain molten steel components. The molten steel temperature changed from 1560 ° C to 1610 ° C. Vacuum degassing was performed in the first half of the RH treatment to adjust the dissolved O concentration. The dissolved O concentration was measured using an oxygen concentration probe. Then, Ti was added and a reflux treatment was performed to mix them uniformly.
 RH真空脱ガス装置で処理した後、連続鋳造法によって、表1および2の化学組成を有する鋼片を作製した。連続鋳造では、鋼片の表面温度が1200~900℃の間における平均冷却速度を適宜調節した。表3および4に、Tiを添加する際の溶鋼中の溶存O濃度(質量%)、および連続鋳造での1200~900℃の間における平均冷却速度(℃/秒)を示す。さらに、上記の鋼片を用いて、表5および表6の製造条件により板厚10~70mmの鋼板を試作した。 After treatment with an RH vacuum degassing device, steel pieces having the chemical compositions shown in Tables 1 and 2 were produced by a continuous casting method. In continuous casting, the average cooling rate was appropriately adjusted when the surface temperature of the steel pieces was between 1200 and 900 ° C. Tables 3 and 4 show the dissolved O concentration (% by mass) in the molten steel when Ti is added, and the average cooling rate (° C./sec) between 1200 and 900 ° C. in continuous casting. Further, using the above steel pieces, a steel plate having a plate thickness of 10 to 70 mm was prototyped according to the production conditions shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 得られた鋼板の金属組織観察を行い、各組織の面積率の測定を行った。具体的には、まず鋼板からC断面での1/4t位置が観察面となるように、試料を採取した。そして、観察面をナイタールエッチングし、エッチング後に光学顕微鏡を用いて8視野を500倍で撮影し、得られた組織写真に対し、画像解析を行い、白色に見えるものをフェライト、黒色に見えるものをパーライトとして、それぞれの面積率を求めた。 The metallographic structure of the obtained steel sheet was observed, and the area ratio of each structure was measured. Specifically, first, a sample was taken from the steel plate so that the 1 / 4t position on the C cross section was the observation surface. Then, the observation surface is nital-etched, and after etching, eight fields of view are photographed at a magnification of 500 using an optical microscope, and image analysis is performed on the obtained microstructure photograph. Was taken as pearl light, and the area ratio of each was calculated.
 次に、ナイタールエッチングした部分をレペラエッチングし、ナイタールエッチングで灰色に見えた部分について画像解析を行い、白色に見えるものをMA相として面積率を求めた。 Next, the part that had been etched by night game was subjected to repera etching, and the image analysis was performed on the part that looked gray by night game etching, and the area ratio was calculated with the part that looked white as the MA phase.
 ベイニティックフェライトの平均長さおよびベイナイトの面積率は、EBSDを用いたKAM解析により算出した。KAM解析において、フェライトであると判断される組織において、局所方位差が1.0°を超える領域をベイニティックフェライトとした。なお、測定に際しては、長軸方向の長さが1μm以上であるベイニティックフェライトを対象とした。また、ベイナイトの面積率はベイニティックフェライトの面積率を合計したものとした。 The average length of bainitic ferrite and the area ratio of bainite were calculated by KAM analysis using EBSD. In the structure judged to be ferrite in the KAM analysis, the region where the local orientation difference exceeds 1.0 ° was defined as bainitic ferrite. In the measurement, bainitic ferrite having a length in the major axis direction of 1 μm or more was targeted. The area ratio of bainite is the sum of the area ratios of bainite ferrite.
 さらに、旧オーステナイト粒の厚さ方向における平均長さおよびアスペクト比の平均の測定を、JIS G 0551:2013に準じて行った。まず、鋼板からL断面での1/4t位置が観察面となるように、試料を採取した。次に、観察面を鏡面研磨した後、ピクリン酸飽和水溶液を用いて、Bechet-Beaujard法で腐食し、旧オーステナイト粒を現出させた。 Furthermore, the average length and the average aspect ratio of the old austenite grains in the thickness direction were measured according to JIS G 0551: 2013. First, a sample was taken from the steel plate so that the 1 / 4t position on the L cross section was the observation surface. Next, after the observation surface was mirror-polished, it was corroded by the Behcet-Beaujard method using a saturated aqueous solution of picric acid to reveal old austenite grains.
 旧オーステナイト粒を現出させた観察面を、光学顕微鏡により観察し、面積0.05mm以上の視野を8視野以上(合計0.40mm以上)撮影した。そして、光学顕微鏡により撮影した組織写真に基づいて、旧オーステナイト粒の厚さを切断法により測定し、その平均値を旧オーステナイト粒の厚さ方向における平均長さとした。測定に際しては、厚さ方向の長さが1μm以上である旧オーステナイト粒を対象とした。 The observation surface on which the old austenite grains appeared was observed with an optical microscope, and a field of view with an area of 0.05 mm 2 or more was photographed for 8 fields or more (total 0.40 mm 2 or more). Then, the thickness of the old austenite grains was measured by a cutting method based on the tissue photograph taken by an optical microscope, and the average value was taken as the average length in the thickness direction of the old austenite grains. In the measurement, old austenite grains having a length of 1 μm or more in the thickness direction were targeted.
 また、上記の組織写真から、各旧オーステナイト粒について、長軸方向の最大長さと、長軸方向と直交する短軸方向の最大長さとをそれぞれ測定し、その比(長軸最大長さ/短軸最大長さ)を求め、その平均値を旧オーステナイト粒のアスペクト比の平均とした。 In addition, from the above microstructure photograph, the maximum length in the major axis direction and the maximum length in the minor axis direction orthogonal to the major axis direction were measured for each old austenite grain, and the ratio (maximum length / short axis) was measured. The maximum axis length) was calculated, and the average value was taken as the average aspect ratio of the old austenite grains.
 さらに、TiN粒子の平均円相当径および面積率の測定を、EDX付きのTEMを用いて行った。まず、鋼板の1/10t位置から抽出レプリカを作製し、TEMで、3万倍以上の倍率により、1視野の観察面積を15μm以上として、15~200nmの大きさの粒子を観察した。観察された全ての粒子を、EDXを用いて分析し、1質量%以上のTiと、1質量%未満のO(酸素)と、1質量%以上のNと、を含む粒子をTiN粒子と判別した。 Furthermore, the average circle-equivalent diameter and area ratio of TiN particles were measured using a TEM with EDX. First, an extraction replica was prepared from the 1 / 10t position of the steel plate, and particles having a size of 15 to 200 nm were observed by TEM with an observation area of 15 μm 2 or more in one field of view at a magnification of 30,000 times or more. All observed particles are analyzed using EDX, and particles containing 1% by mass or more of Ti, less than 1% by mass of O (oxygen), and 1% by mass or more of N are discriminated as TiN particles. did.
 なお、TEMの電子ビーム径は1~20nmで、観察倍率は5万倍~100万倍とし、粒子内の任意の位置を定量分析した。TiN粒子の平均円相当径は、上述により判別された個々のTiN粒子の面積と、同一の面積となる円の相当径(直径)を、算術平均したものである。TiN粒子の面積率は、上述により判別された個々のTiN粒子の面積の総和を、観察した視野の面積で除した値である。 The electron beam diameter of the TEM was 1 to 20 nm, the observation magnification was 50,000 to 1,000,000 times, and an arbitrary position in the particle was quantitatively analyzed. The average circle equivalent diameter of TiN particles is an arithmetic mean of the area of each TiN particle determined above and the equivalent diameter (diameter) of a circle having the same area. The area ratio of the TiN particles is a value obtained by dividing the total area of the individual TiN particles determined above by the area of the observed visual field.
 続いて、結晶粒界密度の測定をEBSD法により行った。具体的には、EBSD法により、1/10t位置、1/4t位置および1/2t位置の500μm×500μmの領域を1μmピッチで測定し、隣接粒との結晶方位差が15°以上の境界を結晶粒界と定義し、そのときの結晶粒界の総長を測定面積で除することによって求めた。 Subsequently, the grain boundary density was measured by the EBSD method. Specifically, by the EBSD method, the 500 μm × 500 μm region at the 1 / 10t position, 1 / 4t position, and 1 / 2t position is measured at a pitch of 1 μm, and the boundary where the crystal orientation difference from the adjacent grain is 15 ° or more is defined. It was defined as a grain boundary and obtained by dividing the total length of the crystal grain boundary at that time by the measured area.
 これらの測定結果を表7および8に示す。なお、表中においては、フェライトの面積率を「F分率」、パーライトの面積率を「P分率」、ベイナイトの面積率を「B分率」、MA相の面積率を「MA分率」、ベイニティックフェライトの長軸方向の平均長さを「BF長さ」と表記する。 The measurement results are shown in Tables 7 and 8. In the table, the ferrite area ratio is "F fraction", the pearlite area ratio is "P fraction", the bainite area ratio is "B fraction", and the MA phase area ratio is "MA fraction". , The average length of bainitic ferrite in the major axis direction is referred to as "BF length".
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 さらに、引張強さ(TS)および降伏応力(YS)を、JIS Z 2241:2011に基づき測定した。試験片は、板厚中心部から圧延方向に直行する方向(幅方向)を長手方向として採取した、1B号引張試験片を用いて測定した。降伏応力(YS)は永久伸び0.2%時の永久伸び法の耐力とした。本実施例では、YSが460MPa以上、かつTSが570MPa以上であるものを、高い強度を有するとした。 Furthermore, the tensile strength (TS) and the yield stress (YS) were measured based on JIS Z 2241: 2011. The test piece was measured using a No. 1B tensile test piece collected with the direction perpendicular to the rolling direction (width direction) from the center of the plate thickness as the longitudinal direction. The yield stress (YS) was the proof stress of the permanent elongation method when the permanent elongation was 0.2%. In this example, those having a YS of 460 MPa or more and a TS of 570 MPa or more are considered to have high strength.
 また、鋼板の1/4t位置を含むようにVノッチ試験片を採取し、JIS Z 2242:2005に準拠して破面遷移温度(vTrs)の評価を行った。この際、Vノッチ試験片は、ぞれぞれ、試験片の長手方向が鋼板の圧延方向および幅方向に一致するよう、2つずつ採取した。本実施例では、2つの試験片で、いずれもvTrsが-60℃以下であるものを、低温靱性に優れるとした。 In addition, V-notch test pieces were collected so as to include the 1 / 4t position of the steel plate, and the fracture surface transition temperature (vTrs) was evaluated in accordance with JIS Z 2242: 2005. At this time, two V-notch test pieces were taken so that the longitudinal direction of the test pieces coincided with the rolling direction and the width direction of the steel sheet. In this example, the two test pieces having vTrs of −60 ° C. or lower were considered to have excellent low temperature toughness.
 そして、ISO 15653:2018に準じて、母材の板厚方向の全厚を3点曲げのノッチ位置とするCTOD試験片を採取し、-10℃におけるCTOD値の測定を行った。試験は3回行い、表には、それらの最小値を記載した。本実施例では、-10℃におけるCTOD値の最小値が0.50mm以上のものを、破壊靱性に優れるとした。 Then, according to ISO 15653: 2018, CTOD test pieces having the total thickness in the plate thickness direction of the base metal as the notch position of 3-point bending were collected, and the CTOD value at −10 ° C. was measured. The test was performed 3 times and the minimum values are shown in the table. In this example, those having a minimum CTOD value of 0.50 mm or more at −10 ° C. are considered to have excellent fracture toughness.
 また、NK船級協会 鋼船規則検査要領 K編 付属書 K3.12.2-1.(2016年)の「温度勾配型ESSO試験及び温度勾配型二重引張試験に関する検査要領」に準拠して、アレスト靱性値Kca-10℃の測定を行った。次に、ASTM E208-06で規定された、NRL落重試験法に準拠して試験を行い、NDT温度を求めた。本実施例では、アレスト靱性値Kca-10℃が、6000N/mm1.5以上で、かつNDT温度が-100℃以下のものを、アレスト性に優れるとした。 In addition, NK Ship Class Association Steel Ship Regulations Inspection Guidelines K Edition Annex K3.12.2-1. The arrest toughness value Kca- 10 ° C. was measured in accordance with the "Inspection Procedure for Temperature Gradient ESSO Test and Temperature Gradient Double Tensile Test" of (2016). Next, the test was performed in accordance with the NRL drop weight test method specified in ASTM E208-06, and the NDT temperature was determined. In this example, those having an arrest toughness value of Kca -10 ° C of 6000 N / mm 1.5 or more and an NDT temperature of -100 ° C or less are considered to have excellent arrest properties.
 これらの測定結果を表9および10に示す。 The measurement results are shown in Tables 9 and 10.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表7~10から分かるように、本発明の規定を満足する本発明例(試験番号1~29)では、高い強度を有し、かつ低温靱性、破壊靱性およびアレスト性に優れる結果となった。これに対して、比較例(試験番号30~61)では、強度、低温靱性およびアレスト性の少なくともいずれかが劣化する結果となった。 As can be seen from Tables 7 to 10, in the examples of the present invention (test numbers 1 to 29) satisfying the provisions of the present invention, the results were high in strength and excellent in low temperature toughness, fracture toughness and arrest property. On the other hand, in Comparative Examples (Test Nos. 30 to 61), at least one of strength, low temperature toughness and arrest property was deteriorated.
 具体的には、試験番号30は精錬工程でのTi添加時の溶存O濃度が高く、かつ加熱工程での加熱工程が高く、試験番号31は連続鋳造工程での平均冷却速度が高く、いずれもTiN粒子が析出せずに結晶粒界密度を適正化できなかったため、アレスト性が劣化した。試験番号32は連続鋳造工程での平均冷却速度が低いため、粗大なTiN粒子が析出して結晶粒界密度を適正化できなかったため、アレスト性が劣化した。 Specifically, test number 30 has a high dissolved O concentration when Ti is added in the refining step, and the heating step in the heating step is high, and test number 31 has a high average cooling rate in the continuous casting step. Since the TiN particles did not precipitate and the grain boundary density could not be optimized, the arrest property deteriorated. In Test No. 32, since the average cooling rate in the continuous casting process was low, coarse TiN particles were precipitated and the grain boundary density could not be optimized, so that the arrest property was deteriorated.
 試験番号33はC含有量が過剰であるため、低温靱性および破壊靱性が劣化した。試験番号34はC含有量が低く、ベイナイト主体の組織とならず、強度不足となるとともに、低温靱性および破壊靱性が劣化した。試験番号35はSi含有量が過剰であるため、低温靱性および破壊靱性が劣化した。試験番号36はMn含有量が過剰であるため、低温靱性および破壊靱性が劣化した。試験番号37はMn含有量が低く、強度不足となった。 Test number 33 had an excessive C content, so that the low temperature toughness and fracture toughness deteriorated. Test No. 34 had a low C content, did not have a bainite-based structure, had insufficient strength, and deteriorated low temperature toughness and fracture toughness. In Test No. 35, the low temperature toughness and the fracture toughness deteriorated due to the excessive Si content. In Test No. 36, the low temperature toughness and the fracture toughness deteriorated due to the excessive Mn content. Test No. 37 had a low Mn content and insufficient strength.
 試験番号38はPおよびSの含有量が過剰であり、試験番号39はAl含有量が過剰であり、試験番号40はN含有量が過剰であるため、低温靱性および破壊靱性が劣化した。試験番号41はN含有量が低く、BF長さおよび旧オーステナイト粒が粗大になり、結晶粒界密度を適正化できなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。 Test number 38 had an excessive content of P and S, test number 39 had an excessive content of Al, and test number 40 had an excessive content of N, so that low temperature toughness and fracture toughness deteriorated. In Test No. 41, the N content was low, the BF length and the old austenite grains became coarse, and the grain boundary density could not be optimized, so that the low temperature toughness, fracture toughness and arrest property deteriorated.
 試験番号42はNb含有量が過剰であるため、低温靱性および破壊靱性が劣化した。試験番号43はNb含有量が低く、BF長さおよび旧オーステナイト粒が粗大化し、かつ、旧オーステナイト粒のアスペクト比が小さくなり、さらに、結晶粒界密度を適正化できなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号44はTi含有量が過剰であるため、低温靱性および破壊靱性が劣化した。加えて、TiN粒子が粗大化しており、かつ加熱工程での加熱温度も高いため、結晶粒界密度を適正化できずに、アレスト性も劣化した。試験番号45はTi含有量が低いため、BF長さおよび旧オーステナイト粒が粗大化し、さらに、結晶粒界密度を適正化できなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。 Test number 42 had an excessive Nb content, so that the low temperature toughness and fracture toughness deteriorated. In Test No. 43, the Nb content was low, the BF length and the austenite grains were coarsened, the aspect ratio of the austenite grains was small, and the grain boundary density could not be optimized. Therefore, low temperature toughness and fracture occurred. Toughness and arrestability deteriorated. In Test No. 44, the low temperature toughness and the fracture toughness deteriorated due to the excessive Ti content. In addition, since the TiN particles are coarsened and the heating temperature in the heating step is high, the grain boundary density cannot be optimized and the arrest property is also deteriorated. In Test No. 45, since the Ti content was low, the BF length and the old austenite grains were coarsened, and the grain boundary density could not be optimized, so that the low temperature toughness, the fracture toughness and the arrest property were deteriorated.
 試験番号46および47はいずれも加熱工程での加熱温度が高く、BF長さおよび旧オーステナイト粒が粗大化し、さらに、結晶粒界密度を適正化できなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号48は加熱温度が低く、ベイナイト面積率が低くなったため、強度不足となるとともに、低温靱性および破壊靱性が劣化した。試験番号49は粗圧延の終了温度がTrex未満であり、BF長さおよび旧オーステナイト粒が粗大化し、さらに、結晶粒界密度を適正化できなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。 In test numbers 46 and 47, the heating temperature in the heating step was high, the BF length and the old austenite grains were coarsened, and the grain boundary density could not be optimized. Therefore, low temperature toughness, fracture toughness and arrest property were obtained. Deteriorated. In Test No. 48, the heating temperature was low and the bainite area ratio was low, so that the strength was insufficient and the low temperature toughness and fracture toughness deteriorated. In test number 49, the end temperature of rough rolling was less than Trex , the BF length and the old austenite grains were coarsened, and the grain boundary density could not be optimized, so that the low temperature toughness, fracture toughness and arrest property deteriorated. did.
 試験番号50は粗圧延の累積圧下率が高く、BF長さおよび旧オーステナイト粒が粗大化し、かつ、旧オーステナイト粒のアスペクト比が低下し、さらに、結晶粒界密度を適正化できなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。一方、試験番号51は累積圧下率が低く、BF長さおよび旧オーステナイト粒が粗大化し、さらに、結晶粒界密度を適正化できなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。 In test number 50, the cumulative reduction rate of rough rolling was high, the BF length and the old austenite grains were coarsened, the aspect ratio of the old austenite grains was lowered, and the grain boundary density could not be optimized, so that the temperature was low. Deteriorated toughness, fracture toughness and arrestability. On the other hand, in Test No. 51, the cumulative reduction rate was low, the BF length and the old austenite grains were coarsened, and the grain boundary density could not be optimized, so that the low temperature toughness, fracture toughness and arrest property deteriorated.
 試験番号52は仕上圧延の開始温度がTrex以上であり、BF長さおよび旧オーステナイト粒が粗大化し、かつ、旧オーステナイト粒のアスペクト比が低下し、さらに、結晶粒界密度を適正化できなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号53は仕上圧延の終了温度がAr未満であったため、加工フェライトが過剰に生成し、強度不足となるとともに、低温靱性および破壊靱性が劣化した。 In test number 52, the start temperature of finish rolling is Trex or higher, the BF length and the old austenite grains are coarsened, the aspect ratio of the old austenite grains is lowered, and the grain boundary density cannot be optimized. Therefore, the low temperature toughness, fracture toughness and arrest property deteriorated. In Test No. 53, since the finish rolling end temperature was less than Ar 3 , processed ferrite was excessively generated, the strength became insufficient, and the low temperature toughness and fracture toughness deteriorated.
 試験番号54は仕上圧延の累積圧下率が高く、試験番号55は累積圧下率が低く、いずれもBF長さおよび旧オーステナイト粒が粗大化し、かつ、旧オーステナイト粒のアスペクト比が低下し、さらに、結晶粒界密度を適正化できなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号56はパス間時間が長く、試験番号57は仕上圧延完了から冷却開始までの時間が長く、いずれもBF長さおよび旧オーステナイト粒が粗大化し、かつ、旧オーステナイト粒のアスペクト比が低下し、さらに、結晶粒界密度を適正化できなかったため、低温靱性、破壊靱性およびアレスト性が劣化した。 Test No. 54 has a high cumulative reduction rate of finish rolling, and Test No. 55 has a low cumulative reduction rate, both of which coarsen the BF length and the former austenite grains, reduce the aspect ratio of the former austenite grains, and further. Since the grain boundary density could not be optimized, the low temperature toughness, fracture toughness and arrest property deteriorated. In test number 56, the time between passes is long, and in test number 57, the time from the completion of finish rolling to the start of cooling is long, both the BF length and the old austenite grains become coarse, and the aspect ratio of the old austenite grains decreases. Furthermore, since the grain boundary density could not be optimized, the low temperature toughness, fracture toughness and arrest property deteriorated.
 試験番号58は加速冷却工程での冷却速度が高いため、MA相が過剰に生成し、低温靱性および破壊靱性が劣化した。試験番号59は冷却速度が低く、ベイナイト主体の組織とならず、強度不足となるとともに、低温靱性および破壊靱性が劣化した。試験番号60は冷却停止温度が高いため、ベイナイト主体の組織とならず、強度不足となるとともに、低温靱性、破壊靱性およびアレスト性が劣化した。試験番号61は冷却開始温度がTrex-10℃を超え、BF長さが粗大化したため、低温靱性は良好であったものの、破壊靱性が劣化する結果となった。 In Test No. 58, since the cooling rate in the accelerated cooling step was high, the MA phase was excessively generated, and the low temperature toughness and the fracture toughness deteriorated. Test No. 59 had a low cooling rate, did not have a bainite-based structure, had insufficient strength, and deteriorated low temperature toughness and fracture toughness. Since the cooling stop temperature of the test number 60 was high, the structure was not mainly composed of bainite, the strength was insufficient, and the low temperature toughness, the fracture toughness and the arrest property were deteriorated. In Test No. 61, the cooling start temperature exceeded Trex -10 ° C. and the BF length became coarse, so that the low temperature toughness was good, but the fracture toughness deteriorated.
 本発明によれば、高い強度を有し、かつ低温靱性、破壊靱性およびアレスト性に優れる鋼板を得ることが可能になる。したがって、本発明に係る鋼板は、船舶、高層建築物、その他の建築物、橋梁、海洋構造物、LNG貯蔵タンクその他の大型タンク、ラインパイプ等の溶接構造物の素材として好適に用いることができる。 According to the present invention, it is possible to obtain a steel sheet having high strength and excellent low temperature toughness, fracture toughness and arrest property. Therefore, the steel plate according to the present invention can be suitably used as a material for welded structures such as ships, high-rise buildings, other buildings, bridges, marine structures, LNG storage tanks and other large tanks, and line pipes. ..

Claims (10)

  1.  鋼板の化学組成が、質量%で、
     C :0.040~0.160%、
     Si:0.01~0.50%、
     Mn:0.70~2.50%、
     P :0.030%以下、
     S :0.020%以下、
     Al:0.001~0.100%、
     N :0.0010~0.0080%、
     Nb:0.003~0.050%、
     Ti:0.003~0.050%、
     残部:Feおよび不純物であり、
     前記鋼板の圧延方向に垂直な断面において、前記鋼板の厚さをtとした時に、前記鋼板の表面から1/4tの位置における金属組織が、
     面積%で、80%以上のベイナイトを含み、かつ、
     前記ベイナイトを構成するベイニティックフェライトの長軸方向の平均長さが10μm以下であり、
     前記鋼板の圧延方向および厚さ方向に平行な断面において、前記鋼板の表面から1/4tの位置における旧オーステナイト粒の、厚さ方向における平均長さが20μm以下であり、アスペクト比の平均が2.5以上であり、
     前記鋼板の圧延方向に垂直な断面において、
     前記鋼板の表面から1/10tの位置における結晶粒界密度が500~1100mm/mm
     前記鋼板の表面から1/4tの位置における結晶粒界密度が400~1000mm/mm
     前記鋼板の表面から1/2tの位置における結晶粒界密度が300~900mm/mmである、
     鋼板。
    The chemical composition of the steel sheet is mass%,
    C: 0.040 to 0.160%,
    Si: 0.01-0.50%,
    Mn: 0.70 to 2.50%,
    P: 0.030% or less,
    S: 0.020% or less,
    Al: 0.001 to 0.100%,
    N: 0.0010 to 0.0080%,
    Nb: 0.003 to 0.050%,
    Ti: 0.003 to 0.050%,
    Remaining: Fe and impurities,
    In the cross section perpendicular to the rolling direction of the steel sheet, when the thickness of the steel sheet is t, the metallographic structure at a position 1/4 t from the surface of the steel sheet is formed.
    In% area, it contains more than 80% bainite and
    The average length of the bainite ferrite constituting the bainite in the major axis direction is 10 μm or less.
    In the cross section parallel to the rolling direction and the thickness direction of the steel sheet, the average length of the former austenite grains at a position 1 / 4t from the surface of the steel sheet in the thickness direction is 20 μm or less, and the average aspect ratio is 2. .5 or more,
    In the cross section perpendicular to the rolling direction of the steel sheet,
    The grain boundary density at a position 1/10 t from the surface of the steel sheet is 500 to 1100 mm / mm 2 ,
    The grain boundary density at a position 1 / 4t from the surface of the steel sheet is 400 to 1000 mm / mm 2 ,
    The grain boundary density at a position 1 / 2t from the surface of the steel sheet is 300 to 900 mm / mm 2 .
    Steel plate.
  2.  前記化学組成が、前記Feの一部に代えて、質量%で、
     Cu:1.50%以下、
     Ni:2.50%以下、
     Cr:1.00%以下、
     Mo:1.00%以下、
     V :0.150%以下、および
     B :0.0050%以下、
     からなる群から選択される少なくとも1種以上を含有するものである、
     請求項1に記載の鋼板。
    The chemical composition is, in mass%, instead of a portion of the Fe.
    Cu: 1.50% or less,
    Ni: 2.50% or less,
    Cr: 1.00% or less,
    Mo: 1.00% or less,
    V: 0.150% or less, and B: 0.0050% or less,
    It contains at least one selected from the group consisting of
    The steel plate according to claim 1.
  3.  前記化学組成が、前記Feの一部に代えて、質量%で、
     Mg :0.0100%以下、
     Ca :0.0100%以下、および
     REM:0.0100%以下、
     からなる群から選択される少なくとも1種以上を含有するものである、
     請求項1または請求項2に記載の鋼板。
    The chemical composition is, in mass%, instead of a portion of the Fe.
    Mg: 0.0100% or less,
    Ca: 0.0100% or less, and REM: 0.0100% or less,
    It contains at least one selected from the group consisting of
    The steel sheet according to claim 1 or 2.
  4.  前記化学組成が、前記Feの一部に代えて、質量%で、
     Zr:0.0100%以下、および
     Te:0.0100%以下、
     からなる群から選択される少なくとも1種以上を含有するものである、
     請求項1から請求項3までのいずれかに記載の鋼板。
    The chemical composition is, in mass%, instead of a portion of the Fe.
    Zr: 0.0100% or less, and Te: 0.0100% or less,
    It contains at least one selected from the group consisting of
    The steel plate according to any one of claims 1 to 3.
  5.  前記化学組成が、前記Feの一部に代えて、質量%で、
     W :1.00%以下、および
     Sn:0.50%以下、
     からなる群から選択される少なくとも1種以上を含有するものである、
     請求項1から請求項4までのいずれかに記載の鋼板。
    The chemical composition is, in mass%, instead of a portion of the Fe.
    W: 1.00% or less, and Sn: 0.50% or less,
    It contains at least one selected from the group consisting of
    The steel plate according to any one of claims 1 to 4.
  6.  前記化学組成が、下記(i)式を満足する、
     請求項1から請求項5までのいずれかに記載の鋼板。
     1.7≦Ti/N≦3.4  ・・・(i)
     但し、上記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
    The chemical composition satisfies the following formula (i).
    The steel plate according to any one of claims 1 to 5.
    1.7 ≤ Ti / N ≤ 3.4 ... (i)
    However, the element symbol in the above formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
  7.  前記化学組成が、下記(ii)式を満足し、
     前記鋼板の圧延方向に垂直な断面において、前記鋼板の表面から1/10tの位置におけるTiN粒子の平均円相当径が60nm以下であり、かつ前記TiN粒子の面積率が0.0001%以上である、
     請求項1から請求項6までのいずれかに記載の鋼板。
     Ti×N≧3.0×10-5  ・・・(ii)
     但し、上記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
    The chemical composition satisfies the following formula (ii).
    In the cross section perpendicular to the rolling direction of the steel sheet, the average circle equivalent diameter of the TiN particles at a position 1 / 10t from the surface of the steel sheet is 60 nm or less, and the area ratio of the TiN particles is 0.0001% or more. ,
    The steel plate according to any one of claims 1 to 6.
    Ti × N ≧ 3.0 × 10-5 ... (ii)
    However, the element symbol in the above formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
  8.  請求項1から請求項6までのいずれか1項に記載の鋼板の製造方法であって、
     請求項1から請求項6までのいずれかに記載の化学組成を有する鋼片に対して、加熱工程、熱間圧延工程および加速冷却工程を順に施す、鋼板の製造方法において、
     前記加熱工程では、前記鋼片を950~1050℃の加熱温度まで加熱し、
     前記熱間圧延工程は、粗圧延と仕上圧延とを含み、
     前記粗圧延は、前記鋼片の表面温度がTrex以上の範囲で実施し、
     前記粗圧延における累積圧下率を10~75%とし、
     前記仕上圧延は、前記鋼片の表面温度がAr以上Trex未満の範囲で実施し、
     前記仕上圧延における累積圧下率を65~90%として、かつパス間時間を15秒以下とし、
     前記仕上圧延完了から、前記加速冷却工程における冷却開始までの時間を50秒以下とし、
     前記加速冷却工程では、冷却開始温度をTrex-10℃以下とし、かつ、冷却開始から冷却終了までの平均冷却速度が5~50℃/秒となる条件で、0~550℃の冷却停止温度まで水冷する、
     鋼板の製造方法。
     但し、Arは下記(iii)式で求められ、Trexは下記(iv)式で求められる。なお、下記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
     Ar=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo   ・・・(iii)
     Trex=-91900[Nb*]+9400[Nb*]+770   ・・・(iv)
     但し、下記(v)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
     Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
     Nb<sol.Nbの場合は、[Nb*]=Nb
     とする。
     sol.Nb=(10(-6770/(T+273)+2.26))/(C+12/14×N)   ・・・(v)
     なお、上記式中のTは加熱工程における鋼片の加熱温度(℃)を表す。
    The method for manufacturing a steel sheet according to any one of claims 1 to 6.
    In a method for manufacturing a steel sheet, in which a heating step, a hot rolling step, and an accelerated cooling step are sequentially performed on a steel piece having the chemical composition according to any one of claims 1 to 6.
    In the heating step, the steel pieces are heated to a heating temperature of 950 to 1050 ° C.
    The hot rolling step includes rough rolling and finish rolling.
    The rough rolling was carried out in a range where the surface temperature of the steel pieces was Trex or higher.
    The cumulative rolling reduction in the rough rolling is 10 to 75%.
    The finish rolling was carried out in a range where the surface temperature of the steel piece was Ar 3 or more and less than Trex .
    The cumulative rolling reduction in the finish rolling is 65 to 90%, and the time between passes is 15 seconds or less.
    The time from the completion of the finish rolling to the start of cooling in the accelerated cooling step is set to 50 seconds or less.
    In the accelerated cooling step, the cooling stop temperature is 0 to 550 ° C. under the condition that the cooling start temperature is Trex -10 ° C or lower and the average cooling rate from the cooling start to the cooling end is 5 to 50 ° C / sec. Water-cooled to
    Steel sheet manufacturing method.
    However, Ar 3 is obtained by the following formula (iii), and Trex is obtained by the following formula (iv). The element symbol in the following formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
    Ar 3 = 910-310 x C + 65 x Si-80 x Mn-20 x Cu-55 x Ni-15 x Cr-80 x Mo ... (iii)
    TRex = -91900 [Nb *] 2 +9400 [Nb *] +770 ... (iv)
    However, the amount of solid solution Nb (mass%) obtained by the following formula (v) is determined by sol. When it is Nb,
    Nb ≧ sol. In the case of Nb, [Nb *] = sol. Nb
    Nb <sol. In the case of Nb, [Nb *] = Nb
    And.
    sol. Nb = (10 (-6770 / (T + 273) + 2.26) ) / (C + 12/14 × N) ・ ・ ・ (v)
    In addition, T in the above formula represents the heating temperature (° C.) of the steel piece in the heating step.
  9.  請求項7に記載の鋼板の製造方法であって、
     溶鋼を製造する精錬工程と、前記溶鋼を連続鋳造して、請求項1から請求項6までのいずれかに記載の化学組成を有する鋼片を製造する連続鋳造工程とを備え、得られた前記鋼片に対して、加熱工程、熱間圧延工程および加速冷却工程を順に施す、鋼板の製造方法において、
     前記精錬工程では、前記溶鋼中の溶存O濃度が0.0050%以下となってからTiを添加し、
     前記連続鋳造工程では、前記鋼片の表面温度が1200~900℃の間における平均冷却速度を0.1~0.5℃/秒とし、
     前記加熱工程では、前記鋼片を950~1080℃の加熱温度まで加熱し、
     前記熱間圧延工程は、粗圧延と仕上圧延とを含み、
     前記粗圧延は、前記鋼片の表面温度がTrex以上の範囲で実施し、
     前記粗圧延における累積圧下率を10~75%とし、
     前記仕上圧延は、前記鋼片の表面温度がAr以上Trex未満の範囲で実施し、
     前記仕上圧延における累積圧下率を65~90%として、かつパス間時間を15秒以下とし、
     前記仕上圧延完了から、前記加速冷却工程における冷却開始までの時間を50秒以下とし、
     前記加速冷却工程では、冷却開始温度をTrex-10℃以下とし、かつ、冷却開始から冷却終了までの平均冷却速度が5~50℃/秒となる条件で、0~550℃の冷却停止温度まで水冷する、
     鋼板の製造方法。
     ここで、Arは下記(iii)式で求められ、Trexは下記(iv)式で求められる。なお、下記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
     Ar=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo   ・・・(iii)
     Trex=-91900[Nb*]+9400[Nb*]+770   ・・・(iv)
     但し、下記(v)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
     Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
     Nb<sol.Nbの場合は、[Nb*]=Nb
     とする。
     sol.Nb=(10(-6770/(T+273)+2.26))/(C+12/14×N)   ・・・(v)
     なお、上記式中のTは加熱工程における鋼片の加熱温度(℃)を表す。
    The method for manufacturing a steel sheet according to claim 7.
    The said product obtained by comprising a refining step for producing molten steel and a continuous casting step for continuously casting the molten steel to produce a steel piece having the chemical composition according to any one of claims 1 to 6. In a steel plate manufacturing method in which a heating process, a hot rolling process, and an accelerated cooling process are sequentially performed on a steel piece.
    In the refining step, Ti is added after the dissolved O concentration in the molten steel becomes 0.0050% or less.
    In the continuous casting step, the average cooling rate when the surface temperature of the steel pieces is between 1200 and 900 ° C. is 0.1 to 0.5 ° C./sec.
    In the heating step, the steel pieces are heated to a heating temperature of 950 to 1080 ° C.
    The hot rolling step includes rough rolling and finish rolling.
    The rough rolling was carried out in a range where the surface temperature of the steel pieces was Trex or higher.
    The cumulative rolling reduction in the rough rolling is 10 to 75%.
    The finish rolling was carried out in a range where the surface temperature of the steel piece was Ar 3 or more and less than Trex .
    The cumulative rolling reduction in the finish rolling is 65 to 90%, and the time between passes is 15 seconds or less.
    The time from the completion of the finish rolling to the start of cooling in the accelerated cooling step is set to 50 seconds or less.
    In the accelerated cooling step, the cooling stop temperature is 0 to 550 ° C. under the condition that the cooling start temperature is Trex -10 ° C or lower and the average cooling rate from the cooling start to the cooling end is 5 to 50 ° C / sec. Water-cooled to
    Steel sheet manufacturing method.
    Here, Ar 3 is obtained by the following formula (iii), and Trex is obtained by the following formula (iv). The element symbol in the following formula represents the content (mass%) of each element contained in the steel sheet, and if it is not contained, 0 is substituted.
    Ar 3 = 910-310 x C + 65 x Si-80 x Mn-20 x Cu-55 x Ni-15 x Cr-80 x Mo ... (iii)
    TRex = -91900 [Nb *] 2 +9400 [Nb *] +770 ... (iv)
    However, the amount of solid solution Nb (mass%) obtained by the following formula (v) is determined by sol. When it is Nb,
    Nb ≧ sol. In the case of Nb, [Nb *] = sol. Nb
    Nb <sol. In the case of Nb, [Nb *] = Nb
    And.
    sol. Nb = (10 (-6770 / (T + 273) + 2.26) ) / (C + 12/14 × N) ・ ・ ・ (v)
    In addition, T in the above formula represents the heating temperature (° C.) of the steel piece in the heating step.
  10.  前記加速冷却工程の後に、350~650℃の温度範囲まで加熱する焼戻し工程をさらに施す、
     請求項8または請求項9に記載の鋼板の製造方法。
    After the accelerated cooling step, a tempering step of heating to a temperature range of 350 to 650 ° C. is further performed.
    The method for manufacturing a steel sheet according to claim 8 or 9.
PCT/JP2021/031921 2020-08-31 2021-08-31 Steel sheet and method for producing same WO2022045352A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180026262.3A CN115398018B (en) 2020-08-31 2021-08-31 Steel sheet and method for producing same
KR1020227033732A KR20220147126A (en) 2020-08-31 2021-08-31 Steel plate and its manufacturing method
JP2022505648A JP7127753B2 (en) 2020-08-31 2021-08-31 Steel plate and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020145740 2020-08-31
JP2020-145740 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022045352A1 true WO2022045352A1 (en) 2022-03-03

Family

ID=80353525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031921 WO2022045352A1 (en) 2020-08-31 2021-08-31 Steel sheet and method for producing same

Country Status (4)

Country Link
JP (1) JP7127753B2 (en)
KR (1) KR20220147126A (en)
CN (1) CN115398018B (en)
WO (1) WO2022045352A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190200A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 High-strength steel sheet and method for producing same
JP7424551B1 (en) 2022-06-03 2024-01-30 Jfeスチール株式会社 Hot-rolled steel plates, square steel pipes, their manufacturing methods and architectural structures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306316A (en) * 1997-04-28 1998-11-17 Nippon Steel Corp Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
WO2009072559A1 (en) * 2007-12-06 2009-06-11 Nippon Steel Corporation Process for producing thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding and thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding
JP2018003062A (en) * 2016-06-29 2018-01-11 Jfeスチール株式会社 High strength and high processability hot rolled steel sheet and manufacturing method therefor
JP2018090872A (en) * 2016-12-06 2018-06-14 Jfeスチール株式会社 Low yield ratio high tensile strength thick steel sheet and production method thereof
JP2020117779A (en) * 2019-01-24 2020-08-06 日本製鉄株式会社 Steel plate and method for manufacturing steel plate
WO2020262638A1 (en) * 2019-06-27 2020-12-30 日本製鉄株式会社 Steel material and method for producing same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058097B2 (en) * 2006-04-13 2008-03-05 新日本製鐵株式会社 High strength steel plate with excellent arrestability
JP5337412B2 (en) * 2008-06-19 2013-11-06 株式会社神戸製鋼所 Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
JP5278188B2 (en) * 2009-06-19 2013-09-04 新日鐵住金株式会社 Thick steel plate with excellent resistance to hydrogen-induced cracking and brittle crack propagation
CN102666884B (en) * 2010-02-08 2013-07-31 新日铁住金株式会社 Production method for thick steel plate
TWI463018B (en) * 2012-04-06 2014-12-01 Nippon Steel & Sumitomo Metal Corp High strength steel plate with excellent crack arrest property
WO2017183630A1 (en) * 2016-04-19 2017-10-26 新日鐵住金株式会社 Steel
JP6926774B2 (en) 2017-07-21 2021-08-25 日本製鉄株式会社 Steel plate and steel plate manufacturing method
JP6926773B2 (en) 2017-07-21 2021-08-25 日本製鉄株式会社 Steel plate and steel plate manufacturing method
JP6926772B2 (en) 2017-07-21 2021-08-25 日本製鉄株式会社 Steel plate
JP6828638B2 (en) 2017-08-14 2021-02-10 日本製鉄株式会社 Steel plate and steel plate manufacturing method
WO2019069771A1 (en) 2017-10-03 2019-04-11 新日鐵住金株式会社 Steel sheet and method for producing steel sheet
EP3715491A4 (en) * 2017-11-24 2021-03-24 Nippon Steel Corporation Hot-rolled steel sheet and manufacturing method therefor
JP7155703B2 (en) * 2018-07-19 2022-10-19 日本製鉄株式会社 Thick steel plate for line pipe and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306316A (en) * 1997-04-28 1998-11-17 Nippon Steel Corp Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
WO2009072559A1 (en) * 2007-12-06 2009-06-11 Nippon Steel Corporation Process for producing thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding and thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding
JP2018003062A (en) * 2016-06-29 2018-01-11 Jfeスチール株式会社 High strength and high processability hot rolled steel sheet and manufacturing method therefor
JP2018090872A (en) * 2016-12-06 2018-06-14 Jfeスチール株式会社 Low yield ratio high tensile strength thick steel sheet and production method thereof
JP2020117779A (en) * 2019-01-24 2020-08-06 日本製鉄株式会社 Steel plate and method for manufacturing steel plate
WO2020262638A1 (en) * 2019-06-27 2020-12-30 日本製鉄株式会社 Steel material and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190200A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 High-strength steel sheet and method for producing same
JP7392904B1 (en) 2022-03-30 2023-12-06 Jfeスチール株式会社 High strength steel plate and its manufacturing method
JP7424551B1 (en) 2022-06-03 2024-01-30 Jfeスチール株式会社 Hot-rolled steel plates, square steel pipes, their manufacturing methods and architectural structures

Also Published As

Publication number Publication date
JP7127753B2 (en) 2022-08-30
JPWO2022045352A1 (en) 2022-03-03
CN115398018B (en) 2023-07-21
CN115398018A (en) 2022-11-25
KR20220147126A (en) 2022-11-02

Similar Documents

Publication Publication Date Title
KR101635008B1 (en) Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
KR102648171B1 (en) Steel and its manufacturing method
JP6693185B2 (en) Method for manufacturing low temperature nickel steel sheet
EP2808413A1 (en) High-strength hot-rolled steel sheet and method for producing same
WO2013089156A1 (en) High-strength h-section steel with excellent low temperature toughness, and manufacturing method thereof
KR20190077470A (en) High Mn steel sheet and manufacturing method thereof
JP7127753B2 (en) Steel plate and its manufacturing method
JP7099654B1 (en) Steel plate and its manufacturing method
JP6835294B2 (en) Hot-rolled steel sheet and its manufacturing method
JP7099653B1 (en) Steel plate and its manufacturing method
JP7364906B2 (en) Steel materials and their manufacturing methods
JP2004323917A (en) High strength high toughness steel sheet
JP7127751B2 (en) Steel plate and its manufacturing method
CN115362276B (en) Steel sheet and method for producing same
JP7099656B1 (en) Steel plate and its manufacturing method
JP7207250B2 (en) Steel material and its manufacturing method
JP7243916B2 (en) Steel plate and steel plate manufacturing method
JP7396322B2 (en) steel plate
JP7396512B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP7468814B1 (en) High strength extra thick steel plate and its manufacturing method
WO2021125283A1 (en) Steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022505648

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227033732

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861773

Country of ref document: EP

Kind code of ref document: A1