JP7493140B2 - Steel plate and its manufacturing method - Google Patents
Steel plate and its manufacturing method Download PDFInfo
- Publication number
- JP7493140B2 JP7493140B2 JP2023524825A JP2023524825A JP7493140B2 JP 7493140 B2 JP7493140 B2 JP 7493140B2 JP 2023524825 A JP2023524825 A JP 2023524825A JP 2023524825 A JP2023524825 A JP 2023524825A JP 7493140 B2 JP7493140 B2 JP 7493140B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- thickness
- temperature
- rolling
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 114
- 239000010959 steel Substances 0.000 title claims description 114
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 238000001816 cooling Methods 0.000 claims description 48
- 238000005096 rolling process Methods 0.000 claims description 41
- 230000009467 reduction Effects 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 14
- 230000001186 cumulative effect Effects 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 11
- 238000005496 tempering Methods 0.000 claims description 9
- 238000005098 hot rolling Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 description 29
- 238000012360 testing method Methods 0.000 description 25
- 230000000694 effects Effects 0.000 description 16
- 229910001566 austenite Inorganic materials 0.000 description 15
- 229910052761 rare earth metal Inorganic materials 0.000 description 14
- 150000002910 rare earth metals Chemical class 0.000 description 14
- 238000001953 recrystallisation Methods 0.000 description 12
- 238000003466 welding Methods 0.000 description 12
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 238000007670 refining Methods 0.000 description 9
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 6
- 239000010953 base metal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000002542 deteriorative effect Effects 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 229910001563 bainite Inorganic materials 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、船舶や海洋構造物、圧力容器、ラインパイプ、洋上風力発電機などの鋼構造物に好適に用いられる鋼材に関する。特に、板厚が100mm超の鋼板に対し、母材の強度靭性に優れるだけでなく、多層盛溶接部における継手CTOD特性にも優れる厚肉の高張力鋼板およびその製造方法に関するものである。The present invention relates to a steel material suitable for use in steel structures such as ships, marine structures, pressure vessels, line pipes, and offshore wind power generators. In particular, the present invention relates to a thick, high-tensile steel plate that is excellent not only in the strength and toughness of the base material but also in the CTOD characteristics of joints in multi-layer welds, in comparison with steel plates with a thickness of more than 100 mm, and a method for manufacturing the same.
従来、鋼の靭性評価には主にシャルピ-試験が行われてきた。近年では、破壊抵抗をより高精度に評価する手法として、き裂開口変位試験(Crack Tip Opening Displacement Test、以下、「CTOD試験」と称する。)が鋼構造物に使用される厚鋼板を対象に適用されることが多くなってきている。
この試験は、靭性評価部に疲労予き裂を導入した試験片を低温で3点曲げし、破壊直前のき裂の開口量(塑性変形量)を測定して脆性破壊の発生抵抗を評価するものである。
Conventionally, the Charpy test has been mainly used to evaluate the toughness of steel. In recent years, as a method for evaluating fracture resistance with higher accuracy, a Crack Tip Opening Displacement Test (hereinafter, referred to as "CTOD test") has been increasingly applied to thick steel plates used in steel structures.
In this test, a test piece in which a fatigue pre-crack has been introduced into the toughness evaluation portion is bent at three points at low temperature, and the opening of the crack (amount of plastic deformation) just before fracture is measured to evaluate the resistance to brittle fracture.
厚鋼板を、前述したような船舶や海洋構造物、圧力容器、ラインパイプ、風力発電機などの鋼構造物に適用する場合、多層盛溶接が用いられる。この多層盛溶接の溶接熱影響部(Heat Affected Zone:以下、「多層盛溶接HAZ」ともいう。)には、先行の溶接パスにより粗大な組織となった溶接線近傍の領域(Coarse Grain Heat Affected Zone:以下、「CGHAZ」ともいう。)が、後続の溶接パスによりフェライト+オ-ステナイトの2相域に再加熱され、粗大な基地組織中に島状マルテンサイト(Martensite-Austenite Constituent:以下、「MA」ともいう。)組織が混在して著しく靭性が低くなった領域(Inter-Critically reheated Coarse Grain Heat Affected Zone:以下、「ICCGHAZ」ともいう。)が含まれることが知られている。 When thick steel plates are applied to steel structures such as ships, marine structures, pressure vessels, line pipes, and wind turbines as mentioned above, multi-layer welding is used. It is known that the heat affected zone (hereinafter, also referred to as "multi-layer welding HAZ") of this multi-layer welding includes a region (Coarse Grain Heat Affected Zone: hereinafter, also referred to as "CGHAZ") near the weld line, which has a coarse structure due to a previous welding pass, and a region (Inter-Critically Reheated Coarse Grain Heat Affected Zone: hereinafter, also referred to as "ICCGHAZ") in which an island martensite (Martensite-Austenite Constituent: hereinafter, also referred to as "MA") structure is mixed in the coarse base structure and the toughness is significantly reduced.
ここで、溶接継手部のCTOD試験は、基本的に板全厚で行うため、多層盛溶接HAZを評価対象とする場合、疲労予き裂を導入する領域にはICCGHAZ組織が含まれる。また、継手CTOD試験により得られる継手CTOD特性は、評価領域内における最脆化組織の靭性に支配されるため、多層盛溶接HAZの継手CTOD特性は、CGHAZ組織だけでなくICCGHAZ組織の靭性も反映される。
このため、多層盛溶接HAZの継手CTOD特性を向上させるためには、CGHAZ組織の靭性向上だけでなくICCGHAZ組織の靭性向上も必要である。
Here, since the CTOD test of the welded joint is basically performed over the entire plate thickness, when the multi-pass weld HAZ is evaluated, the region where the fatigue pre-crack is introduced includes the ICCGHAZ structure. Also, since the joint CTOD properties obtained by the joint CTOD test are governed by the toughness of the most embrittled structure in the evaluation region, the joint CTOD properties of the multi-pass weld HAZ reflect not only the CGHAZ structure but also the toughness of the ICCGHAZ structure.
For this reason, in order to improve the joint CTOD characteristics of a multi-pass weld HAZ, it is necessary to improve not only the toughness of the CGHAZ structure but also the toughness of the ICCGHAZ structure.
従来、溶接熱影響部(HAZ)の靭性向上技術として、TiNの微細分散によるCGHAZのオ-ステナイト粒粗大化の抑制や、TiNのフェライト変態核としての利用が行われてきた。ここで、ボンド部においては、TiNが溶解する温度域まで加熱されることがあるため、溶接部の低温靭性要求が厳しい場合、かかるTiNを用いた効果だけでは要求を満足することが困難となってきている。 Conventionally, techniques for improving the toughness of weld heat-affected zones (HAZ) have involved the suppression of coarsening of austenite grains in CGHAZ by finely dispersing TiN, and the use of TiN as a ferrite transformation nucleus. However, since the bond zone may be heated to a temperature range where TiN melts, when the low-temperature toughness requirements of the weld zone are strict, it is becoming difficult to meet the requirements with only the effect of using such TiN.
また、REM(希土類金属)を添加して生成したREM系酸硫化物の分散によるオ-ステナイト粒の粒成長抑制や、Ca添加により生成したCa系酸硫化物の分散によるオ-ステナイト粒の粒成長抑制、BNのフェライト核生成能と酸化物分散とを組み合わせる技術が用いられてきた。 In addition, technologies have been used that inhibit the grain growth of austenite grains by dispersing REM-based oxysulfides formed by adding REM (rare earth metals), inhibit the grain growth of austenite grains by dispersing Ca-based oxysulfides formed by adding Ca, and combine the ferrite nucleation ability of BN with oxide dispersion.
例えば、特許文献1や特許文献2には、REMをTiと共に複合添加して鋼中に微細粒子を分散させることによって、オーステナイトの粒成長を抑制し、溶接部の靭性を向上させる技術が開示されている。
また、特許文献3では、CaS利用によるHAZ靭性向上技術と熱間圧延による母材靭性向上技術が提案されている。
For example, Patent Documents 1 and 2 disclose techniques for suppressing the grain growth of austenite and improving the toughness of welds by adding REM together with Ti to disperse fine particles in steel.
Moreover, Patent Document 3 proposes a technique for improving HAZ toughness by using CaS and a technique for improving base material toughness by hot rolling.
さらに、ICCGHAZの靭性低下対策として、低C、低Si化することによりMAの生成を抑制した上でCuを添加することによって母材強度を高める技術が、特許文献4に提案されている。
加えて、特許文献5には、大入熱溶接熱影響部においてBNをフェライト変態核として利用し、HAZ組織を微細化し、HAZ靭性を向上させる技術が提案されている。
Furthermore, as a measure against the decrease in toughness of ICCGHAZ, Patent Document 4 proposes a technology of increasing the strength of the base material by reducing the C and Si content to suppress the generation of MA and then adding Cu.
In addition, Patent Document 5 proposes a technique of utilizing BN as ferrite transformation nuclei in a high heat input weld heat affected zone to refine the HAZ structure and improve the HAZ toughness.
ところで、近年、船舶や海洋構造物、圧力容器、ラインパイプ、洋上風力発電機などの鋼構造物は大型化する傾向にあり、それに伴って鋼構造物に使用される鋼板の厚肉化と高強度化が進められている。鋼板の厚肉化と高強度化を両立するためには合金元素の添加量の増加が必要であるが、合金元素の多量添加は多層盛溶接HAZの靭性確保を困難にする。この問題に対しては特許文献6に、中心偏析部の硬度を制御することで低温靭性を向上させる技術が開示されている。In recent years, steel structures such as ships, marine structures, pressure vessels, line pipes, and offshore wind turbines have tended to become larger, and as a result, the steel plates used in these structures have become thicker and stronger. In order to achieve both thicker and stronger steel plates, it is necessary to increase the amount of alloying elements added, but adding large amounts of alloying elements makes it difficult to ensure the toughness of the multi-layer weld HAZ. To address this issue, Patent Document 6 discloses a technology that improves low-temperature toughness by controlling the hardness of the central segregation area.
ここで、継手CTOD特性を規定している規格(例えば、API(American Petroleum Institute)規格 RP(Recommended Practice)-2Z)におけるCTOD仕様温度は、通常、-10℃である。
ところが、近年のエネルギ-需要の増加に対応して新たな資源を確保するために、海洋構造物等の建造地域が、これまで資源採掘を行えていなかった寒冷域および深海域にシフトしている。このため、高強度かつ厚肉で、API規格が定めるCTOD仕様温度よりもさらに低温のCTOD仕様温度(例えば-40℃程度)に対応できる鋼板に対する要求が増加している。
Here, the CTOD specification temperature in standards that define the CTOD characteristics of joints (for example, API (American Petroleum Institute) standard RP (Recommended Practice)-2Z) is usually -10°C.
However, in order to secure new resources in response to the increase in energy demand in recent years, the construction regions of marine structures, etc. are shifting to cold regions and deep sea areas where resource mining has not been possible until now. As a result, there is an increasing demand for steel plates that are high-strength and thick and can withstand CTOD specification temperatures (e.g., about -40°C) that are lower than the CTOD specification temperature defined by the API standard.
発明者らの検討によれば、特許文献1~6に記載されている従来の技術は、近年求められている高強度かつ板厚:100mm超の厚肉の鋼板において、低温仕様向けの多層盛溶接継手に要求される継手CTOD特性を十分満足させることができないものであった。According to the inventors' investigations, the conventional technologies described in Patent Documents 1 to 6 were unable to fully satisfy the joint CTOD characteristics required for multi-pass welded joints for low-temperature specifications in the high-strength, thick steel plates (thickness: over 100 mm) that are in demand in recent years.
例えば、特許文献1、2には、REMをTiと共に複合添加して鋼中に微細粒子を分散させることによるHAZのオ-ステナイト組織の粗大化抑制技術が提案されている。この技術は、比較的低強度で合金元素量の少ない鋼材が対象であるため、より高強度で合金元素量の多い鋼材ではHAZ組織がフェライトを含まない組織となるために適用できない。For example, Patent Documents 1 and 2 propose a technique for suppressing coarsening of the austenite structure in the HAZ by adding REM together with Ti to disperse fine particles in the steel. This technique is intended for steel materials with relatively low strength and low amounts of alloying elements, and cannot be applied to steel materials with higher strength and higher amounts of alloying elements, because the HAZ structure does not contain ferrite.
なお、特許文献1、2における、REM系酸硫化物やCa系酸硫化物は、オ-ステナイト粒成長抑制に対しては有効である。しかし、HAZのオ-ステナイト粒粗大化抑制による靭性向上の効果のみでは上記の低温仕様温度での継手CTOD特性を満足することはできない。In addition, the REM-based oxysulfides and Ca-based oxysulfides described in Patent Documents 1 and 2 are effective in suppressing austenite grain growth. However, the effect of improving toughness by suppressing the coarsening of austenite grains in the HAZ alone is not enough to satisfy the joint CTOD characteristics at the above-mentioned low-temperature specification temperatures.
また、特許文献3で提案されている技術によれば、通常使用温度(-10℃)での継手CTOD特性を満足することができる。しかし、上記の低温仕様温度での継手CTOD特性については検討されていない。In addition, the technology proposed in Patent Document 3 can satisfy the joint CTOD characteristics at normal use temperatures (-10°C). However, the joint CTOD characteristics at the above-mentioned low-temperature specification temperatures have not been considered.
特許文献4においても同様に、上記の低温仕様温度での継手CTOD特性については検討されておらず、母材成分組成の低減によるICCGHAZ靭性の向上のみでは低温CTOD仕様を満足することはできないと考えられる。また、ICCGHAZの靭性を向上させるために母材の合金元素含有量を低減することは、厚肉化のための強度確保と相反する技術的思想であり、海洋構造物などに使用される厚鋼板に適用することは難しい。Similarly, in Patent Document 4, the joint CTOD characteristics at the above-mentioned low-temperature specification temperatures are not considered, and it is considered that the low-temperature CTOD specifications cannot be satisfied only by improving the ICCGHAZ toughness by reducing the base metal composition. In addition, reducing the alloy element content of the base metal in order to improve the toughness of the ICCGHAZ is a technical idea that contradicts the securing of strength for thickening, and is difficult to apply to thick steel plates used in marine structures, etc.
特許文献5で提案されている技術は、大入熱溶接の場合のように、溶接熱影響部における冷却速度が遅く、HAZがフェライト主体の組織となる場合には効果を発揮する。しかし、板厚が100mmを超えた厚鋼板の場合、母材に含有される合金成分の量が比較的多い一方で、多層盛溶接では入熱量が比較的小さい。そのため、厚鋼板の多層盛溶接においては、HAZ組織がベイナイト主体となるため、前記継手CTOD特性向上にかかる効果が得られない。The technology proposed in Patent Document 5 is effective when the cooling rate in the heat-affected zone is slow, as in the case of high heat input welding, and the HAZ has a structure mainly composed of ferrite. However, in the case of thick steel plates with a plate thickness of more than 100 mm, the amount of alloy components contained in the base material is relatively large, while the heat input is relatively small in multi-layer welding. Therefore, in multi-layer welding of thick steel plates, the HAZ structure is mainly composed of bainite, and the effect of improving the joint CTOD characteristics cannot be obtained.
特許文献6に記載された技術では、板厚100mm以下の厚鋼板において、低温域での継手CTOD特性を満足するための技術が提案されているものの、板厚100mm超の極厚鋼板に対し、上記板厚100mm以下の厚鋼板と同等の力学特性を得るまでには至っていない。The technology described in Patent Document 6 proposes a technology for satisfying joint CTOD characteristics at low temperatures for thick steel plates with a plate thickness of 100 mm or less, but it does not yet achieve mechanical properties for extra-thick steel plates with a plate thickness of more than 100 mm that are equivalent to those of thick steel plates with a plate thickness of 100 mm or less.
このように、従来、板厚100mm超の高強度厚鋼板の多層盛溶接熱影響部でCGHAZとICCGHAZの靭性を向上させる技術が確立されているとは言いがたい。すなわち、CGHAZとICCGHAZが混在するボンド部を切欠位置とする継手CTOD特性を向上させることには、解決すべき問題があった。 Thus, it is difficult to say that a technology has been established to improve the toughness of the CGHAZ and ICCGHAZ in the heat-affected zone of multi-layer welds in high-strength thick steel plates with a plate thickness of over 100 mm. In other words, there was a problem to be solved in improving the CTOD characteristics of a joint in which the bond part where the CGHAZ and ICCGHAZ are mixed is the notch position.
本発明は、従来技術が抱える上記問題を鑑みてなされたものであり、その目的は、多層盛溶接が施された継手のCTOD特性(以下、多層盛溶接継手CTOD特性という)に優れる、板厚が100mm超で高強度の厚鋼板および、その製造方法を提供することである。The present invention has been made in consideration of the above-mentioned problems associated with the conventional technology, and its purpose is to provide a high-strength thick steel plate having a thickness of over 100 mm and excellent CTOD characteristics of joints subjected to multi-layer welding (hereinafter referred to as multi-layer welded joint CTOD characteristics), and a manufacturing method thereof.
なお、本発明における高強度とは、引張試験における板厚中心位置における降伏強度が320MPa以上であることを指し、本発明における多層盛溶接継手CTOD特性に優れるとは、切欠位置CGHAZおよび、SC/ICHAZ境界のそれぞれにおいて試験温度-40℃で、き裂開口変位量が0.30mm以上であることを指す。In this invention, high strength refers to a yield strength of 320 MPa or more at the center of plate thickness in a tensile test, and excellent CTOD characteristics of a multi-pass welded joint in this invention refers to a crack opening displacement of 0.30 mm or more at a test temperature of -40°C at both the notch position CGHAZ and the SC/ICHAZ boundary.
発明者等は、かかる課題を解決するため、継手CTOD特性を向上させる手法について鋭意検討を行った。その結果、以下の知見を得た。
(1)スラブ製造過程で発生したポロシティは、圧延時に圧着されずに残存してしまうと、そこが鋼板内の欠陥となり破壊起点となることがある。特に、板厚中心部のポロシティを圧着するためには、圧延の際に板厚中心部に適切に歪みを導入することが必要であるが、板厚:100mm超の厚鋼板ではそれが困難になるため、未圧着の残存ポロシティが問題となる。しかし、発明者等の検討の結果、板厚中心温度が950℃以上の高温で、鋼板の板厚中心部と表面との変形抵抗比の平均値を0.70以下にしつつ、圧下率/パスが3%以上の圧下の累積圧下率を30%以上とする圧延を行うと、板厚中心部に十分な歪みを導入することができ、ポロシティを十分に圧着できることを見出した。
なお、本発明において、板厚中心部とは、板厚の中心から鋼板の両表面方向にそれぞれ板厚の10%の厚みを持った領域である。
In order to solve the above problems, the inventors have conducted extensive research into methods for improving the CTOD characteristics of joints, and have obtained the following findings.
(1) If the porosity generated during the slab manufacturing process is not pressed during rolling and remains, it may become a defect in the steel plate and become a fracture origin. In particular, in order to press the porosity in the plate thickness center, it is necessary to appropriately introduce strain into the plate thickness center during rolling, but this is difficult for thick steel plates with a plate thickness of more than 100 mm, so the remaining porosity that is not pressed becomes a problem. However, as a result of the inventors' studies, it was found that if rolling is performed at a high plate thickness center temperature of 950°C or more, while the average value of the deformation resistance ratio between the plate thickness center and the surface of the steel plate is 0.70 or less, and the rolling reduction rate/pass is 3% or more, and the cumulative rolling reduction rate is 30% or more, sufficient strain can be introduced into the plate thickness center, and the porosity can be sufficiently pressed.
In the present invention, the plate thickness central portion refers to a region having a thickness of 10% of the plate thickness from the center of the plate thickness toward both surface directions of the steel plate.
(2)また、スラブの板厚中心部は元素偏析領域が存在し、かかる領域に合金元素が濃化することで粗大な介在物が低密度で分散してしまうという問題点がある。しかし、前記した、板厚中心温度を950℃以上の高温でかつ、鋼板の板厚中心部と鋼板の表面との変形抵抗比の平均値を0.70以下にしつつ、圧下率/パスが3%以上の圧延を、累積圧下率30%以上行うことにより、板厚中心に加わる歪みを増加させることができる。その結果、粗大介在物が伸長、分断し、微細な介在物を高密度に分散させ得ることを見出した。併せて、かかる分散の結果、介在物によるHAZ靭性向上効果を確保し得ることを見出した。 (2) In addition, there is a problem that the central part of the thickness of the slab has an element segregation region, and the alloy elements are concentrated in this region, which causes coarse inclusions to be dispersed at a low density. However, by performing rolling with a reduction rate/pass of 3% or more and a cumulative reduction rate of 30% or more while setting the average value of the deformation resistance ratio between the central part of the thickness of the steel plate and the surface of the steel plate to 0.70 or less at a high central part temperature of 950°C or more, as described above, the strain applied to the central part of the thickness can be increased. As a result, it was found that the coarse inclusions are elongated and broken, and fine inclusions can be dispersed at a high density. In addition, it was found that the effect of improving the HAZ toughness by the inclusions can be secured as a result of such dispersion.
(3)さらに、オ-ステナイト粒成長抑制に有効なTiNを鋼中に微細分散析出させるために、鋼板の成分について、TiおよびNを、1.50≦Ti/N≦5.00の関係を満足して含有することに加え、炭素当量Ceq=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.540%、溶接割れ感受性指数Pcm=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B])≦0.250%の範囲にそれぞれ制御することによって、多層盛溶接が施されたHAZ(以下、多層盛溶接継手HAZという)の基地組織の靭性向上が可能であり、低温CTOD仕様に対応可能な良好な継手CTOD特性が得られることを見出した。 (3) Furthermore, in order to finely disperse and precipitate TiN in the steel, which is effective in suppressing austenite grain growth, it has been found that by controlling the contents of Ti and N in the steel plate so as to satisfy the relationship 1.50≦Ti/N≦5.00, and the carbon equivalent Ceq = [C] + [Mn]/6 + ([Cu] + [Ni])/15 + ([Cr] + [Mo] + [V])/5) ≦0.540%, and the weld crack susceptibility index Pcm = [C] + [Si]/30 + ([Mn] + [Cu] + [Cr])/20 + [Ni]/60 + [Mo]/15 + [V]/10 + 5[B]) ≦0.250%, respectively, it is possible to improve the toughness of the base structure of the HAZ where multi-layer welding has been performed (hereinafter referred to as multi-layer weld joint HAZ), and to obtain good joint CTOD characteristics that can meet low-temperature CTOD specifications.
加えて、発明者等は、継手CTOD試験方法が規定されているBS規格(British Standards)EN10225(2019)やAPI規格RP-2Z(2005)で要求される、溶接時の母材の変態領域/未変態領域の境界であるSC/ICHAZ(Sub-Critically reheated HAZ/Inter-Critically reheated HAZ)境界の継手CTOD特性についても検討を行った。その結果、以下の知見を得た。
(4)SC/ICHAZ境界で試験温度-40℃における継手CTOD特性を満足させるためには、SC/ICHAZ境界の継手CTOD特性に対し母材靭性が支配的となるため、母材ミクロ組織の有効結晶粒径を20μm以下として、結晶粒微細化により母材靭性を向上させる必要があることを見出した。
In addition, the inventors also investigated the joint CTOD characteristics of the SC/ICHAZ (Sub-Critically Reheated HAZ/Inter-Critically Reheated HAZ) boundary, which is the boundary between the transformed and untransformed regions of the base metal during welding, as required by the BS standard (British Standards) EN10225 (2019) and the API standard RP-2Z (2005), which specify the joint CTOD test method. As a result, the following findings were obtained.
(4) It was found that in order to satisfy the joint CTOD characteristics at the SC/ICHAZ boundary at a test temperature of -40°C, the base material toughness is dominant over the joint CTOD characteristics at the SC/ICHAZ boundary, and therefore it is necessary to set the effective crystal grain size of the base material microstructure to 20 μm or less and improve the base material toughness by refining the crystal grains.
(5)板厚100mm超の厚鋼板では板厚中心部の冷却速度が小さくなるため、かかる箇所の結晶粒が粗大化してしまう。しかしながら、板厚中心温度950℃未満において鋼板の板厚中心部と表面との変形抵抗比の平均値が0.70以下の条件で累積圧下率40%以上の圧延を行うことで、板厚中心部に十分な歪みを導入することが可能となり、上記結晶粒径まで結晶粒微細化を達成できることを見出した。 (5) In thick steel plates with a thickness of over 100 mm, the cooling rate at the center of the plate thickness is slow, causing the crystal grains at that location to become coarse. However, it has been discovered that by rolling at a cumulative reduction rate of 40% or more under conditions where the average deformation resistance ratio between the center of the plate thickness and the surface of the steel plate is 0.70 or less at a plate thickness center temperature of less than 950°C, it is possible to introduce sufficient strain into the plate thickness center, and to achieve grain refinement to the above-mentioned grain size.
本発明は、以上の知見を踏まえ、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
1.質量%で、C:0.02~0.12%、Si:0.70%以下、Mn:0.3~3.0%、P:0.050%以下、S:0.0050%以下、Al:0.002~0.100%、Ti:0.002~0.060%、N:0.0130%以下および、O:0.0100%以下を含み、残部がFeおよび不可避的不純物であって、以下の(1)~(3)式を満たす成分組成を有し、
板厚中心部における平均有効結晶粒径が20μm以下であって、かつ鋼板における円相当径:180μm以上のポロシティが1mm2当たりの個数で0.10個以下である鋼板。
1.50≦Ti/N≦5.00 …(1)
0.280%≦Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.540% …(2)
Pcm(=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B])≦0.250% …(3)
(ただし、(1)~(3)式における括弧は、括弧内の元素の含有量(質量%)を表し、当該元素が含有されない場合にはゼロとする)
The present invention has been completed based on the above findings and further investigations. That is, the gist of the present invention is as follows.
1. Having a component composition, in mass%, containing C: 0.02 to 0.12%, Si: 0.70% or less, Mn: 0.3 to 3.0%, P: 0.050% or less, S: 0.0050% or less, Al: 0.002 to 0.100%, Ti: 0.002 to 0.060%, N: 0.0130% or less, and O: 0.0100% or less, with the balance being Fe and unavoidable impurities, which satisfies the following formulas (1) to (3);
A steel plate having an average effective crystal grain size of 20 μm or less at the center of the plate thickness, and having porosity with a circular equivalent diameter of 180 μm or more in the steel plate, with the number of porosity pieces per 1 mm2 being 0.10 or less.
1.50≦Ti/N≦5.00 ... (1)
0.280%≦Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.540% ... (2)
Pcm (= [C] + [Si] / 30 + ( [Mn] + [Cu] + [Cr]) / 20 + [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B]) ≦ 0.250% ... (3)
(Note that the parentheses in formulas (1) to (3) represent the content (mass%) of the element in the parentheses, and if the element is not contained, the value is set to zero.)
2.前記成分組成が、さらに、質量%で、Ni:2.0%以下、Ca:0.0180%以下、Cu:2.00%以下、Cr:2.00%以下、Mo:2.00%以下、Nb:0.070%以下、V:0.20%以下、W:0.50%以下、B:0.0050%以下、REM:0.030%以下および、Mg:0.0150%以下からなる群より選択される1種以上を含む、前記1に記載の鋼板。 2. The steel plate according to claim 1, wherein the composition further includes, by mass%, one or more selected from the group consisting of Ni: 2.0% or less, Ca: 0.0180% or less, Cu: 2.00% or less, Cr: 2.00% or less, Mo: 2.00% or less, Nb: 0.070% or less, V: 0.20% or less, W: 0.50% or less, B: 0.0050% or less, REM: 0.030% or less, and Mg: 0.0150% or less.
3.前記1または2に記載の鋼板を製造する方法であって、
前記1または2に記載の成分組成を有する鋼片を、990℃以上1200℃以下の範囲に加熱し、以下の(4)式の条件を満足し、かつ板厚中心の温度が950℃以上の圧延においては圧下率/パスが3%以上の圧下を累積圧下率で30%以上とし、板厚中心の温度が950℃未満の圧延においては累積圧下率を40%以上とする熱間圧延を行い、次いで、板厚中心の平均冷却速度を1.0℃/s以上で600℃以下の冷却停止温度まで冷却するに際し、上記冷却停止温度が500℃以下の場合は、700℃から500℃までの冷却速度の平均値を上記平均冷却速度とし、上記冷却停止温度が500℃よりも高い場合は、700℃から上記500℃よりも高い冷却停止温度までの冷却速度の平均値を上記平均冷却速度とする、鋼板の製造方法。
kfm(板厚中心)/kfm(表面)≦0.70 …(4)
(ここで、kfmは(5)式による)
3. A method for producing the steel plate according to 1 or 2,
3. A method for producing a steel plate, comprising: heating a steel slab having the component composition according to 1 or 2 above to a range of 990°C or higher and 1200°C or lower; hot rolling is performed so as to satisfy the condition of the following formula (4), and in rolling where the temperature at the plate thickness center is 950°C or higher, the reduction/pass is 3% or higher, with a cumulative reduction of 30% or higher, and in rolling where the temperature at the plate thickness center is less than 950°C, the cumulative reduction is 40% or higher; and cooling is then performed at an average cooling rate at the plate thickness center of 1.0°C/s or higher to a cooling stop temperature of 600°C or lower, wherein when the cooling stop temperature is 500°C or lower, the average cooling rate is the average value of the cooling rates from 700°C to 500°C, and when the cooling stop temperature is higher than 500°C, the average cooling rate is the average value of the cooling rates from 700°C to a cooling stop temperature higher than 500°C.
k fm (center of thickness) / k fm (surface) ≦ 0.70 ... (4)
(where k fm is based on equation (5))
4.前記冷却停止温度まで冷却した後、700℃以下の温度で焼戻し処理を行う、前記3に記載の鋼板の製造方法。 4. A method for manufacturing a steel sheet as described in 3 above, in which after cooling to the cooling stop temperature, tempering is performed at a temperature of 700°C or less.
本発明によれば、板厚が100mm超の厚鋼板であっても高強度であり、しかも多層盛溶接継手CTOD特性に優れる厚鋼板を提供することができる。According to the present invention, it is possible to provide a thick steel plate having high strength even when the plate thickness is more than 100 mm, and having excellent multi-pass welded joint CTOD characteristics.
以下、本発明の各構成要件の限定理由について説明する。
[成分組成]
はじめに、本発明において厚鋼板および鋼片の成分組成を上記範囲に限定する理由を説明する。なお、成分組成に関する「%」は、特に断らない限り「質量%」を意味する。
C:0.02~0.12%
Cは、焼入れ性を高め、鋼の強度を向上させる元素であり、0.02%以上の含有を必要とする。しかし、0.12%を超えてCを過剰に含有すると、Cが濃化した部分の硬度が高くなり、継手CTOD特性が低下する。そのため、C含有量は0.02~0.12%の範囲とする。好ましくは下限が0.04%であって、上限が0.09%である。
The reasons for limiting each of the constituent elements of the present invention will be explained below.
[Component composition]
First, the reason for limiting the composition of the steel plate and steel billet to the above range in the present invention will be explained. Note that "%" regarding the composition means "mass %" unless otherwise specified.
C: 0.02 to 0.12%
C is an element that improves hardenability and improves the strength of steel, and must be contained at 0.02% or more. However, if C is contained in excess of 0.12%, the hardness of the C-concentrated portion increases, and the CTOD characteristics of the joint deteriorate. Therefore, the C content is set to a range of 0.02 to 0.12%. Preferably, the lower limit is 0.04% and the upper limit is 0.09%.
Si:0.70%以下
Siは、不純物として不可避的に含まれる元素であり、また、強度を向上させる作用を有している。しかし、0.70%を超えてSiを過剰に含有すると、継手CTOD特性が低下する。そのため、Si含有量は上限を0.70%に制限する。好ましくは0.50%以下である。一方、下限は特に限定されないが0.04%程度が好ましい。
Si: 0.70% or less Si is an element that is inevitably contained as an impurity, and has the effect of improving strength. However, if the Si content exceeds 0.70%, the joint CTOD characteristics deteriorate. Therefore, the upper limit of the Si content is limited to 0.70%, preferably 0.50% or less. On the other hand, the lower limit is not particularly limited, but is preferably about 0.04%.
Mn:0.3~3.0%
Mnは、鋼の焼入れ性の向上を介して母材および溶接部の強度を向上させる効果を有する元素である。かかる効果を得るためには0.3%以上の添加が必要である。好ましくは、0.5%以上である。一方、3.0%を超える添加は溶接性を低下させるだけでなく、焼入れ性が過剰となり、母材および溶接部の靭性を低下させるので、継手CTOD特性が劣化する。このためMn含有量は0.3~3.0%の範囲とする。好ましくは、2.8%以下である。
Mn: 0.3 to 3.0%
Mn is an element that has the effect of improving the strength of the base material and welded parts by improving the hardenability of steel. To obtain this effect, the addition of 0.3% or more is necessary. Preferably, it is 0.5% or more. On the other hand, the addition of more than 3.0% not only reduces the weldability, but also causes excessive hardenability, which reduces the toughness of the base material and the welded parts, thereby deteriorating the joint CTOD characteristics. For this reason, the Mn content is set to the range of 0.3 to 3.0%, and preferably 2.8% or less.
P:0.050%以下
Pは、粒界を脆化させる効果が大きい元素であり、多量に添加するとHAZ靭性を低下させ、継手CTOD特性を低下させる。そのため、P含有量を0.050%以下に制限する。好ましくは0.030%以下である。一方、P含有量はできる限り低減することが望ましいので、P含有量の下限は特に限定されないが、過度の低P化は精錬時間の増加やコスト上昇を招く。そのため、P含有量は0.001%以上とすることが好ましい。
P: 0.050% or less P is an element that has a large effect of embrittling grain boundaries, and adding a large amount of it reduces HAZ toughness and joint CTOD characteristics. Therefore, the P content is limited to 0.050% or less, and preferably 0.030% or less. On the other hand, since it is desirable to reduce the P content as much as possible, the lower limit of the P content is not particularly limited, but excessively reducing the P content leads to an increase in refining time and an increase in costs. Therefore, the P content is preferably 0.001% or more.
S:0.0050%以下
Sは、継手CTOD特性を低下させる元素であるため、S含有量の上限を0.0050%に制限する。好ましくは0.0030%以下である。一方、S含有量はできる限り低減することが望ましいので、S含有量の下限は限定されないが、過度の低S化は精錬時間の増加やコスト上昇を招く。そのため、S含有量は0.0001%以上とすることが好ましい。
S: 0.0050% or less S is an element that reduces the CTOD characteristics of joints, so the upper limit of the S content is limited to 0.0050%. It is preferably 0.0030% or less. On the other hand, since it is desirable to reduce the S content as much as possible, the lower limit of the S content is not limited, but excessive reduction in S content leads to an increase in refining time and an increase in costs. Therefore, the S content is preferably 0.0001% or more.
Al:0.002~0.100%
Alは、多層盛溶接HAZの靭性を改善し、継手CTOD特性を向上するための介在物形成に必要な元素であり、0.002%以上の添加が必要である。好ましくは、0.005%以上である。一方、0.100%を超えて過剰に添加すると低温域での継手CTOD特性が低下する。そのため、Al含有量は0.002~0.100%の範囲とする。好ましくは、0.075%以下である。
Al: 0.002 to 0.100%
Al is an element necessary for forming inclusions to improve the toughness of multi-pass weld HAZ and improve joint CTOD properties, and must be added in an amount of 0.002% or more. Preferably, it is added in an amount of 0.005% or more. On the other hand, if it is added in an amount exceeding 0.100%, the joint CTOD properties in the low temperature range are reduced. Therefore, the Al content is set to the range of 0.002 to 0.100%, and preferably, it is set to 0.075% or less.
Ti:0.002~0.060%
Tiは、TiNとして鋼中に析出する。析出したTiNは、母材およびHAZにおけるオ-ステナイト粒の粗大化を抑制する作用を有しており、HAZ組織が微細化し、継手CTOD特性が向上する。かかる効果を得るためには0.002%以上の添加が必要である。好ましくは、0.005%以上である。一方、Ti含有量が0.060%を超えると、固溶Tiや粗大TiCの析出により、かえって溶接熱影響部靭性が低下し、継手CTOD特性が劣化する。そのため、Ti含有量は0.002~0.060%の範囲とする。好ましくは、0.050%以下である。
Ti: 0.002 to 0.060%
Ti precipitates in steel as TiN. The precipitated TiN has the effect of suppressing the coarsening of austenite grains in the base material and HAZ, which refines the HAZ structure and improves the joint CTOD characteristics. In order to obtain this effect, it is necessary to add 0.002% or more. Preferably, it is 0.005% or more. On the other hand, if the Ti content exceeds 0.060%, the precipitation of solid solution Ti and coarse TiC will rather reduce the toughness of the welded heat affected zone and deteriorate the joint CTOD characteristics. Therefore, the Ti content is set to the range of 0.002 to 0.060%. Preferably, it is 0.050% or less.
N:0.0130%以下
Nは、HAZ靭性を低下させ、継手CTOD特性を劣化させる元素であるため、N含有量の上限を0.0130%に制限する。一方、N含有量はできる限り低減することが望ましいので、N含有量の下限は限定されないが、過度の低N化は精錬時間の増加やコスト上昇を招く。そのため、N含有量は0.0005%以上とすることが好ましい。
N: 0.0130% or less N is an element that reduces HAZ toughness and deteriorates joint CTOD characteristics, so the upper limit of the N content is limited to 0.0130%. On the other hand, since it is desirable to reduce the N content as much as possible, the lower limit of the N content is not limited, but excessive reduction in N content leads to an increase in refining time and an increase in costs. Therefore, the N content is preferably 0.0005% or more.
O:0.0100%以下
Oは、HAZ靭性を低下させ、継手CTOD特性を劣化させる元素であるため、O含有量の上限を0.0100%に制限する。一方、O含有量はできる限り低減することが望ましいので、O含有量の下限は限定されないが、過度の低O化は精錬時間の増加やコスト上昇を招く。そのため、O含有量は0.0005%以上とすることが好ましい。
O: 0.0100% or less O is an element that reduces HAZ toughness and deteriorates joint CTOD characteristics, so the upper limit of the O content is limited to 0.0100%. On the other hand, since it is desirable to reduce the O content as much as possible, the lower limit of the O content is not limited, but excessive reduction of O content leads to an increase in refining time and an increase in costs. Therefore, the O content is preferably 0.0005% or more.
本発明の一実施形態における厚鋼板の成分組成は、上記元素と残部のFeおよび不可避不純物からなるものとする。
また、本発明の他の実施形態においては、強度、母材靭性、継手靭性などのさらなる向上を目的として、上記成分組成に加え、Ni、Ca、Cu、Cr、Mo、Nb、V、W、B、REM、およびMgからなる群より選択される1種以上を、以下に示す含有量でさらに任意に含有することができる。
The composition of the steel plate in one embodiment of the present invention is made up of the above elements with the balance being Fe and unavoidable impurities.
In another embodiment of the present invention, in order to further improve the strength, base material toughness, joint toughness, and the like, in addition to the above-mentioned component composition, one or more elements selected from the group consisting of Ni, Ca, Cu, Cr, Mo, Nb, V, W, B, REM, and Mg may be optionally further contained in the contents shown below.
Ni:2.0%以下
Niは、母材と継手の両方の靭性を大きく劣化させることなく厚鋼板を高強度化することができる元素であるが、Ni添加によって製造コストおよび環境負荷は増加する。従来は母材靭性と継手靭性を確保するためにNi含有が必須であった。しかしながら、本発明では変形抵抗比を制御した圧延を行うことにより、Niの含有なしで多層盛溶接継手CTOD特性に優れる、板厚が100mm超の高強度厚鋼板を製造可能になる。一方で、更なる靭性向上のためにNiを含有してもよい。その場合、2.0%以上のNi含有は過度な製造コストの増加および、環境負荷増加が問題となる。そのため、Ni含有量を2.0%以下に制限する。より好ましくは、1.8%以下である。一方、Niを添加する場合は0.1%以上が望ましい。
Ni: 2.0% or less Ni is an element that can increase the strength of thick steel plates without significantly deteriorating the toughness of both the base material and the joint, but the addition of Ni increases manufacturing costs and environmental load. Conventionally, the inclusion of Ni was essential to ensure the toughness of the base material and the joint. However, in the present invention, by performing rolling with a controlled deformation resistance ratio, it is possible to manufacture high-strength thick steel plates with a plate thickness of over 100 mm that have excellent multi-layer welded joint CTOD characteristics without the inclusion of Ni. On the other hand, Ni may be contained to further improve toughness. In that case, the inclusion of Ni of 2.0% or more causes problems of excessive increase in manufacturing costs and increase in environmental load. Therefore, the Ni content is limited to 2.0% or less. More preferably, it is 1.8% or less. On the other hand, when Ni is added, it is preferable that it is 0.1% or more.
Ca:0.0180%以下
Caは、高温での安定性が高い酸硫化物を形成することで多層盛溶接HAZの靭性を向上させる元素であるが、0.0180%を超える含有は、かえって継手CTOD特性を低下させる。そのため、Ca含有量の上限を0.0180%に制限する。より好ましくは、0.0160%以下である。一方、Caを添加する場合は0.0002%以上が望ましい。
Ca: 0.0180% or less Ca is an element that improves the toughness of multi-pass weld HAZ by forming oxysulfides that are highly stable at high temperatures, but a content exceeding 0.0180% actually deteriorates the joint CTOD characteristics. Therefore, the upper limit of the Ca content is limited to 0.0180%. More preferably, it is 0.0160% or less. On the other hand, when Ca is added, it is preferable that the content be 0.0002% or more.
Cu:2.00%以下
Cuは、母材、継手靭性を大きく劣化させることなく厚鋼板を高強度化することができる元素であるが、Cu含有量が2.00%を超えると、スケ-ル直下に生成するCu濃化層に起因する表面割れが問題となる。そのため、Cu含有量を2.00%以下に制限する。より好ましくは、1.50%以下である。一方、Cuを添加する場合は0.05%以上が望ましい。
Cu: 2.00% or less Cu is an element that can increase the strength of thick steel plates without significantly deteriorating the base material and joint toughness, but if the Cu content exceeds 2.00%, surface cracking due to a Cu-enriched layer formed just below the scale becomes a problem. Therefore, the Cu content is limited to 2.00% or less. More preferably, it is 1.50% or less. On the other hand, when Cu is added, it is preferable that the content be 0.05% or more.
Cr:2.00%以下
Crは、鋼の焼入れ性の向上を介して強度を向上させる効果を有する元素であるが、Cr含有量が2.00%を超えると継手CTOD特性が低下するため、Cr含有量を2.00%以下に制限する。より好ましくは、1.50%以下である。一方、Crを添加する場合は0.05%以上が望ましい。
Cr: 2.00% or less Cr is an element that has the effect of improving the strength by improving the hardenability of steel, but if the Cr content exceeds 2.00%, the joint CTOD properties deteriorate, so the Cr content is limited to 2.00% or less. More preferably, it is 1.50% or less. On the other hand, when Cr is added, it is preferable that the content be 0.05% or more.
Mo:2.00%以下
Moは、鋼の焼入れ性の向上を介して強度を向上させる効果を有する元素であるが、Mo含有量が2.00%を超えると継手CTOD特性が低下するため、Mo含有量を2.00%以下に制限する。より好ましくは、1.50%以下である。一方、Moを添加する場合は0.05%以上が望ましい。
Mo: 2.00% or less Mo is an element that has the effect of improving the strength by improving the hardenability of steel, but if the Mo content exceeds 2.00%, the joint CTOD characteristics deteriorate, so the Mo content is limited to 2.00% or less. More preferably, it is 1.50% or less. On the other hand, when Mo is added, it is preferable that the content be 0.05% or more.
Nb:0.070%以下
Nbは、オ-ステナイト相の未再結晶温度域を広げる元素である。そのため、未再結晶域圧延を効率的に行い、微細組織を得るために、Nbの添加は有効である。Nbを添加する場合は0.005%以上が望ましい。一方、Nb添加量が0.070%を超えると継手CTOD特性が低下するため、Nb含有量を0.070%以下に制限する。より好ましくは、0.050%以下である。
Nb: 0.070% or less Nb is an element that expands the non-recrystallization temperature range of the austenite phase. Therefore, the addition of Nb is effective in efficiently performing non-recrystallization region rolling and obtaining a fine structure. When Nb is added, 0.005% or more is preferable. On the other hand, if the amount of Nb added exceeds 0.070%, the joint CTOD characteristics deteriorate, so the Nb content is limited to 0.070% or less. More preferably, it is 0.050% or less.
V:0.20%以下
Vは、母材の強度を向上させる元素であり、Vを添加する場合は0.01%以上が望ましい。一方、V含有量が0.20%を超えるとHAZ靭性が低下し、継手CTOD特性が劣化するため、V含有量を0.20%以下に制限する。より好ましくは、0.15%以下である。
V: 0.20% or less V is an element that improves the strength of the base metal, and when V is added, it is preferable that the content be 0.01% or more. On the other hand, if the V content exceeds 0.20%, the HAZ toughness decreases and the joint CTOD characteristics deteriorate, so the V content is limited to 0.20% or less. More preferably, it is 0.15% or less.
W:0.50%以下
Wは、母材の強度を向上させる元素であり、Wを添加する場合は0.05%以上が望ましい。一方、W含有量が0.50%を超えるとHAZ靭性が低下し、継手CTOD特性が劣化するため、W含有量を0.50%以下に制限する。より好ましくは、0.40%以下である。
W: 0.50% or less W is an element that improves the strength of the base metal, and when W is added, it is preferable that the content be 0.05% or more. On the other hand, if the W content exceeds 0.50%, the HAZ toughness decreases and the joint CTOD characteristics deteriorate, so the W content is limited to 0.50% or less. More preferably, it is 0.40% or less.
B:0.0050%以下
Bは、極微量の含有で焼入れ性を向上させ、それにより鋼板の強度を向上させることができる元素であり、Bを添加する場合は0.0005%以上が望ましい。一方、B含有量が0.0050%を超えるとHAZ靭性が低下し、継手CTOD特性が劣化するため、B含有量を0.0050%以下に制限する。より好ましくは、0.0040%以下である。
B: 0.0050% or less B is an element that can improve hardenability even with a very small amount of content, thereby improving the strength of the steel plate, and when B is added, it is preferable that the content be 0.0005% or more. On the other hand, if the B content exceeds 0.0050%, the HAZ toughness decreases and the joint CTOD characteristics deteriorate, so the B content is limited to 0.0050% or less. More preferably, it is 0.0040% or less.
REM:0.030%以下
REM(希土類金属)は、酸硫化物系介在物を形成することでHAZのオ-ステナイト粒成長を抑制し、HAZ靭性を向上させる元素であり、REMを添加する場合は0.001%以上が望ましい。一方、REM含有量が0.030%を超えると、母材靭性およびHAZ靭性がかえって低下し、継手CTOD特性が劣化する。そのため、REM含有量は0.030%以下に制限する。より好ましくは、0.025%以下である。
REM: 0.030% or less REM (rare earth metal) is an element that suppresses the austenite grain growth in the HAZ by forming oxysulfide inclusions and improves HAZ toughness, and when REM is added, it is preferable to add 0.001% or more. On the other hand, if the REM content exceeds 0.030%, the base material toughness and HAZ toughness decrease, and the joint CTOD characteristics deteriorate. Therefore, the REM content is limited to 0.030% or less. More preferably, it is 0.025% or less.
Mg:0.0150%以下
Mgは、酸化物系介在物を形成することで溶接熱影響部においてオ-ステナイト粒の成長を抑制し、溶接熱影響部靭性を改善する元素であり、Mgを添加する場合は0.0002%以上が望ましい。しかし、Mg含有量が0.0150%を超えると添加効果が飽和し、含有量に見合う効果が期待できずに経済的に不利となる。そのため、Mg含有量を0.0150%以下に制限する。より好ましくは、0.0100%以下である。
Mg: 0.0150% or less Mg is an element that forms oxide-based inclusions to suppress the growth of austenite grains in the weld heat affected zone and improve the toughness of the weld heat affected zone, and when Mg is added, 0.0002% or more is preferable. However, if the Mg content exceeds 0.0150%, the effect of addition becomes saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, the Mg content is limited to 0.0150% or less. More preferably, it is 0.0100% or less.
なお、本発明において、上記厚鋼板および鋼片の成分組成は、さらに以下に述べる、Ti/N、CeqおよびPcmの条件をそれぞれ満足する必要がある。
1.50≦Ti/N≦5.00 …(1)
Ti/Nは、HAZにおける固溶N量とTiNの析出状態を制御する。Ti/Nが1.50未満では、TiNとして固定されていない固溶Nの存在によりHAZ靭性が劣化し、継手CTOD特性が劣化する。一方、Ti/Nが5.00より大きいと粗大TiNの析出によりHAZ靭性が劣化し、継手CTOD特性が劣化する。よって、Ti/Nの範囲は1.50~5.00の範囲とする。なお、好ましくは下限が1.80であって、上限が4.50である。
In the present invention, the chemical compositions of the above-mentioned steel plate and steel slab must further satisfy the conditions of Ti/N, Ceq and Pcm, which will be described below.
1.50≦Ti/N≦5.00 ... (1)
Ti/N controls the amount of solute N in the HAZ and the precipitation state of TiN. If Ti/N is less than 1.50, the presence of solute N that is not fixed as TiN deteriorates the HAZ toughness and deteriorates the joint CTOD characteristics. On the other hand, if Ti/N is more than 5.00, the precipitation of coarse TiN deteriorates the HAZ toughness and deteriorates the joint CTOD characteristics. Therefore, the range of Ti/N is set to 1.50 to 5.00. Preferably, the lower limit is 1.80 and the upper limit is 4.50.
Ceq:0.280%以上、0.540%以下
以下の(2)式で定義される炭素当量Ceqが増加すると、HAZ組織中の島状マルテンサイトやベイナイトといった靭性の劣る組織量が増加する結果、HAZ靭性が劣化する。すなわち、Ceqが0.540%より大きいと、HAZの基地組織自体の靭性劣化のため、介在物によるHAZ靭性向上技術を用いても必要な継手CTOD特性を満足できない。一方、Ceqが0.280%より小さいと、目標の強度を確保できなくなる。よって、Ceqの範囲は0.280~0.540%とする。なお、好ましくは下限が0.300%であって、上限が0.500%である。
Ceq(%)=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 …(2)
Ceq: 0.280% or more, 0.540% or less When the carbon equivalent Ceq defined by the following formula (2) increases, the amount of structures with poor toughness such as island martensite and bainite in the HAZ structure increases, resulting in deterioration of HAZ toughness. That is, when Ceq is greater than 0.540%, the necessary joint CTOD characteristics cannot be satisfied even if a HAZ toughness improvement technique using inclusions is used due to the deterioration of the toughness of the HAZ base structure itself. On the other hand, when Ceq is less than 0.280%, the target strength cannot be secured. Therefore, the range of Ceq is 0.280 to 0.540%. Preferably, the lower limit is 0.300% and the upper limit is 0.500%.
Ceq(%)=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5 ... (2)
Pcm:0.250%以下
以下の(3)式で定義される溶接割れ感受性指数Pcmが増加すると、HAZ組織中の島状マルテンサイトやベイナイトなど靭性の劣る組織が増加し、その結果、HAZ靭性が劣化する。Pcmが0.250%を超えると、HAZの基地組織自体の靭性劣化のため、必要な継手CTOD特性を得ることができない。そのため、Pcmを0.250%以下とする。好ましくは0.240%以下である。一方、下限は特に限定されないが、過度にPcmを減少しようとすると、Ceqの値が低くなりすぎてしまうため、0.140%程度が好ましい。
Pcm(%)=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B]…(3)
Pcm: 0.250% or less When the weld crack susceptibility index Pcm defined by the following formula (3) increases, the amount of structures with poor toughness, such as island martensite and bainite, in the HAZ structure increases, and as a result, the HAZ toughness deteriorates. When Pcm exceeds 0.250%, the necessary joint CTOD characteristics cannot be obtained due to the deterioration of the toughness of the HAZ base structure itself. Therefore, Pcm is set to 0.250% or less. It is preferably 0.240% or less. On the other hand, the lower limit is not particularly limited, but if Pcm is reduced excessively, the value of Ceq becomes too low, so that about 0.140% is preferable.
Pcm(%)=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B]...(3)
なお、上記(1)~(3)式における括弧は、いずれも括弧内に示された元素の含有量(質量%)を表し、当該元素が含有されない場合にはゼロとする。 Note that the parentheses in the above formulas (1) to (3) represent the content (mass%) of the element shown within the parentheses, and if the element is not contained, it is set to zero.
[平均有効結晶粒径]
板厚中心部での平均有効結晶粒径:20μm以下
本発明では、板厚100mm超の厚鋼板の板厚中心部におけるミクロ組織の平均有効結晶粒径を20μm以下とする。偏析が存在しやすい板厚中心の結晶粒を上記のように微細化して母材靭性を向上させることにより、SC/ICHAZ境界の継手CTOD特性を向上させることができる。一方、平均有効結晶粒径は小さいほど有利となるため、その下限は特に限定されないが、通常は、1μm程度である。
[Average effective grain size]
Average effective grain size at the center of plate thickness: 20 μm or less In the present invention, the average effective grain size of the microstructure at the center of plate thickness of a thick steel plate with a plate thickness of more than 100 mm is set to 20 μm or less. By refining the grains at the center of plate thickness, where segregation is likely to exist, as described above to improve the toughness of the base material, it is possible to improve the joint CTOD characteristics at the SC/ICHAZ boundary. On the other hand, since the smaller the average effective grain size, the more advantageous it is, the lower limit is not particularly limited, but is usually about 1 μm.
ここで、本発明における「有効結晶粒径」は、隣接する結晶粒との方位差が15°以上の粒界すなわち大角粒界によって囲まれた結晶粒の円相当直径として定義される。また、前記板厚中心部における平均有効結晶粒径は、後述する実施例に記載した方法で測定することができる。Here, the "effective grain size" in the present invention is defined as the circle-equivalent diameter of a grain surrounded by a grain boundary having an orientation difference of 15° or more with adjacent grains, i.e., a high-angle grain boundary. The average effective grain size in the center of the sheet thickness can be measured by the method described in the examples below.
[ポロシティの個数密度]
ポロシティの個数密度:0.10個/mm2以下
前述したように、鋼板内に残存するポロシティは破壊起点となるため、継手CTOD特性を悪化させる。特に、鋼板における円相当径が180μm以上であるポロシティの、1mm2当たりの個数(本発明において、単に「ポロシティの個数密度」ともいう)が0.10個を超えると、継手CTOD試験における、き裂開口変位量(δ)が不十分な値となる可能性が極端に高くなる。また、ポロシティの個数密度が大きくなるほど、母材の板厚中心位置における降伏強度は低下する。そのため、前記ポロシティの個数密度を0.10個/mm2以下とすることが重要である。
[Porosity density]
Number density of porosity: 0.10 pieces/ mm2 or less As mentioned above, the porosity remaining in the steel plate becomes the starting point of fracture, and therefore deteriorates the joint CTOD characteristics. In particular, when the number of porosity having a circle equivalent diameter of 180 μm or more in the steel plate per mm2 (also simply referred to as "number density of porosity" in the present invention) exceeds 0.10 pieces, the possibility that the crack opening displacement (δ) in the joint CTOD test will be an insufficient value becomes extremely high. In addition, the higher the number density of porosity, the lower the yield strength at the center position of the plate thickness of the base material. Therefore, it is important to set the number density of porosity to 0.10 pieces/ mm2 or less.
本発明におけるポロシティの個数密度とは、厚鋼板の板幅方向に平行な厚み方向断面(圧延方向に垂直な断面)における、全厚×全幅での平均個数密度を指すものとする。なお、前記ポロシティの個数密度は、後述する実施例に記載した方法で測定することができるが、測定方法は実施例に記載した方法に限定されず、公知の測定方法を用いて測定することができる。The number density of porosity in the present invention refers to the average number density in the thickness direction cross section (cross section perpendicular to the rolling direction) parallel to the plate width direction of the thick steel plate at the total thickness x total width. The number density of porosity can be measured by the method described in the examples below, but the measurement method is not limited to the method described in the examples and can be measured using any known measurement method.
また、かかるポロシティの個数密度の測定頻度は、鋼片の溶製条件が同一かつ圧延条件が同一の鋼板のうち、任意の1枚の鋼板の1~2断面を測定すればよい。鋼片の溶製方法や圧延条件を変更しない限り、ポロシティ個数密度を再現良く製造できるため、前記測定頻度での測定結果が全体を代表しているといえる。In addition, the frequency of measurement of the porosity number density is sufficient to measure one or two cross sections of any one steel plate among steel plates that have the same slab melting conditions and rolling conditions. As long as the slab melting method and rolling conditions are not changed, the porosity number density can be produced with good reproducibility, so the measurement results at the above measurement frequency can be said to represent the whole.
[製造方法]
次に、本発明における厚鋼板の製造方法について各条件の限定理由を以下に説明する。なお、以下の説明における温度は特に断らない限り、板厚中心の温度とする。なお、板厚中心温度は、後述する実施例のように実測することもできるが、実際の製造ラインなどにおいては、放射温度計で測定した鋼板表面温度から伝熱計算によって求めてもよい。
[Production method]
Next, the reasons for limiting each condition in the manufacturing method of the thick steel plate in the present invention will be described below. In the following description, the temperature is the temperature at the center of the plate thickness unless otherwise specified. The temperature at the center of the plate thickness can be actually measured as in the examples described later, but in an actual manufacturing line, it may be calculated by heat transfer calculation from the steel plate surface temperature measured by a radiation thermometer.
・鋼片の加熱条件
本発明において、鋼片の溶製方法は特に限定されず、転炉、電気炉、真空溶解炉などの公知の溶製方法のいずれもが適合する。かかる鋼片は、例えば連続鋳造法によって製造される。また、かかる鋼片を溶製した溶鋼にはさらに、取鍋精錬などの二次精錬を施してもよい。
上記の通り製造された鋼片を990℃以上、1200℃以下に加熱する。加熱温度が990℃よりも低いと、後述する熱間圧延の条件を満足することができず、十分な効果が得られない。一方、加熱温度が1200℃よりも高くなると、オ-ステナイト粒が粗大化し、制御圧延後に所望の細粒組織が得られなくなる。このため、加熱温度の範囲は990℃以上1200℃以下とする。好ましくは下限の温度が990℃であって、上限の温度が1180℃である。
Heating Conditions of Steel Slabs In the present invention, the method of smelting steel slabs is not particularly limited, and any of the known smelting methods such as converter, electric furnace, and vacuum melting furnace is suitable. Such steel slabs are produced, for example, by a continuous casting method. Furthermore, the molten steel produced from such steel slabs may be further subjected to secondary refining such as ladle refining.
The steel slab produced as described above is heated to 990°C or more and 1200°C or less. If the heating temperature is lower than 990°C, the conditions for hot rolling described below cannot be satisfied, and sufficient effects cannot be obtained. On the other hand, if the heating temperature is higher than 1200°C, the austenite grains become coarse, and the desired fine grain structure cannot be obtained after controlled rolling. For this reason, the heating temperature is set to a range of 990°C or more and 1200°C or less. Preferably, the lower limit temperature is 990°C and the upper limit temperature is 1180°C.
・熱間圧延条件
熱間圧延は再結晶温度域と未再結晶温度域の両方における圧延条件を制御することが重要である。
再結晶温度域では950℃以上の圧延において、圧下率/パスが3%以上の圧下を鋼板の板厚中心部と表面との変形抵抗比の平均値が0.70以下の条件で累積圧下率が30%以上となるように行う。
- Hot rolling conditions It is important to control the rolling conditions in both the recrystallization temperature region and the non-recrystallization temperature region in hot rolling.
In the recrystallization temperature range, rolling at 950°C or higher is performed with a reduction ratio/pass of 3% or more, so that the cumulative reduction ratio is 30% or more under the condition that the average deformation resistance ratio between the center part of the steel plate and the surface is 0.70 or less.
[鋼板の板厚中心部と表面との変形抵抗比:0.70以下]
本発明では、以下の(5)~(7)式で定義される鋼板の板厚中心部の変形抵抗kfm(板厚中心)と表面の変形抵抗kfm(表面)との比の平均値が0.70以下((4)式)とする。具体的には、ロール回転速度、ロール半径、ロールギャップを適切な値に調整しつつ、Cの質量%に応じて、板厚中心と表面の温度差が適切な値になるタイミングで圧延を行うことで、板厚中心部と表面との変形抵抗比の平均値を0.70以下にする。
kfm(板厚中心)/kfm(表面)≦0.70 …(4)
(ここで、kfmは(5)式による)
[Deformation resistance ratio between the center of the steel plate and the surface: 0.70 or less]
In the present invention, the average ratio of deformation resistance k fm (thickness center) of the steel plate to deformation resistance k fm (surface) defined by the following formulas (5) to (7) is set to 0.70 or less (formula (4)). Specifically, the roll rotation speed, roll radius, and roll gap are adjusted to appropriate values, and rolling is performed at a timing that results in an appropriate temperature difference between the thickness center and the surface according to the mass % of C, thereby making the average deformation resistance ratio between the thickness center and the surface 0.70 or less.
k fm (center of thickness) / k fm (surface) ≦ 0.70 ... (4)
(where k fm is based on equation (5))
ただし、式(5)~(7)における[C]はCの質量%を、Tkはkfmを求める箇所、すなわち板厚中心または鋼板表面の絶対温度(K)、h0は圧延入側の板厚、h1は圧延出側の板厚、nはロール回転速度(rpm)、rは圧下率、Rはロール半径(mm)をそれぞれ表す。
なお、鋼板の表面の温度は放射温度計によって測定でき、板厚中心の温度は、後述する実施例のように実測することもできるが、実際の製造ラインなどにおいては、放射温度計で測定した鋼板表面温度から伝熱計算によって求めてもよい。
In the formulas (5) to (7), [C] represents mass % of C, Tk represents the location for which kfm is obtained, i.e., the absolute temperature (K) of the center of sheet thickness or the surface of the steel sheet, h0 represents the sheet thickness on the rolling inlet side, h1 represents the sheet thickness on the rolling outlet side, n represents the roll rotation speed (rpm), r represents the reduction rate, and R represents the roll radius (mm).
The temperature on the surface of the steel plate can be measured by a radiation thermometer, and the temperature at the center of the plate thickness can also be actually measured as in the examples described later. However, in an actual production line, the temperature may also be determined by heat transfer calculation from the steel plate surface temperature measured by the radiation thermometer.
上記(4)式に従う鋼板の板厚中心部と表面との変形抵抗比の平均値が0.70を超える条件では、板厚100mm超の厚鋼板に対し、その板厚中心部に十分な歪みを導入することができず、ポロシティが残存してしまう。その結果、ポロシティ個数密度を0.10個/mm2以下にできない。このため、鋼板の板厚中心部と表面との変形抵抗比:0.70以下、圧下率/パスが3%以上の圧下の累積圧下率:30%以上とする。 Under conditions where the average value of the deformation resistance ratio between the center and surface of the steel plate according to the above formula (4) exceeds 0.70, sufficient strain cannot be introduced into the center of the thickness of a thick steel plate having a thickness of more than 100 mm, and porosity remains. As a result, the porosity number density cannot be reduced to 0.10 pieces/ mm2 or less. For this reason, the deformation resistance ratio between the center and surface of the steel plate is set to 0.70 or less, and the cumulative reduction ratio for reduction with a reduction ratio/pass of 3% or more is set to 30% or more.
[950℃以上の圧延]
ここで、950℃以上で行う圧延の目的は、再結晶によって組織を微細化するとともに、粗大な介在物を微細化、分散化させることに加え、ポロシティを圧着することである。すなわち、950℃未満の圧延では、再結晶が起こり難く、オ-ステナイト粒の微細化が不十分となる。
[Rolling at 950 ° C or higher]
Here, the purpose of rolling at 950°C or higher is to refine the structure by recrystallization, refine and disperse coarse inclusions, and compress porosity. In other words, with rolling at less than 950°C, recrystallization is difficult to occur, and austenite grains are not sufficiently refined.
[圧下率/パスが3%以上]
圧下率/パスが3%未満の圧延では、板厚中心部に十分な歪みを導入することができず、圧下率/パスが3%以上であっても圧下の累積圧下率が30%未満ではポロシティを十分に圧着できない。
[Rolling reduction/pass is 3% or more]
When the reduction rate/pass is less than 3%, sufficient strain cannot be introduced into the center of the plate thickness, and even if the reduction rate/pass is 3% or more, if the cumulative reduction rate of the reduction is less than 30%, the porosity cannot be sufficiently sealed.
[950℃未満の圧延]
未再結晶温度域、すなわち950℃未満の圧延では、鋼板の板厚中心部と表面との変形抵抗比の平均値は再結晶温度域と同じく0.70以下の条件とし、累積圧下率が40%以上となるように圧延を行う。
[Rolling at less than 950 ° C.]
In the non-recrystallization temperature region, i.e., rolling below 950°C, the average value of the deformation resistance ratio between the center part of the sheet thickness and the surface of the steel sheet is set to 0.70 or less, the same as in the recrystallization temperature region, and rolling is performed so that the cumulative reduction is 40% or more.
本発明における鋼は、950℃未満での圧延では再結晶が起こり難いため、圧延によって導入された歪みは再結晶に消費されずに蓄積され、後の冷却工程における変態核として機能する。その結果、最終的に得られる厚鋼板の組織を微細化することができる。しかし、この温度域における累積圧下率が40%未満の条件では、結晶粒微細化効果が不十分となる。また、板厚100mm超の厚鋼板において、鋼板の板厚中心部と表面との変形抵抗比の平均値が0.70を超えた条件では、板厚中心部に十分な歪みを導入することができず、板厚中心部の最終組織の微細化が不十分となり、板厚中心部の平均有効結晶粒径を20μm以下にできない。
このため、未再結晶温度域での圧延は累積圧下率:40%以上、鋼板の板厚中心部と表面との変形抵抗比の平均値:0.70以下とする。
In the steel of the present invention, recrystallization is difficult to occur when rolling at a temperature below 950°C, so the strain introduced by rolling is accumulated without being consumed in recrystallization and functions as a transformation nucleus in the subsequent cooling process. As a result, the structure of the thick steel plate finally obtained can be refined. However, under conditions where the cumulative rolling reduction in this temperature range is less than 40%, the effect of refining the crystal grains is insufficient. In addition, in thick steel plates with a thickness of more than 100 mm, under conditions where the average value of the deformation resistance ratio between the thickness center and the surface of the steel plate exceeds 0.70, sufficient strain cannot be introduced into the thickness center, the final structure of the thickness center is insufficient, and the average effective crystal grain size of the thickness center cannot be reduced to 20 μm or less.
For this reason, the rolling in the non-recrystallization temperature region is set to a cumulative reduction rate of 40% or more, and the average deformation resistance ratio between the center of the thickness of the steel plate and the surface is set to 0.70 or less.
[冷却]
上記熱間圧延終了後、得られた熱延鋼板を冷却する。かかる冷却は、以下に述べる条件を満たす限り、任意の方法で行うことができ、例えば、水冷によって行うことができる。
[cooling]
After the hot rolling is completed, the hot-rolled steel sheet is cooled. This cooling can be performed by any method as long as the following conditions are satisfied, for example, by water cooling.
平均冷却速度:1.0℃/s以上
板厚中心温度の平均冷却速度が1.0℃/s未満になると、母材組織に粗大なフェライト相が生じるためSC/ICHAZの継手CTOD特性が劣化する。このため、板厚中心位置での平均冷却速度を1.0℃/s以上とする。一方、前記平均冷却速度が50.0℃/sよりも大きいと、硬質なベイナイト相が増加することで母材強度が高くなりSC/ICHAZの継手CTOD特性が劣化するため、冷却速度は50.0℃/s以下とすることが好ましい。
Average cooling rate: 1.0°C/s or more If the average cooling rate at the plate thickness center temperature is less than 1.0°C/s, a coarse ferrite phase will be generated in the base material structure, deteriorating the CTOD characteristics of the SC/ICHAZ joint. For this reason, the average cooling rate at the plate thickness center is set to 1.0°C/s or more. On the other hand, if the average cooling rate is greater than 50.0°C/s, the hard bainite phase will increase, increasing the base material strength and deteriorating the CTOD characteristics of the SC/ICHAZ joint, so the cooling rate is preferably 50.0°C/s or less.
なお、本発明において、次段落に示す冷却停止温度が500℃以下の場合は、700℃から500℃までの冷却速度の平均値を上記平均冷却速度とし、この冷却停止温度が500℃よりも高い場合は、700℃から上記500℃よりも高い冷却停止温度までの冷却速度の平均値を上記平均冷却速度とする。In the present invention, when the cooling stop temperature shown in the next paragraph is 500°C or less, the average cooling rate is the average value of the cooling rate from 700°C to 500°C, and when this cooling stop temperature is higher than 500°C, the average cooling rate is the average value of the cooling rate from 700°C to a cooling stop temperature higher than 500°C.
冷却停止温度:600℃以下
前記冷却では、前記熱延鋼板を、板厚中心温度で600℃以下の冷却停止温度となるまで冷却する。前記冷却停止温度が600℃より高いと、変態後の組織が粗大になり、母材強度が不足するとともに、SC/ICHAZの継手CTOD特性が劣化する。このため、冷却停止温度は600℃以下とする。
Cooling stop temperature: 600°C or less In the cooling, the hot-rolled steel sheet is cooled until the temperature at the center of the sheet thickness reaches a cooling stop temperature of 600°C or less. If the cooling stop temperature is higher than 600°C, the structure after transformation becomes coarse, the strength of the base material becomes insufficient, and the CTOD characteristics of the SC/ICHAZ joint deteriorate. For this reason, the cooling stop temperature is set to 600°C or less.
[焼戻し処理]
焼戻し温度:700℃以下
前記冷却の停止後、さらに任意に焼戻し処理を行うことができる。焼戻し処理により、母材靭性をさらに向上させることができる。その際、焼戻し温度が700℃よりも高いと、粗大フェライト相が生成して、SCHAZの靭性が劣化する。そのため、焼戻し温度は700℃以下とすることが好ましい。より好ましくは650℃以下である。なお、焼戻し温度の下限は特に限定されないが、300℃程度とすることができる。
[Tempering treatment]
Tempering temperature: 700°C or less After the cooling is stopped, a further tempering treatment can be performed as desired. The tempering treatment can further improve the toughness of the base material. At that time, if the tempering temperature is higher than 700°C, a coarse ferrite phase is generated, and the toughness of the SCHAZ deteriorates. Therefore, the tempering temperature is preferably 700°C or less. More preferably, it is 650°C or less. The lower limit of the tempering temperature is not particularly limited, but can be about 300°C.
なお、本発明に従う製造方法において、本明細書に記載のない項目は、いずれも常法を用いることができる。In the manufacturing method according to the present invention, any items not described in this specification can be performed using conventional methods.
次に、実施例に基づいて本発明をさらに具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。Next, the present invention will be described in more detail based on examples. The following examples are intended to illustrate preferred embodiments of the present invention, and the present invention is not limited to these examples.
表1に示す成分組成の鋼片を用いて、表2に示す製造条件で厚鋼板を製造した。なお、熱間圧延時には、圧延される鋼材の長手方向、幅方向、および板厚方向の中心位置に熱電対を取り付け、板厚中心の温度を実測した。併せて、鋼材の表面温度を放射温度計で測定した。Steel billets with the chemical composition shown in Table 1 were used to manufacture thick steel plates under the manufacturing conditions shown in Table 2. During hot rolling, thermocouples were attached to the center positions of the steel material being rolled in the longitudinal, transverse and thickness directions, and the temperature at the center of the thickness direction was measured. Additionally, the surface temperature of the steel material was measured with a radiation thermometer.
得られた厚鋼板のそれぞれについて、平均有効結晶粒径、ポロシティの個数密度、および降伏強度を以下の方法で測定した。 The average effective grain size, porosity number density, and yield strength of each of the resulting steel plates were measured using the following methods.
[平均有効結晶粒径]
得られた鋼板から、該鋼板の長手方向、幅方向、および板厚方向における中心が測定位置となるようにサンプルを採取した。次いで、前記サンプルの表面を鏡面研磨した後、以下の条件でEBSP解析を行った。得られた結晶方位マップより、隣接する結晶粒との方位差が15°以上の大角粒界で囲まれた組織の円相当直径を求め、以下の解析領域における円相当直径の平均値を平均有効結晶粒径とした。
EBSP条件
・解析領域:板厚中心の1mm×1mm領域
・ステップサイズ:0.4μm
[Average effective grain size]
Samples were taken from the obtained steel sheet so that the measurement positions were the centers in the longitudinal direction, width direction, and thickness direction of the steel sheet. Next, the surfaces of the samples were mirror-polished, and then EBSP analysis was performed under the following conditions. From the obtained crystal orientation map, the circle equivalent diameter of the structure surrounded by high-angle grain boundaries with an orientation difference of 15° or more with adjacent crystal grains was obtained, and the average value of the circle equivalent diameter in the following analysis region was taken as the average effective crystal grain size.
EBSP conditions: Analysis area: 1 mm x 1 mm area at the center of plate thickness; Step size: 0.4 μm
[ポロシティの個数密度]
鋼板内部の欠陥の検出には、非破壊で検査できるため超音波探傷が用いられることが多いが、正確に欠陥部の状態を確認するため直接観察を行い、ポロシティの個数密度を測定した。まず、圧延材の板幅方向に平行な厚み方向断面(圧延方向に垂直な断面)における、観察面が全厚×全幅サイズとなる観察用のサンプルを板長の中心位置から採取し、鏡面研磨仕上げした。かかる鏡面研磨仕上げしたサンプルを光学顕微鏡にて観察して写真を撮影し、得られた写真を画像解析して、存在するポロシティ個々の円相当径を求めた。粒径が180μm以上のポロシティの数を測定面積(板厚×板幅)で割ることで、円相当径が180μm以上であるポロシティの、1mm2当たりの個数を求めた。
[Porosity density]
Ultrasonic testing is often used to detect defects inside steel sheets because it can be inspected non-destructively, but in order to accurately confirm the state of the defective parts, direct observation was performed to measure the number density of porosity. First, a sample for observation was taken from the center position of the plate length in the thickness direction cross section (cross section perpendicular to the rolling direction) parallel to the plate width direction of the rolled material, with the observation surface being the full thickness x full width size, and was mirror-polished. The mirror-polished sample was observed with an optical microscope and photographed, and the obtained photograph was subjected to image analysis to determine the circle equivalent diameter of each of the existing porosities. The number of porosity with a particle size of 180 μm or more was divided by the measurement area (plate thickness x plate width) to determine the number of porosity with a circle equivalent diameter of 180 μm or more per 1 mm2.
[降伏強度]
EN10002-1に従って引張試験を行い、厚鋼板の板厚(t)の1/4および1/2位置における降伏強度(YS)を求めた。前記引張試験には、板厚の1/4および1/2位置から板幅方向に平行となるよう採取した、平行部直径14mm、平行部長さ70mmの丸棒引張試験片を使用した。前記引張試験において上降伏点が現れた場合は上降伏応力を降伏強度とした。また、上降伏点が現れなかった場合には0.2%耐力を降伏強度とした。
[Yield strength]
A tensile test was conducted according to EN10002-1 to determine the yield strength (YS) at 1/4 and 1/2 positions of the plate thickness (t) of the thick steel plate. For the tensile test, a round bar tensile test piece with a parallel part diameter of 14 mm and a parallel part length of 70 mm was used, which was taken from the 1/4 and 1/2 positions of the plate thickness so as to be parallel to the plate width direction. When an upper yield point appeared in the tensile test, the upper yield stress was taken as the yield strength. When an upper yield point did not appear, the 0.2% proof stress was taken as the yield strength.
次に、上記厚鋼板のそれぞれを用いて多層盛溶接継手を作製した。得られた多層盛溶接継手のそれぞれについて継手CTOD試験を行い、CGHAZにおけるき裂開口変位量およびSC/ICHAZにおけるき裂開口変位量を測定した。多層盛溶接継手の作製条件と、継手CTOD試験の条件を以下に説明する。Next, multi-layer welded joints were fabricated using each of the above thick steel plates. A joint CTOD test was performed on each of the resulting multi-layer welded joints to measure the crack opening displacement in the CGHAZ and the crack opening displacement in the SC/ICHAZ. The fabrication conditions for the multi-layer welded joints and the joint CTOD test conditions are described below.
[継手CTOD試験]
継手CTOD試験に用いる溶接継手は、K開先形状、入熱量5.0kJ/mmのサブマージアーク溶接(多層盛溶接)により作製した。試験方法は、BS規格EN10225(2019)に準拠し、断面がt×t(tは板厚)の正方形である試験片を用いて、試験温度:-40℃におけるき裂開口変位量[CTOD値(δ)]を評価した。
[Joint CTOD test]
The welded joints used in the joint CTOD test were prepared by submerged arc welding (multi-layer welding) with a K groove shape and a heat input of 5.0 kJ/mm. The test method conformed to BS standard EN10225 (2019), and a test specimen with a square cross section of t x t (t is the plate thickness) was used to evaluate the crack opening displacement [CTOD value (δ)] at a test temperature of -40 ° C.
前記継手CTOD試験では、切欠位置をK開先の直線形状側のCGHAZとした試験と、SC/ICHAZ境界とした試験を行い、CGHAZのδとSC/ICHAZ境界のδを、それぞれ測定した。なお、厚鋼板のそれぞれについて、切欠位置ごとに3本の試験片を用いて試験を行い、測定値の最低値をδとした。In the joint CTOD test, tests were conducted in which the notch position was the CGHAZ on the straight side of the K groove, and in which it was the SC/ICHAZ boundary, and δ of the CGHAZ and δ of the SC/ICHAZ boundary were measured. For each thick steel plate, tests were conducted using three test pieces for each notch position, and the minimum measured value was recorded as δ.
前記試験後、試験片破面で、疲労予亀裂の先端がEN10225(2019)で規定するCGHAZと、SC/ICHAZ境界のそれぞれにあることを確認した。なお、多層盛溶接の継手CTOD試験の場合、切欠位置がCGHAZであっても、一定量のICCGHAZが含まれるため、試験結果には、CGHAZとICCGHAZの両方の靭性が反映される。
以上の測定結果を、表2に併記する。
After the test, it was confirmed that the tip of the fatigue pre-crack was located on the fracture surface of the test specimen in the CGHAZ and the SC/ICHAZ boundary as specified in EN10225 (2019). In the case of a CTOD test of a multi-pass welded joint, even if the notch position is in the CGHAZ, a certain amount of ICCGHAZ is included, so the test results reflect the toughness of both the CGHAZ and the ICCGHAZ.
The above measurement results are shown in Table 2.
表2に記載の通り、本発明の条件を満たす厚鋼板(発明例)は、製造条件、母材の有効結晶粒径、ポロシティの個数密度のいずれもが発明の範囲を満たし、板厚1/4位置および板厚中心位置における降伏強度が320MPa以上であり、CGHAZのCTOD値とSC/ICHAZ境界のCTOD値の両方が-40℃において0.30mm以上と、高強度と優れた継手CTOD特性を兼ね備えていた。As shown in Table 2, the thick steel plate (invention example) satisfying the conditions of the present invention had manufacturing conditions, effective crystal grain size of the base material, and porosity number density all within the range of the invention, had a yield strength of 320 MPa or more at the 1/4 thickness position and the center thickness position, and both the CTOD value of the CGHAZ and the CTOD value of the SC/ICHAZ boundary were 0.30 mm or more at -40°C, combining high strength with excellent joint CTOD characteristics.
これに対して、本発明の条件を満たさない厚鋼板(比較例)のうち、No.42、43、47は、板厚1/4位置および板厚中心位置における降伏強度が320MPa未満である。No.20は、板厚1/4位置および板厚中心位置における降伏強度が320MPa未満かつSC/ICHAZ境界のCTOD値が0.30mm未満である。No.52は板厚1/4位置における降伏強度は320MPa以上であるが、板厚中心位置における降伏強度が320MPa未満である。その他の比較例は、CGHAZのCTOD値とSC/ICHAZ境界のCTOD値の一方または両方が0.30mm未満である。いずれの比較例も、発明例に比べて母材強度や継手CTOD特性が劣っていた。In contrast, among the thick steel plates (comparative examples) that do not satisfy the conditions of the present invention, Nos. 42, 43, and 47 have yield strengths of less than 320 MPa at the 1/4 thickness position and at the center of the thickness. No. 20 has a yield strength of less than 320 MPa at the 1/4 thickness position and at the center of the thickness, and a CTOD value of the SC/ICHAZ boundary of less than 0.30 mm. No. 52 has a yield strength of 320 MPa or more at the 1/4 thickness position, but a yield strength of less than 320 MPa at the center of the thickness. In the other comparative examples, one or both of the CTOD values of the CGHAZ and the SC/ICHAZ boundary are less than 0.30 mm. All comparative examples had inferior base material strength and joint CTOD characteristics compared to the inventive examples.
Claims (4)
C :0.02~0.12%、
Si:0.70%以下、
Mn:0.3~3.0%、
P :0.050%以下、
S :0.0050%以下、
Al:0.002~0.100%、
Ti:0.002~0.060%、
N :0.0130%以下、および
O :0.0100%以下を含み、
残部がFeおよび不可避的不純物であって、以下の(1)~(3)式を満たす成分組成を有し、
板厚中心部における平均有効結晶粒径が20μm以下であって、かつ鋼板における円相当径:180μm以上のポロシティが1mm2当たりの個数で0.10個以下であり、板厚の1/2位置における降伏強度が545MPa以下であり、板厚が100mm超である、鋼板。
1.50≦Ti/N≦5.00 …(1)
0.280%≦Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.540% …(2)
Pcm(=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10+5[B])≦0.250% …(3)
(ただし、(1)~(3)式における括弧は、括弧内の元素の含有量(質量%)を表し、当該元素が含有されない場合にはゼロとする) In mass percent,
C: 0.02 to 0.12%,
Si: 0.70% or less,
Mn: 0.3 to 3.0%,
P: 0.050% or less,
S: 0.0050% or less,
Al: 0.002 to 0.100%,
Ti: 0.002 to 0.060%,
N: 0.0130% or less; and O: 0.0100% or less;
The balance is Fe and unavoidable impurities, and has a composition that satisfies the following formulas (1) to (3):
A steel plate having an average effective crystal grain size of 20 μm or less at a center portion of the plate thickness, a porosity having a circle equivalent diameter of 180 μm or more in the steel plate of 0.10 or less per mm2 , a yield strength of 545 MPa or less at a position of 1/2 of the plate thickness, and a plate thickness of more than 100 mm.
1.50 ≦Ti/N≦5.00 ... (1)
0.280%≦Ceq(=[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/5)≦0.540% ... (2)
Pcm (= [C] + [Si] / 30 + ( [Mn] + [Cu] + [Cr]) / 20 + [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B]) ≦ 0.250% ... (3)
(Note that the parentheses in formulas (1) to (3) represent the content (mass%) of the element in the parentheses, and if the element is not contained, the value is set to zero.)
Ni:2.0%以下、
Ca:0.0180%以下、
Cu:2.00%以下、
Cr:2.00%以下、
Mo:2.00%以下、
Nb:0.070%以下、
V :0.20%以下、
W :0.50%以下、
B :0.0050%以下、
REM:0.030%以下および、
Mg:0.0150%以下からなる群より選択される1種または2種以上を含む、請求項1に記載の鋼板。 The composition further comprises, in mass%,
Ni: 2.0% or less,
Ca: 0.0180% or less,
Cu: 2.00% or less,
Cr: 2.00% or less,
Mo: 2.00% or less,
Nb: 0.070% or less,
V: 0.20% or less,
W: 0.50% or less,
B: 0.0050% or less,
REM: 0.030% or less;
The steel plate according to claim 1, further comprising one or more selected from the group consisting of Mg: 0.0150% or less.
請求項1または2に記載の成分組成を有する鋼片を、990℃以上1200℃以下の範囲に加熱し、以下の(4)式の条件を満足し、かつ板厚中心の温度が950℃以上の圧延においては圧下率/パスが3%以上の圧下を累積圧下率で30%以上とし、板厚中心の温度が950℃未満の圧延においては累積圧下率を40%以上とする熱間圧延を行い、次いで、板厚中心の平均冷却速度を1.0℃/s以上50.0℃/s以下で600℃以下の冷却停止温度まで冷却するに際し、上記冷却停止温度が500℃以下の場合は、700℃から500℃までの冷却速度の平均値を上記平均冷却速度とし、上記冷却停止温度が500℃よりも高い場合は、700℃から上記500℃よりも高い冷却停止温度までの冷却速度の平均値を上記平均冷却速度とする鋼板の製造方法。
kfm(板厚中心)/kfm(表面)≦0.70 …(4)
(ここで、kfmは(5)式による)
3. A method for producing a steel plate comprising: heating a steel slab having the chemical composition according to claim 1 to a range of 990°C or higher and 1200°C or lower; hot rolling the steel slab, which satisfies the condition of the following formula (4) and in which the rolling reduction/pass is 3% or higher and the cumulative rolling reduction is 30% or higher in rolling where the temperature at the plate thickness center is 950°C or higher, and in which the cumulative rolling reduction is 40% or higher in rolling where the temperature at the plate thickness center is less than 950°C; and then cooling the steel slab at an average cooling rate at the plate thickness center of 1.0°C/s or higher and 50.0°C/s or lower to a cooling stop temperature of 600°C or lower, wherein when the cooling stop temperature is 500°C or lower, the average cooling rate is the average value of the cooling rates from 700°C to 500°C, and when the cooling stop temperature is higher than 500°C, the average cooling rate is the average value of the cooling rates from 700°C to a cooling stop temperature higher than 500°C.
k fm (center of thickness) / k fm (surface) ≦ 0.70 ... (4)
(where k fm is based on equation (5))
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022015943 | 2022-02-03 | ||
JP2022015943 | 2022-02-03 | ||
PCT/JP2023/000227 WO2023149157A1 (en) | 2022-02-03 | 2023-01-06 | Steel sheet and method for manufacturing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2023149157A1 JPWO2023149157A1 (en) | 2023-08-10 |
JP7493140B2 true JP7493140B2 (en) | 2024-05-31 |
Family
ID=87552290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023524825A Active JP7493140B2 (en) | 2022-02-03 | 2023-01-06 | Steel plate and its manufacturing method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7493140B2 (en) |
KR (1) | KR20240134178A (en) |
CN (1) | CN118574945A (en) |
WO (1) | WO2023149157A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007302908A (en) | 2006-04-10 | 2007-11-22 | Sumitomo Metal Ind Ltd | High tensile strength steel plate and its manufacturing method |
WO2016035110A1 (en) | 2014-09-05 | 2016-03-10 | Jfeスチール株式会社 | Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same |
WO2018216665A1 (en) | 2017-05-22 | 2018-11-29 | Jfeスチール株式会社 | Thick steel plate and method for manufacturing same |
WO2021182618A1 (en) | 2020-03-13 | 2021-09-16 | 日本製鉄株式会社 | Steel sheet for wind power generation plants and method for producing same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60152626A (en) | 1984-01-20 | 1985-08-10 | Kawasaki Steel Corp | Method for stabilizing toughness of high tension steel for welded structure |
JPS60184663A (en) | 1984-02-29 | 1985-09-20 | Kawasaki Steel Corp | High-tensile steel for low temperature service for welding with large heat input |
JPS61253344A (en) | 1985-05-01 | 1986-11-11 | Kawasaki Steel Corp | Steel plate for high heat input welding and its manufacture |
JPH0344417A (en) * | 1989-07-11 | 1991-02-26 | Nippon Steel Corp | Production of thick steel plate for welded structure having excellent internal quality |
JP3045856B2 (en) | 1991-11-13 | 2000-05-29 | 川崎製鉄株式会社 | Method for producing high toughness Cu-containing high tensile steel |
JP5177310B2 (en) | 2011-02-15 | 2013-04-03 | Jfeスチール株式会社 | High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same |
EP2894235B1 (en) | 2012-09-06 | 2019-01-09 | JFE Steel Corporation | Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof |
-
2023
- 2023-01-06 WO PCT/JP2023/000227 patent/WO2023149157A1/en active Application Filing
- 2023-01-06 CN CN202380017226.XA patent/CN118574945A/en active Pending
- 2023-01-06 KR KR1020247026669A patent/KR20240134178A/en unknown
- 2023-01-06 JP JP2023524825A patent/JP7493140B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007302908A (en) | 2006-04-10 | 2007-11-22 | Sumitomo Metal Ind Ltd | High tensile strength steel plate and its manufacturing method |
WO2016035110A1 (en) | 2014-09-05 | 2016-03-10 | Jfeスチール株式会社 | Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same |
WO2018216665A1 (en) | 2017-05-22 | 2018-11-29 | Jfeスチール株式会社 | Thick steel plate and method for manufacturing same |
WO2021182618A1 (en) | 2020-03-13 | 2021-09-16 | 日本製鉄株式会社 | Steel sheet for wind power generation plants and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
WO2023149157A1 (en) | 2023-08-10 |
KR20240134178A (en) | 2024-09-06 |
JPWO2023149157A1 (en) | 2023-08-10 |
CN118574945A (en) | 2024-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5618036B1 (en) | Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same | |
JP5846311B2 (en) | Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same | |
JP5733484B1 (en) | Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same | |
CN109072382B (en) | High-tension steel and marine structure | |
JP5618037B1 (en) | Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same | |
KR20140117560A (en) | High tensile steel plate having excellent low-temperature toughness in weld heat-affected zones, and method for producing same | |
CN110651059B (en) | Thick steel plate and method for producing same | |
JP7127753B2 (en) | Steel plate and its manufacturing method | |
JP5181496B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP7493140B2 (en) | Steel plate and its manufacturing method | |
JPH1025536A (en) | Steel material excellent in toughness in heat affected zone, and its production | |
JP7468800B2 (en) | Steel plate and its manufacturing method | |
JP7534593B2 (en) | Spiral Steel Pipe | |
JP7396322B2 (en) | steel plate | |
JP2018024910A (en) | High strength thick steel plate and production method thereof | |
KR20230159568A (en) | High-strength steel plate and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240416 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240429 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7493140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |